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1 Introduction

The Sachdev-Ye model [1], as recently revived and simplified by Kitaev [2], possesses, for

large N , three remarkable properties: conformal invariance in the infrared, solvability, and

maximal chaos. While there are models that contain some of these properties, SYK is

the first to have all three, as was recognized by Kitaev in a series of incredibly insightful

seminars [2].
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Broadly speaking, until recently two classes of large N theories have been studied:

matrix models and vector models, in which the dynamical variables transform in the ad-

joint or fundamental representation of a local or global SU(N) or O(N) symmetry group,

respectively. Matrix models are closely related to string theories [3–8], with the most

concrete realization being the duality between supersymmetric gauge theories and string

theory in Anti-de Sitter space [9]. N = 4 super Yang-Mills is conformally invariant, and at

large ’t Hooft coupling the bulk gravity has black holes, so it should be maximally chaotic.

However, it is not easily solvable. Vector models also have a long history and recently have

been shown to be dual to interesting gravity theories. The critical O(N) vector model is

conformally invariant and solvable, and the bulk dual is higher spin Vasiliev theory [10, 11].

However, it is integrable for large N , so it is not likely to be chaotic. Roughly speaking,

matrix models are too difficult to be explicitly solvable, while vector models are too simple

to have the same rich properties. One would like a model that lies in between: one that is

sufficiently complicated to be chaotic, while still simple enough to allow for direct analytic

calculations for strong coupling. SYK is such a model.

At large N , the dominant Feynman diagrams for matrix models are planar diagrams,

whereas the dominant diagrams for vector models are bubble diagrams. The SYK model

is dominated by a new class of Feynman diagrams, which have been referred to as sunset,

or watermelon, diagrams. The SYK model may be just one example out of a much broader

and new class of models. Past studies of large N models have been extremely fruitful for

understanding both quantum field theories and string theories. One may hope that the

study of SYK-like models will also prove productive.

SYK is a quantum mechanics model, living in 0+1 dimensions. While two dimensional

CFTs have been extensively studied and categorized, one dimensional CFTs have not.

In fact, it has been argued that 0 + 1 dimensional CFTs with nontrivial dynamics do

not actually exist [12]. SYK confirms this: the four-point function breaks the SL(2,R)

conformal invariance [2, 13, 14], consistent with holographic studies of AdS2 [15]. It appears

that in one dimension a theory can at best only be “nearly” conformally invariant. In SYK

the breaking of conformal invariance, to leading order in 1/N , is confined to a single

dimension-two operator appearing in the OPE, so the power of conformal invariance is still

largely applicable.

The SYK model consists of N � 1 Majorana fermions χi, with a q-body Hamiltonian

with quenched disorder,

H =
∑
i1,...,iq

Ji1,...,iq χi1χi2 · · ·χiq . (1.1)

The model has qualitatively similar properties for any choice of even q ≥ 4. The couplings

Ji1,...,iq are independently chosen from a Gaussian, O(N) invariant, distribution with zero

mean and a variance proportional to J2N1−q. When evaluating observables, say correlation

functions, a disorder average is performed at the end of the calculation. Of course at large

N the model is self-averaging: randomly chosen, but fixed, Ji1,...,iq give the same results

as disorder averaged Ji1,...,iq . One can alternatively think of the Ji1,...,iq as nearly static

free bosonic fields; at leading order in 1/N , this gives the same connected correlation func-

tions [16], and furthermore, allows one to gauge the O(N) symmetry [17]. To leading order
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in 1/N the fermions are non-interacting, and the two-point function of the fermions satis-

fies a simple integral equation which can be explicitly solved near the infrared fixed point.

The fermions start with dimension 0 in the UV, and flow to dimension ∆ = 1/q in the IR.

After the disorder average, the dynamics is invariant under an O(N) global symmetry,

χi → Oijχj , with OOT = 1, much like a vector model. The bilinear, primary, fermion

operators, singlets under O(N), are schematically
∑N

i=1 χi ∂
2n+1
τ χi. In the UV, these op-

erators have dimension 2n + 1. In the IR, the dimensions receive an order-one shift for

small n, and approach 2∆ + 2n + 1 asymptotically for large n. The standard AdS/CFT

dictionary relates the dimensions of CFT single-trace operators for matrix theories, or bi-

linear singlet operators for vector models, to the masses of particles in the bulk dual. This

would imply that the SYK dual has a tower of particles in the bulk, with masses, in units

of the AdS radius, roughly spaced by two. This spectrum differs from N = 4/AdS5 × S5

duality where for large ’t Hooft coupling only a small number of massless modes survive,

or vector model/Vasiliev duality, where a tower of massless modes appears in the bulk.

In [14] it was argued that the bulk dual of SYK might be a string theory with the string

scale comparable to the AdS radius, and thus non-local or stringy. But what the dual of

SYK is, and the extent to which it is nonlocal, remains an open problem.

The goal of this paper is to generalize the SYK model. We would like to understand

how large the class of such models is, and which features are generic and which are special to

SYK. This paper will not add anything new to the bulk interpretation of SYK, but the dual

bulk theory, whatever it is, should be able to incorporate this more general class of models.

Two seemingly important ingredients in SYK are: (a) 0 + 1 dimensions, where the

fermions are dimensionless, thereby ensuring that any product of fermions is a relevant

perturbation, and (b) quenched disorder, which plays an important role in the solvability

at large N . The generalization we explore is one in which there are f flavors of fermions,

χai , where i = 1 . . . Na and a = 1 . . . f , with a Hamiltonian,

H =
∑
I

JI

(
χ1
i1 · · ·χ

1
iq1

)
· · ·
(
χfj1 · · ·χ

f
jqf

)
, (1.2)

where I is a collective site index, and the subscript on the fermion is the site while the

superscript is the flavor. The number of sites, Na, for each fermion, as well as the order

of the interaction, qa, can depend on the flavor a, as long as Na/N remains finite as

N =
∑

aNa →∞.

In section 2 we derive the Schwinger-Dyson equation for the two-point functions of

the fermions, and find that the model (1.2) generically has an IR fixed point. While the

IR dimension for SYK (1.1) was ∆ = 1/q, for (1.2) a set of f transcendental equations

determine the dimensions ∆a. In the limit of large qa, these have simple analytic solutions.

Furthermore, for large qa one only needs to sum a particular subset of Feynman diagrams,

thus yielding an explicit expression for the two-point function and the spectral function.

In section 3 we study the spectrum of composite operators. After the disorder average,

the generalized model (1.2) has an O(N1) × O(N2) × · · · × O(Nf ) symmetry. The singlet

bilinear operators are
∑Na

i=1 χ
a
i ∂

1+2n
τ χai for any a ∈ {1, . . . , f}. So we expect there to be f

towers of operators. We derive equations determining the IR dimensions of these operators.

– 3 –
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We prove that for any choice of parameters: f , Na’s, qa’s, there is always a dimension-two

operator in the spectrum. In SYK, the dimension-two operator is responsible for both the

breaking of conformal symmetry in the four-point function and for maximal chaos. The

same properties hold for the generalized model.

An instructive case to study is the generalized model with all Na equal to N/f and

all qa equal to q. It has the symmetry O(N/f)× · · · × O(N/f). The spectrum contains a

tower identical to that of SYK with a qf body interaction, along with a new tower that

appears with a degeneracy of f − 1. Indeed, this model is similar to SYK with N fermions

and a qf body interaction, but the full O(N) symmetry is broken and consequently more

singlet operators exist, allowing for a richer model.

In appendix A we consider the path integral for the generalized model. This provides

an alternate way of computing the correlation functions, with the saddle point giving the

Schwinger-Dyson equations for the two-point functions, and the leading 1/N fluctuations

about the saddle giving the four-point function. In appendix B we consider (1.2) with

an additional scalar; a special case of this includes supersymmetric SYK [19]. Finally,

appendix C solves SYK for q = 2 at finite N . SYK for q = 2 is like N fermions with a

random mass matrix; the randomness makes it nontrivial, though it is less interesting than

q ≥ 4. This appendix can be read independently of the rest of the paper.

2 Two-point function

2.1 SYK

Let us recall the SYK model [2].1 It contains N Majorana fermions with the anticommu-

tation relation {χi, χj} = δij . The action is,

S =

∫
dτ

1

2

N∑
i=1

χi
d

dτ
χi +

(i)
q
2

q!

N∑
i1,...,iq=1

Ji1i2...iqχi1χi2 · · ·χiq

 , (2.1)

where the coupling Ji1,...,iq is totally antisymmetric and, for each i1, . . . , iq, is chosen from

a Gaussian ensemble. The two-point function of the Ji1,...,iq is taken to be,

1

(q − 1)!

N∑
i2,...,iq=1

〈Ji1i2...iqJi1i2...iq〉 = J2 . (2.2)

At leading order in 1/N , (2.2) is equivalent to the simpler normalization,

〈Ji1i2...iqJi1i2...iq〉 = (q − 1)!
J2

N q−1
. (2.3)

The particular scaling with N in the choice (2.3) is in order to obtain a nontrivial large N

limit, while the other factors are for convenience. One can consider SYK for any even q ≥ 2,

1For recent studies of SYK, see [13, 14, 18–26]. For some related studies of AdS2 and conformal symmetry

breaking see [27–31]. For earlier studies of a holographic interpretation of the SY model, see [32, 33]. While

this paper was being completed, [34] appeared, which considers a higher dimensional generalization of SYK.
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Figure 1. The self-energy (2.6) for a fermion in SYK (2.1). The figure is for q = 6. The solid line

with a filled circle is the two-point function. The dashed line is the disorder.

with q = 4 being the prototypical case [2]. At q = ∞ there are some simplifications [14].

The case q = 2 is simplest, and is equivalent to an O(N) vector fermion with a random

mass matrix, although in many ways it is qualitatively different from the q > 2 models.

We solve the q = 2 SYK at finite N in appendix C.

