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1 Introduction

There are two dualities interrelating the various ten-dimensional superstring theories: T-

duality and S-duality. Whereas S-duality relates strong and weak coupling regimes, T-

duality exchanges winding and momentum modes of closed strings wrapping compact cycles

and is a map between different string backgrounds. It is a target space symmetry.

Additionally, fluxes wrapping the internal cycles of compactified string theories play an

important role when considering T-duality. There is the NS-NS two-form B-field, to which

the string couples, and its three-form field strength, the so-called H-flux. Furthermore,

the f -flux is the torsion-less part of the projected spin-connection and therefore is closely

related to the geometry of the compactified space itself.

In the case, where the compactified space exhibits a Killing isometry, T-duality in this

direction is possible and mixes B-field and metric components. The equations that express

the new metric and B-field in terms of the old ones are the so-called Buscher rules [1, 2].

However, if one considers successive T-duality transformations of a three-torus with H-

flux background, so-called non-geometric backgrounds with associated non-geometric fluxes

Q and R appear [3, 4]. The Q-flux signalizes a globally non-geometric background with

monodromy, which has to be patched by T-duality transformation. The R-flux signalizes

an even locally non-geometric background, where standard manifold descriptions fail.
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Double field theory [5, 6] approaches this problem by the introduction of winding

coordinates, which are dual to the standard ones, and formulating T-duality on toroidal

backgrounds as an O(D,D;Z)-transformation on this doubled set of coordinates. See

also [7–9], where this idea was developed. In this formulation, even T-duality in non-

isometry directions is possible and the non-geometric Q- and R-flux can be interpreted

naturally [10, 11]. There are various proposals for non-geometric R-flux. The R-flux is

related to the violation of the Jacobi identity associated with the Poisson structure β

in [12]. In [13] the R-flux is directly related with the β-potential via R = dπβ, where π is a

Poisson tensor and dπ is the Lichnerowicz-Poisson differential. A supergravity formulation

making use of the bivector β can be found in [14]. A formulation of double field theory with

dynamical fluxes can be found in [15], where also generalized Bianchi identities were derived.

Since T-duality mixes metric and B-field, both structures can be combined in an

O(D,D)-tensor, the so-called generalized metric. It turns out that the associated back-

grounds with H-flux can be naturally described using the Courant algebroid on the gen-

eralized tangent bundle TM ⊕ T ∗M . The underlying structure is given by generalized

geometry [16, 17]. The geometric subgroup of O(D,D)-transformations, spanned by dif-

feomorphisms and B-transformations, leave the inner product on the Courant algebroid

invariant. However, under B-transformation the Courant bracket gets twisted by a term

proportional to dB = H. An analysis of non-geometric backgrounds and their relation to

generalized geometry is conducted in [18].

A different model realizing R-flux was given in [13] using a Poisson tensor. This

model is called Poisson Courant algebroid and the Poisson tensor is used to define the

Courant algebroid on the generalized tangent bundle, where the roles of the tangent and

cotangent spaces are exchanged. The associated structure is called Poisson-generalized

geometry. Along this line, the authors of [19] reformulated the Poisson Courant algebroid

using graded symplectic manifolds and elucidated its relation to H-flux backgrounds as

well as to double field theory.

From the topological perspective, T-duality on toroidal backgrounds with H-flux was

analyzed in [20, 21]. An analogous examination in the setting of Poisson-generalized geom-

etry including Q-flux was carried out in [22]. From the perspective of graded symplectic

manifolds, the structure of double field theory was analyzed in [23, 24]. α’-corrections to

the C-bracket in double field theory from the viewpoint of deformations of graded man-

ifolds were discussed in [25]. Relations of non-geometric fluxes to non-commutative and

non-associative geometry were discussed in [26–28]. From the perspective of membrane

sigma-models, a string in an R-flux background was proposed to propagate in the cotan-

gent bundle T ∗M , which upon quantization develops a non-associative Moyal-Weyl type

star product [29]. The non-associativity is conjectured to be governed by the R-flux.

