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1 Introduction

There are two dualities interrelating the various ten-dimensional superstring theories: T-
duality and S-duality. Whereas S-duality relates strong and weak coupling regimes, T-
duality exchanges winding and momentum modes of closed strings wrapping compact cycles
and is a map between different string backgrounds. It is a target space symmetry.

Additionally, fluxes wrapping the internal cycles of compactified string theories play an
important role when considering T-duality. There is the NS-NS two-form B-field, to which
the string couples, and its three-form field strength, the so-called H-flux. Furthermore,
the f-flux is the torsion-less part of the projected spin-connection and therefore is closely
related to the geometry of the compactified space itself.

In the case, where the compactified space exhibits a Killing isometry, T-duality in this
direction is possible and mixes B-field and metric components. The equations that express
the new metric and B-field in terms of the old ones are the so-called Buscher rules [1, 2].

However, if one considers successive T-duality transformations of a three-torus with H-
flux background, so-called non-geometric backgrounds with associated non-geometric fluxes
Q@ and R appear [3, 4]. The Q-flux signalizes a globally non-geometric background with
monodromy, which has to be patched by T-duality transformation. The R-flux signalizes
an even locally non-geometric background, where standard manifold descriptions fail.



Double field theory [5, 6] approaches this problem by the introduction of winding
coordinates, which are dual to the standard ones, and formulating T-duality on toroidal
backgrounds as an O(D, D;Z)-transformation on this doubled set of coordinates. See
also [7-9], where this idea was developed. In this formulation, even T-duality in non-
isometry directions is possible and the non-geometric - and R-flux can be interpreted
naturally [10, 11]. There are various proposals for non-geometric R-flux. The R-flux is
related to the violation of the Jacobi identity associated with the Poisson structure
in [12]. In [13] the R-flux is directly related with the S-potential via R = d./3, where 7 is a
Poisson tensor and d is the Lichnerowicz-Poisson differential. A supergravity formulation
making use of the bivector 5 can be found in [14]. A formulation of double field theory with
dynamical fluxes can be found in [15], where also generalized Bianchi identities were derived.

Since T-duality mixes metric and B-field, both structures can be combined in an
O(D, D)-tensor, the so-called generalized metric. It turns out that the associated back-
grounds with H-flux can be naturally described using the Courant algebroid on the gen-
eralized tangent bundle TM & T*M. The underlying structure is given by generalized
geometry [16, 17]. The geometric subgroup of O(D, D)-transformations, spanned by dif-
feomorphisms and B-transformations, leave the inner product on the Courant algebroid
invariant. However, under B-transformation the Courant bracket gets twisted by a term
proportional to dB = H. An analysis of non-geometric backgrounds and their relation to
generalized geometry is conducted in [18].

A different model realizing R-flux was given in [13] using a Poisson tensor. This
model is called Poisson Courant algebroid and the Poisson tensor is used to define the
Courant algebroid on the generalized tangent bundle, where the roles of the tangent and
cotangent spaces are exchanged. The associated structure is called Poisson-generalized
geometry. Along this line, the authors of [19] reformulated the Poisson Courant algebroid
using graded symplectic manifolds and elucidated its relation to H-flux backgrounds as
well as to double field theory.

From the topological perspective, T-duality on toroidal backgrounds with H-flux was
analyzed in [20, 21]. An analogous examination in the setting of Poisson-generalized geom-
etry including @-flux was carried out in [22]. From the perspective of graded symplectic
manifolds, the structure of double field theory was analyzed in [23, 24]. a’-corrections to
the C-bracket in double field theory from the viewpoint of deformations of graded man-
ifolds were discussed in [25]. Relations of non-geometric fluxes to non-commutative and
non-associative geometry were discussed in [26-28]. From the perspective of membrane
sigma-models, a string in an R-flux background was proposed to propagate in the cotan-
gent bundle T*M, which upon quantization develops a non-associative Moyal-Weyl type
star product [29]. The non-associativity is conjectured to be governed by the R-flux.

In this paper, we first show how the local expression for the geometric H- and F- as
well as the non-geometric @- and R-fluxes can be introduced naturally from twists of the
Courant algebroid on T'M ¢ T*M without flux. For this, we make use of QP-manifolds of
degree two, which naturally are linked to general Courant algebroids [30]. The twists corre-
spond to B-transformations, S-transformations and diffeomorphisms and therefore span the
full O(D, D) group. In order to introduce twists representing the diffeomorphisms, a frame



bundle is defined. These twists then naturally introduce vielbeins into the description.
The operations of the resulting twisted Courant algebroid are induced by derived brackets
and the graded Poisson bracket of the QP-manifold. The classical master equation on the
QP-manifold is shown to lead to the Bianchi identities among the fluxes.

We then derive the local expressions of all the fluxes in the setting of double field
theory by twist of the Hamiltonian analyzed in [23]. The associated structure is called
pre-QP-manifold in [24]. By construction, the resulting algebraic structure can be pro-
jected by solving the section condition to either give a twisted Courant algebroid in the
supergravity frame, or a twisted Courant algebroid that lives entirely in the winding frame.
Of course, mixed solutions of the sections condition give rise to different twisted Courant
algebroids. Again, the associated Bianchi identities are derived from the projected clas-
sical master equations. Derived brackets induce the associated operations on the twisted
Courant algebroids.

Then, we give a representation of T-duality as canonical transformation between QP-
manifolds and work it out for the examples of an S'-isometry and three-torus with H-flux.
Finally, the Poisson Courant algebroid as a model for R-flux is reinterpreted in light of our
results. We show that it is a special solution of the double field theory section condition
realizing R-flux on a Poisson manifold.

This paper is organized as follows. In section 2, we give a short review of non-geometric
fluxes in string theory. In section 3, an introduction to QP-manifolds, Courant algebroids
and double field theory is provided. This will clarify the necessary means to understand the
main part, which is section 4. In section 4.1, we derive the fully twisted Courant algebroid
with Bianchi identities from canonically transformed Hamiltonians. In section 4.2, the for-
mulation of double field theory via graded symplectic manifolds is introduced. In section
4.3, we discuss the Poisson Courant algebroid with R-flux model with respect to double
field theory. In section 4.4, we derive the fully twisted double field theory Hamiltonian, that
incorporates local expressions for all fluxes and derive Bianchi identities for the winding
frame by projection. In section 4.5, a formulation of T-duality in terms of canonical trans-
formations is presented. Section 5 is devoted to discussion of our results and future outlook.

2 Non-geometric fluxes in string theory

In this section we give a short introduction to non-geometric backgrounds and their asso-
ciated non-geometric fluxes.

In general, non-geometric flux backgrounds refer to backgrounds whose mathematical
description goes beyond the standard techniques of manifolds. This is in the easiest form
observable if one performs T-duality on NS flux backgrounds [3, 4]. For this let us start with
the compactification on a flat six-dimensional torus 7%, containing a three-cycle wrapped
by the NS three-form H-flux. Let the non-zero H-flux be denoted by Hio3 = N. Then
we can take the B-field to be Bjs = Nz®. Now, there are several directions to T-dualize.
Taking T-duality in the z'-direction leads to a so-called twisted torus background on which
there is vanishing B-field, and therefore no H-flux. One says that the H-flux is mapped
to the so-called geometric f-flux, denoted by fi3 = N. The geometric f-flux is intimately



related to the Scherk-Schwarz fluxes of Scherk-Schwarz compactifications. In the resulting
twisted torus background, there are still isometry directions available to T-dualize in. If we
T-dualize in the z2-direction, we will be left with what is called a globally non-geometric
background. In this case, the B-field as well as the metric develop a monodromy, which
has to be patched by a T-duality transformation. Therefore, this background is still locally
geometric. Such spaces are called T-folds. The associated flux is called @Q-flux and in this
example the resulting background will have Q12 = N, whereas neither NS H-flux, nor
geometric f-flux is present. It turns out that after taking the second T-duality, there is no
isometry direction left to T-dualize in. This is in contrast to the fact that we started with
background, which possessed this isometry in the beginning. Discussions and an analysis
of the resulting structure and backgrounds associated with non-geometric fluxes can be
found for example in [3, 10]. In the literature, this structure was given the name R-flux
and the associated would-be background is characterized by R'?3 = N. It turns out that
this background is not even locally geometric, but locally non-geometric, and an analysis
via standard manifold and differential geometric methods is impossible.
Let us recall the well-known T-duality chain that has been analyzed in [3],

Ta Ty Te
Hupe & f2 &5 Q% & R

where T, denotes T-duality taken in z?-direction. The authors of [3] discussed non-
geometric backgrounds of toroidal compactifications of type II string theory from the
viewpoint of symmetries of the effective superpotential. More precisely, they considered a
six-torus, which factorizes into three identical two-tori divided by a Zs and a Z3 symmetry.
This leads to a so-called STU-model, where there are one complex structure modulus 7',
one Kihler modulus U and one axio-dilaton S for the 72 in the factorization. Imposing
T-duality invariance on the resulting AN/ = 1 superpotential then leads to the necessity to
include further coefficients, that the authors argue to be non-geometric fluxes.