At zero coupling, the Euclidean two-point function 〈Tχi(τ)χj(0)〉 ≡ G(τ)δij is given by,

G0(τ) =
1

2
sgn(τ) , G0(ω) =

i

ω
, (2.4)

where the factor sgn(τ) (sgn(τ) = 1 for τ > 0 and sgn(τ) = −1 for τ < 0) accounts for

the fermion anticommutation. To leading order in 1/N , the Schwinger-Dyson equations

for the two-point function drastically simplify and are given by,

G(ω)−1 = G0(ω)−1 − Σ(ω) = −iω − Σ(ω) , (2.5)

Σ(τ) = J2G(τ)q−1 . (2.6)

The first of these, (2.5), is the standard equation expressing the two-point function in terms

of the one-particle irreducible self-energy Σ(ω). The second equation, which is written in

position space, is a special feature of SYK (see figure 1). At leading order in 1/N , the

only diagrams being that survive are nested sunset diagrams; all others are suppressed

by some power of 1/N . These equations can be combined into a single integral equation;

however, an analytic solution to this equation is not known. At strong coupling, |Jτ | � 1

(equivalently, the infrared limit), one can drop the iω in (2.5), to get,

G(ω)Σ(ω) = −1 , Σ(τ) = J2G(τ)q−1 . (2.7)

One can verify that,

G(τ) = b
sgn(τ)

|Jτ |2∆
(2.8)

is a solution to (2.7) provided one takes,

∆ =
1

q
, bq =

1

2π
(1− 2∆) tanπ∆ . (2.9)
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The Fourier transform of G(τ), given in (2.8), is useful in verifying this,

G(ω) =

∫
dτ eiωτG(τ) = b ψ(∆)J−2∆|ω|2∆−1sgn(ω), (2.10)

where we defined,

ψ(∆) ≡ 2i cos(π∆)Γ(1− 2∆) = 2i
√
π 2−2∆ Γ(1−∆)

Γ(1
2 + ∆)

. (2.11)

What is special to SYK is that the IR Schwinger-Dyson equations (2.7) are invariant under

reparameterization of time, τ → f(τ), G(τ1−τ2)→ f ′(τ1)∆f ′(τ2)∆G(f(τ1)−f(τ2)). There-

fore, although (2.8) is at zero temperature, we can easily construct the finite-temperature

two-point function by mapping the real line to a circle [2, 35–37].

2.2 A generalization of SYK

The model we introduce is a generalization of SYK (2.1). It contains f flavors of fermions,

with Na fermions of flavor a, each appearing qa times in the interaction, so that the

Hamiltonian couples q =
∑f

a=1 qa fermions together. We continue to let the subscript on

the fermion χai denote the site i ∈ {1, . . . , Na}, while the superscript a will now denote the

flavor a ∈ {1, . . . , f}. Explicitly, the action is,

S =

∫
dτ

(
1

2

f∑
a=1

Na∑
i=1

χai
d

dτ
χai +

(i)
q
2∏f

a=1 qa!

∑
I

JI

(
χ1
i1 · · ·χ

1
iq1

)
· · ·
(
χfj1 · · ·χ

f
jqf

))
, (2.12)

where I is a collective index, I = i1, . . . , iq1 , . . . , j1, . . . , jqf . The coupling JI is antisym-

metric under permutation of indices within any one of the f families, and is drawn from a

Gaussian distribution,

P [JI ] ∝ exp

(
−
∑

I J
2
I

2〈JIJI〉

)
, (2.13)

where the disorder average 〈JIJI〉 is given by

〈JIJI〉 = J2

∑f
a=1Na∏
aN

qa
a

∏
a

(qa − 1)! . (2.14)

It will be convenient to make the following definitions,

N ≡
f∑
a=1

Na , κk =
Nk

N
, Qk ≡

∏
a 6=k

qa . (2.15)

The class of models (2.12) for large N is characterized by f−1 independent continuous pa-

rameters 0 < κk < 1, as well as the qk, which can be any positive integers provided that their

sum is even. After the disorder average, SYK (2.1) has O(N) symmetry, while in the gener-

alized model (2.12) the symmetry is broken to the subgroup O(N1)×O(N2)×· · ·×O(Nf ).

In the SYK model (2.1), one can generalize the action to have multiple interaction

terms, with different q, each coming with its own independent disorder Ji1...iq . This sum

– 6 –
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Figure 2. The self-energy (2.16) for a fermion of flavor k in the generalized model (2.12). The

figure is for two flavors with q1 = q2 = 3. This is, for instance, the self-energy for fermion of flavor

1. The black line with a filled circle is the two-point function for the fermion of flavor 1, while the

blue wavy line with a filled square is the two-point function for the flavor 2 fermion.

of SYK Hamiltonians is just as solvable as SYK, however it is not especially interesting

since in the IR the term with smallest q will be dominant. In the model (2.12), one can

also consider generalizing the action to include sums of interaction terms. However, now

the IR can be more interesting, since there can be multiple terms (with the same total q)

that are equally important in the IR.

Two-point function

The free two-point function for each χai , is again given by (2.4). Away from the UV it will

continue to be the case that the two-point function is diagonal in flavor and site space.

Denoting the two-point function for the flavor k fermion by Gk(τ), the self-energy for the

flavor k fermion is (see figure 2),2

Σk(τ) = 〈JIJI〉
q2
k(qk − 1)!

∏
a 6=k qa!

(
∏
qa!)

2 (NkGk(τ))qk−1
∏
a 6=k

(NaGa(τ))qa . (2.16)

Making use of (2.14), (2.15), this simplifies to,

Σk(τ) = J2 1

κkQk

1

Gk(τ)

∏
a

Ga(τ)qa . (2.17)

An alternative way to obtain (2.17) is by performing the replica trick to do the disorder

average, introducing mean fields, integrating out the fermions, and taking the large N

saddle point; see appendix A. For one flavor, (2.17) reduces to the SYK expression for the

self-energy (2.6).

2The factors are as follows. The factor (
∏
qa!)2 comes from the square of the prefactor of the interaction

term in (2.12). There is a factor of qk from the number of contractions with the ingoing fermion, and another

qk with the outgoing fermion, and a (qk−1)! from the contraction of the remaining flavor k fermions amongst

themselves. There is also a factor of qa! from contractions of flavor a fermions, for all the other flavors.

– 7 –
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We first determine whether there is an IR fixed point and if so, what is the IR dimension

∆k of the fermions of flavor k? In the IR, the two-point function should take the form,

Gk(τ) = bk
sgn(τ)

|Jτ |2∆k
, Gk(ω) = bkψ(∆k) J

−2∆k |ω|2∆k−1sgn(ω) . (2.18)

To find the normalization bk and dimension ∆k, we first insert the above ansatz into (2.17)

and take the Fourier transform,3

Σk(ω) = Jsgn(ω)
∣∣∣ω
J

∣∣∣ f∑a=1
2∆aqa−2∆k−1

∏
a b

qa
a

bkκkQk
ψ

(
f∑
a=1

∆aqa −∆k

)
. (2.19)

Inserting (2.19) and (2.18) into the IR limit of (2.5), Σk(ω)Gk(ω) = −1, gives,

1 =

f∑
a=1

∆aqa , (2.20)

f∏
a=1

bqaa =
−κkQk

ψ(∆k)ψ(1−∆k)
. (2.21)

The first equation is just the statement that the IR dimension of the coupling JI is zero.

Simplifying the second gives,

f∏
a=1

bqaa =
κkQk

2π
(1− 2∆k) tanπ∆k . (2.22)

Equating all the (2.22), for k ranging from 1 to f , gives f − 1 equations. Combined

with (2.20), for any given choices of κk and qk, we have a set of f equations for the f

unknown dimensions ∆k.
4 These equations have simple solutions in the limit of qa � 1,

as we show in the next section.

2.3 Large qk

If the number of fermions of flavor k appearing in the interaction (2.12) is large, qk � 1,

then from (2.20) we know that ∆k � 1. Let us assume qk � 1 for all k. In this limit, (2.22)

simplifies to
∏
bqaa = 1

2κkQk∆k, with the solution,

∆k =
qk
κk

1∑f
a=1

q2
a
κa

. (2.23)

Eq. (2.23) shows that a hierarchy in the qk’s for different flavors, or in the κk’s, will lead

to a hierarchy in the ∆k’s.

The smallness of the dimensions ∆a suggests one should be able to solve for the two-

point function at all energies. This was done for SYK at large q in [14]. Here we perform

3One should not confuse the usage of Σ as the self-energy with the usage of Σ as a sum.
4These equations generically have solutions. The case of q1 = 1 appears to be exceptional. For instance,

taking two flavors with q1 = 1, q2 = 3, there is no solution for κ1 <
1
10

.
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an analogous computation for the generalized model in the large qk limit. The two-point

functions are taken to be,

Gk(τ) =
sgn(τ)

2
e
gk(τ)

qk ≈ sgn(τ)

2

(
1 +

gk(τ)

qk
+ . . .

)
. (2.24)

Taking the Fourier transform, for which we use the shorthand F ,

Gk(ω) =
i

ω
+

1

2qk
F(gk sgn(τ)) + . . . . (2.25)

Inverting to get Gk(ω)−1, (2.5) allows us to identify,

Σk(ω) = − ω
2

2qk
F(gk sgn(τ)) , Σk(τ) =

1

2qk
∂2
τ [gk(τ) sgn(τ)] , (2.26)

where in the second equation we have done an inverse Fourier transform of the first. Com-

bining with (2.17) gives,

∂2
τ [gk(τ)sgn(τ)] =

2J2qk
κkQk

1

2
∑
qa−1

e
∑
ga(τ) sgn(τ) . (2.27)

We have such an equation for every k. Thus, we can express ga in terms of gk for any a, k,

ga(τ) =

(
qa
qk

)2 κk
κa

gk(τ) . (2.28)

Summing (2.27) for all k and using (2.28) gives,

∂2
τ

∑
gasgn(τ) = 2J 2 e

∑
ga sgn(τ) , J 2 ≡ 2J2

2
∑
qa

1∏
qa

∑ q2
a

κa
. (2.29)

where the rescaled J is kept finite in the large qk limit. The solution to (2.29) is easily

derived for finite temperature, namely with ga(τ) = ga(τ + β) [14],

e
∑
a ga(τ) =

 cos
(
πv
2

)
cos
(
πv
2 −

πv|τ |
β

)
2

, βJ =
πv

cos πv2
, (2.30)

where v is defined implicitly in terms of J . At zero temperature (2.30) becomes,

e
∑
a ga(τ) =

1

(1 + J |τ |)2
, (2.31)

which combined with (2.28) gives,

e
gk(τ)

qk =
1

(1 + J |τ |)2∆k
, (2.32)

where ∆k is given by (2.23). Having the exact solution, we can take the IR limit J |τ | � 1

to find the individual normalizations of the two-point function (2.18),

bk =
1

2

J2∆k

J 2∆k
. (2.33)

Recall that solving the IR limit of the Schwinger-Dyson equations only established the

product of the normalizations, (2.22).
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(a) (b)

=

(c)

Figure 3. The two-point function for SYK at large q consists only of diagrams that split into two

trees under a vertical cut, such as the one shown in (a). Diagrams like (b) are suppressed by factors

of 1/q. In (c) we show the recursion relation for the self-energy, represented by a filled triangle. Note

that the solid lines are the (free) fermion propagators, and we have suppressed the disorder lines.