In this paper, we first show how the local expression for the geometric H- and F - as

well as the non-geometric Q- and R-fluxes can be introduced naturally from twists of the

Courant algebroid on TM ⊕ T ∗M without flux. For this, we make use of QP-manifolds of

degree two, which naturally are linked to general Courant algebroids [30]. The twists corre-

spond to B-transformations, β-transformations and diffeomorphisms and therefore span the

full O(D,D) group. In order to introduce twists representing the diffeomorphisms, a frame
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bundle is defined. These twists then naturally introduce vielbeins into the description.

The operations of the resulting twisted Courant algebroid are induced by derived brackets

and the graded Poisson bracket of the QP-manifold. The classical master equation on the

QP-manifold is shown to lead to the Bianchi identities among the fluxes.

We then derive the local expressions of all the fluxes in the setting of double field

theory by twist of the Hamiltonian analyzed in [23]. The associated structure is called

pre-QP-manifold in [24]. By construction, the resulting algebraic structure can be pro-

jected by solving the section condition to either give a twisted Courant algebroid in the

supergravity frame, or a twisted Courant algebroid that lives entirely in the winding frame.

Of course, mixed solutions of the sections condition give rise to different twisted Courant

algebroids. Again, the associated Bianchi identities are derived from the projected clas-

sical master equations. Derived brackets induce the associated operations on the twisted

Courant algebroids.

Then, we give a representation of T-duality as canonical transformation between QP-

manifolds and work it out for the examples of an S1-isometry and three-torus with H-flux.

Finally, the Poisson Courant algebroid as a model for R-flux is reinterpreted in light of our

results. We show that it is a special solution of the double field theory section condition

realizing R-flux on a Poisson manifold.

This paper is organized as follows. In section 2, we give a short review of non-geometric

fluxes in string theory. In section 3, an introduction to QP-manifolds, Courant algebroids

and double field theory is provided. This will clarify the necessary means to understand the

main part, which is section 4. In section 4.1, we derive the fully twisted Courant algebroid

with Bianchi identities from canonically transformed Hamiltonians. In section 4.2, the for-

mulation of double field theory via graded symplectic manifolds is introduced. In section

4.3, we discuss the Poisson Courant algebroid with R-flux model with respect to double

field theory. In section 4.4, we derive the fully twisted double field theory Hamiltonian, that

incorporates local expressions for all fluxes and derive Bianchi identities for the winding

frame by projection. In section 4.5, a formulation of T-duality in terms of canonical trans-

formations is presented. Section 5 is devoted to discussion of our results and future outlook.

2 Non-geometric fluxes in string theory

In this section we give a short introduction to non-geometric backgrounds and their asso-

ciated non-geometric fluxes.

In general, non-geometric flux backgrounds refer to backgrounds whose mathematical

description goes beyond the standard techniques of manifolds. This is in the easiest form

observable if one performs T-duality on NS flux backgrounds [3, 4]. For this let us start with

the compactification on a flat six-dimensional torus T 6, containing a three-cycle wrapped

by the NS three-form H-flux. Let the non-zero H-flux be denoted by H123 = N . Then

we can take the B-field to be B12 = Nx3. Now, there are several directions to T-dualize.

Taking T-duality in the x1-direction leads to a so-called twisted torus background on which

there is vanishing B-field, and therefore no H-flux. One says that the H-flux is mapped

to the so-called geometric f -flux, denoted by f1
23 = N . The geometric f -flux is intimately
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related to the Scherk-Schwarz fluxes of Scherk-Schwarz compactifications. In the resulting

twisted torus background, there are still isometry directions available to T-dualize in. If we

T-dualize in the x2-direction, we will be left with what is called a globally non-geometric

background. In this case, the B-field as well as the metric develop a monodromy, which

has to be patched by a T-duality transformation. Therefore, this background is still locally

geometric. Such spaces are called T-folds. The associated flux is called Q-flux and in this

example the resulting background will have Q12
3 = N , whereas neither NS H-flux, nor

geometric f -flux is present. It turns out that after taking the second T-duality, there is no

isometry direction left to T-dualize in. This is in contrast to the fact that we started with

background, which possessed this isometry in the beginning. Discussions and an analysis

of the resulting structure and backgrounds associated with non-geometric fluxes can be

found for example in [3, 10]. In the literature, this structure was given the name R-flux

and the associated would-be background is characterized by R123 = N . It turns out that

this background is not even locally geometric, but locally non-geometric, and an analysis

via standard manifold and differential geometric methods is impossible.