An analysis of the topological aspects of T-duality was carried out in [20, 21, 31].
The action of T-duality on circle bundles was investigated and it turned out that on the
topological level T-duality can be seen to exchange the first Chern class of the circle bundle
with the background H-flux. In this sense, for each circle bundle F with first Chern
class ¢;(E) and H-flux H there exists a T-dual circle bundle E with H-flux H, so that
c1(E) = m.H and ¢, (FE) = #,H, where 7 and 7 are the respective bundle projections.

A T-duality manifest approach to toroidal string compactifications is given by the
so-called double field theory [5]. The manifest invariance under isometric as well as non-
isometric T-duality transformations is established by introducing double coordinates Z;,
which are dual to the standard ones z°. The dual coordinates are interpreted as param-
eterizing the winding sector of the closed strings wrapping the toroidal cycles. In double
field theory, the incorporated fields are simultaneously dependent on the standard and the
dual coordinates. The strong point of this theory is that geometric as well as non-geometric
backgrounds can be described in a unified manner. However, since the coordinates are dou-
bled, a so-called section condition or strong constraint has to be imposed in order to project
down to the physical frame. This constraint is intimately related with the level matching



condition, which constraints the modes allowed on a closed string. We will provide a
mathematical introduction into double field theory in section 3.2.

Accounts on the structure of double field theory from the viewpoint of graded sym-
plectic manifolds are given in [23, 25]. In [23], a Hamiltonian on a symplectic manifold of
degree two was proposed, from which the authors computed the C-bracket using derived
brackets. Furthermore, the section condition was deduced from the classical master equa-
tion of the Hamiltonian. In [25], the author considered o’-corrections to the C-bracket.
The corrections were mimicked by a Moyal-Weyl star product deformation on the graded
manifold at first order.

3 Graded symplectic manifolds and double field theory

In this section, we give an introduction to QP-manifolds and double field theory. First we
define the necessary objects and focus on QP-manifolds of degree two and their relation
to Courant algebroids. Then we provide a short introduction to the realm of double field
theory and the associated differential geometry.

3.1 QP-manifolds and Courant algebroids

Fundamental to our analysis is the mathematical structure of a QP-manifold.! In this
subsection, we provide an introduction to the tools necessary to understand the main text.
For details on the background and definitions we refer to [32].

A QP-manifold (M, w, Q) of degree n is a non-negatively graded manifold M with a
graded symplectic structure w of degree n and a homological vector field @) of degree one,
such that Low = 0. A vector field @ is called homological if it is nilpotent, @* = 0. In
general, w is called P-structure and (M, w) is the associated P-manifold. The vector field
Q is called Q-structure. For a function f € C*°(M), the corresponding Hamiltonian vector
field X is defined via

Lx, = —0f, (3.1)

where § denotes the de Rham differential on M. The graded symplectic structure w defines
a graded Poisson bracket via

{f.9} = (D) x ik w, (3.2)

where X; and X, denote the Hamiltonian vector fields corresponding to f,g € C*(M).
For any QP-manifold one can find a Hamiltonian function © € C*°(M) of degree n+ 1
associated to the homological vector field ) such that

Qf:{gvf}

for f € C>°(M). Then the homological condition on the vector field translates to the
so-called classical master equation

Q*=0 < {6,0}=0.

LQP-manifold is also called symplectic NQ-manifold.



One says that © solves the classical master equation. © is also called homological function
or Hamiltonian.

It is well known, that Courant algebroids are in one-to-one correspondence with QP-
manifolds of degree two [30].

Let us shortly recall the definition of a Courant algebroid and then relate it to QP-
manifolds of degree two [33, 34]. A Courant algebroid consists of a vector bundle E over a
smooth manifold M. There are three operations. First, there is a pseudo-Euclidean metric
on the fiber, which we denote by (-,-). Second, there is a so-called anchor map to the
tangent bundle over M given by p : EE — T'M. Third, there is a so-called Dorfman bracket
on the sections of E, denoted by [-,-]p. Finally, these operations have to obey the following
conditions,

le!, [e2, €®p]p = [[e}, €2]p, €3] p + [€2, [¢4, €% plp, (3.3)

p(€1)<62,€3> = <[61762]D763> + <627 [61763]D>7
)(e”,€”)

= <€1a [623 63]D + [637 62]D>a

where el 2, 3 € T(E).

A general Courant algebroid can be reconstructed from a QP-manifold of degree two
as follows. Let E be a vector bundle over a smooth manifold M. Consider the graded
manifold M = T*[2]E[1]. The object E[1] denotes the total space, where the fiber degree
is shifted by one.? Local coordinates on M are (2, n%, &) of degrees (0, 1, 2). Furthermore,
we define an injection of the vector bundle E to M via

j:TM&E — M
i+ (et} = )
A general section e € I'(E) can then be pushed forward via
Jx e = ag(z)e” — ag(z)n?, (3.6)

where a, € C*°(M). For the QP-manifold of degree two, the associated graded symplectic
structure w is of degree two. We assume a fiber metric (n® 7°) = k%. Then, the graded
symplectic structure is chosen as

. 1
w = 02" A 68 + kap 01" N on’. (3.7)
We define the Q-structure in terms of the Hamiltonian function via
- 1
O = pa(@)€n™ + 5 Cape(@)n """, (3.8)

where pl, Cape € C*°(M). In this case, the Hamiltonian function has degree three. If the
Hamiltonian function satisfies the classical master equation, {©,0} = 0, then (M, w, Q)
defines a QP-manifold of degree two.

2The map [n] denotes the shift functor [32].



In order to reconstruct the Courant algebroid, we have to define the associated three
operations. They are defined using the graded Poisson bracket and derived brackets as
follows. The pseudo-Euclidean metric is recovered by

(eb,e?) = j*{jiel, jue?), (3.9)

the Dorfman bracket by
[617 62]D = _j*{{j*ela @},j*€2}7 (310)

and the anchor map by
ple)f = —j"{{jse, 0}, juf}, (3.11)

where el, €2, e € T'(E) and f € C®°(M). Due to the classical master equation, the three
relations induce a Courant algebroid.

Finally, let us discuss the operation of twisting QP-manifolds. A twist is defined via a
canonical transformation. Let (M, w, ©) be a QP-manifold of degree n and o € C>°(M) be
a smooth function of degree n. Then the canonical transformation is defined via exponential

adjoint action using the graded Poisson bracket,

¢ f = [+ {f.ab+ S{{faka}+ oo

where f € C*°(M) is any smooth function on M. Since the function « is of the same degree
as the graded symplectic structure, the adjoint action is degree-preserving and obeys

{e% f, e’ g} = ™ {f, g},
where f,g € C*°(M) are smooth functions.

3.2 Double field theory

Double field theory [5] is a manifestly T-duality invariant formulation of the effective theory
of the string. See also [35] for a review on that subject.

The action of T-duality on closed strings compactified on S' with radius R maps
to a dual theory with strings wrapping the dual S' with radius R = R~!. Therefore,
we can infer that in the case of a T"-compactification various S'-isometric directions are
available to T-dualize in. As we mentioned, investigations of T-duality in the case of 7°-
compactifications with H-flux, lead to the conjecture of non-geometric flux backgrounds [3],
which go beyond the standard differential geometry and manifold techniques. The geometry
of non-geometric backgrounds [10] plays a fundamental role in double field theory.

In double field theory, a double space is considered, where the doubled coordinates are
dual to the original ones and this enlarged set of coordinates is used to make the O(D, D)-
symmetry manifest. All fields involved depend on the standard and dual coordinates
simultaneously. In the case, where the theory is compactified on a TP, the O(D, D;Z)-
transformation acting on the double coordinates (#;, z°) corresponds to T-duality. Here,
the index i runs from 1 to D.

The field content of double field theory is given by the D-dimensional metric g, the
two-form field B and the dilaton field ¢. For the discussion in this paper, we will ignore



¢. The metric and the B-field are rearranged into an O(D, D)-tensor via the so-called
generalized metric H sy, where M and N run over the entire double space from 1 to 2D.
The generalized metric parametrized by the geometric subgroup is given by

97 —g"By
Hyun = . . 3.12
<Bik9k] 9ij — Birg"' By; (3.12)

T-duality exchanges momentum modes with winding modes in the T-dualized direc-
tion. Since we doubled the coordinates, we also introduce associated momentum modes. We
denote the standard momentum mode by p;, whereas we denote its dual momentum mode
by p'. Throughout the main text, we call the dual momentum mode also winding mode.

