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The Higgs mass scans with steps given by δm2
H ≃ ηµf , where µ and f are the axion mass

and periodicity respectively, and η measures the coupling of the Higgs to the associated

3-form. The observed Higgs mass scale could then be selected on anthropic grounds. The

monodromy axion may have a mass µ in a very wide range depending on the value of η,

and the axion periodity f . For η ≃ 1 and f ≃ 1010GeV , one has 10−3 eV . µ . 103 eV,

but ultralight axions with e.g. µ ≃ 10−17 eV are also possible. In a different realization we

consider landscape models coupled to the MSSM. In the context of SUSY, 4-forms appear

as being part of the auxiliary fields of SUSY multiplets. The scanning in the 4-forms thus

translate into a landscape of vevs for the N = 1 auxiliary fields and hence as a landscape for

the soft terms. This could provide a rationale for the MSSM fine-tuning suggested by LHC

data. In all these models there are 3-forms coupling to membranes which induce transitions

between different vacua through bubble nucleation. The Weak Gravity Conjecture (WGC)

set limits on the tension of these membranes and implies new physics thresholds well below

the Planck scale. More generaly, we argue that in the case of string SUSY vacua in which

the Goldstino multiplet contains a monodromy axion the WGC suggests a lower bound on

the SUSY breaking scale m3/2 & M2
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1 Introduction

There are a couple of very bizarre small mass scales in physics. One is the cosmological

constant which, if identified with dark energy, is of order V0 ≃ (10−3 eV)4, ridiculously

small compared to any other scale in the theory. The other is the Electro-Weak(EW) scale

which is of order mH ≃ 102GeV, much smaller than any expected ultraviolet(UV) cut-off.

Possibly the best solution to the first question was suggested by Weinberg [1], who pointed

out thar if the c.c. V0 scans in a large multiplicity of finely-grained values, galaxy formation

requires V0 to be positive and of order the presently observed values. This is a remarkable

prediction, since it was pointed out before the existence of dark energy was confirmed.

A natural question is whether an analogous mechanism could be at work for the Higgs

hierarchy problem. The EW scale is tied up to the mass parameter m2
H of the Higgs boson,

which is unstable under radiative corrections and would be expected to be of order the cut-

off scale m2
H ≃ Λ2

UV. One way to stabilize the Higgs mass is low energy SUSY. However

the observed relatively large Higgs mass suggests that SUSY, if present, is possibly beyond

the reach of LHC or much heavier. So, even though SUSY still remains the most ellegant

solution to the hierarchy problem it makes sense to look for alternative or complementary

solutions.

In the present paper we study the generation of a landscape of Higgs mass parameters

m2
H to address the EW hierarchy problem. This landscape will contain a large number

of possible values for m2
H from large and negative (or positive) to small with m2

H in the

observed phenomenological range. For the observed value of the EW scale to be one of the

possibilities in the landscape, we need m2
H to scan with a fine-grain mass scale a fraction

of the EW mass scale mW . In fact anthropic considerations require the EW vev not to
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Figure 1. Scheme of the Higgs-axion system. As the axion completes one cycle as φ → φ+ f , the

Higgs mass2 changes by δ(m2

H) ≃ ηµf .

be far from the measured value v0 = 170GeV. Defining v = v0 + δv one finds constraints

(see [2] for the asumptions used in this estimate)

0.39 ≤ |v0 + δv|
v0

≤ 1.64 (1.1)

which implies
δm2

H

m2
H0

= 2
δv

v0
≤ 1.2 (1.2)

These limits come essentially from the atomic principle, i.e. imposing that complex and

stable nuclei can form. Note that it requires δv ≤ 0.6v0 and hence practically determine the

weak scale to be what experimentally is. These constrains may be considered a necessary

but not a sufficient condition for an anthropic solution to the hierarchy problem. Indeed, it

is well known that the masses of the first generation quarks and leptons would also need to

scan in an anthropic setting, see e.g. [2–6]. In this paper we will only address the issue of

a landscape of Higgs mass parameters which is necessary for an antropic solution to work.

Note in this connexion that we we will not try to look here for Higgs mass distributions

which are peaked around the EW scale. For an anthropic solution of the hierarchy problem

it is enough to show that there is a landscape of Higgss masses which contains the observed

Higgs mass, it does not need to be the most likely value. The purpose of this paper is to

construct models in which indeed the Higgss mass scans and hence completes the above

atomic principle into a possible solution to the hierarchy problem. For a discussion of some

phenomenological scenarios from a field theory landscape see also [7].

We consider two classes of models, non-SUSY and SUSY, with some important differ-

ences between them. In both cases the important ingredient is the existence of Minkowski

3-forms C3,
1 which couple to the Higgs sector via their field strength F4. These 4-forms

in turn couple to an axion-like field φ in such a way that a built-in shift symmetry under

φ → φ+ f is respected. The 4-forms are quantized in units of µf , with µ the axion mass.

1For pioneer works involving 3-forms see e.g. [8–16]. For more recent applications see [17–22, 24, 25].

Four-form-Higgs couplings were considered by Dvali in [17–20].
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In the simplest non-SUSY example the 4-form couples to the Higgs in a renormalizable

way, with a term ηF4|H|2 (see figure (1)). This coupling makes the Higgs mass to scan in

a landscape of values in steps given by ηµf . m2
W . The mass of this axion-like field (or

Hierarxion) is hence of order µ . m2
W /f , which is tipically very small.

In the SUSY case, the 4-forms are part of the auxiliary field system of the N = 1

multiplets. The coupling of the Higgs system to the 4-forms appear as in standard gravity

mediation, so the Higgs fields get mass2 of order F 2
4 /M

2
p . This suggests to identify the vev

of F4 with an intermediate scale, F4 ≃ (1010)2GeV2, so that one obtains Higgs masses of

order the EW scale. Within string theory the 3-forms associated to these 4-forms couple

to membranes whose tension would be typically of order the string scale, i.e. (F
3/2
4 ) ≃ M3

s .