Let us recall the well-known T-duality chain that has been analyzed in [3],

Habc
Ta←→ fa

bc

Tb←→ Qab
c

Tc←→ Rabc,

where Ta denotes T-duality taken in xa-direction. The authors of [3] discussed non-

geometric backgrounds of toroidal compactifications of type II string theory from the

viewpoint of symmetries of the effective superpotential. More precisely, they considered a

six-torus, which factorizes into three identical two-tori divided by a Z2 and a Z3 symmetry.

This leads to a so-called STU-model, where there are one complex structure modulus T ,

one Kähler modulus U and one axio-dilaton S for the T 2 in the factorization. Imposing

T-duality invariance on the resulting N = 1 superpotential then leads to the necessity to

include further coefficients, that the authors argue to be non-geometric fluxes.

An analysis of the topological aspects of T-duality was carried out in [20, 21, 31].

The action of T-duality on circle bundles was investigated and it turned out that on the

topological level T-duality can be seen to exchange the first Chern class of the circle bundle

with the background H-flux. In this sense, for each circle bundle E with first Chern

class c1(E) and H-flux H there exists a T-dual circle bundle Ê with H-flux Ĥ, so that

c1(Ê) = π∗H and c1(E) = π̂∗Ĥ, where π and π̂ are the respective bundle projections.

A T-duality manifest approach to toroidal string compactifications is given by the

so-called double field theory [5]. The manifest invariance under isometric as well as non-

isometric T-duality transformations is established by introducing double coordinates x̃i,

which are dual to the standard ones xi. The dual coordinates are interpreted as param-

eterizing the winding sector of the closed strings wrapping the toroidal cycles. In double

field theory, the incorporated fields are simultaneously dependent on the standard and the

dual coordinates. The strong point of this theory is that geometric as well as non-geometric

backgrounds can be described in a unified manner. However, since the coordinates are dou-

bled, a so-called section condition or strong constraint has to be imposed in order to project

down to the physical frame. This constraint is intimately related with the level matching
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condition, which constraints the modes allowed on a closed string. We will provide a

mathematical introduction into double field theory in section 3.2.

Accounts on the structure of double field theory from the viewpoint of graded sym-

plectic manifolds are given in [23, 25]. In [23], a Hamiltonian on a symplectic manifold of

degree two was proposed, from which the authors computed the C-bracket using derived

brackets. Furthermore, the section condition was deduced from the classical master equa-

tion of the Hamiltonian. In [25], the author considered α’-corrections to the C-bracket.

The corrections were mimicked by a Moyal-Weyl star product deformation on the graded

manifold at first order.

3 Graded symplectic manifolds and double field theory

In this section, we give an introduction to QP-manifolds and double field theory. First we

define the necessary objects and focus on QP-manifolds of degree two and their relation

to Courant algebroids. Then we provide a short introduction to the realm of double field

theory and the associated differential geometry.

3.1 QP-manifolds and Courant algebroids

Fundamental to our analysis is the mathematical structure of a QP-manifold.1 In this

subsection, we provide an introduction to the tools necessary to understand the main text.

For details on the background and definitions we refer to [32].

A QP-manifold (M, ω, Q) of degree n is a non-negatively graded manifold M with a

graded symplectic structure ω of degree n and a homological vector field Q of degree one,

such that LQω = 0. A vector field Q is called homological if it is nilpotent, Q2 = 0. In

general, ω is called P-structure and (M, ω) is the associated P-manifold. The vector field

Q is called Q-structure. For a function f ∈ C∞(M), the corresponding Hamiltonian vector

field Xf is defined via

ιXf
= −δf, (3.1)

where δ denotes the de Rham differential on M. The graded symplectic structure ω defines

a graded Poisson bracket via

{f, g} ≡ (−1)|f |+n+1ιXf
ιXgω, (3.2)

where Xf and Xg denote the Hamiltonian vector fields corresponding to f, g ∈ C∞(M).