Let us consider the generators of the O(D, D)-representation. We start with an
O(D, D)-invariant metric denoted by

0 &%
NMN = (5.]- 0”) : (3.13)

The invariance property can be stated as
harnphy = nan, (3.14)

where h,} denote O(D, D)-matrices. The generators of O(D, D) are given by diffeomor-

hyt = (E] ! ) , (3.15)

0 E’

phisms

where E' € GL(D), B-transformations

5.0
Rl =17 . 3.16
and S-transformations
5. B
Y =1"7"" 3.17

where B;; and B9 are antisymmetric tensors. Diffeomorphisms and B-transformations
generate the so-called geometric subgroup of O(D, D). On this level, all fields depend on
both coordinates (Z;, #). Then, O(D, D) acts on the generalized metric H sy, generalized
momentum P = (p;,p’) and generalized coordinates XV = (z;, 2') via

Harn (X) = Hpo(hX)hiih &2, (3.18)
PM s M PN, (3.19)
XM pM XN (3.20)

where h € O(D, D) and p; denote winding modes, whereas p’ denote momentum modes.
Since from the supergravity point of view, double field theory is an O(D, D)-manifestly
invariant extension through the introduction of dual variables, there has to be a mechanism



to reduce to the physical supergravity frame. This reduction is provided by the so called
strong constraint or section condition and is given by

nMN oy Ony = 0, (3.21)

where 9y = (9", 8;) reassembles standard and winding derivatives. 1 denotes any field.
This condition is O(D, D)-invariant and originates from the level matching condition in
string theory [35]. It can be rewritten in the form, which is useful for the main text of this
paper,

d'0ip = 0, (3.22)
for any field . A reduction of double field theory to the supergravity frame is done by
taking all fields to not depend on the winding coordinates, loosely expressed by dt = 0.
A reduction to the winding frame is possible by taking 0; = 0. Mixed reductions are also
possible.

Since the metric and B-field are rearranged into a generalized object, the respective
diffeomorphisms and gauge transformations can be unified using so-called generalized dif-
feomorphisms with generalized gauge parameter ¢M = (5\1, M. On a generalized vector
VM of weight w(V), the action of the generalized Lie derivative along ¢M is given by

LeVM = ePopvM + (0Mep — apeMVE + w(V)ope" VM. (3.23)
Requiring the closure of gauge transformations we find the relation

[L§17 L§2] = L[§1,£2]Cv (324)

where [£1, &) denotes the so-called C-bracket. It is the antisymmetrization of the so-called
D-bracket

[€1,&]p = L¢, & (3.25)

Reducing the theory to the supergravity frame using the section condition reduces the
C-bracket to the Courant bracket and D-bracket to the Dorfman bracket.

Finally, let us shortly discuss the generalized vielbein formulation of double field theory.
We can decompose the generalized metric via

Hun = EA;SapES, (3.26)

ab
n®? 0
Sap =
b <0 7’ab>

and EAM denote generalized vielbeins such that

where

nun = EAmagEY, (3.27)

[0 5
NAB = 5% 0 .

where



The matrix 7, denotes the D-dimensional metric. EAM transforms under generalized
diffeomorphisms by

LeEA, = ¢PopEA, + (00l — 0P ¢p) EXp. (3.28)

It can be parametrized by the geometric subgroup of O(D, D) via

i ,Iin..
A (ea ¢a Bﬂ), (3.29)

0 e
where g;; = e“mabebj and eaj are the vielbeins with respect to the D-dimensional metric g;;.
If we turn on the §-field, then we allow for the full set of non-geometric backgrounds
and the generalized vielbein is written by [36]

i IB..
EAM:< €a Ca 2] ) (3.30)

6’ajﬁji eai +eajﬁjkBki

In general, backgrounds considered in the framework of the full duality group are glob-
ally or even locally non-geometric and contain monodromies patched by full O(D, D)-
transformations.

4 Non-geometric fluxes and T-duality via graded symplectic manifolds

In this section, we present the main results of this paper. First we will derive the fully
geometrically and non-geometrically twisted formulation of a Courant algebroid. We derive
Bianchi identities and the local expressions of all fluxes by twist of a Hamiltonian. Then we
extend our analysis to the setting of double field theory. We discuss the Poisson Courant
algebroid as a model for R-flux from the perspective of double field theory. Then we derive
the Bianchi identities in winding space and the associated local flux expressions. Finally, we
define T-duality as canonical transformation acting on the double field theory Hamiltonian.

4.1 Courant algebroid with geometric and non-geometric fluxes

In this section, we derive the Courant algebroid, which incorporates the local expressions
of the geometric H- and F-fluxes as well as non-geometric - and R-fluxes in terms of
vielbein e,’, B-field and bivector field 3. We show, that the QP-manifold, which induces
this Courant algebroid naturally encodes the Bianchi identities of these fluxes.

Since Courant algebroids are QP-manifolds of degree two, let us start with the simplest
QP-manifold and gradually input more ingredients. The QP-manifold, we are considering
in this section, is defined on the graded manifold M = T*[2]T[1]M, where M is a smooth
manifold. M is locally parametrized by the coordinates (z¢, ¢%) of degree (0, 1) and their

conjugate coordinates (&;, p;) of degree (2, 1). The symplectic structure is taken as

w =0z A\ 6& + 0¢° A Op;. (4.1)

,10,



It has total degree four. On this QP-manifold, a general Hamiltonian will be of degree
three. The simplest non-trivial Hamiltonian, we can write down, is given by

Os0 = ¢'&:. (4.2)

Let us define an injection of the generalized tangent bundle TM & T*M over M into M
using the map j : TM & (TM & T*M) — M via

VA, I o
J: <axi,1’z,dl'z,ai> = (fiaxl7qlvpi)'
More precisely, we have the following pullbacks

J* s X (@)pi e X ()0,
7% (@) gt v ag(z)dat,
where X% o; € C®°(M). Therefore, a general section e € ['(TM @ T*M) can be pushed
forward to M by

Jere = X" (2)0; + ay(x)dax’ — X' (x)p; + ci(z)q".

Upon contraction of the Hamiltonian (4.2) with the graded Poisson bracket we can
define the de Rham operator d : Q¥(M) — QFF1(M) by

da = —j"{Os,j.()} (4.3)

for any k-form o € QF(M). The pushforward of a k-form « is naturally given by

1 A , 1 : .
Js = T i (x)dz"* A+ ANda'™ — T i (x)g" - q'". (4.4)

The nilpotency of the operator d is guaranteed by the classical master equation,
{05,0,0s0} = 0. We conclude, that (4.2) induces a de Rham cohomology on the forms
over M.

The next step is to include geometric as well as non-geometric fluxes H, F', @ and
R in this formulation. This is done by introducing them into the Hamiltonian. It is well
known, that the H-twisted Hamiltonian
1

Os.i = &' + g Hige(2)d' ¢’ ¢" (4.5)

induces the structure of an H-twisted Courant algebroid via the classical master equation
and derived bracket construction.
In an analogous manner we can write down the R-twist of the Hamiltonian ©g o,

1
Os.r=&q" + gR”k(fE)piijk‘ (4.6)

In [29] it is proposed, that the AKSZ action functional induced by the Hamiltonian (4.6)
provides a description for a string propagating in R-space. In this case, the string is

— 11 —



embedded into the cotangent bundle T*M and its phase space is twisted by the R-flux.
This leads to a non-associative star product on phase space. However, the classical master
equation of Og g implies that R is trivial.

The local expressions of the H-, F-, Q- and R-fluxes can be introduced by appropriate
twist of the Hamiltonian. Since this formulation makes use of a QP-manifold of degree
two, the allowed degree-preserving twists also have degree two. The two obvious twists in
this setup, we call B-twist or B-transformation

1 .
exp(6m) = exp (3Bl

and S-twist or S-transformation
1 .
exp(dg) = exp <26” (af)pipj> :

where B;j, 8% € C*°(M).

The O(D, D)-covariant metric of the Courant algebroid on the generalized tangent
bundle is induced by the graded Poisson bracket (3.9). The sections of the bundle cor-
respond to degree one functions on M via j. We conclude, that symplectomorphisms
on M induced by twists proportional to ¢, p? and pgq are in one-to-one correspondence
with the generators of O(D, D). Twists that are proportional to £ induce derivatives and
transform (3.9). Thus, they do not correspond to generators of O(D, D).