Thus the string scale will typically be of order the intermediate scale, Ms ≃ 1010GeV.

Again, the fact that the auxiliary fields related to the 4-forms are quantized, makes the

Higgs mass and in general all soft terms to scan in a landscape of values around the EW

scale. In particular, the possibility exists that soft terms could be relatively large compared

to LHC scales, say 3-5TeV and still having correct fine-tuned EW breaking by a fortuitous

cancellation of different 4-form contributions in the landscape.

The 3-forms couple to membranes which may nucleate transitions in these landscapes

of vacua. The Weak Gravity Conjecture (WGC) [26–28]2 strongly constraints the tension

of the membranes involved, as well as the mass of the axion. In the non-SUSY examples the

membrane tension is bounded above by T . η−1(108)3GeV3, with η the 4-form-Higgs cou-

pling. The corresponding axion is bounded below as µaxion & T/2πfMp, and impossing fur-

ther stability against nucleation one has µaxion & 10−3 eV (1010GeV/f)(m/1010GeV)3/2,

with m the UV Higgs cut-off. In the SUSY examples the WGC suggests that m3/2 &

T/fMp. Within string theory one expects T 1/3 ≃ f ≃ Ms, with Ms the string scale, so

that one gets m3/2 & M2
s /Mp. This implies that if we want to have SUSY breaking soft

terms of order the EW scale, the string scale should be of order the intermediate scale

Ms ≃
√

MWMp ≃ 1010GeV or below. This is a very strong constraint, since the typical

scenario with Ms ≃ 1016GeV would be ruled out in this context.

In the non-SUSY version of this idea there is a small scale given by ηq ≤ MW , where q is

the charge of the membranes and η the Higgs-4-form coupling. The size of the electroweak

scale is fixed by a combination of anthropic constraints and the fact that the Higgs vev scans

with steps ηq smaller than MW . This implies that we are assuming the existence of a new

effective small scale ηq ≪ Mp. Still this is in principle no worse than e.g. the addition of a

µ-term in the MSSM solution to the hierarchy problem. On the other hand, in the SUSY

version of the present mechanism the size of the EW scale is fixed by the geometric ratio

F4/Mp, which is of the right order if the SUSY breaking scale is at the intermediate scale. In

this sense the combination of SUSY and landscape ideas would seem to fit nicely together.

More generally, we argue that in certain classes of string compactifications in which

SUSY is broken by fluxes, and the Goldstino multiplet contains a monodromy axion, the

2See e.g. [24, 29–49] for recent WGC papers.
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Weak Gravity Conjecture suggests a lower bound on the SUSY breaking scale m3/2

m3/2 ≥ M2
s

Mp
. (1.3)

This bound has a number of loopholes, some of which are discussed in the text. Still, if

true, it would have important phenomenological implications. For example, having low

energy SUSY at 1TeV would require a string scale at 1010GeV.

The structure of the rest of this paper is as follows. In the next section we review a few

facts about Minkowski 3-forms and their interaction with axions. In section 3 we construct

a minimal (non-SUSY) model in which a Higgs mass landscape is generated in terms of

quantized shifts of an axion. We also study the instability of the model against buble

nucleation and constraints on the axion mass and scale of new physics from the WGC.

Limits on the mass of these axions are given. In section four we address the construction

of N = 1 SUSY models with a Higgs mass landscape. We discuss the mentioned lower

bound on the SUSY breaking scale from the WGC in section five and leave the last section

for some general comments and conclussions.

2 Axions and 3-forms

Before presenting the model let us briefly review a few facts about these Minkowski 3-forms

(see e.g. [13–23, 50–52]). The action for a 3-form Cνρσ is given by

L = −1

2
FµνρσF

µνρσ + Sbound (2.1)

where F = dC is the field-strength 4-form and Lbound includes some boundary terms which,

although necessary to get the right field equations (see e.g. the discussion in [21, 52]), will

not be relevant in our discussion. The equations of motion imply that the 4-form is a

constant tensor in Minkowski,

Fµνρσ = f0ǫµνρσ (2.2)

where f0 is a real constant of mass dimension two. Note that f0 behaves as a constant

electric 4-form field permeating the whole Minkoski space and contributing (positively) to

the vacuum energy in a way proportional to f2
0 . We see that a 3-form has no propagating

degrees of freedom. Still it may have interesting dynamics. In particular, 3-forms naturally

couple to the worldvolume of membranes (or domain walls) through

Smem = q

∫

D3

d3ξǫabc Cµνρ

(

∂Xµ

∂ξa
∂Xν

∂ξb
∂Xρ

∂ξc

)

, (2.3)

where the membrane charge q has dimensions of mass2 and D3 is the membrane world

volume. Due to this coupling, regions of space separated by membranes change their

4-form background f0 by

f0 −→ f0 + nq , n ∈ Z . (2.4)
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So membrane nucleation yield changes in the value of the 4-form background which are

quantized in units of the membrane charge. At this level the value of the charge q is unde-

termined. However there is an interesting way in which the value of q turns out to be con-

strained. This happens if the 3-form is coupled to an axion-like scalar giving it a mass. Let

us introduce an axion-like field φ, i.e., a pseudoscalar with a discrete shift symmetry under

φ −→ φ + mf , m ∈ Z , (2.5)

with f the axion periodicity. Let us consider the addition to the action of a direct coupling

of the axion to the 4-form

S = −1

2
(∂µφ)

2 − 1

2
F 2 + µφF . (2.6)

Using the equations of motion for F one obtains a scalar potential

V =
1

2
|f0 + µφ|2 , (2.7)

where we have allowed for a 4-form vev f0. Note that, even though now the axion has mass

µ, the axion shift symmetry is respected if the 4-form also transforms apropriately

φ → φ + nf , f0 → f0 − nµf . (2.8)

Comparing eqs. (2.4) and (2.8) one obtains the consistency condition for the charge q of

membranes coupling to this axion system

pq = µf , p ∈ Z . (2.9)

This equation relates the otherwise undetermined membrane charge q to the axion param-

eter product µf . This constraint will be interesting below, when we construct a specific

model couple to the Higgs. In what follows we will assume take |q| = µf as the natural

value for the 4-form quanta and briefly discuss the more general case below. This process in

which the axion gets mass may be understood as a generalized Higgs mechanism in which

the 2-form Bρσ dual to the axion field is swallowed and gains a mass µ. Indeed after this

duality the mass term becomes

− µ2

2
|C3 − dB2|2 , (2.10)

which indeed realizes a generalized Higgs mechanism.