For any QP-manifold one can find a Hamiltonian function Θ ∈ C∞(M) of degree n+1

associated to the homological vector field Q such that

Qf = {Θ, f}

for f ∈ C∞(M). Then the homological condition on the vector field translates to the

so-called classical master equation

Q2 = 0 ⇔ {Θ,Θ} = 0.

1QP-manifold is also called symplectic NQ-manifold.
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One says that Θ solves the classical master equation. Θ is also called homological function

or Hamiltonian.

It is well known, that Courant algebroids are in one-to-one correspondence with QP-

manifolds of degree two [30].

Let us shortly recall the definition of a Courant algebroid and then relate it to QP-

manifolds of degree two [33, 34]. A Courant algebroid consists of a vector bundle E over a

smooth manifold M . There are three operations. First, there is a pseudo-Euclidean metric

on the fiber, which we denote by 〈·, ·〉. Second, there is a so-called anchor map to the

tangent bundle over M given by ρ : E → TM . Third, there is a so-called Dorfman bracket

on the sections of E, denoted by [·, ·]D. Finally, these operations have to obey the following

conditions,

[e1, [e2, e3]D]D = [[e1, e2]D, e
3]D + [e2, [e1, e3]D]D, (3.3)

ρ(e1)〈e2, e3〉 = 〈[e1, e2]D, e
3〉+ 〈e2, [e1, e3]D〉, (3.4)

ρ(e1)〈e2, e3〉 = 〈e1, [e2, e3]D + [e3, e2]D〉, (3.5)

where e1, e2, e3 ∈ Γ(E).

A general Courant algebroid can be reconstructed from a QP-manifold of degree two

as follows. Let E be a vector bundle over a smooth manifold M . Consider the graded

manifold M = T ∗[2]E[1]. The object E[1] denotes the total space, where the fiber degree

is shifted by one.2 Local coordinates on M are (xi, ηa, ξi) of degrees (0, 1, 2). Furthermore,

we define an injection of the vector bundle E to M via

j : TM ⊕ E → M

j :

(
∂

∂xi
, xi, ea

)
7→ (ξi, x

i, ηa).

A general section e ∈ Γ(E) can then be pushed forward via

j∗ : e = αa(x)e
a 7→ αa(x)η

a, (3.6)

where αa ∈ C∞(M). For the QP-manifold of degree two, the associated graded symplectic

structure ω is of degree two. We assume a fiber metric 〈ηa, ηb〉 = kab. Then, the graded

symplectic structure is chosen as

ω = δxi ∧ δξi +
1

2
kab δη

a ∧ δηb. (3.7)

We define the Q-structure in terms of the Hamiltonian function via

Θ = ρia(x)ξiη
a +

1

3!
Cabc(x)η

aηbηc, (3.8)

where ρia, Cabc ∈ C∞(M). In this case, the Hamiltonian function has degree three. If the

Hamiltonian function satisfies the classical master equation, {Θ,Θ} = 0, then (M, ω, Q)

defines a QP-manifold of degree two.

2The map [n] denotes the shift functor [32].
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In order to reconstruct the Courant algebroid, we have to define the associated three

operations. They are defined using the graded Poisson bracket and derived brackets as

follows. The pseudo-Euclidean metric is recovered by

〈e1, e2〉 ≡ j∗{j∗e
1, j∗e

2}, (3.9)

the Dorfman bracket by

[e1, e2]D ≡ −j∗{{j∗e
1,Θ}, j∗e

2}, (3.10)

and the anchor map by

ρ(e)f ≡ −j∗{{j∗e,Θ}, j∗f}, (3.11)

where e1, e2, e ∈ Γ(E) and f ∈ C∞(M). Due to the classical master equation, the three

relations induce a Courant algebroid.