In order to include vielbeins, we introduce a frame bundle of T'[1]M @ T*[1]M. Then,
the vielbein can be introduced using another twist. Let (¢%, p,) be local coordinates on
V[1]@V*[1] corresponding to a flat frame, where V = R” is a flat vector space of dimension
D = dim(M), whereas (¢*,p;) correspond to a general frame on T[1]M @ T*[1]M. Then,
we can introduce twists in (T[1]M @& T*[1]M) @ V[1] & V*[1] by

exp(de) = exp(e,'(2)g
exp(d.-1) = exp(e®(x)q'pa)-

g@
5]

This brings us into the position to introduce vielbein components. The resulting injection
into the generalized tangent bundle with frame bundle can then be written using local
coordinates as

J:TM@(TM O T*M)®V @ V* = T*2IT[1|M @ V[1] ® V*[1]

(81’1 ) xl7 dxla 8i7 ua7 ua) = (517 xz, qzvpia qaapa)'

Note that {¢% pp} = 0 and {q¢’,p;} = 5;- and all other combinations vanish.

Before introducing the vielbein components by twist, let us discuss the concept using
B- and f-transformations. The classical master equation of ©g p restricts the H-flux to
be closed, H € H3(M,R). On the other hand, we can induce the local expression for the
H-flux in (4.5) by B-twist of (4.2) via

. 1 .
exp(—0B)Os,0 = ¢'& + §az‘Bjquqjqk7 (4.7)

so that H;;, = 38[1'Bjk] or H=dB.
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If we twist the standard space Hamiltonian ©g g by S-transformation we arrive at
. . 1 o 1 . ,
exp(~05)Os.0 = &ia' — 8" Empi + 505" a'pjp + 55" O i (4.8)

The twist induces an R-flux term R7F = 3plimlg, 37k or R = %[B,B]S, where [—, —]g
denotes the Schouten bracket. One observes that if [3, f]s = 0, then

_ 1 .
Op = =" Empi + §8iﬁjqupjpk (4.9)

induces a Poisson cohomology on the space of multivector fields C*°(T*[1|M) ~ T'(A*T M)
with Lichnerowicz-Poisson differential dg = [3,-]s. Since {&¢',053} = 0, the resulting
cohomology associated to the Hamiltonian (4.8) for 8 a Poisson bivector is the total coho-
mology of the de Rham-Poisson double complex with total differential D = d + dg acting
on elements ¢ € I'(A*TM & A*T*M). The cohomology can be generalized to the so-
called standard cohomology of the Courant algebroid on C°°(T*[2]T'[1]M) defined by the
Hamiltonian © [37].

In the case where the p3-coefficient is nonzero, we can describe the breaking of the
Poisson condition by a totally antisymmetric trivector R € T'(A3T'M). Then, the resulting
structure is a so-called quasi-Poisson structure %[[3, Bls = R.2 If one defines the Poisson
bracket associated to 3 as

{f.9}s = B70:f059, (4.10)

for f,g € C>*°(M), then the quasi-Poisson structure manifests itself by breaking of the
Jacobi identity,

{95, 1} + {{h, f}s.9}s + ({9, h}p. [} = R7"0:f0;90kh. (4.11)

In addition to the R-flux term we observe that a Q-flux term Q?k = 9;8" has been in-
duced by the S-twist. In terms of the Poisson bracket this expression can be rewritten as [12]

(2%, 29} 5 = /Q;jdxk. (4.12)
Therefore, the @Q-flux term can be associated to non-commutative structures on the closed

string.
With this knowledge we can rewrite (4.8) in the form

. . 1 .. 1 .
Op = q'& + B"pikm + §Q§qupjpk + QR”kpipjpk, (4.13)
defining Qg k= 9; 7% and Rk = 3plimlg,, g7k The B-transformation induces a differential

on the space of polyvectors, in addition to the de Rham differential on forms. Let us denote
the former by introducing e& = flet = Bijaj € TM, where €' € T*M is the dual of e;, and

3The terminology of ‘quasi-Poisson’ in this paper follows the one in [26]. The authors of [38] give a
different definition of a quasi-Poisson structure.
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the latter by e; = 9; € T M, following the notation of [12]. The classical master equation,
{©3,03} =0, then implies the Bianchi identities

a[mggkl =0, (4.14)
glilmlg, Rkl _ §R[z‘jllekl] = 0. (4.16)
2 m

These relations coincide with the Jacobi identities for the commutation relations

s, €5 =0, (4.17)
i el] = QMem, (4.18)
e} €] = R ey, + Qe (4.19)
where [, -] denotes the usual commutator on the tangent bundle.

In fact, the Hamiltonian (4.13) defines the following Courant algebroid on T'M &T™* M.
Let X +a,Y +v € I'(TM @ T*M) be sections of the generalized tangent bundle. The
anchor map is defined as

p(X +a)f = = {{j=(X + ), 08}, 5 ()} = (X + B5(a)) [. (4.20)
The Dorfman bracket is defined by

(X +a,Y +9]p = —j{{ij(X +a),05},j.(Y +7)}
= [X,Y] + Lxy — tyda +[a,7]g + LBY — 1,dsX + 10t R (4.21)

Here ff(a) = BY ai(:n)% for any one-form a = a;(x)dz’. L2 denotes the Poisson-Lie

derivative along a one-form «,
L2Y =dptaY + tadgY. (4.22)

The operator dg denotes the Lichnerowicz-Poisson differential on polyvector fields and
[a,7]p is the Koszul bracket, [a,v]s = Lgi(a)y — tgs(y)de. Since the pseudo-metric is
induced directly from the graded Poisson bracket,

(X +a,Y +79) =7 {j(X +a),i(Y +7)}
=X(7)+Y(a), (4.23)

it does not change upon the S-twist.

In order to provide a fully twisted Hamiltonian, that introduces local expressions for all
fluxes in terms of all potentials including the vielbeins, we now introduce two index ranges:
1,7, k,... will denote curved coordinates and a, b, c, ... will denote flat coordinates.

Let us get warmed up with a discussion of the f-flux in the geometric supergravity
frame. In general, the f-flux is called geometric flux and is associated with the torsion-less
part of the projected spin connection. It is well known, that the T-dual of a three-torus
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with standard metric and non-zero H-flux is a nilmanifold with zero H-flux. The dual torus
can be formulated as S'-bundle over S? with non-trivial spin connection. The appropriate
Hamiltonian, that models the dual torus nilmanifold, has to incorporate a notion of vielbein
e, and f-flux with the correct relation

fre = 2ep.0i¢% e, (4.24)
There are two approaches that facilitate such a correspondence. Firstly, the Hamiltonian
- 1
Os.p = e/ &a" + 5 fepa"a"pe (4.25)
induces the relations
. , 1 .
e[lfajeaﬁ = —5601 §b7 (426)
e9ifa = fav e (4.27)
where [-- -] denotes antisymmetrization with the corresponding combinatorial factor. The

first equation becomes (4.24) upon introduction of an inverse e?; of e’ such that e ed, = §¢.
We conclude, that the local expression of the f-flux is induced by the classical master
equation of the Hamiltonian (4.25). This is in contrast to the H-flux and R-flux case,
where we introduced the local expression of the fluxes directly into the Hamiltonian by an
appropriate twist.

Let us investigate the possibility of doing so for the f-flux using an appropriate repre-
sentation of the generator of diffeomorphisms inside O(D, D) as canonical transformation
acting on our Hamiltonian. For this, we start with the Hamiltonian (4.2) and twist it
successively by exp(—de), exp(d.-1) and again exp(—d.). We assume, that both vielbeins
are inverse to each other and orthogonal with respect to both contractions, eaie“j = 5; and

ebie“i = 0y. The result is

exp(—de) exp(d.-1) exp(—6.)Os 0
=e,"q“6m + eamﬁmebiequjqapi + eam(?mebieciqaqbpc. (4.28)
One first recognizes the anchor map, which now is depending on the vielbein itself. The
q%qpe-coefficient gives the local expression of the f-flux in terms of the vielbeins
1 c _ za Jc
ifab = e[a ieb] (& j
= e[g@-ecjea{. (4.29)
The mixed index coefficient corresponds to a connection on the frame bundle. Since in

general we will derive more complicated expressions of f-flux in non-geometric frames, we

denote the general flux by I’ and its basic part by
1S = 2e[lfaiec~e J (4.30)

a J"a)”

Introducing a vielbein basis on the tangent bundle TM by e, = e,'0;, we can reformulate

this expression by a commutator
[eav eb] = fgbec- (431)
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We conclude, that the resulting Hamiltonian represents a local formulation of an f-flux
background.