2.3.1 Graphical solution

The two-point function in the large q limit can alternatively be found by summing an

appropriate set of Feynman diagrams. We will show how this works in SYK. Due to large

q combinatorics, the diagrams that appear most often are like the ones shown in figure 3(a),

rather than those in figure 3(b). The Feynman diagrams that are summed at large q can

be characterized as those diagrams that, under a single vertical cut, break up into two tree

diagrams. The self-energy can therefore be found recursively, as shown in figure 3(c). The

equation corresponding to figure 3(c) is,

Σ(τ) = J2

(∫
dω

2π
e−iωτ G0(ω)2Σ(ω)

)q−1

, (2.34)

where G0(ω) is the free two-point function (2.4). Rearranging (2.34) gives∫
dτ
(
J−2Σ(τ)

) 1
q−1 (−ω2) eiωτ = Σ(ω) , ∂2

τ

(
J−2Σ(τ)

) 1
q−1 = Σ(τ) , (2.35)

where the second equation is the inverse Fourier transform of the first. Letting

Σ(τ) = J221−qsgn(τ) eg(τ) , (2.36)

we get,

∂2
τ [g(τ)sgn(τ)] =

q − 1

2q−2
J2 eg(τ)sgn(τ) , (2.37)

which is (2.27) for one flavor.

2.3.2 Spectral function

The frequency space two-point function follows from (2.24), (2.32),

Gk(ω) =
1

2

∫ ∞
−∞

dτ eiωτ
sgn(τ)

(1 + J |τ |)2∆k
. (2.38)
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Introducing a Schwinger parameter,

1

(1 + J |τ |)2∆k
=

1

Γ(2∆k)

∫ ∞
0

dλ e−λ(1+J |τ |) λ2∆k−1 , (2.39)

and performing the τ integral in eq. (2.38) gives,

Gk(ω) = − 1

2Γ(2∆k)

∫ ∞
−∞

dλ e−|λ|
|λ|2∆k−1

iω − λJ
. (2.40)

The spectral function (as defined by eq. (C.4)) for the flavor k fermion is therefore,

ρk(λ) =
1

2J Γ(2∆k)

(
|λ|
J

)2∆k−1

e−
|λ|
J , (2.41)

where ∆k is given by (2.23). Since ∆k � 1, this is sharply peaked around small λ. If there

is only one flavor, then ∆ = 1/q. This spectral function is for q � 1. For q = 2, the SYK

spectral function is instead a Wigner semicircle (C.5).

2.4 Effective action

We have so far discussed the model (2.12) directly in terms of the fermions, finding the

two-point function at large N through study of Feynman diagrams. It is useful to also

consider the path integral approach. Employing the replica trick, one can carry out the

disorder average, and then integrate out the fermions after the introduction of new fields

G̃a(τ1, τ2), Σ̃a(τ1, τ2). The result is (see appendix A),

Z = e−βF =

∫
DΣ̃aDG̃a exp (−NSeff) , (2.42)

Seff = −
f∑
a=1

κa log Pf
(
∂τ − Σ̃a

)

+
1

2

∫
dτ1dτ2

[
f∑
a=1

κa Σ̃a(τ1, τ2)G̃a(τ1, τ2)− J2∏
a qa

f∏
a=1

G̃a(τ1, τ2)qa

]
For one flavor, this reduces to the effective action for SYK [2] (see [1] for an analogous

expression for the SY model, and [18] for the Dirac fermion version of SYK). The large

N saddle point of the action gives the Schwinger-Dyson equations for the two-point func-

tion found previously from Feynman diagrams. In particular, varying Seff with respect

to G̃k(τ1, τ2), and assuming time-invariance, gives (2.17), while varying with respect to

Σ̃k(τ1, τ2) yields (2.5) for each flavor. The saddle point solutions are denoted by Gk(τ1, τ2)

and Σk(τ1, τ2).

To leading order in 1/N , the free energy is given by the saddle of (2.42),

−βF/N =

f∑
a=1

κa log Pf (∂τ − Σa)

− 1

2

∫ β

0
dτ1dτ2

[
f∑
a=1

κa Σa(τ1, τ2)Ga(τ1, τ2)− J2∏
a qa

∏
a

Ga(τ1, τ2)qa

]
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Following [14], one can differentiate with respect to J to get,

J∂J(−βF/N) =
J2β∏
a qa

∫ β

0
dτ
∏
a

Ga(τ)qa . (2.43)

For large qa, Ga(τ) was found explicitly in section 2.3. Also, since the partition function

only depends on βJ , it follows that J∂J = β∂β . Thus for large qa,

β∂β(−βF/N) =
J2β

21+
∑
a qa
∏
a qa

∫ β

0
dτ

 cos
(
πv
2

)
cos
(
πv
2 −

πv|τ |
β

)
2

, (2.44)

where v is defined in terms of J in (2.30). Up to the choice of normalization of the variance

of the disorder, 〈JIJI〉, this is the same as for SYK with N fermions and a
∑f

a=1 qa body

interaction. So the entropies are also the same. In order to see a distinction, one must

study the 1/N corrections.

3 Four-point function

The SYK model has an O(N) symmetry after the disorder average. The bilinear primary

operators that are O(N) invariant are schematically
∑

i χi ∂
1+2n
τ χi for nonnegative integer

n. In the UV, these have dimension 2n + 1. The IR dimensions of the operators are

computed by summing a class of ladder diagrams. The four-point function of the fermions

is then given by a sum over conformal blocks, one for each of these composite operators.

For the generalized model (2.12), there is an O(N1)×O(N2)× · · · ×O(Nf ) symmetry

after the disorder average, and the invariant operators are schematically
∑

i χ
a
i ∂

1+2n
τ χai for

any a ∈ {1, . . . , f}. So there are now f towers of operators. In this section we compute

the IR dimensions of these operators.

3.1 Dimensions of composite operators

We begin by reviewing and adding some detail to the computation in [2] for the IR dimen-

sions of the SYK composite operators. The primary O(N) invariant bilinear operators are,

On =
N∑
i=1

2n+1∑
k=0

dnk ∂
k
τχi ∂

2n+1−k
τ χi , (3.1)

where the coefficients dnk are chosen so that the operators are primary. For instance,

O1 =
1

2

N∑
i=1

∂2
τχi∂τχi − ∂τχi∂2

τχi . (3.2)

The general form of dnk will not be important for us. Note that operators that are schemat-

ically of the form
∑

i χi∂
2n
τ χi are not primary.

We would like to compute the overlap between the state created by the composite

operator On acting at time τ0, and two fermions at times τ1 and τ2, respectively. In other

– 12 –
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= + + +   ...

(a)

= +

(b)

(c)

=

(d)

Figure 4. (a) The diagrams being summed to compute the three-point function

〈χi(τ1)χj(τ2)O(τ0)〉 for q = 6 SYK. This can be done iteratively, as shown in (b) (see eq. (3.4)),

with the kernel shown in (c) adding rungs to the ladder. In the IR we can simplify (b) to get (d).

words, the three-point function, 〈χi(τ1)χi(τ2)O(τ0)〉, which we will denote by v(τ0; τ1, τ2).

If the two fermions just propagated without interacting with each other, this would be

found by Wick contractions,

G0
χχO =

N∑
i=1

2n+1∑
k=0

dnk

(
∂kτ0G(τ2, τ0)∂2n+1−k

τ0 G(τ1, τ0)−∂kτ0G(τ1, τ0)∂2n+1−k
τ0 G(τ2, τ0)

)
. (3.3)

Eq. (3.3) is the first diagram that appears in figure 4(a). We must also include a

sum over all the ladder diagrams in figure 4(a). One can perform the sum by solving the

equation (see figure 4(b)),

v(τ0; τ1, τ2) = G0
χχO(τ1, τ2, τ0) +

∫
dτ3dτ4K(τ1, τ2, τ3, τ4) v(τ0; τ3, τ4) , (3.4)

where the kernel is the operator that adds a single rung (see figure 4(c)),

K(τ1, τ2, τ3, τ4) = −J2(q − 1)G(τ13)G(τ24)G(τ34)q−2 , (3.5)

where τab ≡ τa−τb. Letting the composite have dimension h, in the IR the solution to (3.4)

will take the form of conformal three-point function,

v(τ0; τ1, τ2) =
1

|τ1 − τ0|h
1

|τ2 − τ0|h
sgn(τ1 − τ2)

|τ1 − τ2|2∆−h , (3.6)

– 13 –
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2 4 6 8
h

-4

-2

2

4

g(h)

Figure 5. The eigenvalues g(h) (3.9) of the SYK kernel (3.5) for q = 6 as a function of dimension

h. The h for which g(h) = 1 are the IR dimensions of the fermion bilinear operators (3.1).

For h > 2∆, the term G0
χχO is much smaller than (3.6) in the IR, τ12 � 1, so we can drop

it in (3.4). Thus, (3.4) simplifies to (see figure 4d),

v(τ0; τ1, τ2) = g(h)

∫
dτ3dτ4K(τ1, τ2, τ3, τ4) v(τ0; τ3, τ4), (3.7)

where g(h) = 1. Eq. (3.7) is telling us that v(τ0; τ1, τ2) are eigenvectors of the kernel with

eigenvalues g(h). The dimensions h of the composite operators are those h for which the

eigenvalue g(h) = 1. It is helpful to think of the composite O(N) invariant operators as

analogous to a bound state of two fermions. In the more familiar context of finding bound

states in quantum field theory, figure 4d is the Bethe-Salpeter equation. There one is

using this equation to find the masses of the bound states. Eq. (3.7) is the CFT analog of

this, where instead of finding the masses of the bound states, one is finding the conformal

dimensions h.

The eigenvalue g(h) is independent of the choice of τ0, so for evaluating (3.7) one can

take the eigenvectors to be,

v(τ12) =
sgn(τ12)

|τ12|2α
, (3.8)

where 2α = 2∆ − h. By acting on (3.8) with the SL(2,R) generators, one gets all of the

eigenvectors (3.6) [13]. Inserting (3.8) into (3.7) gives [2],

g(h) = −(q − 1)
ψ(∆)

ψ(1−∆)

ψ(1−∆− h
2 )

ψ(∆− h
2 )

, (3.9)

where ψ(∆) was defined in (2.11). A plot of g(h) is given in figure 5. One can see that there

is a tower of h’s for which g(h) = 1. For large h the solutions to g(h) = 1 are approximately

h ≈ 2∆ + 2n+ 1.