Finally, let us discuss the operation of twisting QP-manifolds. A twist is defined via a

canonical transformation. Let (M, ω, Θ) be a QP-manifold of degree n and α ∈ C∞(M) be

a smooth function of degree n. Then the canonical transformation is defined via exponential

adjoint action using the graded Poisson bracket,

eδαf = f + {f, α}+
1

2
{{f, α}, α}+ · · · ,

where f ∈ C∞(M) is any smooth function on M. Since the function α is of the same degree

as the graded symplectic structure, the adjoint action is degree-preserving and obeys

{eδαf, eδαg} = eδα{f, g},

where f, g ∈ C∞(M) are smooth functions.

3.2 Double field theory

Double field theory [5] is a manifestly T-duality invariant formulation of the effective theory

of the string. See also [35] for a review on that subject.

The action of T-duality on closed strings compactified on S1 with radius R maps

to a dual theory with strings wrapping the dual S̃1 with radius R̃ = R−1. Therefore,

we can infer that in the case of a Tn-compactification various S1-isometric directions are

available to T-dualize in. As we mentioned, investigations of T-duality in the case of T 6-

compactifications withH-flux, lead to the conjecture of non-geometric flux backgrounds [3],

which go beyond the standard differential geometry and manifold techniques. The geometry

of non-geometric backgrounds [10] plays a fundamental role in double field theory.

In double field theory, a double space is considered, where the doubled coordinates are

dual to the original ones and this enlarged set of coordinates is used to make the O(D,D)-

symmetry manifest. All fields involved depend on the standard and dual coordinates

simultaneously. In the case, where the theory is compactified on a TD, the O(D,D;Z)-

transformation acting on the double coordinates (x̃i, x
i) corresponds to T-duality. Here,

the index i runs from 1 to D.

The field content of double field theory is given by the D-dimensional metric g, the

two-form field B and the dilaton field φ. For the discussion in this paper, we will ignore

– 7 –
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φ. The metric and the B-field are rearranged into an O(D,D)-tensor via the so-called

generalized metric HMN , where M and N run over the entire double space from 1 to 2D.

The generalized metric parametrized by the geometric subgroup is given by

HMN =

(
gij −gikBkj

Bikg
kj gij −Bikg

klBlj

)
. (3.12)

T-duality exchanges momentum modes with winding modes in the T-dualized direc-

tion. Since we doubled the coordinates, we also introduce associated momentum modes. We

denote the standard momentum mode by pi, whereas we denote its dual momentum mode

by p̃i. Throughout the main text, we call the dual momentum mode also winding mode.

Let us consider the generators of the O(D,D)-representation. We start with an

O(D,D)-invariant metric denoted by

ηMN =

(
0 δij
δ

j
i 0

)
. (3.13)

The invariance property can be stated as

h P
M ηPQh

Q
N = ηMN , (3.14)

where h P
M denote O(D,D)-matrices. The generators of O(D,D) are given by diffeomor-

phisms

h N
M =

(
Ei

j 0

0 E
j

i

)
, (3.15)

where E ∈ GL(D), B-transformations

h N
M =

(
δij 0

Bij δ
j

i

)
(3.16)

and β-transformations

h N
M =

(
δij βij

0 δ
j

i

)
, (3.17)

where Bij and βij are antisymmetric tensors. Diffeomorphisms and B-transformations

generate the so-called geometric subgroup of O(D,D). On this level, all fields depend on

both coordinates (x̃i, x
i). Then, O(D,D) acts on the generalized metric HMN , generalized

momentum PN = (p̃i, p
i) and generalized coordinates XN = (x̃i, x

i) via

HMN (X) 7→ HPQ(hX)h P
M h

Q
N , (3.18)

PM 7→ hMNPN , (3.19)

XM 7→ hMNXN , (3.20)

where h ∈ O(D,D) and p̃i denote winding modes, whereas pi denote momentum modes.

Since from the supergravity point of view, double field theory is an O(D,D)-manifestly

invariant extension through the introduction of dual variables, there has to be a mechanism
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to reduce to the physical supergravity frame. This reduction is provided by the so called

strong constraint or section condition and is given by

ηMN∂M∂Nψ = 0, (3.21)

where ∂M = (∂̃i, ∂i) reassembles standard and winding derivatives. ψ denotes any field.