Let us close this section by noting that Minkowski four-forms appear naturally in string

theory upon reduction to four dimensions of higher dimensional RR and NS antisymmetric

fields, see e.g. [15, 16, 21, 23, 25, 50, 51].

3 A Higgs landscape from axion monodromy. A minimal model

Let us now couple this axion/3-form system to the SM Higgs field H. For reasons to

be obvious later the minimal model one can build involves two 4-forms Fa and Fh. The

– 5 –



J
H
E
P
0
2
(
2
0
1
7
)
1
0
9

latter is by definition the linear combination of the two 4-forms which couples to the Higgs

through a dim=4 operator. The relevant piece of the action is then3

L = −1

2
(Fa)

2 − 1

2
(Fh)

2 + φ(µFa + µhFh) + ηFh|H|2 . (3.1)

Here η is an adimensional coupling constant. Using the equations of motion for the 4-forms

one finds the potential

V =
1

2
|fa

0 + µφ|2 +
1

2
|fh

0 + µhφ + ησ2|2 , (3.2)

where we have set the Higgs to its physical neutral component |H|2 = σ2. Note that this

scalar potential is invariant under the axion shift symmetry

φ → φ + nf ; fa
0 → fa

0 − µnf ; fh
0 → fh

0 − µhnf , n ∈ Z. (3.3)

The membranes coupling to these 3-forms will have charges qa, qh related to the axion

parameters as

qa = µf , qh = µhf . (3.4)

The above shift symmetry guarantees that the mass parameters µ, µh are stable under loop

corrections, the form of the axion dependent potential above will remain even after these

corrections. On the other hand the Higgs field couples to the full SM through gauge and

Yukawa interactions which will induce masses and quartic coupling corrections. Thus the

scalar potential will have really the form

V =
1

2
|fa

0 + µφ|2 +
1

2
|fh

0 + µhφ + ησ2|2 − m2σ2 + λσ4 (3.5)

once corrections are taken into account. Here m2 will typically be of order the UV scale,

since the Higgss mass is unprotected. The minimization conditions require

∂V/∂σ = σ[2η(fh
0 + µhφ+ ησ2) + 4λσ2 − 2m2] = 0 (3.6)

∂V/∂φ = µ(fa
0 + µφ) + µh(fh

0 + µhφ+ ησ2) = 0 . (3.7)

One then finds

φ = − fa
0µ + fh

0 µ
h + ηµh σ2

µ2 + (µh)2
, (3.8)

with the Higgs vev given by

σ2 =
m2 − η(cos2 θfh

0 − sin θ cos θfa
0 )

2λ + η2 cos2 θ
(3.9)

where

sin2θ =
(µh)2

µ2 + (µh)2
, cos2 θ =

µ2

µ2 + (µh)2
. (3.10)

3Note that this is a two 4-form generalization of the relaxion model constructed in section (3.2) of [24].

However here we are not considering a relaxion type of model [53] and cosmology plays no crucial role in

this landscape construction.

– 6 –
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The mass squared matrix of both scalars has the form

M2 =

(

µ2 + (µh)2 2ηµhσmin

2ηµhσmin 2M2
σσ

)

(3.11)

with

M2
σσ =

4λ+ 2η2

2λ+ η2 cos2 θ

(

m2 − η(fh
0 cos2 θ − fa

0 sin θ cos θ)
)

. (3.12)

The Higgs vev at the minimum can also be written in terms of Mσσ, evaluated at the

minimum

σ2 =
M2

σσ

4λ+ 2η2
. (3.13)

Looking at eq. (3.12) and (3.13) we see that the Higgs vev scans in a landscape as we

vary the 4-form vevs fh
0 , fa

0 . There are always potentials in which the Higgs vev obeys

eq. (1.1) as long as the step of the 4-forms qh, qa are of order the observed M2
H or smaller.

In particular if we change the 4 forms by an amount

fh
0 → fh

0 + mhqh , fa
0 → fa

0 + maqa , mh,ma ∈ Z (3.14)

then the Higgs vev changes by the amount

δ(σ2) = µf
η sin θ cos θ

(2λ+ η2 cos2 θ)
(ma − mh) , (3.15)

or, alternatively, in terms of the 4-form quanta via eq. (3.4)

δ(σ2) =
ηµf

(2λ+ η2 cos2 θ)

qaqh
q2a + q2h

(ma − mh) . (3.16)

Note that if there is no coupling of the Higgs to the axion (η = 0) there is obviously no

possibility of fine-tuning. Also the two 4-forms are required to couple to the axion so that

both qa, qh 6= 0. Assuming both masses µ, µh to be of the same order (in order not to

introduce further hierarchies), which also implies 4-form quanta of the same order one can

obtain a fine-tuning as small as required by imposing

δ(σ2) ≃ ηµf = ηqa ≤ M2
H0 . (3.17)

So the fine-tuning is directly connected to the 4-form quanta qa, qh and to the strength

of the coupling of the 4-form to the Higgs. We thus have a large family of SM vacua with

different Higgs masses, including a number of them consistent with what is observed. Note

however that the 4-form values fa
0 , f

h
0 themselves are very large, of order the Higgs cut-off

mass m2, whereas the membrane charges qa, qh are of order the EW scale. This is unlike

the SUSY scenario discussed below, in which both are typically of the same order.