There are solutions to g(h) = 1 for h < 2∆ as well. These solutions immediately follow

from the h > 2∆ solutions due to the symmetry g(h) = g(1−h). However, they do not cor-
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(a) (b)

Figure 6. The diagonal (a) and off-diagonal (b) components of the kernel (3.13), (3.14) for two

flavors with q1 = q2 = 3. The coloring scheme is the same as in figure 2.

respond to dimensions of composite operators. Recall that dropping the first term in (3.4)

was justified in the IR only for h > 2∆. (For h < 2∆, it is instead justified in the UV).

Knowing the dimensions of the “single-trace” operators, one can say something about

the bulk dual of SYK. The AdS/CFT dictionary relates the dimensions of single-trace

operators to the masses of bulk fields,

m2 = h(h− 1) , (3.10)

for AdS2. So the dual of SYK has a tower of particles in the bulk, one for each solution to

g(h) = 1 for h > 2∆. For large integer n, these have approximate masses m ≈ 2∆+2n+1.

3.1.1 Generalized model

We now generalize the calculation to the model (2.12). The operators (3.1) now have a

superscript Oan to account for the different flavors, and the kernel is now a matrix in flavor

space, Kmn(τ1, τ2, τ3, τ4), where m denotes the flavor of the incoming fermions on the left

at times τ1, τ2 and n denotes the flavor of the outgoing fermions on the right at times τ3, τ4,

see figure 6. The off-diagonal component Kkl has flavor k propagators along the rails, while

the rung consists of qk − 1 flavor k propagators, ql − 1 flavor l propagators, and qa flavor

a propagators for all a 6= k, l,

Kkl(τ1, τ2, τ3, τ4) = bklGk(τ13)Gk(τ24)
1

Gk(τ34)Gl(τ34)

f∏
a=1

(Ga(τ34))qa , (3.11)

where the combinatorial factor in front is,5

bkl = −〈JIJI〉
q2
kq

2
l (qk − 1)!(ql − 1)!

∏
a 6=k,l qa!

(
∏
qa!)2

N qk−1
k

∏
a 6=k

N qa
a . (3.12)

The diagonal components of the kernel are similar, but with slightly different propagator

powers and combinatorial factors. Using (2.14), (2.15) and simplifying we get the diagonal

5The factor of Nqa
a , for a 6= l, k, comes from the site index summation within the rung. For flavors k, l,

there are only qk − 1, ql − 1 propagators in the rung, so those give factors of N
qk−1
k , N

ql−1
l , respectively.

There is then an additional factor of Nl because the Feynman diagrams are built by adding the kernel to

the left (see figure 4); so the l index will get summed over.
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and off-diagonal components,

Kkk(τ1, τ2, τ3, τ4) = −J2 (qk − 1)

κkQk
Gk(τ13)Gk(τ24)

1

Gk(τ34)2

f∏
a=1

(Ga(τ34))qa (3.13)

Kkl(τ1, τ2, τ3, τ4) = −J2 ql
κkQk

Gk(τ13)Gk(τ24)
1

Gk(τ34)Gl(τ34)

f∏
a=1

(Ga(τ34))qa , (3.14)

where k 6= l and k, l ∈ {1, . . . , f}. If there is only one flavor, K11 becomes (3.5).

As in SYK, we must find the eigenvectors and eigenvalues of the kernel. Letting g be

an eigenvalue, and va(τ12) the components of an eigenvector,

f∑
b=1

∫
dτ3dτ4K

ab(τ1, τ2, τ3, τ4)vb(τ3, τ4) = g va(τ1, τ2) . (3.15)

Following (3.8), an ansatz for an eigenvector is,

va(τ12) = ca
sgn(τ12)

|τ12|2αa
, (3.16)

with some coefficients ca. Since the eigenvector and propagators in the kernel only depend

on time differences, (3.15) factorizes nicely under a Fourier transform,

J2

κaQa
F(Ga)

2

(qa − 1)F
(∏

Gqcc
G2
a

va
)

+
∑
b 6=a

qbF
(∏

Gqcc
GaGb

vb
) = gF(va) , (3.17)

where the first term on the left is from the diagonal term in the kernel (3.13) and the

second term is from the off-diagonal terms (3.14). Inserting the propagator (2.18) and

evaluating gives,

(
∏
bqkk )

κaQa
ψ(∆a)

2

ca(qa − 1)ψ(1− 2∆a + αa) +

∑
b 6=a

(
J

|ω|

)2∆b−2∆a

|ω|2(αb−αa) ba
bb
cbqb ψ(1−∆a −∆b + αb)

 = g caψ(αa) . (3.18)

In order to eliminate the dependance on ω, we must choose,

αb = αa + ∆b −∆a . (3.19)

In SYK we know that (3.8) is a special case of (3.6) with 2α = 2∆−h. Similarly here, we let

2αa = 2∆a − h , (3.20)

which is consistent with (3.19). Thus, (3.18) becomes an eigenvector equation for the

matrix K̃,

K̃ ~c = g ~c , (3.21)
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where the diagonal and off diagonal components of K̃ are,

K̃aa = (qa − 1) ρa(h) (3.22)

K̃ab = qb
baJ
−2∆a

bbJ−2∆b
ρa(h) ,

where

ρa(h) = − ψ(∆a)

ψ(1−∆a)

ψ(1−∆a − h
2 )

ψ(∆a − h
2 )

. (3.23)

In getting from (3.18) to (3.22) we made use of the product of normalizations of the

propagators
∏
bqaa given in (2.21). If there is one flavor, K̃11 reduces to (3.9).

The next step is to find all h for which there is an eigenvalue g of K̃ (3.22) that equals 1.

This is in principle straightforward: for any qa, κa in (2.12) ones solves (2.20), (2.22) to

find the IR dimensions ∆a of the fermions, then for fixed h one finds the f eigenvalues of

K̃, and then for each of those eigenvalues solves for all h such that the eigenvalue is equal

to one. Aside from some special cases, we can not write a general and explicit answer for

the h’s. However, it is easy to see that there will always be a dimension 2 operator in the

spectrum. For h = 2 (3.23) simplifies to,

ρa(h = 2) =
∆a

1−∆a
. (3.24)

Inserting this into (3.22), one can easily verify that the following vector

va = ∆abaJ
−2∆a , (3.25)

is an eigenvector of K̃ with eigenvalue one. Verifying this requires using
∑
qa∆a = 1, and

nothing else. Perhaps surprisingly, it is not even required that the ∆a are actual dimensions:

one does not need to impose (2.22). The dimension-two operator is important: it leads to

the breaking of conformal invariance and to maximal chaos; we will comment more on it

in the next section. Another universal feature (for any number of flavors greater than one)

is the seeming presence of a dimension-one operator. Inserting ρ(h = 1) = −1 into (3.22),

one can verify that there are f − 1 eigenvectors of K̃ that have eigenvalue one. For any

k ∈ {2, . . . , f}, such an eigenvector has two nonzero components,

v1 = −b1J2∆kqk , vk = bkJ
2∆1q1 . (3.26)

In fact, verifying this requires no assumptions on ∆a. The presence of these dimension-

one operators suggests a symmetry. In fact, this symmetry is simple to see from the

effective action (2.42).6 One can rescale G̃1(τ1, τ2)→ f(τ1)f(τ2)G̃1(τ1, τ2) and G̃a(τ1, τ2)→
[f(τ1)f(τ2)]

− q1
qa G̃a(τ1, τ2), for any a 6= 1, while leaving the IR limit of (2.42) invariant.

3.1.2 Equal qa, κa

A simple and instructive case is when all the qa are equal to some q, and all the κa are

equal, for all flavors a. The dimensions ∆a are then, by symmetry, all equal to ∆ = 1
fq .

6We thank J. Maldacena for recognizing this.
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gS(h), gA(h)

Figure 7. The two families gS(h), gA(h) of eigenvalues (3.28) of the kernel for the two-flavor

generalized model (3.13), (3.14) with q1 = q2 = 3, κ1 = κ2 = 1/2. The gS(h) family is the same as

SYK with q = 6, see figure 5. The IR dimensions of the bilinear fermion singlets are those h for

which either gS(h) = 1 or gA(h) = 1.

The matrix K̃ in (3.22) factorizes,

K̃ = ρ(h)K , where Kaa = (q − 1), Kab = q , (3.27)

where ρ(h) is given by (3.23) and is independent of the flavor. The eigenvalues of K̃ are thus,

gk(h) = ρ(h)σk, (3.28)

where σk are the f eigenvalues of K. The matrix K has a symmetric eigenvector (1, 1, . . . , 1)

with eigenvalue σ = fq − 1, as well as f − 1 antisymmetric eigenvectors: (1,−1, 0, . . . , 0),

(1, 0,−1, 0, . . . , 0), . . . , (1, 0, . . . , 0,−1), all with the same eigenvalue σ = −1. Setting gk(h)

equal to 1 gives the dimensions h. The eigenvalue σ = fq − 1 leads to the same tower

of dimensions as SYK with an fq body interaction, while the eigenvalue σ = −1 gives an

additional and new tower of operators, see figure 7. The origin of the new towers is due to

the more refined symmetry of the generalized model as compared to SYK: a product of f

O(N)’s instead of O(Nf).

An alternative way to think about the generalized model (2.12) for this case is that

instead of having f flavors of fermions with N1 = N2 = . . . = Nf sites for each, there is

one flavor with N1f sites. In other words, in the Hamiltonian (2.12),

∑
I

JI

(
χ1

i
(1)
1

· · ·χ1

i
(1)
q

)(
χ2

i
(2)
1

· · ·χ2

i
(2)
q

)
· · ·
(
χf
i
(f)
1

· · ·χ1

i
(f)
q

)
, (3.29)

where I = i
(1)
1 , . . . , i

(1)
q , . . . , i

(f)
1 , . . . , i

(f)
q , one makes the identification i

(p)
k = fnk + p − 1,

where nk ranges from 1 to N1, and gets rid of the flavor index on the fermions. There are

now fN1 sites; however, this is not the same as SYK with a qf body interaction, since the

interactions are not all-to-all, being restricted to occur between particular qf sets of sites.
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3.2 Four-point function

Having found the dimensions of the bilinear singlet operators Oan, the next step is to

compute their OPE coefficient. The OPE between two fermions will include all the Oan and

their descendants, and will take the form,

1

Na

Na∑
i=1

χai (τ1)χai (τ2) =
∑
n,b

ca,bn Cn(τ12, ∂τ1)Obn(τ1) , (3.30)

where ca,bn are the OPE coefficients and Cn(τ12, ∂τ1) = 1+. . . is fixed by conformal invariance.

The OPE coefficient can be extracted by computing the three-point function between the

two fermions and O, which in section 3.1 was labelled as v(τ0; τ1, τ2) and satisfied eq. (3.4).