This condition is O(D,D)-invariant and originates from the level matching condition in

string theory [35]. It can be rewritten in the form, which is useful for the main text of this

paper,

∂̃i∂iψ = 0, (3.22)

for any field ψ. A reduction of double field theory to the supergravity frame is done by

taking all fields to not depend on the winding coordinates, loosely expressed by ∂̃i = 0.

A reduction to the winding frame is possible by taking ∂i = 0. Mixed reductions are also

possible.

Since the metric and B-field are rearranged into a generalized object, the respective

diffeomorphisms and gauge transformations can be unified using so-called generalized dif-

feomorphisms with generalized gauge parameter ξM = (λ̃i, λ
i). On a generalized vector

V M of weight ω(V ), the action of the generalized Lie derivative along ξM is given by

LξV
M = ξP∂PV

M + (∂MξP − ∂P ξ
M )V P + ω(V )∂P ξ

PV M . (3.23)

Requiring the closure of gauge transformations we find the relation

[Lξ1 , Lξ2 ] = L[ξ1,ξ2]C , (3.24)

where [ξ1, ξ2]C denotes the so-called C-bracket. It is the antisymmetrization of the so-called

D-bracket

[ξ1, ξ2]D = Lξ1ξ2. (3.25)

Reducing the theory to the supergravity frame using the section condition reduces the

C-bracket to the Courant bracket and D-bracket to the Dorfman bracket.

Finally, let us shortly discuss the generalized vielbein formulation of double field theory.

We can decompose the generalized metric via

HMN = EA
MSABE

B
N , (3.26)

where

SAB =

(
ηab 0

0 ηab

)

and EA
M denote generalized vielbeins such that

ηMN = EA
MηABE

B
N , (3.27)

where

ηAB =

(
0 δ b

a

δab 0

)
.
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The matrix ηab denotes the D-dimensional metric. EA
M transforms under generalized

diffeomorphisms by

LξE
A
M = ξP∂PE

A
M + (∂MξP − ∂P ξM )EA

P . (3.28)

It can be parametrized by the geometric subgroup of O(D,D) via

EA
M =

(
e i
a e

j
a Bji

0 eai

)
, (3.29)

where gij = eaiηabe
b
j and eaj are the vielbeins with respect to the D-dimensional metric gij .

If we turn on the β-field, then we allow for the full set of non-geometric backgrounds

and the generalized vielbein is written by [36]

EA
M =

(
e i
a e

j
a Bji

eajβ
ji eai + eajβ

jkBki

)
. (3.30)

In general, backgrounds considered in the framework of the full duality group are glob-

ally or even locally non-geometric and contain monodromies patched by full O(D,D)-

transformations.

4 Non-geometric fluxes and T-duality via graded symplectic manifolds

In this section, we present the main results of this paper. First we will derive the fully

geometrically and non-geometrically twisted formulation of a Courant algebroid. We derive

Bianchi identities and the local expressions of all fluxes by twist of a Hamiltonian. Then we

extend our analysis to the setting of double field theory. We discuss the Poisson Courant

algebroid as a model for R-flux from the perspective of double field theory. Then we derive

the Bianchi identities in winding space and the associated local flux expressions. Finally, we

define T-duality as canonical transformation acting on the double field theory Hamiltonian.

4.1 Courant algebroid with geometric and non-geometric fluxes

In this section, we derive the Courant algebroid, which incorporates the local expressions

of the geometric H- and F -fluxes as well as non-geometric Q- and R-fluxes in terms of

vielbein e i
a , B-field and bivector field β. We show, that the QP-manifold, which induces

this Courant algebroid naturally encodes the Bianchi identities of these fluxes.