The Hamiltonian that contains the local expressions for both the H-flux and f-flux in
terms of the potentials B and e, can be derived by twist in the same manner, via

exp(—d.) exp(d.-1) exp(—de) exp(—dp)Os o
ic a.b k a b c

, : 1 :
= e, "q%m + e, meblequjq“pi + e, Omey'eq°q"pe + iaiBjkeaZeb e. qq"qc.  (4.32)

This leads to the correct local expression of the H-flux in flat coordinates in the geomet-

ric supergravity frame via Hg. = 38¢Bjke[éeb] ec]k. This can be rewritten as covariant

derivative Hope = 30), By — f[vjl yBlaie] = 3V o B

Let us in the following consider the full set of fluxes by inducing their local expressions
using the three different types of twist: B, 8 and vielbein. For this, we start again with (4.2)
and twist it by B-field and g-field successively,

1 .

exp(—dp) exp(—dp)Os o = exp(—dp) (&q’ + 261‘Bjkqlqjq'“>

7 mi 1 n.r_s 1 st m. n

=&q" —&mb pi+§8nBrsq qq9 — 8man+§asan B%'piq™q
1 1 )
+ [Qaiﬁh’f — 5 0iBra BB + arBisﬁshﬁ”ﬂ] ¢'Phk
1. . 1 <

+ |:_28l51hﬁlk + QBnBrsﬁSZBTh/Bnk] PiPhPk- (433)

Finally, we introduce the vielbein freedom via

exp(—de) exp(d.-1) exp(—d.) exp(—dg) exp(—dp)Os.o
= &iey' " — EmB™ e Dy + €, Ome epid " — B e Ome, e piai
+ e Omeg € g pog” — B e 0me, €4  pope

+ %8nBrse ey elq"q"q" — <8man + ;&an) Be e, e pagq"q"
+ [;fw’“ — OB 4 arBis,Bshﬁﬂ e i€t nea Pype
+ [—;azﬁ“lﬁlk - ;aanﬁ“ﬂmB"k] €€’ 4 DaPupe

= e,'6iq" — B’ Empy + B Omel el a'pipy + €, Ome e“iqiqbpj

1
+ ianBrse eb € sqaqch + |:eb 8m6 ]6 (a an + a an) ﬁszea 6 :| paq q
1 )
[ 5mlec ame 6 I: Bhk iaiBrsﬂShBrk + 8rBisﬂsh/8Tk:| eazebheck:| qapbpc

1 ) .
+ [—2alﬁlhﬁlk + QOnBrsﬁszﬂrhﬁnk] €€l e PapbPe (4.34)

The twisted Hamiltonian incorporates the local expressions for all fluxes in terms of the
potentials B, 8 and e in the supergravity frame.
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Let us rewrite (4.34) by

Onge = €,'q"¢ + €8y — ¥ B Ome e d pipy + e, Ome €4 ¢ p;

+ %Habcqaqch + % bepad’d + %Qﬁcq“pbpc + %Rabcpapbpc, (4.35)
by defining
Hape = 3V 4B (4.36)
Fye = fro — Huns8%e% e e, (4.37)
Jie = 2e)" Ome f e, (4.38)
Hypns = 3000 B, (4.39)
QY = 0B + foaB™ — feaB™ + Hisr BB e e,y (4.40)
Robe = 3(plalmly, gbel 4 fla ghlmlgdny _ py  gmignhgskea b cc (4.41)

The classical master equation of this Hamiltonian encodes the Jacobi identities for the

commutators
lea, eb] = Fypec + Hapees, (4.42)
[€q, eg] = Qgcec - Fgceg, (4.43)
[ef, ef] = R*e. + Qe (4.44)

as well as the Bianchi identity for the H-flux, where we defined e, = e,'0; and eg = et =
[%e;, with g% = e“iebj % following [12]. This gives the following Bianchi identities,

€l O/ Hpea) — gF[ZbH|e|cd] =0, (4.45)

e[fllﬁ\lm\amRbcd] _ gQLabRMcd] _o, (4.46)

e300 Higpe) — e OnFity — 3Hoa QS + 3F, Fry =0, (4.47)

—2¢580, Bl — 2e,20,Qu" + Heay B + QU Fy + F QT =0, (4.48)
3¢l 87l 9, Qe — ¢, Rl 4+ 3R Rleled] _ 3qlbeqleldl — (4.49)

Let us derive the operations on the Courant algebroid induced by (4.35). For sections of
the generalized frame bundle, X + o = X%, + a,dz®, the anchor map is given by
p(X +a)f = =" {{j«(X + @), Opge}, j« ()}
— (Xaeam . + aaﬁamam)f
= (X + B (a))f, (4.50)
where f € C*°(M). For readability, we derive the Dorfman bracket step by step. Let us
start with the Dorfman bracket of two vectors X = X%J, and Y = Y?9,. We get
[Xv Y]D = _J*{{]*<X)7 @Bﬁe}ﬂ .]*(Y)}
=X, Y)Y = B (yexH) + iyix H
= [X,Y]y + wvix H, (4.51)
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where we defined [X,Y]V as the covariant Lie bracket with covariant derivative V,X® =
s X" + T X¢ where I'’, denotes the Weitzenbdck connection related to the geometric
f-flux by f2, = 21?

fae]’ Furthermore, we defined the covariant H-twisted Lie bracket by

(X,Y)Y = [X,Y]Y — B (yux H). (4.52)
The evaluation of the Dorfman bracket of two forms « and ~ leads to

[Oé, 7][) = _J*{{j*(a)a @B,Be}a]*(’)/)}
_ 7V
= Lt o)y — i) VO t+ g8yt (a) H + tytall
= [a, V]BV,H + Lq//fozR7 (453)
where we defined the covariant H-twisted Koszul bracket by
[a, ﬂ,g,H = [a, ’Y]g + tg8(1) LBt (o) H - (4.54)

The covariant Koszul bracket is defined by

[, Y = L)Y — tar Ve (4.55)

using the covariant Lie derivative L)V( along a vector X acting on forms given by
LY = Vix 4+ 1xV, (4.56)

where V acts on a one-form v by Vv = 9y ypdz® Ada? —ng'yddaza/\dxb. The mixed Dorfman
brackets can be evaluated leading to

[aa Y]D = _j*{{j*(a)7 @Bﬁe},j*(Y)}
= —iyVa+ tyigayH + LYY = B 1y g0 H) (4.57)

and

[X7 'Y]D = _J*{{J*(X)a @Bﬁe}J*(')’)}
= Lz'y +igapyix H — 14 VX — Bﬁ(bﬁﬁ(w)LXH)? (4.58)

where Lav”B denotes the covariant Poisson-Lie derivative defined by
LYP =Vsia + 1aVp. (4.59)

The symbol Vg denotes the covariant Lichnerowicz-Poisson differential. Finally, we sum-
marize the full Dorfman bracket,

[X +o,Y +7p
= [X, Y]} + [V — ¢y VX — oy Va+ LYy +LYPY + iyix H
+ tyigia)yH + tgayix H — Bﬁ(bybﬁu(a)H) - ,Bﬂ(bﬁﬁ(v)be) + tyta R (4.60)

We observe, that a lot of terms involve a fS-lift, and conclude, that the existence of the
bivector g is crucial for the mixed vector-form contracted twists. This concludes the
derivation of the fully twisted Courant algebroid in the supergravity frame.
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4.2 Double field theory via graded symplectic manifolds

In the previous section we showed how to derive the local expressions of the fluxes H, F', Q
and R in terms of their potentials B, 8 and e%. We discussed the cohomological properties
of the associated Hamiltonians as well as twisted Courant algebroid structures in terms
of derived brackets. Finally, we derived the Bianchi identities incorporating all fluxes. In
this section, we step into the realm of double field theory. For this, the smooth underlying
manifold M is doubled by introducing what we want to call winding manifold M.

Let us go into more detail. The graded manifold associated to the double space is
modeled via a P-manifold (M = T* 2] [1}]\7 , w) of degree two with a vector field @
of degree one and M an even-dimensional smooth manifold. For our purpose we take
M= Mx M , where M and M are smooth manifolds. M will be interpreted as standard
spacetime and M as its double. We choose Q so that Low = 0. Then (ﬂ =T [Q]T[l]]\/j, w,
Q) is called a pre-QP-manifold [24]. In other words, a pre-QP-manifold is a QP-manifold,
where the nilpotency of the homological vector field is weakened.

Moreover, we assume the existence of an O(D, D)-invariant metric 7,y on the fibers.

Then, the manifold M is parametrized by the local coordinates (zM = (27,%;), ¢V =

(qivqi)a by = (p2>ﬁ1)7 fM = (glvél)) of degrees (Oa 17 17 2)
The local expression of the graded symplectic structure w is given by

w =0z A€y + 5¢™ A Spas
= 6x' N O&; + 0% N OE + 8q" A Spi + 0G; A Op'. (4.61)

It is a two-form of degree two.
Also in this case we introduce a map 3\ :TM @ (TM & T*M) — M that injects the
generalized double tangent bundle to M by

-~ 0 0 [~ i g~ i S i~ i~ »
J: <8xi’ %,x , Tiy dx 7d$maz,8> = (&, 62", T, 4" Gis iy D) (4.62)

Finally, the vector field ) defines the Hamiltonian © by Q(—) = {©,—}. Due
to the large number of local coordinates, there exist many possible terms that can be
incorporated into ©.