– 7 –
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3.1 Stability and the Weak Gravity Conjecture

Given the large multiplicity of Higgs vacua, an interesting question is the stability of these

against membrane nucleation. If these vacua where very short-lived, the solution to the

hierarchy problem would be gone. We can make an estimation using the Coleman-De

Lucia computation [54] of the transition rate in the thin wall approximation. The rate is

proportional to

P ≃ e−B , B =
27π2T 4

2(∆V )3
(3.18)

where T is the tension of the bubbles (membranes) which can nucleate. We can estimate

∆V , which is the change in the vacuum energy induced by a change f0 → f0 + q in one of

the 4-forms, as

∆V ≃ qf0 ≃ q

η
m2 , (3.19)

where m2 is of order the Higgs cut-off scale, since the 4-form vevs have to cancel a large

quadratically divergent Higgs mass. On the other hand actually we do not know what the

tension of the membranes T is. In any event, from B > 1 , in order to have a supresed

rate, assuming that for fine-tuning one also requires ηq ≃ m2
H , the tension will be bounded

below by

T & 0.3× η−3/2(m2
Hm2)3/4. (3.20)

Note that if the associated membranes are fundamental, like e.g. D2-branes in String

Theory, a tension T = (M)3 implies the existence of a new physics scale M , like the

string scale in the case of String Theory. So the above arguments would give a lower

bound on such a scale, depending on the size of the Higgs-4-form coupling. Thus one has

from stability against nucleation

M2 & 0.5 η−1 mHm. (3.21)

where m is the UV cut-off of the Higgs mass. Thus for e.g. η ≃ 1 one has M >
√
mHm ≃

109GeV if m ≃ 1016GeV.

To gain further insight into the mass scales involved we can try to impose further

consistency conditions. In particular it has been argued that the Weak Gravity Conjecture

extended to 3-forms give us an upper bound on the tension T of membranes coupling to

3-forms. One has [24]

T ≤ 2πqMp , (3.22)

where in our case the membrane charge is given by q = µf , so that we get

T ≤ 2πµfMp ≤ 2π
M2

H

η
Mp ≃ 1

η
(108 GeV )3 . (3.23)

where again we are assuming here ηµf ≃ m2
H . Note that by making the coupling small, the

tension of the membranes can be made large. For example one could have T ≃ (1016GeV)3

if η ≃ 10−24. However if e.g. η ≃ 1 a threshold of new physics should appear around or

below 108GeV.

– 8 –
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Combining equations (3.20) and (3.23) one obtains an upper bound on the UV cut-off

coming from imposing supresed nucleation and the WGC constraint given by

m . 7.6× η1/3(MHM2
p )

1/3 ≃ η1/31014GeV . (3.24)

Then in this scheme scalar cut-offs m as large as 1014GeV can be fine-tuned in a man-

ner consistent with both the Weak Gravity Conjecture and stability against nucleation.

However this scale m is reduced if the coupling η is reduced.

Let us make a couple of comments about possible slight modifications to the above

results.

1) We have imposed a very conservative upper bound on the value of the Higgs mass

fine tuning, δm2
H/m2

H ≤ 1. We can equally consider a more finely grained fine-tuning

δm2
H ≤ ξ m2

H (3.25)

with ξ as small as we wish. Then the scales and bounds estimated in eqs. (3.20), (3.23)

and (3.24) remain applicable replacing in those equations m2
H → ξm2

H . In particular

the lower bound on the membrane tension from stability becomes weaker whereas the

upper bounds on the tension coming from theWGC becomes stronger, and so happens

with the UV scale m. The dependence on ξ is however weak, due to the 1/3 power.

2) In the above estimations we consider the quantization constraints qa = µf , qh = µhf .

One can equally consider the more general case in which the membrane quanta are

integer fractions of the axion shift, as in eq. (2.9). All the results above still apply

replacing qa → naqa, qh → nhqh, with na, nh ∈ Z.

Note that one can also obtain a finer tuning (at fixed µf) by reducing the value of the

coupling η and playing around with the integers na, nh just mentioned.

3.2 The Hierarxion

One interesting feature of this approach is that there is a new particle, me may call it

the Hierarxion, which could perhaps have testable properties depending on the masses µ,

periodicity f and the possible presence of additional couplings to other SM fields beyond

the Higgs like e.g. photons. Concerning the mass of the axion we approximately have

m2
axion = µ2 + (µh)2 =

q2a + q2h
f2

.
M4

H

η2f2
(3.26)

where the latter inequality comes from the fine-tuning condition, assuming ξ ≃ 1. There is

also a lower bound on the axion mass if one applies the WGC argument, since if the quanta

qa,h are too small, the interaction of the 3-form with the membranes would be weaker than

the gravitation of the latter, i.e.

maxion &
T

2πfMp
≃ M3

2πfMp
. (3.27)
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Combining it with the stability constraint M2 ≥ (0.5)η−1mmH one has a lower bound

maxion &
0.3

2π
η−3/2 (m

2
Hm2)3/4

fMp
. (3.28)

We thus see that there is a wide range of possible axion masses. Depending on the values

of the axion periodicity f and the Higgs mass UV cut-off m one has

4.7 η−3/2 10−3eV

(

1010GeV

f

)

( m

1010GeV

)3/2
. maxion . η−1 10−6GeV

(

1010GeV

f

)

(3.29)

where we have highlighted the values for f ≃ m ≃ 1010GeV. Note that as long as the

constraint (3.24) is fulfilled, both upper and lower limits are consistent. As we can see, a

very wide range of values of the hierarxion mass are consistent with the generation of a

SM landscape. Thus for η ≃ 1 and f ≃ m ≃ 1010GeV one has 10−3eV . maxion . 103 eV .