Thinking of K as a matrix with indices (τ1, τ2), (τ3, τ4), the formal solution of (3.4) is,

va(τ0; τ1, τ2) =
1

1−K
G0
χaχaO , (3.31)

where we have generalized (3.4) to account for multiple flavors. Notice that when we

computed the dimensions in section 3.1, we were allowed to drop the G0
χχO term in (3.4),

arguing it was unimportant in the IR. However, for finding the OPE coefficients one is

interested in the UV, τ12 � 1, so this term is essential.

We will also be interested in the four-point function. Defining the bilocal,

ga(τ1, τ2) ≡ 1

Na

Na∑
i=1

χai (τ1)χai (τ2) , (3.32)

and proceeding formally, one can perform a double OPE expansion on the four-point

function,7

〈ga(τ1, τ2)gb(τ3, τ4)〉 =
1

NaNb

∑
n,e

ca,en cb,en Cn(τ12, ∂τ1)Cn(τ34, ∂τ3)
1

|τ13|2hn,e
. (3.33)

The right-hand side is a sum of conformal blocks, given by hypergeometric functions of the

conformally invariant cross ratio,

〈ga(τ1, τ2)gb(τ3, τ4)〉= Ga(τ12)Gb(τ34)
∑
n,e

ca,en cb,en xhn,e2F1(hn,e, hn,e, 2hn,e, x) , x =
τ12τ34

τ13τ24
.

(3.34)

This is similar to two-dimensional CFTs, except here we have one cross-ratio instead of two.

At large N , the leading and first subleading in 1/N pieces of the four-point function are,

〈ga(τ1, τ2)gb(τ3, τ4)〉 = Ga(τ12)Gb(τ34) +
1

N
Fab(τ1, τ2, τ3, τ4) . (3.35)

7Here n ranges over the positive integers and is labeling the number of derivatives in the composite

operator, see (3.1). The index e is labeling the different flavors. In writing (3.33) we have assumed, as will

generically be the case, that there are no degeneracies in the dimensions hn,e of the composites.
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𝜏2

𝜏3
𝜏4

(a) (b) (c)

Figure 8. The 1/N piece of the four-point function (3.35) consists of a disconected piece, F0,

which is diagonal in flavor space, with the first term in (3.36) shown in (a). The ladder diagrams

are formed by acting with the kernel (3.13), (3.14) on the left of F0 to add rungs. Adding one rung

gives diagrams such as those in (b) and (c).

The 1/N piece of the four-point function is found by summing ladder diagrams [2], see

figure 8. What we have is a slight generalization of what occurs in SYK, as the four-point

function is now a matrix in flavor space. Starting with

Fab0 (τ1, τ2, τ3, τ4) = δab (−Ga(τ13)Ga(τ24) +Ga(τ14)Ga(τ23)) , (3.36)

one uses the kernel (3.13), (3.14) to add rungs to the ladder. Summing all the ladder

diagrams,

Fab(τ1, τ2, τ3, τ4) =
1

κb

(
1

1−K
F0

)ab
. (3.37)

SYK

The technical challenge in evaluating (3.37) explicitly comes from inverting 1 −K. Recall

the procedure used in SYK. One first finds a complete basis of eigenvectors of the kernel.

This turns out to be given by (3.6) with h ranging over even positive integers h = 2, 4, 6, . . .,

as well as h = 1/2 + is where s > 0 [13, 14, 38]. One then projects (3.37) onto this basis

and performs the sum/integral over the discrete and continuous tower of h’s to find (3.34)

with OPE coefficients cn [14],

(cn)2 = α0(q)
(hn − 1/2)

π tan(πhn/2)

Γ(hn)2

Γ(2hn)

1

g′(hn)
, where α0(q) =

2πq

(q−1)(q−2) tan π
q

, (3.38)

where g(h) is given by (3.9) and hn are the solutions of g(hn) = 1.

Eq. (3.38) is for hn > 2. There is an additional complication that occurs for the h = 2

block. One can notice that g(h = 2) = 1, and since h = 2 is part of the basis of eigenvectors

used to invert 1−K, this causes the four-point function to diverge in the conformal limit.

The h = 2 block must therefore be treated outside the conformal limit. Moving slightly

away from the IR, the eigenvalue g(h = 2) gets slightly shifted away from 1, and so the h = 2

block gives a finite but large, and non-conformal, contribution to the four-point function.

Since its prefactor is dominant, its growth controls the behavior of the finite temperature

out-of-time-order four-point function used to probe chaos [39, 40]. The growth of the

h = 2 block occurs with a Lyapunov exponent 2πT that saturates the chaos bound [41].8

8At strong coupling, the Lyapunov exponent only depends on the temperature T . At weak coupling,

the Lyapunov exponent scales with the coupling J [2].
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In section 3.1.1 we found that the generalized model always contains a dimension two

operator; assuming its OPE coefficient doesn’t vanish, this implies that in the IR the

generalized model, like SYK, both breaks conformal invariance and is maximally chaotic.

To compute the four-point function (3.37) for the generalized model with generic qa
and κa, one would need to repeat the procedure used for SYK, accounting for the additional

complexity of having flavor. However, in the case that all the qa are equal and all the κa
are equal, it is simple to find the four-point function, and this is the case we focus on.

3.2.1 Equal qa, κa

If all the qa are equal to q, and all the κa = 1/f , then the kernel matrix (3.13), (3.14)

factorizes into a flavor-space matrix and a function of times,

K(τ1, τ2, τ3, τ4) = K k(τ1, τ2, τ3, τ4) , k(τ1, τ2, τ3, τ4) = −J2 f

qf−1
G(τ13)G(τ24)G(τ34)fq−2 ,

(3.39)

where K was defined in (3.27). By symmetry, the two-point functions are flavor-

independent, Ga(τ) ≡ G(τ). For concreteness, let us focus on the case of two flavors, f = 2.

In section 3.1.2 we diagonalized K, finding a symmetric eigenvector: (1, 1), with eigenvalue

σS = 2q−1, and an antisymmetric eigenvector: (1,−1), with eigenvalue σA = −1. Forming

a matrix of the eigenvectors,

O =
1√
2

(
1 1

1 −1

)
, (3.40)

we diagonalize (3.37) in flavor space, forming OTFO, to find,

F11 =
1

1− σSk
F0 +

1

1− σAk
F0 , (3.41)

F12 =
1

1− σSk
F0 −

1

1− σAk
F0 , (3.42)

F12 = F21 , F11 = F22 , (3.43)

where F0 = −G(τ13)G(τ24)+G(τ14)G(τ23) is the diagonal component of F0 in (3.36). Both

of the terms appearing in Fab are similar to what occurs in SYK, so we can write the

answer,
1

1− σS/Ak
F0 = G(τ12)G(τ34)

∑
n

(cS/An )2 xhn 2F1(hn, hn, 2hn, x) (3.44)

where,

(cSn)2 = α0(2q)
(hn − 1/2)

π tan(πhn/2)

Γ(hn)2

Γ(2hn)

1

(2q − 1)ρ′(hn)
, for (2q − 1)ρ(hn) = 1 , (3.45)

(cAn )2 = α0(2q)
(hn − 1/2)

π tan(πhn/2)

Γ(hn)2

Γ(2hn)

(2q − 1)

ρ′(hn)
, for −ρ(hn) = 1 . (3.46)

Here α0(q) is given by (3.38) and ρ(h) is given by (3.23) with fermion dimension ∆ = 1/2q.

To be clear, the hn appearing in (3.45) and (3.46) are the solutions of (2q − 1)ρ(hn) = 1

and −ρ(hn) = 1, respectively. Recall that we found in section 3.1.2 that with two flavors
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(with q1 = q2 = q, κ1 = κ2), the spectrum of bilinear composite operators contains two

towers: a tower that matches the 2q body SYK tower, and a new tower, see figure 7. The

OPE coefficients cSn are for the 2q body SYK tower. Note that (3.45) is for hn > 2; as

discussed before, the contribution of the h = 2 block diverges in the conformal limit.

The OPE coefficients cAn are for the new tower. Notice that this vanishes for the h = 1

operator. The OPE coefficients c1
n and c2

n, in terms of (3.45), (3.46), are given by,

c1
n = c2

n , (c1
n)2 = (cSn)2 for (2q − 1)ρ(hn) = 1 , (3.47)

c1
n = −c2

n, (c1
n)2 = (cAn )2 for −ρ(hn) = 1 , (3.48)

where, for simplicity of presentation, rather than writing ca,bn , we have explicitly separated

the two towers.9 A more intuitive way to think about this four-point function is to define

the symmetric and antisymmetric combinations of the bilocals (3.32),

gS(τ1, τ2) =
1

2
(g1(τ1, τ2) + g2(τ1, τ2)) (3.49)

gA(τ1, τ2) =
1

2
(g1(τ1, τ2)− g2(τ1, τ2)) .

The symmetric correlator probes only the SYK tower,

〈gS(τ1, τ2)gS(τ3, τ4)〉 = G(τ12)G(τ34) +
1

N

1

1− σSk
F0 (3.50)

and matches the SYK 2q body four-point function. The antisymmetric correlator,

〈gA(τ1, τ2)gA(τ3, τ4)〉 =
1

N

1

1− σAk
F0 , (3.51)

probes only the new tower. One can also reproduce (3.50), (3.51) from the path integral

picture, see appendix A.1.

4 Discussion

The SY model [1] involves all-to-all interactions between spins in some representation of

SU(M), H =
∑N

i,j=1

∑M
µ,ν=1 JijS

µ
i νS

ν
j µ, with Gaussian-random couplings Jij . Writing the

spins as products of two fermions, this becomes a four-fermion interaction. One of the

key realizations of [1] was that the model is solvable in the double scaling limit, N → ∞,

M →∞, M/N → 0. It was recognized in [2] that a simpler model is one that avoids spins

altogether and goes directly to the fermions, H =
∑
Jijkl χiχjχkχl. There is then a clear

generalization to a model with a q-index coupling and a q-body interaction [2].

In this paper, we have made another straightforward generalization, involving f fla-

vors of fermions with Na sites for each flavor and a
∑f

a=1 qa body interaction. Perhaps

9The c1n in (3.47) are the OPE coefficients for two fermions of flavor 1 going into the sum of O1
n and O2

n

(each of which is given by (3.1) for the corresponding flavor), while the c1n in (3.48) are the OPE coefficients

for two fermions of flavor 1 going into the difference between O1
n and O2

n. Analogously for the fermions of

flavor 2 and the c2n.
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surprisingly, the model has an infrared fixed point for most choices of parameters Na, qa.