In order to describe the section condition in double field theory, let us begin by writing
down the non-twisted double field theory Hamiltonian

Oprro = (g™ + 1N pur)
= &g + ') + (i + @) (4.63)

The classical master equation, {©prr,0, Oprr,0} = 0, gives us the relation
&€ =0. (4.64)
This equation can be regarded as the double field theory section condition via [23]

{{f.{©pFr,0,ODFT0}},9} = 0. (4.65)
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The variables & and £ induce the derivatives 8; and & by the map }, respectively. In order
to solve (4.64), we choose a proper graded symplectic submanifold of half rank consistent
with the &’s and the injection map, J : (dxi, dz;, 0y, 5Z> — (¢*, @, pi, ). For example, if we
take £ = 0, we choose functions f, g dependent only on (2%, ¢*, pi, &), and therefore a struc-
ture subsheaf C*> (T [2|T[1]M) C C>(T* [Z]T[l]]\/i) is selected by setting §; = p' = 0, where
M is the smooth submanifold parameterized by z*. Here a function of C°°(T*[2]T[1]M) is
identified as a function on C°°(T*[2]T[1]M) by the pullback along the natural projection
pr: M — M. T*[2]T[1]M is a QP-manifold since Q% = 0 on C®(T*[2]T[1]M).

4.3 Poisson Courant algebroid from double space

In [19] the authors constructed a Courant algebroid on a Poisson manifold serving as a
model for R-flux. The starting point is the graded manifold M = T*[2|T'[1]M, where (M,
7) is a smooth manifold with Poisson structure 7. In local coordinates on M, (2%, ¢*, p;,
&) of degree (0, 1, 1, 2), the symplectic structure is given as usual by

w =0z A\ 6& + 0¢° A Op;. (4.66)
The Hamiltonian is defined by
ij 1 or* i L ik
Or = &) — 5 9 PPkt gRJ PiDjDk- (4.67)
The classical master equation, {©,,0,} = 0, induces the relations [r, R]s = 0 and

[r,m]s = 0. Therefore, the bivector 7 has to be Poisson and the tri-vector R has to
be dr-closed, where d; is the Lichnerowicz-Poisson differential d.(—) = [r, —]g acting on
the space of multivector fields I'(A®*T'M). Via the usual injection map j and derived bracket
constructions, the Hamiltonian O, induces the Poisson Courant algebroid [19].

Obviously, the anchor part of this construction delivers a notion of differential, which is
given by the Lichnerowicz-Poisson operator. By direct comparison to the H-fluxed Courant
algebroid one easily recognizes the following similarities,

10n7k

Wijfipj - iqupjpk ~ gz‘qi7

1 1 o
gR”kpipjpk & gHijkqlq] e
d;R=[r,Rls=0 & dH=0,

[r,7ls =0 < d*=0.
Furthermore, a B-twist of the Courant algebroid without H-flux is in analogy with a (-
twist of the Poisson Courant algebroid without R-flux. The resulting local fluxes are then

given by
d:R=[mfls~R < dB~ H.

One concludes that the introduction of Poisson cohomology is necessary to work with a
tri-vector flux in the same manner as with a three-form flux using de Rham cohomology.
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For non-degenerate Poisson structure one finds the well-known map between Poisson and
de Rham cohomologies and a relation between both Hamiltonians [19].

There are two ways to relate the Poisson Courant algebroid structure to double field
theory. The first way is by twist of the double field theory Hamiltonian in the geometric
frame. The second way is by direct comparison of the double field theory Hamiltonian with
the Hamiltonian realizing the Poisson Courant algebroid.

In order to discuss the former way, let us take local coordinates (y,7;) such that
Ovrro = m(d' + F) + i (pi + @), where {y',n;} = {77} = 0. We can choose a
nontrivial physical configuration space of double field theory, a D-dimensional submanifold
M C M with local coordinate z* under the assumption that M has a Poisson structure 7
as follows. Then consider a local coordinate transformation from the double coordinates
(y', 7;) of Oppr to (2%, 7;) with the following Jacobian,

Oz, Oz’ Oz 5t i

e ) = (). (4.68)
oy, ) dyl 0, 0 9
This local coordinate transformation can be realized as the twist of the original ©ppr

by a canonical function «;, = %Wij ()pip;. The canonical transformation deforms the

homological function,

! (e}
Oprr,o = €?OpFT0

i siy g fi ~ ij 1 9r7 i s
=&(d" +0) + &P+ @) + 1ip; — 555 ()(¢" + B)pspe (4.69)
The section condition is deformed to
- 1 9nik
Y4 — = —— ; = 0. 4.
& (16 55 @) =0 (4.10)

The projection to the standard frame recovers the Poisson Courant algebroid with a stan-
dard Courant algebroid part without fluxes,

@bFT,0|i:0 = Op—0 + Ox r=0- (4.71)

Note that, since {Op—9,Or r=0} = 0, the projected Hamiltonian @bFT,0|5c=0 defines a
double complex.

Now, let us relate the Poisson Courant algebroid by direct comparison of the associated
Hamiltonians,

Oprro = &i(q + 5°) + E(pi + &),
i 187Tjkvvivv
@w,R:O =TT ](x)fz'pj - 5@(@(] PjiPk,

where we choose a special frame (g;, ¢') for the Poisson Courant algebroid on a D-

dimensional submanifold M C M inside double field theory. The result is that a Pois-
son Courant algebroid depending on coordinates #° can be related to double field theory
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on double coordinates 2! and #; in the winding frame (¢ = 0, ¢ = 0, p; = 0) by the
identification

.

—g'p =&
X

and therefore

T = /%l(gz)d:iﬂ'.

The term %8£ik G'py. is the Poisson connection induced on the total space. Then, the Poisson

structure 7 can be seen as a deformation of the double field theory winding frame and the

trivector freedom R inside the Poisson Courant algebroid lives inside this deformed winding

frame.

4.4 Introduction of fluxes

Starting from the double field theory Hamiltonian, the non-twisted supergravity frame
Hamiltonian is defined by éz = 0, whereas the non-twisted winding frame Hamiltonian
by & = 0. Then, ©Oppro reduces to the following Hamiltonians on T*[2]T[1]M and
T*[2]T[1]M, respectively:

Os0 = ¢'&, (4.72)

Ow,o = G&" (4.73)
As for the cohomological structure associated with the Hamiltonians, ©g g and Ow o induce
de Rham cohomologies on the space of forms on standard and winding space, respectively,
so that

da = —j*{Os, jxa}, (4.74)
da = —j*{Ow 0, i}, (4.75)

for any k-forms o € QF(M) and & € QF(M).

In order to discuss double field theory, which treats all H-, F-, Q- and R-fluxes on the
same footing, we will derive the fully twisted Hamiltonian incorporating both de Rham
differentials d and d. Locally, these fluxes can be written in terms of their potentials: the
2-form B-field, the bivector -field and vielbeins €.

Then, the B- and g-twisted double field theory Hamiltonian is given by

exp(—dg) exp(—dB)OnrT,0 (4.76)
= (& = Bni€™)q' + (€' = &nB™ + " Bum ™ )pi
1 ~.
+ 5 [_BinalBrs + 8nBrs} qnqrqs

1

1x - - 1
+ |:81an + (Blmaans - 8’rrLan + 7Blsalen -

2&9an> 5Sl:| piqmqn
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1 ~ ~
+ |:alﬁhk _ §Bli8l5hk + 8thnﬁnk
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+ ZBlnﬁmalﬁhkz - 5azanﬁnhﬁmk

1 5 ~ 5 .
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+&p' + €0+ 5(0iBjkp' + 0 Bixdi)d’ ¢ + 5(@-5”“# + 0'B7% G pipr
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_az’Bjk/Bkmqu]pm_aZBjk/Bkaqupm+§aiBjkﬁjm/8knplpmpn+iaZBjkﬁjm/BkHQipmpn-

One recognizes the emergence of the local expressions for all fluxes in terms of their po-
tentials. Furthermore, one recognizes that the anchor map has been twisted,

OprT A = (& — Bmi€™)q" + (& — &nB™ + " BpmB™)pi + &' + £1G;. (4.77)

The anchor map part inside a Hamiltonian induces the differential on the associated space.
In the twisted case, a covariant differential is induced. For example, the expression pro-
portional to ¢’ inside (4.77) induces the covariant differential

D; =0; + Bimém
on k-forms over M and the p;-part induces the covariant differential

on k-forms over M. Note that we chose a certain order of twists: first B-twist, then j-
twist. If we reverse the order of twists, it would change the way of parameterization of the
local expressions for the fluxes. Furthermore, we will see that the local expression for the
generalized vielbein in double field theory is encoded in the anchor map. Before doing this,
we introduce vielbeins in our setup.