However, if the Hierarxion does not couple directly to gauge bosons and f ≃ 102GeV, the

hieraxion could be as heavy as hundreds of GeV. In this case it could mix with the ordinary

Higgs. Furthermore, if the hieraxion-Higgs coupling η is small, the Hierarxion may have

even larger masses. For example, if η ≃ 10−16, one could heav a Hierarxion mass as large

as 1010GeV.

This Hierarxion can give rise to interesting phenomenology which will obviously de-

pend on the values of the mass and f , and also on the existence of additional couplings to

the SM beyond the necessary coupling to the Higgs. Here we limit ourselves to a prelim-

inary discussion and leave a detail discussion for forthcoming work. In particular a light

Hierarxion could be a dark matter component. CMB Planck results already constrain in

an important manner the contribution to dark matter from ultralight axions. In the region

10−32eV ≤ maxion ≤ 10−26eV the axion contribution to dark matter is less than a few

per cent (see e.g. [55] and references therein). On the other hand for axion masses above

10−23 eV an ultralight Hierarxion could constitute most of dark matter.

The Hierarxion needs not couple to gluons or photons, but if it does, it could perhaps be

identified with the QCD axion. However the axion potential discussed above can overwhelm

the standard non-perturbative QCD axion potential and spoil the solution to the strong

CP problem and render θ ≃ 1. To avoid that, one imposes the constraint

(qm2/η) . θQCDΛ
4
QCD (3.30)

where q stands for qa,h and the θQCD is constrained to be θQCD ≤ 10−10. This means

q . ηθQCD

Λ4
QCD

m2
, (3.31)

and the EW scale fine-tuning, which is of order q, would be much finer than just q ≃ M2
H .

Such small value for q however implies, if the WGC applies, that membranes should have

a tension

T ≤ qMp . ηθQCD

MpΛ
4
QCD

m2
. η

(

100GeV

m

)2

GeV3 . (3.32)
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This tension is typically very small, well below the EW scale, and hence we should have

observed the new physics associated to the membranes. Another possible objection to

such small quanta q is that membrane nucleation could destabilize the minima through

tunneling, as discussed above. It is easy to convince oneself using the equations above that

the tunneling rate B would easily be much bigger than one if the scalar mass cut-off obeys

m2 . ηθ
1/4
QCDΛQCDMp , (3.33)

which is easily obeyed for m ≤ η1/2107GeV.

Very massive Hierarxions are also possible. Looking to the upper limit in equa-

tion (3.29) we see that one can have Hierarxions with mass of order

maxion ≃ f ≃ 102GeV . (3.34)

Such a Megaxion could be directly detectable at LHC if it couples to QCD and photons,

since it could lead to di-photon events at an invariant mass in the region of several hundred

GeV.4 In this case the axion could have a non-negligible mixing with the SM Higgs which

could also lead to constraints in the axion-Higgs system. Note that in this case, having f

of order a few hundred GeV implies that some new physics should appear not much above

one TeV in order to restore perturbative unitarity, which would be violated by the coupling

of the Hierarxion to gluons at high energies.

The Hieraxion may also be superheavy, with a mass of order the intermediate scale.

This is possible if it is very weakly coupled to the Higgs sector. For example if η ≃ 10−16

one can have a mass of order 1010GeV for f ≃ 1010GeV. Superheavy masses for the

Hierarxion are also natural in the context of supersymmetry.

Let us finally emphasize that the example above, with a linear coupling to the axion

ηφF4 is minimal, but is not the only possibility. One could also consider e.g. quadratic

couplings of the form F 2
4 |H|2/M2

UV, with MUV some ultraviolet scale. This structure

appears naturally in the SUSY case which we describe below.

4 A MSSM landscape

It is interesting to explore whether analogous landscapes could be constructed withinN = 1

SUSY models like e.g. the MSSM. It sounds a bit redundant to introduce SUSY in theories

in which the hierarchy problem is solved via a landscape of Higgss masses. However this

may be interesting because of several reasons. For example, there are SUSY models in the

literature, like Split SUSY [59, 60] or Large Scale SUSY [61] in which the scale of SUSY

breaking is very large, of order 105 − 1011GeV and the Higgs mass is small by fine-tuning.

For those models a landscape of soft terms guaranteeing the possibility of a sufficiently

light Higgs would be useful. Furthermore one can also consider this type of fine-tuning in

order to understand or motivate the so called “little hierarchy problem”.

4Models with that structure were suggested as arising in string compactifications with a string scale in

the TeV scale [56–58]. In this case the axion is a Ramond-Ramond closed string pseudoscalar.
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For a SUSY version of a landscape we should start by asking whether there are SUSY

multiplets incorporating 3-forms of the type discussed above. A hint to that is noticing

that the Minkowski 4-forms do not propagate, but rather behave like auxiliary fields. So

it is natural to think that the Minkowski 4-forms could appear as auxiliary fields of some

known SUSY multiplets. Indeed, there are SUSY chiral multiplets in which the usual

complex auxiliary field are totally or partially replaced by 4-forms [52, 62–72]. Still these

multiplets have not been much studied in the literature.

Interestingly enough it has been recently shown [25, 73] that this kind of supergravity

and supersymmetry multiplets are those which naturally appear in Type II string compat-

ifications in the presence of fluxes . In string compactifications the geometric moduli and

the dilaton come along with axion-like scalar fields. One can show that the dependence

of the effective action on the axions comes always through Minkowski 4-forms, very much

like in the non-SUSY example above. In the case of Type IIA and Type IIB orientifolds

the effective actions contain 4-forms associated to the moduli and complex dilaton and

the scalar potential dependence of the axions appears as a sum of squared 4-forms. These

4-forms may be identified as auxiliary fields of N = 1 multiplets.