We found a set of equations determining the dimensions of the fermions in the infrared,

as well as the matrix determining the infrared dimensions of the bilinear singlet operators

that are invariant under the global O(N1)×O(N2)× · · · ×O(Nf ) symmetry.

It was recognized in [14] that the SYK model simplifies in the limit q � 1. Here we

pointed out that in the q � 1 limit, only a particular subset of Feynman diagrams need

to be summed. For any even q ≥ 4, the SYK model has qualitatively similar properties.

In the generalized model introduced in this paper, there are more parameters to vary, and

one may wonder if there are corners of parameter space which either lead to simplifications

or qualitative differences.

We have only begun exploring the parameter space, focusing on the symmetric case of

an equal number of sites for each flavor, as well as interaction orders qa that are indepen-

dent of the flavor. The main qualitative difference, as compared to SYK with a qf body

interaction, is more singlet operators resulting from a symmetry that is a subgroup of the

O(N) symmetry of SYK. One feature we found, that holds for any choice of parameters,

is the presence of a dimension-two bilinear singlet operator in the infrared. Another was

the presence of a dimension-one operator; however, in the symmetric case considered, its

OPE coefficient vanished.

Nontrivial and solvable models are both rare and valuable. It is now clear that the class

of SYK-like models is much larger than just the SY model. Just how large this class is, if

there are further generalizations, and the precise characterization of the Feynman diagrams,

at each order in 1/N , are all still open problems. We may hope that exploring this structure

will provide guidance towards understanding the dual string theory, if there is one.

Acknowledgments

We thank D. Anninos, T. Anous, D. Gaiotto, A. Kitaev, G. Korchemsky, J. Maldacena,

Y. Nakayama, N. Nekrasov, J. Polchinski, B. Shraiman, and E. Silverstein for helpful

discussions. This work was supported by NSF grant 1125915.

A Effective action

In this appendix we compute the free energy (equivalently, the effective action) for the

generalized model (2.12). The calculation is analogous to the one for SYK [2].

Employing the replica trick, instead of computing the disorder average of the logarithm

of the partition function, one instead computes the disorder average of M copies of the

system. Starting with (2.12), this is given by,

ZM =

∫
Dχa,αi DJI P [JI ] exp

[
−

M∑
α=1

∫
dτ

(
1

2

f∑
a=1

Na∑
ia=1

χa,αia ∂τ χ
a,α
ia

+
(i)

q
2∏f

a=1 qa!

∑
I

JI
(
χ1,α
i1
· · ·χ1,α

iq1

)
· · ·
(
χf,αj1 · · ·χ

f,α
jqf

))]
(A.1)
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where α is the replica index, α ∈ {1, . . . ,M}, a is the flavor, a ∈ {1, . . . , f}, ia is the site

index, ia ∈ {1, . . . , Na}, and I is a collective site index, I = i1, . . . , iq1 , . . . , j1, . . . , jqf , and

P [JI ] is the probability distribution for the JI (2.13). Doing the Gaussian integral over the

disorder, (A.1) becomes,

ZM =

∫
Dχa,αi exp

− M∑
α=1

f∑
a=1

Na∑
ia=1

1

2

∫
dτ χa,αia ∂τ χ

a,α
ia

+
J2N

2(
∏
a qa)

∑
α,β

∫
dτ1dτ2

∏
a

(
Na∑
ia=1

1

Na
χa,αia (τ1)χa,βia (τ2)

)qa . (A.2)

Having done the disorder average, we see that there is a O(N1) × O(N2) × · · · × O(Nf )

symmetry. We thus introduce the collective fields,

G̃αβa (τ1, τ2) =
1

Na

Na∑
ia=1

χa,αia (τ1)χa,βia (τ2) (A.3)

by inserting delta functions,

δ

(
G̃αβa (τ1, τ2)− 1

Na

Na∑
ia=1

χa,αia (τ1)χa,βia (τ2)

)
(A.4)

∝
∫
dΣ̃αβ

a (τ1, τ2) exp

(
−Na

2
Σ̃αβ
a (τ1, τ2)

(
G̃αβa (τ1, τ2)− 1

Na

Na∑
ia=1

χa,αia (τ1)χa,βia (τ2)

))
,

where Σ̃αβ
a (τ1, τ2) acts as a Lagrange multiplier. We insert into (A.2) such a delta function

for each replica index pair α, β and each flavor a. This gives,

ZM =

∫
Dχaαia DΣ̃αβ

a DG̃αβa (A.5)

exp

− M∑
α,β=1

f∑
a=1

Na∑
ia=1

1

2

∫
dτ1dτ2 χ

a,α
ia

(τ1)
(
δαβδ(τ12) ∂τ − Σ̃αβ

a (τ1, τ2)
)
χa,βia (τ2)

−1

2

M∑
α,β=1

∫
dτ1dτ2

(
f∑
a=1

NaΣ̃
αβ
a (τ1, τ2)G̃αβa (τ1, τ2)− J2N∏

qa

∏
a

(
Gαβa (τ1, τ2)

)qa) .

Integrating out the fermions gives

ZM =

∫
DΣ̃αβ

a DG̃αβa exp

− M∑
α,β=1

S2
eff

 (A.6)

where

S2
eff = −1

2

f∑
a=1

Na log det
(
δαβ∂τ − Σ̃αβ

a

)

+
1

2

∫
dτ1dτ2

(
f∑
a=1

Na Σ̃αβ
a (τ1, τ2)G̃αβa (τ1, τ2)− J2N∏

a qa

∏
a

(
G̃αβa (τ1, τ2)

)qa)
(A.7)
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As is standard in studies of SYK, one assumes a replica symmetric saddle point,

G̃αβa (τ1, τ2) = δαβG̃a(τ1, τ2), and so (A.6) becomes ZM =
∫
DΣ̃aDG̃a exp (−MSeff) where,

Seff = −1

2

f∑
a=1

Na log det
(
∂τ − Σ̃a

)

+
1

2

∫
dτ1dτ2

([
f∑
a=1

Na Σ̃a(τ1, τ2)G̃a(τ1, τ2)

]
− J2N∏

a qa

∏
a

(
G̃a(τ1, τ2)

)qa)
. (A.8)

If there is only one flavor, we recover the SYK action [2],

Seff/N = −1

2
log det

(
∂τ − Σ̃

)
+

1

2

∫
dτ1dτ2

(
Σ̃(τ1, τ2)G̃(τ1, τ2)− J2

q
G̃(τ1, τ2)q

)
. (A.9)

A.1 Fluctuations

For SYK, one can expand (A.9) about the saddle G̃ = G+ |G|
2−q

2 g and Σ̃ = Σ + |G|
q−2

2 σ,

keeping terms up to second order, and then integrating out σ to get [14],

Seff

N
=

1

4

∫
dτ1 . . . dτ4 g(τ1, τ2)K−1

c (τ1, . . . , τ4)g(τ3, τ4)− J2(q − 1)

4

∫
dτ1dτ2 g(τ1, τ2)2

(A.10)

where K−1
c is the inverse of Kc, thought of as a matrix with indices (τ1, τ2), (τ3, τ4), and

given by,

Kc(τ1, . . . , τ4) = −|G(τ1, τ2)|
q−2

2 G(τ1, τ3)G(τ2, τ4)|G(τ3, τ4)|
q−2

2 . (A.11)

We can write (A.10) in the shorthand,

Seff/N =
1

4
g ?
(
K−1
c − (q − 1)J2

)
? g . (A.12)

The four-point function 〈G̃(τ1, τ2)G̃(τ3, τ4)〉 computed with (A.12), after doing the Gaussian

integral, reproduces eq. (3.37) for one flavor.

Now consider the generalized model, (A.8), for two flavors with q1 = q2 = q and

κ1 = κ2 = 1/2. From (A.8),

2Seff

N
= −1

2
log det(∂τ−Σ̃1)− 1

2
log det(∂τ−Σ̃2)+

1

2

∫
dτ1dτ2

(
Σ̃1G̃1 + Σ̃2G̃2 −

2J2

q2
G̃q1G̃

q
2

)
(A.13)

By symmetry, the saddle point is,

G1 = G2 ≡ G , Σ1 = Σ2 ≡ Σ =
2J2

q
G(τ1, τ2)2q−1 . (A.14)

As noted in section 2.4, the saddle point equation is the same as the equation for SYK with

a 2q body interaction. Let us now study fluctuations about the saddle, G̃a = G+ |G|1−qga,
and Σ̃a = Σ + |G|q−1σa. Expanding (A.13) to second order,

2Seff

N
=

1

2

∫
dτ1dτ2

[
g1(τ1, τ2)σ1(τ1, τ2) + g2(τ1, τ2)σ2(τ1, τ2) (A.15)

−J
2

q
(q − 1)(g1(τ1, τ2)2 + g2(τ1, τ2)2)− 2J2g1(τ1, τ2)g2(τ1, τ2)

]
− 1

4

∫
dτ1 . . . dτ4Kc̄(τ1, . . . , τ4)

(
σ1(τ1, τ2)σ1(τ3, τ4) + σ2(τ1, τ2)σ2(τ3, τ4)

)
,
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where

Kc̄(τ1, . . . , τ4) = −|G(τ1, τ2)|q−1G(τ1, τ3)G(τ2, τ4)|G(τ3, τ4)|q−1 . (A.16)

Integrating out σ1, σ2 gives,

Seff

N
=

1

4
gS ?

(
K−1
c̄ −

2J2

q
(2q − 1)

)
? gS +

1

4
gA ?

(
K−1
c̄ −

2J2

q
(−1)

)
? gA , (A.17)

where gS/gA are the symmetric/antisymmetric combinations of g1, g2, (3.49). The corre-

lators 〈G̃S(τ1, τ2)G̃S(τ3, τ4)〉 and 〈G̃A(τ1, τ2)G̃A(τ3, τ4)〉 follow by analogy with (A.12), and

reproduce (3.50) and (3.51).

B Model with a scalar

In this appendix we consider a model with a boson field. It is a slight variant of (2.12) and

has the action,

S =

∫
dτ

(
N1∑
i=1

φ2
i +

1

2

f∑
a=2

Na∑
i=1

χai
d

dτ
χai +

(i)
q
2∏f

a=1 qa!