We again introduce a frame bundle, in this case for the double space T' [1]]/\4\ ® T*[l]]/\/[\ .
Let (g% pa,Ga,7*) be local coordinates on V[1] @ V*[1] @ V[1] @ V*[1] corresponding to a
flat frame, where V =V = R are flat vector spaces. (¢*,pi, Gi,p') correspond to a general
frame on T[l]]\/f\ ® T*[l]]\//.T . The injection of the double space frame bundle is then given
by

—

S TMa(ITMeTM)aVaeV avaer:
ST TMaV{i]eV 1eV[1]aV*[]
o 0

(alﬂﬂ %71’.1.7@& dmiv di.h ai7ai7 ua7ua7aa7aa) = (§i7§i7xi7i.i7 qia q~iapi7iji7 qavpav (jaaﬁa)'
K2

Applying the B-, 8- and vielbein twists to the untwisted double field theory Hamilto-
nian (4.63) and rewriting the expression leads to

éBﬁe = edigiqd - ediBmigqu + eclglpc - Bmleclgmpc + eCanmﬁmlénpc
+ ¢4 (0; + Bin0™ e eupiaFq® + €0 + B0 + B Brnd™ e e%piaFpe
+ (& + Osed epid” + Oiel e py)p + (§ + Oeepia” + el e iq py)
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1 [P _
+ 5(81‘Bjkpl + ' Bjrdi)ed e " q® + - (8 BB+ 8153"3%)@ €°LDbPe

— 0;BjpfFme, e, 5 q"pe — 5i3jk5km€bj € nGiq"pe + iaz‘Bjkﬁjmﬂknebmecnﬁipbpc

+ al B]mﬁkn bm nQZpbpc

1 1
+ gHabcqaqch + §F&paqch + §QZCq“pbpc + ?Rabcpapbpm

where we defined
Hape = 3(V(aBoe + Bam| 0" Boe) + fia" Bojm| Bejn)»

Fbc fbc mnsﬂszea ebmecn + 5aBbc + fl?dBdc - fadBdba
QZC _ f(l;c + 8(151)0 + fcll)dﬁdc _ ﬁdb + strﬁShﬁrke 6 € .

+ BaméqnﬁbC + 5[bBaeBelc] + QB[a\efbeﬂdc 2B[a|efce6db

Rabe _ 3(6[a|m|8m6bc] + fy[snﬂb\m\ﬁc]n + 5[aﬁbc] _ fc[labﬁ\d\c]

+ Blnélﬂ[abﬁm‘c} + 5[‘13 dﬁ‘e‘bﬁld‘c] 4 fr[la|e|Bedﬁ|n|b|B|d|c])

HmnsﬁmiﬁnhﬁSkea ebhe .
Hipns = 3(8[man] + B[m\l\éans])a
fob = 26[%5mebljecj.

(4.78)

(4.82)
(4.83)

(4.84)

For calculational details, we refer to appendix A. The classical master equation then leads

to the following relations between the fluxes in the double space

i an m 3 e
€qBin0" Hyca) + €13 O Hpea) — §F[abH\e\cd]

=0,

a 3 a m C 3 a elc
(e[% +e[lﬁlman)aancd] + e[lﬁll |8mRb d] §QL bR\ led] _ 0

(e, + €48 Byn ) 0™ Higpe) — e, Bin0" Fit, + €480, H g
—3ea On Py — 3H (b QY' + 3FY, iy

—2(ele, + €8 Bn) 0" ity — 260 Bin0" Q" — 2€158110,, Fiay
_26[3 nQL] 4 He[ab}Re fed] Q[ecd}F[zb] i Fe[[caneld]

?)(6[1:Z + e[l;ﬁlman)éand} _ eaiBinénR[bcd]

+3e[lzﬁlnachd] o eananR[bcd} + 3FE[ZR|e|cd} - BQ[ebCQde] - 0.

=0,

(4.85)

(4.86)

(4.87)

(4.88)

(4.89)

Note that these equations have been derived by twist of the classical master equation

{OpFT.0,ODFT 0} ~ £

Since the section condition has not been imposed before twisting, the twisted classical

master equation is not solved. In conclusion, the flux expressions (4.79)—(4.84) do not solve

the equations (4.85)—(4.89). However, upon solving the section condition, the projected

flux expressions solve the projected expressions, which then become Bianchi identities.
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For instance, by imposing (é =0,q =0, p’ =0), the set of equations condense to the
supergravity frame Bianchi identities presented above.

On the other hand, solving the section condition by (& = 0, ¢° = 0, p; = 0) projects to
winding frame parametrized flux expressions and their corresponding Bianchi identities. In
order to derive local flux expressions in the winding frame, we have to twist by a different
set of canonical transformations. We will come to this point below.

The double field theory formulation now brings us into the position to also discuss the
winding frame by solving the section condition by (& = 0, ¢* = 0, p; = 0). Then, we are
left with the untwisted winding frame Hamiltonian

Ow,o = &'G. (4.90)

This Hamiltonian induces a de Rham complex in the winding frame. The classical master
equation is trivially solved.

From the perspective of the untwisted double field theory Hamiltonian, the standard
and winding frames are totally symmetric. The asymmetry between both frames is intro-
duced by the order of twists. Above, we made the choice to first twist by B and then twist
by . This provided us with a certain parametrization of the fluxes. For instance, the R-flux
in the supergravity frame (denote R-space) has the form of %[6 ,Bls. In contrast to that,
the translation of the R-space into a winding frame perspective leads to the Hamiltonian

1
Ow,r =&+ gR”k(fﬂ)qz'q]'%, (4.91)

whose classical master equation in turn forces the R-flux to be in third de Rham
cohomology over M, R € H?*(M,R). This is analogous to having H € H*(M,R) due to
the classical master equation of (4.5).

The H-twisted Hamiltonian that sees the H-flux from the winding frame is given by

1

) Hijr(2)p " (4.92)

Owm =E'q +

It is clear that from the winding frame perspective the H-flux plays the role of the R-flux
in standard space, which is resembled by this Hamiltonian.
The winding frame flux expressions are induced from

exp(—de) exp(dz-1) exp(—de) exp(—d3) exp(—d5)OprT,0
by solving the section condition via (& = 0, ¢' = 0, p; = 0), where
— 1 ~] ~] _ i~a -~
exp(0p) = exp ( 5 Biyp' P |, exp(de) = exp(e, 7'q),
1 .. e
exp(d5) = exp <2ﬂ”qiqj> ,  exp(dz-1) = exp(e%p'qa)-
The result is

Heape = 3(B[a|mémec] + f[Zme|m|Bc}n)a (4'93)
F = HppnsB%e%e,™e,” + 0*Bye + f14Bye — f2 By, (4.94)
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QZC _ ~(Il)c + Hisrﬁshﬁrkeaiebheck + Bamémﬁbc + é[bBaeﬁe\c]

+ 2Byoje fif B% — 2Bae fif B, (4.95)

Rabc _ 3(5[a5bc] - f(gabﬂ\dk} + Blnélﬁ[abﬂhﬂc} + é[aBed/B\e\b/B|d|c]
+ ﬂfle‘Bedﬁ‘"w'BId‘C}) _ Hmnsﬁmiﬁnhﬁme%ebheck, (4.96)
Hyns = 3B(10' B,y (4.97)
fob = ¢l 5mele . (4.98)

By construction, they obey the following Bianchi identities,

L 3
e[;Binangcd} - §F[ZbH|e|cd} =0, (4.99)

(el + el B R QPRI =0, (4100)

(edn + edlﬁlman)énH[abc] - 36[;an5anflc] - 3He[abQi]d + 3Fg[aFlfc] =0, (4101)
_2(6[Cn + e[iﬁlman)éan] |~ 26[231'”5”@5(1] + He[ab] Re[cd] + Q[;d] F[tzb}