Note that having 4-forms as auxiliary fields is not purely academic since there are a

number of physical differences compared to a standard N = 1 sugra auxiliary field. In

particular the associated 3-forms couple to membranes, which should be present in the

theory. The membranes can nucleate inducing transitions between vacua with different

value for the 4-form. Furthermore the 4-forms are in general quantized. In particular in

string-theory the value of the 4-forms is dual to the (quantized) value of internal fluxes. This

means that there is a quantized landscape of auxiliary fields in the effective field theory, and

transitions between different vacua can in principle proceed through membrane nucleation.

(A somewhat related approach has been also recently considered in [74] involving in addition

a nihilpotent multiplet and applying it to the cancellation of the cosmological constant.)

Let us consider a toy N = 1 supergravity example with the required built-in discrete

shift symmetries, consistent with having quantized 4-forms as auxiliary fields. Take a 2-field

model with

K = −2 log(U + U∗)− 3 log(T + T ∗) , W = e0 + ih0U . (4.1)

With U = u+ ib and T = t+ i Im(T ) the action will be invariant under the shift symmetry

b → b + n ; e0 → e0 + h0n , n ∈ Z (4.2)

Consistency requires e0 to be quantized in units of h0. In string theory models these

numbers are in general integers (see e.g. [76] and references therein), corresponding to

quanta of internal fluxes, and we assume so in what follows. This is a no-scale model and

the associated potential may be obtained in the standard way yielding

V = eKG−1

UŪ
|DUW |2 = eK2|e0 − h0b|2 . (4.3)

The potential is shift invariant and has minima at b = e0/h0 in Minkowski, and the rest of

the fields are undetermined at this level. Supersymmetry is broken and the gravitino mass
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is given by

m2
3/2 =

h20
2t3

. (4.4)

The standard N = 1 auxiliary fields are given by

FU = eK/22u(e0 − h0b) = 0 ; F T = −ieK/22h0ut 6= 0 . (4.5)

With h0 quantized we have a landscape of values for the gravitino mass (for fixed u, t).

Note that the scalar potential of this system may be understood in terms of a Minkowski

4-form with an action

LF = −e−K F 2
4 + 2F4(e0 − h0b) . (4.6)

Upon application of the equations one obtains

F4 = eK(e0 − h0b) , (4.7)

and the scalar potential above is recovered. The N = 1 auxiliary field for the U field may

be written in terms of this 4-form

FU = 2ue−K/2 F4 . (4.8)

Still, since its vev is proportional to h0, which is quantized, the gravitino mass and soft

terms are also quantized. This is an example of a N = 1 sugra model consistent with a

formulation in terms of 3-forms. Other examples obtained from TYpe IIA and TYpe IIB

orientifold vacua may be found in [25].

We can consider now the addition of matter fields like e.g. a MSSM Higgs sector Hu,d

and use the above toy model as a “hidden sector” for it. If e.g. the Higgs fields had minimal

canonical kinetic terms we will get for the Higgs mass (see e.g. [75]):

m2
Hu

= m2
Hd

= m2
3/2 =

h20M
4
s

2M2
p t

3
. (4.9)

where we have re-inserted the relevant Planck and string mass factors which we were

skipping up to now. For values of h0 ≃ (1010GeV)2, we will have qualitatively

mH ≃ h0 × 102GeV

(

M2
s

1020GeV2

)

. (4.10)

Given that h0 is quantized, the Higgs masses will scan in a landscape. This model is a

“toy” since the rest of the scalar fields are undetermined, but that is inessential to the point

we want to make, that there will be in general a landscape of Higgs masses if the auxiliary

fields relevant of the hidden sector contain quantized 4-forms, as indicated by string theory.

In general the full scalar potential in a fully realistic MSSM depends on a variety of

soft terms plus a µ0-term for the Higgs. At the end of the day, assuming for simplicity

flavour independence and universality, the mass of the weak scale gauge bosons can be

written as an expansion in terms of soft-terms

M2
Z0 = c1M

2 + c2m
2 + c3|A|2 + c4|µ0|2 + c5MA + c6µ0M + c7µ0A . . . (4.11)
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where ci = ci(yt, gi) are coefficients depending only on the gauge and Yukawa couplings

and including all the running between the UV scale and the EW scale. Here, in a standard

notation, M is a universal gaugino mass, m the soft scalar masses, A is the trilinear soft

coupling and µ0 is the SUSY Higgs mass. In one such more complete setting all these soft

terms Mi
soft = m,M,A,B, µ0, . . . will be quantized

Mi
soft = ni

hi0
Mp

, ni ∈ Z , (4.12)

where the ni of different soft terms need not be directly correlated, and the hi0 are of the

same order. Thus we would have a grid of soft terms, with most of the points not giving

appropriate EW symmetry breaking, but with some points consistent with correct EW

breaking, with Higgs vevs consistent with anthropic considerations.

This built-in structure could perhaps explain the little hierarchy problem. Indeed, it

could be that soft terms could be above a few TeV, with squark and gluinos perhaps above

LHC reach. But for particular choices of the integers ni, cancellations could take place

allowing for correct EW symmetry breaking with an apparently fine-tuned choice of SUSY

parameters.

Let us comment about the connection between this SUSY landscape and the non-

SUSY case considered in the previous section. In fact in the SUSY case, due to gravity

mediation, the coupling of the 4-forms to the Higgs mass is quadratic and Planck supresed,

rather than linear. One indeed has couplings of the form F 2
4 |H|2/M2

p , rather than ηF |H|2.
One gets a mass of order the EW scale for the axion in both cases if η ≃ 10−8. There is also

a difference in the kind of landscape achieved. In the non-SUSY case there is a delicate

cancellation between the UV mass m2 of the Higgs and the contribution of the 4-forms

fh
0 , fa

0 as in eq. (3.12). If m2 is very large one needs qa,h ≪ fa,h. On the other hand

in the above SUSY landscape the value of the 4-forms (or auxiliary fields) is very large,

naturally (although not necessarily) of order 1020 GeV2, and the fine-tuning is naturally

small, ≃ F/Mp ≃ 100GeV because of gravity mediation.