∑
I

JI φi
(
χ2
i1 · · ·χ

2
iq2

)
· · ·
(
χfj1 · · ·χ

f
jqf

))
,

(B.1)

where I is a collective site index I = i, i1, . . . , iq2 , . . . , j1, . . . , jqf , and q1 = 1, and q =∑f
a=2 qa. This has a similar interaction as (2.12), but the first flavor is with a boson

instead of a fermion. The boson is taken to be auxiliary, having UV dimension [φ] = 1/2,

so the coupling JI has dimension 1/2. We restrict to only one boson, q1 = 1, in order to

ensure that the interaction is relevant. We also require q be even.10

The only technical distinction between finding the IR dimensions for (B.1) compared

with (2.12) is that the boson propagator is symmetric in time. The ansatz for the IR boson

propagator is,

G1(τ) = b1
J2

|J2τ |2∆1
, G1(ω) = −2i∆1b1J

2−4∆1 |ω|2∆1−1ψ

(
∆1 +

1

2

)
, (B.2)

where ψ(∆) is defined in (2.11), while for the IR fermion propagator it is,

Gk(τ) = bk
sgn(τ)

|J2τ |2∆k
, (B.3)

for k ≥ 2. In the IR, one drops the free propagator appearing in the Schwinger-Dyson

equation (2.5), so for both the boson and the fermions one has Σk(ω)Gk(ω) = −1. The

self-energy is again given by (2.16), with the disorder average normalization given in (2.14).

Repeating the several steps in section 2.2 gives the following equations,

f∑
a=1

qa∆a = 1,

f∏
a=1

bqaa =
κkQk

2π
(1− 2∆k) tanπ∆k for k ∈ {2, . . . , f} (B.4)

f∏
a=1

bqaa =
κ1Q1

2π

(1− 2∆1)

tanπ∆1
(B.5)

10A supersymmetric variant of SYK was introduced in [19] (see also [42]). A more minimal supersym-

metric SYK, with only the interaction
∑
Jijkφiχjχk, is being studied in [43, 44]. This interaction would

be a special case of (B.1) with one fermion flavor with q2 = 2.
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Figure 9. The model of fermions with a random mass matrix sums rainbow diagrams like the one

shown. The solid line is the fermion and the dashed line is the disorder.

The equations (B.4) are the same as for the generalized fermion model (2.12), while (B.5)

is different.

For the case of f = 2 and κ1 = κ2, (B.4), (B.5) have the simple solution,

∆1 =
q2 + 2

2q2 + 2
, ∆2 =

1

2q2 + 2
. (B.6)

For q2 = 2 this gives the dimensions ∆1 = 2/3, ∆2 = 1/6 found in [43].11 Intriguingly, the

difference between the boson dimension ∆1 and fermion dimension ∆2 is 1/2 for any q2,

as would be implied by supersymmetry. However, we have not checked that the model for

general q2 is supersymmetric.

C Random mass matrix fermions

The simplest SYK model is for q = 2: fermions with a random mass matrix. For this case,

all computations can be performed exactly, without the restriction of being near the fixed

points or working at large N . In this appendix, we solve the q = 2 model. For infinite N

this is trivial, while for finite N it is slightly more involved but follows from standard matrix

model techniques. One should keep in mind that the q = 2 case has multiple features that

are not representative of SYK at larger q; in particular, it is not chaotic.

C.1 Infinite N

The Schwinger-Dyson equations for the two-point function (2.5), (2.6) are integral equa-

tions for general q, but become a simple quadratic equation for q = 2. The solution is

G(ω) =
iω

2J2

(
−1 +

√
1 + 4

J2

ω2

)
. (C.1)

One can also find this directly by summing non-crossing rainbow diagrams (see figure 9),

G(ω) = G0(ω)
∞∑
n=0

Cn

(
JG0(ω)

)2n
, (C.2)

where G0(ω) is the bare propagator (2.4), while Cn are the Catalan numbers,

Cn =
1

n+ 1

(
2n

n

)
. (C.3)

11We thank Yu Nakayama for sharing his results and explaining the supersymmetric model.
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The Catalan numbers are the number of different ways n + 1 factors can be completely

parenthesized; here the parentheses are the rainbows. Summing (C.2) gives (C.1). One

can also write (C.1) as,

G(ω) =

∫
dλ ρ(λ)

−1

iω − λ
, (C.4)

where the spectral function ρ(λ) is the Wigner semi-circle, with support for |λ| < 2J ,

ρ(λ) =
1

2πJ2

√
4J2 − λ2 . (C.5)

At finite temperature, the frequencies in (C.1) should be viewed as the Matsubara

frequencies, ωn = (2n+ 1)π/β. Taking the discrete Fourier transform of (C.4) gives,

Gβ(τ) =

∫
dλ ρ(λ)

1

1 + e−βλ
e−λτ , (C.6)

where 0 < τ < β. In the limit of zero temperature βJ � 1, we can evaluate the integral

to obtain,

G(τ) =
1

2Jτ

(
I1(2J |τ |)−L1(2J |τ |)

)
, (C.7)

where L1 is the modified Struve function, and I1 is the modified Bessel function. While

both L1 and I1 grow exponentially, the two-point function (C.7) decays monotonically

with |Jτ |. The combination is sometimes denoted by M1 ≡ L1 − I1. We can do a strong

coupling expansion of (C.7),

G(τ) = − 1

2π2Jτ

∞∑
k=0

Γ
(
k + 1

2

)
Γ
(
k − 1

2

)
|Jτ |2k

, (C.8)

where we see that the first term matches what was expected from the IR limit of the

Schwinger-Dyson equations (2.8), (2.9).

Comments

One comment is that in summing the Feynman diagrams giving (C.2) it is important

to work at finite temperature. Each of the diagrams individually has IR divergences: the

Fourier transform of any of the individual terms in (C.2) will diverge in the limit of β →∞.

Of course, one could have chosen to regulate the IR divergence in some way other than

working at finite temperature. However, finite temperature is natural. The point is just

that the dimensionless expansion parameter is βJ .

Another comment is that aside from the implicit appearance of β in the Matsubara

frequencies, (C.2) has no explicit β dependance. This is a property that is special to q = 2.

For SYK with q ≥ 4, one could solve the Schwinger-Dyson equations perturbatively around

weak coupling, giving an expansion of the form,

G(ωn) =
i

ωn

∞∑
k=0

k∑
l=0

gkl

(
J

ωn

)2k

(ωnβ)2l , (C.9)

with some coefficients gkl. One can derive recursion relations for gkl, but we have not found

a way of solving them.

– 28 –



J
H
E
P
0
2
(
2
0
1
7
)
0
9
3

We have been considering Majorana fermions. One can instead study q = 2 with Dirac

fermions,

H =
∑
ij

Jijc
†
icj . (C.10)

At leading order in 1/N , this gives the same two-point function (C.1). Working with Dirac

fermions gives slightly more flexibility, as one can introduce a chemical potential. With no

chemical potential, as in (C.10), one is at half-filling. Explicitly, consider a single free Dirac

fermion H = ω0c
†c. (Adding a chemical potential just corresponds to adding to (C.10)

such a term for each fermion, with chemical potential µ = −ω0.) The finite-temperature

two-point function is trivially,

G(τ) = Z−1tr(Te−βH c(τ)c†(0)) =
1

1 + e−βω0

(
θ(τ)e−ω0τ − θ(−τ)e−βω0−ω0τ

)
. (C.11)

Since we are at finite temperature, fields have the time range 0 < τ < β. The two-point

function is a function of the difference between two times, and so naturally has the range

−β < τ < β. However, from (C.11) we see that for 0 < τ < β, G(τ − β) = −G(τ). We can

thus restrict to 0 < τ < β. The filling fraction Q is defined as the expectation value of the

occupation number,

Q = 〈c†c〉 = −G(0−) =
1

1 + eβω0
. (C.12)

We can choose the filling fraction by choosing ω0. It is clear that for any finite temperature,

if ω0 = 0, then there is no energy cost to being in the state |1〉 versus |0〉, and so the filling

fraction is 1/2. Note that the limits of T → 0 and ω0 → 0 do not commute. If we set T = 0

at finite ω0 (including ω0 = 0), then we get zero filling: from (C.11), G(τ) = θ(τ).

Finally, the q = 2 model sums rainbow diagrams. There are many other models that

sum rainbow diagrams. For instance, two-dimensional QCD [45] has the same rainbow

diagrams, where the fermions are the quarks, and the disorder lines are the gauge field

propagators. Also, the recently studied three-dimensional U(N)k Chern-Simons theory

coupled to scalars or fermions also sums rainbow-like diagrams [46, 47]. A simple large N

quantum mechanics model that sums rainbow diagrams is the Iizuka-Polchinski model [48]

(see also, [16, 49]). The IP model has a harmonic oscillator in the adjoint representation

of U(N) plus a harmonic oscillator in the fundamental representation of U(N), coupled

through a trilinear interaction. In the limit that the mass of the adjoint goes to zero, this

is essentially the same as the model eq. (C.10), at leading order in 1/N . The reason we say

essentially the same is because in the IP model the fundamental is effectively at zero filling.

In other words, its free two-point function is θ(τ) as opposed to 1
2sgn(τ), and correspond-

ingly, the infinite N two-point function after summing the rainbow diagrams is only the first

term, I1, in (C.7). In addition, at subleading orders in 1/N , differences will arise between

the model eq. (C.10) and the IP model. This is because the adjoint propagator will receive

quantum corrections, whereas the 〈JijJij〉 “propagator” in eq. (C.10) is always a constant.

– 29 –



J
H
E
P
0
2
(
2
0
1
7
)
0
9
3

Four-point function

It is simplest to write the four-point function in frequency space. This is defined as,

Fijkl(ω1, ω2, ω3, ω4) ≡
∫
dτ1 . . . dτ4 e

i(ω1τ1+...+ω4τ4) 〈χi(τ1)χj(τ2)χk(τ3)χl(τ4)〉 . (C.13)

Written as a series in 1/N , Fijkl = F (0)
ijkl + 1

NF
(1)
ijkl + . . . . At leading order in 1/N there is

a disconnected piece,

F (0)
ijkl(ω1, ω2, ω3, ω4) = δijδkl2πδ(ω1 + ω2)2πδ(ω3 + ω4)G(ω1)G(ω3)

−
(
j ↔ k, ω2 ↔ ω3

)
−
(
j ↔ l, ω2 ↔ ω4

)
.

At first subleading order in 1/N , the four-point function is a sum of ladder diagrams,

like SYK for general q. However for q = 2 there is an extreme simplification, since the

rungs only contain the disorder lines. Since there is no momentum exchange, summing the

ladders in frequency space simply involves summing a geometric series, which gives,

F (1)
ijkl(ω1, ω2, ω3, ω4) =

(
δilδjk

J2 (G(ω2)G(ω4))2

1−J2G(ω2)G(ω4)
−(k↔ l, ω3↔ω4)

)
2πδ(ω1+ω2)2πδ(ω3+ω4)

−
(
j ↔ k, ω2 ↔ ω3

)
−
(
j ↔ l, ω2 ↔ ω4

)
. (C.14)

It is only necessary to establish the first term in the s-channel piece. The other term, as

well as the t and u channels, follow from antisymmetry. Through a Fourier transform and

analytic continuation of (C.14), one finds there is no exponential growth in the out-of-time-

order four-point function [16], and so the q = 2 model is not chaotic.