[ab
leld] _

+FL =0, (4.102)

ela v
3(el’, + el 8 By ) 9" Q5 — €,/ By, 0 R 4 3FLb Rleled] — 3Qleqleldl — 0. (4.103)
4.5 T-duality as canonical transformation
In order to discuss T-duality, we consider the anchor part of the double field theory Hamil-
tonian, which is twisted by B-, 8 and vielbein fields in the standard as well as in the
winding frame,
exp(—0z) exp(dg—1) exp(—de) exp(—3z) exp(—d3) exp(—de) exp(de-1)
x exp(—0e) exp(—dg) exp(—dB)ODFT,0 = ODFT,A + ODFT Flux-
The flux part Oppr Flux is third order in (¢, pa, Ga, p*) and encodes the local expressions
of the H-, F-, - and R-fluxes. The anchor part ©prr A can be rewritten using generalized
vielbeins
Oprr.A = €, 6i(q" + %) + e, Bui€' (¢" + 1)
+ (€% + € BimB™)E! (Pa + Ga) + €*15"€i(Pa + Ga)
= E/&(q" +P") + Eail' (¢ + P") + E%E' (pa + Ga) + E¥&i(pa + Ga),  (4.104)

where we defined

i=el, Eg=elB;, FE%=e¢%+eYBp,fm, EY=e4p" (4.105)

These vielbeins can be reassembled into a generalized vielbein

E' Ey el e !By

A l

E45, = o c;z = %% . “ Z i |- (4.106)
M E% Ee, e " e + e Bim 3
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Introducing the vectors M = (51,51), Qa = (¢“,ps) and Py = (p*, Ga), we can write the
anchor part in a manifest form

Oprra = E'y(e, B, B)EM (Qa + Pa). (4.107)

We conclude, that T-duality as O(D, D; Z)-transformation relates the generalized vielbeins
associated to different backgrounds. A T-duality in x*-direction is the transformation

ab o dy, e e a, pre P

Let us do some example computations of T-duality on pre-QP-manifolds. The easiest
example concerns T-duality on an S'-isometry background without B- and j-fields, where
the circle has radius R. It is well known, that T-duality maps the radius R — R’ = %.
The corresponding Hamiltonian is given by

Or =e'G(¢" +5) + '8 (p + @)
= R&(¢" +9") + R (p1 + @) (4.108)
We can project into the supergravity frame by taking (€' =0, §; = 0, §' = 0) leading to
Or = Ré1q".

Applying the transformation described above, the Hamiltonian, which models the T-dual
background, is given by

= RG(g 5" + RE (1 + @) (4.109)
In this case, the projection into the supergravity frame gives
o = RGq

We conclude, that this transformation effectively exchanges R <+ R~!. Alternatively one
can derive all T-dual frames from the double field theory Hamiltonian directly by choosing
different solutions of the section condition. In the S'-isometry case we could have projected
into the winding frame directly by (£; = 0, ¢* = 0, p1 = 0) to get the result

Or =R,

In the next step, the dual variables have to be interpreted as the standard ones leading
again to (4.5). This reasoning works in general. If we start with an H-flux background,
then it looks like F-, Q- and R-flux depending on how we solve the section condition.

Finally, let us discuss the case of a three-torus in the directions ¢ = 1,2,3 with flat
metric and H-flux Hqi93 = 1. Its background data is given by

100
e =1010|, Bia=2"= By, Hig=03Bp=1.
001
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We can write down the anchor part of this background
Ona= eiifz‘(qi +13i) + 61131252((]1 +131) + 62232151(‘12 +Z§2) + eiigi(pi + qi)
= &g+ 7)) + 28 (¢ + 7)) — 2 (@ + ) + E (i + @). (4.110)

The flux expressions can be computed by plugging the background local information into
the flux part of the Hamiltonian associated to that background geometry.

We have two isometry directions ' and z2. Let us T-dualize in z'-direction. The
result is

Opa =&(q + ") — 2% (a® + 5% + & (pi + @) + 23 (p1 + @1). (4.111)

From the coefficients of (4.111) we can read off, which fluxes have been turned on or off:

1230 1 20
B=0, ¢=1010|, gy=[a1+@%20]|, fi=263"0mc]e" =1,
001 0 0 1

This background describes a twisted torus. If we take the T-dual of (4.111) into direction
of 2 we arrive at

Og,a =&(d" + ) + & (pi + @) — 2 (p2 + G2) + 236 (p1 + @) (4.112)
Again, we can read off from the coefficients of the Hamiltonian the respective local field,

100
e=(o010|, pP=2" QF=03p"=1
001

We conclude, that the second T-dual turned the metric twist into the non-geometric po-
tential 3. Finally, we can take the T-dual in x3-direction leading to

Ora =& +7)+ & (i + @) — #3&1(p2 + @) + F3&(p1 + G1).- (4.113)
In this case, the former standard coordinate = turned into its dual Z3 and vice versa so that

100
001

In general, we can write down any background geometry in terms of the local fields e, B
and 3 and compute the T-dual background geometry in terms of new fields €/, B’ and 3’
by using the procedure presented above. We conclude, that we can discuss T-duality by
making sole use of canonical transformations on pre-QP-manifolds of degree two.

T-duality is the change of the solution to the section condition on the pre-QP-manifold
(/T/l\,w, Q). To each solution of the section condition, there is an associated Courant al-
gebroid. T-duality is then a map between different Courant algebroids realized via the
respective QP-manifolds associated to different solutions, 1" : My — Ma.
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5 Conclusion and discussion

In the first part of this paper, we constructed a Hamiltonian on a QP-manifold of degree
two, which incorporates the local expressions of NS H-flux, F-flux and non-geometric Q-
and R-fluxes in terms of vielbeins, B-field and S-bivector. We discussed the cohomological
properties of some special cases of this Hamiltonian and deduced the flux Bianchi identities
from the classical master equation. Then, we defined the operations on the resulting
Courant algebroid using the derived bracket formalism.

In the second part of this paper, we extended our analysis to the double field theory
setting by starting from a pre-QP-manifold. Again, by twist of the associated Hamilto-
nian we could derive all local expressions for the fluxes in the double field theory setting.
Through projection to the winding frame we deduced the associated local expressions for
all fluxes in winding space and their Bianchi identities.

We discussed the formerly introduced Hamiltonian of the Poisson Courant algebroid,
a Courant algebroid on a Poisson manifold, in light of our results. The Poisson Courant
algebroid as a model for trivector R-flux turned out to live in the double field theory
winding frame deformed by the Poisson structure.

In the third part, we rewrote the anchor part of the Hamiltonian in a O(D, D)-covariant
form that resembles the double field theory generalized vielbein. Based on this observation
we proposed a representation of T-duality as a canonical transformation between graded
symplectic manifolds and computed two simple examples of T-duality in this formulation.

The failure of the double field theory Hamiltonian to obey the classical master equation
is measured by the section condition. The conclusion is that the algebra of double field
theory does not constitute a Courant algebroid. The projection of the twisted or non-
twisted double field theory Hamiltonian onto the standard or winding sector infers the
twisted or non-twisted Courant algebroid structure.

DFT Hamiltonian
pre-QP-manifold
Fluxes (4.79)—(4.84)

/\

Standard frame Winding frame
Courant algebroid =—————=7-duality—=—=—= Courant algebroid
Fluxes (4.36)-(4.41) Fluxes (4.93)—(4.98)

Bianchi identities (4.45)—(4.49) Bianchi identities (4.99)—(4.103)
Operations (4.50), (4.60) Operations

The twisted operations of the Courant algebroid in the winding frame remain to be
computed by derived brackets. Further topics of future investigation include associated
current algebras and topological sigma models. Applications to gravity models can also
be thought of. Due to the recent interest in U-duality analogues of double field theory, an
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extension of this approach to incorporate exceptional duality groups is wished for. Several
directions are under exploration.

Let us finally comment on the global issues [39-42] of double field theory and how
the QP-manifold approach can be used to tackle these issues. Since double field theory
introduces new coordinates, it is fundamental to analyze how they are relate to a patching
of the associated double spaces. There are several ansétze and we refer to above-mentioned
references for further reading. From the perspective of the pre-QP-manifold presented in
this paper, we have a description of the infinitesimal symmetries of double field theory. It is
known, that in some cases, the symplectic Lie n-algebroid associated with a QP-manifold, or
symplectic NQ-manifold, can be integrated to a symplectic Lie n-groupoid [43—46]. Having
the QP-manifold of infinitesimal symmetries at hand, its integration may lead to a higher
groupoid of finite symmetries, which can be used to find a prescription of patching double
field theory via higher gerbe-like objects. Note that the classical master equation of the
associated (pre-)QP-manifold is broken and therefore the feasibility of such an integration
process has to be assessed with care.
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A Twisted double field theory Hamiltonian in geometric frame

The twist of the double field theory Hamiltonian by B-field, S-field and vielbein in the
geometric frame leads to

exp(—de) exp (- )exp(—<5 ) exp(—dg) exp(—dB)OpFT,0
= €4 g’Lq - € mzf q +e lflpc 6mlecl£mpc + ecanmﬁmlfnpc
+ ed ((9- + B o™ e, e kqu ¢ + ecl(él + gima,, + 5lman5”)eajeakqukpc
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