5 The SUSY breaking scale, the string scale and the Weak Gravity Con-

jecture

In this section we depart from the issue of the generation of a Higgs mass landscape and

adopt a more general view, this time within string theory. We would like to argue that in

large classes of string compactifications (see e.g. [76]), the WGC suggests that there is a

lower bound on the SUSY breaking scale m3/2 , depending on the string scale Ms. Roughly

the lower bound is given by

m3/2 &
M2

s

Mp
. (5.1)

This bound has a number of loopholes and should only be considered as a common feature

in certain classes of compactifications. Still, since it would have important implications,

we think it would be worth studying how general it is.
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Let us summarize the underlying idea. In the above N = 1 SUSY examples the

gravitino and soft-term masses scale like a quantized parameter h0, which is an integer

in units of some fundamental scale (i.e. M2
s , with Ms the string scale). In these models

with quantized 4-forms there are membranes coupling to the 3-forms. The charge of these

membranes, of mass dimension two, will be proportional to h0 or, reintroducing the axion

period f , to µf , with µ the axion mass term. Now, as in the examples above, the WGC as

applied to 3-forms and membranes give an upper bound on the tension T of the membranes

coupling to a 3-form with charge q [24]

T

Mp
≤ 2πq , (5.2)

i.e., the strength of the 3-form coupling must be bigger than the gravitational coupling

of the membrane. Applying these conditions to the axions φα of some consistent string

compactification one expects for all of them

Tα

fαMp
≤ 2πµα (5.3)

as long as they couple to a massive 3-form. This is interesting because it is telling us that

all these axions cannot be arbitrarily light, since their mass corresponds to the coupling

of 3-forms to membranes, which cannot be small in order not to violate the WGC. This

should be preserved in any consitent compactification.

In principle one can go case by case and test in specific string compactifications whether

the spectra of axion masses respects the bounds (5.3). That may give relevant constraints

on specific moduli fixing vacua and provide explicit tests of the WGC. However one can

draw some general expectations from the given structure. In particular, there are general

classes of models in which axion masses are directly related to the SUSY-breaking scale.

Those are models in which the Goldstino multiplet contains a monodromy axion. In that

case the mass of the axion is of the order of the gravitino mass and hence the bound applies

not only to the axion but to the gravitino itself, i.e.

m3/2 ≃ mα ≥ Tα

fαMp
. (5.4)

Models in which the Goldstino contains a monodromy axion include Type IIA or Type IIB

orientifolds with all moduli fixed by RR, NS and eventually additional geometric or non-

geometric fluxes, see [87, 88] and references therein. In these models SUSY is broken by

the auxiliary fields of either Kahler, complex structure and/or complex dilaton. Thus some

linear combination of axions will be SUSY partners of the Goldstino/gravitino, and the

bound above would apply. More generally, in typical string compactifications with broken

SUSY and stabilized moduli, either the Kahler, complex structure or complex dilaton

auxiliary fields tipically dominate SUSY breaking. In these cases some linear combination of

the axions in the moduli will be a SUSY partner of the Goldstino/gravitino. So at least the

mass of that particular linear combination will be of order the gravitino mass, ma ≃ m3/2.

The bounds depend also on the membrane tensions and the periodicities. Concerning

the axion periodicities fα, in string compactifications like these one typically has fα ≃
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Ms, although values as large as Mp or slightly below Ms are also possible, depending

on volume factors. Concerning the tensions of the RR membranes, they are in principle

proportional to the volume wrapped by the higher dimensional D-branes or NS-branes

yielding membranes upon compactification. One may argue that one can make the tensions

arbitrarily small by making the cycles of the volumes arbitrarily small, which would make

the bounds (5.3) weaker. However we would have to do that simultaneously with all the 3-

forms and membranes, which sounds artificial. Furthermore, as emphasized already in [16]

, although the classical tensions can be vanishingly small, the effective tensions are only

slightly smaller than M3
s . This is because the Weil-Peterson metric in e.g. a conifold cycle

scales logarithmically with the blowing-up mode [16]. In any event, let us evaluate the

bounds by setting the tensions Tα ≃ M3
s . One gets

m3/2 ≃ mα ≥ Tα

fαMp
≃ M2

s

Mp
. (5.5)

as advertised. We are also assuming here that gs ≃ 1, as happens in semirealistic compact-

ifications in which one adjusts the gauge couplings to the observed values. Thus we see

that the scale of SUSY breaking cannot be arbitrarily low. That would imply the existence

of interactions of some 3-form with membranes with strength weaker than that of gravity.

The above bound, if true, would have important phenomenological implications. In

this connection there are a couple of situations of particular phenomenological interest:

• Intermediate scale SUSY breaking. In this case SUSY is broken at m3/2 ≃ 1012GeV

and Ms ≃ 1015GeV, consistent with the bound. The spectrum below m3/2 is that of

the minimal SM. This is interesting because it is known that, if one extrapolates the

SM Higgs potential corresponding to a 126GeV Higgs at high energies, the potential

develops an instability at around 1010GeV [77]. If SUSY is restored above 1010GeV

such instability disappears. This situation with an intermediate SUSY scale MSS has

also been recently discussed both in the context of the observed SM Higgs mass [78,

79] as well as in MSSM Higgs inflation [80–82]. In this situation no SUSY particles

would be observed at LHC.