C.2 Finite N

C.2.1 Dirac fermion

We now compute the two-point function at finite N for the random mass matrix

fermion, (C.10). For fixed coupling Jij , this is just N free fermions with mass matrix

Jij , so the nontrivial part is to perform the disorder average. Specifically,

G(ω) = − 1

N

1

Z

∫ ∏
i≤j

dJij tr

(
1

iω − J

)
exp

(
−tr(J2)/2J̄2

)
, (C.15)

where,12

Z =

∫ ∏
i≤j

dJij exp
(
−tr(J2)/2J̄2

)
, J̄2 =

J2

N
. (C.16)

Consider first the trivial case of N = 1. This is just a fermion with a random mass.

Then (C.15) reduces to (C.4) with a spectral function,

ρ(λ) =
1√
2πJ

e−
λ2

2J2 . (C.17)

12We are using the same symbol J to denote both the matrix of couplings, as well as the number that

appears as the variance of the distribution of couplings.
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So at N = 1 the spectral function is a Gaussian, while at N = ∞ it is the Wigner

semicircle (C.5). The two-point function for N = 1 can also be found by summing Feynman

diagrams,

G(ω) = G0(ω)

∞∑
n=0

(2n− 1)!! (JG0(ω))2n . (C.18)

Writing the double factorial as a Gaussian integral, and interchanging the integral and the

sum, we recover (C.17). Explicitly performing the integral gives the two-point function in

terms of the complimentary error function,

G(ω) =
i

J

√
π

2
e
ω2

2J2 Erfc

(
ω√
2J

)
, ω > 0 . (C.19)

In the zero temperature limit we also find,

G(τ) =
1

2
e
J2τ2

2 Erfc

(
Jτ√

2

)
, τ > 0 , βJ � 1 . (C.20)

We now move on to the case of general N , using the method of orthogonal polynomials to

evaluate (C.15). We can write (C.16) in terms of the eigenvalues of J ,

Z =

∫ N∏
k=1

dλk
∏

1≤i<j≤N
(λi − λj)2 e−λ

2
l /2J̄

2
=

∫ N∏
k=1

dλk ∆(λ)2e−λ
2
i /2J̄

2
, (C.21)

where we have used that J is Hermitian and the last equation is in terms of the Vander-

monde,

∆(λ) =

∣∣∣∣∣∣∣∣∣∣
1 λ1 λ2

1 . . . λN−1
1

1 λ2 λ2
2 . . . λN−1

2
...

...
... . . .

...

1 λN λ2
N . . . λN−1

N

∣∣∣∣∣∣∣∣∣∣
. (C.22)

This model is of course different from fermions with masses independently drawn from a

Gaussian distribution; the masses here are eigenvalues of a Hermitian matrix and have

repulsion, as encoded in the Vandermonde term in (C.21).

We now take linear combinations of the columns of (C.22), transforming it into a

matrix with i, j element, φj(λi), where φj(λi) is a polynomial with lowest element 1 and

highest element λji . The determinant (C.22) remains invariant under these operations. We

can write the determinant as a sum of permutations of the integers from 0 to N − 1,

∆(λ) =
∑
σ

(−)σφσ(0)(λ1)φσ(1)(λ2) · · ·φσ(N−1)(λN ) . (C.23)

We choose the φn such that,∫
dλφn(λ)φm(λ) e−λ

2/2J̄2
= fn δnm . (C.24)

This then gives,

Z = N !
N−1∏
i=0

fi . (C.25)
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Figure 10. Plot of the spectral function (C.30) at N = 50 for the random mass matrix

fermion (C.10). At infinite N the oscillations go away and this becomes the Wigner semi-circle (C.5).

The φn will be proportional to the Hermite polynomials, defined as,

Hn(x) = (−1)nex
2 dn

dxn
e−x

2
,

∫ ∞
−∞

dx e−x
2
Hn(x)Hm(x) =

√
π2nn! δnm . (C.26)

We choose,

φn(λ) =
J̄n

2n/2
Hn

(
λ√
2J̄

)
. (C.27)

Now to evaluate (C.15), note that,

tr

(
1

iω − J

)
=

N∑
i=1

1

iω − λi
, (C.28)

and so we find that the spectral function is,

ρ(λ) =
1

N
e−

λ2

2J̄2

N−1∑
k=0

φk(λ)φk(λ)

fk
. (C.29)

Evaluating the sum gives,

ρ(λ) =
1√
2πJ̄

1

2NN !
e−

λ2

2J̄2

[
NHN−1

(
λ√
2J̄

)2

− (N − 1)HN−2

(
λ√
2J̄

)
HN

(
λ√
2J̄

)]
,

(C.30)

where we have used that fk = J̄2k+1
√

2π k!, which follows from (C.26), (C.27). A plot

of (C.30) is shown in figure 10.

An alternative way to write the two-point function is to perform the integral over

λ in (C.4) before evaluating the sum over k appearing in the spectral function (C.29).

After the introduction of a Schwinger parameter, the integration over λ yields a Laguerre

polynomial. Using that the sum of the Laguerre polynomials is an associated Laguerre

polynomial
∑N−1

k=0 Lk(x) = L1
N−1(x), we find

G(ω) =
i

ω

1

N

∫ ∞
0

ds e−se−
s2J̄2

2ω2 L1
N−1

(
s2J̄2

ω2

)
. (C.31)
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1/N expansion

We would like to expand (C.31) in powers of 1/N . Using the definition of the associated

Laguerre polynomial,

Lαn(x) =

n∑
k=0

(−1)k
(
n+ α

n− k

)
xk

k!
, (C.32)

and recalling that J̄2 ≡ J2/N , we exchange the order of the sums, and perform the integral

over s, to get,

G(ω) =
i

ω

∞∑
p=0

(−1)p
(
J

ω

)2p (2p)!

p! (p+ 1)!
B(p,N) , (C.33)

where [50]

B(p,N) =
(p+ 1)!

(2N)p

p∑
k=0

2k(N − 1)! p!

(N − 1− k)! k! (k + 1)! (p− k)!
=

(p+ 1)!

(2N)p
2F1(−p, 1−N ; 2; 2) .

(C.34)

An series expansion of B(p,N) in powers of 1/N2 was also worked out in [50]. The first

few terms are,

B(p,N) = 1 +
p(p2 − 1)

12N2
+

(p+ 1)!

(p− 4)!

(5p− 2)

1440N4
+

(p+ 1)!

(p− 6)!

(35p2 − 77p+ 12)

27345 · 7N6
+ . . . , (C.35)

Using this we can write the 1/N expansion of the two-point function as,

G(ω) =
i

ω

∞∑
n=0

N−2n g(n)

(
J

ω

)
, (C.36)

where the first several terms are,

g(0)(x) =
−1 +

√
1 + 4x2

2x2
,

g(1)(x) =
x4

(1 + 4x2)
5
2

,

g(2)(x) = −21x8(x2 − 1)

(1 + 4x2)
11
2

,

g(3)(x) =
11x12(158x4 − 558x2 + 135)

(1 + 4x2)
17
2

.

The leading term in 1/N , g(0), reproduces what we found from summing the planar

diagrams, (C.1).

C.2.2 Majorana fermion

Here we compute the two-point function for the Majorana version of q = 2 SYK (2.1) at

finite N (note that N must be even). This will be slightly different from the Dirac version

studied in section C.2. The two-point function is given by,

G(ω) = − 1

N

1

Z

∫ ∏
i<j

dJij tr

(
1

iω − J

)
exp

(
−tr(J2)/4J̃2

)
, (C.37)
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where

Z =

∫ ∏
i<j

dJij exp
(
−tr(J2)/4J̃2

)
, J̃2 =

J2

N − 1
. (C.38)

The matrix J is real and antisymmetric. The partition function (C.38) can be written

terms of the eigenvalues of J [51],

Z =

∫ N/2∏
k=1

dλk
∏

1≤i<j≤N/2

(
λ2
i − λ2

j

)2
e−λ

2
l /2J̃

2
. (C.39)

Defining an analog of the Vandermonde, one involving only even powers,

∆(λ) =

∣∣∣∣∣∣∣∣∣∣
1 λ2

1 λ4
1 . . . λN−2

1

1 λ2
2 λ4

2 . . . λN−2
2

...
...

... . . .
...

1 λ2
N/2 λ

4
N/2 . . . λ

N−2
N/2

∣∣∣∣∣∣∣∣∣∣
, (C.40)

eq. (C.39) becomes,

Z =

∫ N/2∏
k=1

dλk ∆(λ)2e−λ
2
i /2J̃

2
. (C.41)

The procedure is now similar to the Dirac case. We can write the determinant as a sum of

permutations of the even integers from 0 to N − 2,

∆(λ) =
∑
σ

(−)σφσ(0)(λ1)φσ(2)(λ2) · · ·φσ(N−2)(λN/2) . (C.42)

The φn are the same as in the Dirac case. The partition function now involves just the

even normalization constants,

Z =

(
1

2
N

)
!

N
2
−1∏

i=0

f2i . (C.43)

For evaluating the two-point function, note that since the eigenvalues come in pairs,

tr

(
1

iω − J

)
=

N/2∑
i=1

(
1

iω + λi
+

1

iω − λi

)
. (C.44)

The two-point function is thus,

G(ω) =
i

ω

2

N

∫ ∞
0

ds e−s e−
s2J̃2

2ω2

N−1∑
k=0

1 + (−1)k

2
Lk

(
s2J̃2

ω2

)
. (C.45)

This is similar to (C.31), except it involves a sum only over the even Laguerre’s. The

spectral function is,

ρ(λ) =
1√
2πJ̃

1

2NN !
e−

λ2

2J̃2

[
NHN−1

(
λ√
2J̃

)2

− (N − 1)HN−2

(
λ√
2J̃

)
HN

(
λ√
2J̃

)

− J̃√
2λ
HN

(
λ√
2J̃

)
HN−1

(
λ√
2J̃

)]
. (C.46)
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Figure 11. Plot of the spectral function (C.46) at N = 50 for the q = 2 Majorana SYK. This

differs from the random mass matrix fermion spectral function in the region of small λ, see figure 10;

the distinction goes away at infinite N .

This is similar to the spectral function for the Dirac fermion (C.30), except for the addition

of the last term in (C.46) that is 1/N suppressed relative to the first two (and the trivial

distinction that occurs at order 1/N between J̃ and J̄), see figure 11.
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