• SUSY at a TeV. In this case one can have m3/2 ≃TeV with an intermediate string

scale Ms ≃ 1010, also consistent with the bound. This is the case discussed in the pre-

vious section in the context of a MSSM landscape. In this case SUSY particles could

perhaps be observed at LHC but standard unification of coupling constants is lost.The

case with an intermediate string scale has been considered from different considera-

tions in the literature (see e.g. [83]). Note in particular that it was found in the context

of Type IIB orientifolds with fluxes that SUSY breaking soft terms are obtained for

the MSSM scalars living on D7-branes which scale precisely in the same way, with [84]

msoft ≃ f M2
s

Mp
(5.6)
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and f parametrizing the local fluxes on the brane positions. This soft terms would

be consistent with the bound on SUSY breaking discussed above.5

On the other hand a big dessert scenario with the GUT/String scale at Ms ≃ 1016GeV

and low energy SUSY at a TeV, leading to succesful gauge coupling unification would be

inconsistent with such a bound.

Let us close this section by noting that axions may get also a potential from instanton

effects rather than directly from fluxes. This happens for example in Type IIB compact-

ifications with standard NS and RR fluxes. The latter only induce monodromy to the

complex structure and dilaton fields, but not to the axions in the Kahler multiplets. In the

presence of gaugino condensation the role of the 3-forms is played by the composite CS 3-

form of the condensing gauge group, see [17–20, 49]. In this case the associated membrane

tension is of order T ≃ Λ3, with Λ the condensate scale, and the bound above constraint Λ

instead of the string scale. A similar effect may be described in terms of a warping throat.6

The origin of the composite 3-forms associated to non-gauge string instantons has been

recently worked out in [49].

6 Comments and conclusions

In this paper we have studied how to generate a landscape of Higgs masses in order to

address the gauge hierachy problem. Although anthropic considerations based on the

viability of complex nuclei constrain the Higgs vev to be close to the observed value, we

still need to have theories in which a landscape of Higgss masses, including viable ones,

appear. This is what we tried to address in the present paper.

We put forward a general mechanism in which the landscape properties of an axion-3-

form system is transmitted to the Higgs sector of the SM or the MSSM. Indeed, the 4-form

field strengths associated to 3-forms are assumed to be quantized, as e.g. happens in string

theory. On the other hand there is an axion-like field which 1) gives a mass to the 3-form

and 2) couples to the Higgs field. Then the quantization properties of the axion/3-form

system is transmitted to the Higgs sector via either a direct renormalizable coupling (as in

a non-SUSY example discussed above) or mediated by gravity, as in the SUSY examples

discussed in the previous section.

In the non-SUSY examples the mechanism suggests the existence of axion-like scalars

with very weak couplings to the SM sector. Arguments based on the Weak Gravity Con-

jecture suggests masses for this Hierarxion not much below 10−3 eV, although the possible

range of values is very large. In order to generate the landscape it is not needed that this

axion couples directly to the QCD or photon field strengths, as ordinary axions do. On

the other hand it can contribute to dark matter, although the chances to detect this axion

with standard techniques is model dependent. One can contemplate the possibility of this

axion to be identified with an ordinary PQ axion, but the fact that it couples to the Higgs

5Note however that the masses of SM SUSY partners could present further supression compared to

the value of m3/2. As an example, in the Large Volume Scenario [85, 86] a sequestering effect can make

msoft ≪ m3/2.
6We thank the referee for emphasizing this point to us.
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sector makes difficult to achieve that goal, since its potential dominates over the standard

instanton-induced potential. It would be interesting to study different models in which

different detection opportunities could be present.

In the SUSY examples, the axion/3-form system appears as part of the auxiliary fields

involved in gravity mediation models. The presence of Minkowski 4-forms behaving as aux-

iliary fields ofN = 1 supergravity has been recently shown to be a general property in string

theory. In this case the philosophy is a bit different since the most natural situation is one

in which the string scale is identified with an intermediate scale Ms ≃ f ≃ 1010GeV. The

SUSY breaking soft terms are then of order Msoft ≃ F4/Mp ≃ M2
s /Mp and scan in a land-

scape, with values of order the EW scale. There is a landscape of soft terms which could per-

haps provide a qualitative understanding of the SUSY fine-tuning implied by LHC results.

The fact that in the SUSY case the interaction of 4-forms with the Higgs field is Planck

supresed yields a small EW scale in a natural way. This is to be compared to the non-SUSY

case in which the scale ηq is assumed to be smaller than MW ab initio. On the other hand

the non-SUSY version predicts the existence of an axion-like particle which could lead to

interesting phenomenology.

In both cases, SUSY and non-SUSY, the Weak Gravity Conjecture, as applied to 3-

forms, suggests that there is a scale of new physics well below the Planck mass. Indeed,

we saw that in the non-SUSY class of models such an scale of order η−1/3108GeV or

below should exist. In the SUSY case the string scale should typically be of order of the

intermediate scale 1010GeV or so, to generate a landscape.

More generally, one can argue that in large classes of string compactifications with

fluxes the WGC suggests a lower bound on the SUSY breaking scale with m3/2 & M2
s /Mp.

This applies in particular to models in which the Goldstino multiplet contains a monodromy

axion, but it could be more general. Although, admittedly, there are a number of loopholes

in such a bound, it would be interesting to test it in specific compactifications.

Note that in here we have not addressed the problem of the cosmological constant. We

are tacitaly assuming that there is a different mechanism, like the Bousso-Polchinski (BP)

mechanism [15] which addresses this issue. Note that the mechanism discussed here is not

of the BP type, in which delicate cancellations of a large (on the hundreds) multiplicity

of 4-forms with large values, allows for the fine-tuning of the cosmological constant. One

could think of the possibility of addressing the issue of the c.c. in a way analogous to the

mechanism discussed in the present paper. However the scale of the cosmological constant

is so small (of order 10−48GeV4) that a threshold of new-physics associated to the required

axion/3-form system should have been already detected experimentally. We think on the

other hand that a landscape for the EW sector appears more naturally in the context of

axion/3-form systems as here described.
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