Since Courant algebroids are QP-manifolds of degree two, let us start with the simplest

QP-manifold and gradually input more ingredients. The QP-manifold, we are considering

in this section, is defined on the graded manifold M = T ∗[2]T [1]M , where M is a smooth

manifold. M is locally parametrized by the coordinates (xi, qi) of degree (0, 1) and their

conjugate coordinates (ξi, pi) of degree (2, 1). The symplectic structure is taken as

ω = δxi ∧ δξi + δqi ∧ δpi. (4.1)
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It has total degree four. On this QP-manifold, a general Hamiltonian will be of degree

three. The simplest non-trivial Hamiltonian, we can write down, is given by

ΘS,0 = qiξi. (4.2)

Let us define an injection of the generalized tangent bundle TM ⊕ T ∗M over M into M

using the map j : TM ⊕ (TM ⊕ T ∗M) → M via

j :

(
∂

∂xi
, xi, dxi, ∂i

)
7→ (ξi, x

i, qi, pi).

More precisely, we have the following pullbacks

j∗ : Xi(x)pi 7→ Xi(x)∂i,

j∗ : αi(x)q
i 7→ αi(x)dx

i,

where Xi, αi ∈ C∞(M). Therefore, a general section e ∈ Γ(TM ⊕ T ∗M) can be pushed

forward to M by

j∗ : e = Xi(x)∂i + αi(x)dx
i 7→ Xi(x)pi + αi(x)q

i.

Upon contraction of the Hamiltonian (4.2) with the graded Poisson bracket we can

define the de Rham operator d : Ωk(M) → Ωk+1(M) by

dα ≡ −j∗{ΘS,0, j∗(α)} (4.3)

for any k-form α ∈ Ωk(M). The pushforward of a k-form α is naturally given by

j∗ : α =
1

k!
αi1···ik(x)dx

i1 ∧ · · · ∧ dxik 7→
1

k!
αi1···ik(x)q

i1 · · · qik . (4.4)

The nilpotency of the operator d is guaranteed by the classical master equation,

{ΘS,0,ΘS,0} = 0. We conclude, that (4.2) induces a de Rham cohomology on the forms

over M .

The next step is to include geometric as well as non-geometric fluxes H, F , Q and

R in this formulation. This is done by introducing them into the Hamiltonian. It is well

known, that the H-twisted Hamiltonian

ΘS,H = ξiq
i +

1

3!
Hijk(x)q

iqjqk (4.5)

induces the structure of an H-twisted Courant algebroid via the classical master equation

and derived bracket construction.

In an analogous manner we can write down the R-twist of the Hamiltonian ΘS,0,

ΘS,R = ξiq
i +

1

3!
Rijk(x)pipjpk. (4.6)

In [29] it is proposed, that the AKSZ action functional induced by the Hamiltonian (4.6)

provides a description for a string propagating in R-space. In this case, the string is
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embedded into the cotangent bundle T ∗M and its phase space is twisted by the R-flux.

This leads to a non-associative star product on phase space. However, the classical master

equation of ΘS,R implies that R is trivial.

The local expressions of the H-, F -, Q- and R-fluxes can be introduced by appropriate

twist of the Hamiltonian. Since this formulation makes use of a QP-manifold of degree

two, the allowed degree-preserving twists also have degree two. The two obvious twists in

this setup, we call B-twist or B-transformation

exp(δB) ≡ exp

(
1

2
Bij(x)q

iqj
)

and β-twist or β-transformation

exp(δβ) ≡ exp

(
1

2
βij(x)pipj

)
,

where Bij , β
ij ∈ C∞(M).

The O(D,D)-covariant metric of the Courant algebroid on the generalized tangent

bundle is induced by the graded Poisson bracket (3.9). The sections of the bundle cor-

respond to degree one functions on M via j. We conclude, that symplectomorphisms

on M induced by twists proportional to q2, p2 and pq are in one-to-one correspondence

with the generators of O(D,D). Twists that are proportional to ξ induce derivatives and

transform (3.9). Thus, they do not correspond to generators of O(D,D).

In order to include vielbeins, we introduce a frame bundle of T [1]M ⊕ T ∗[1]M . Then,

the vielbein can be introduced using another twist. Let (qa, pa) be local coordinates on

V [1]⊕V ∗[1] corresponding to a flat frame, where V = R
D is a flat vector space of dimension

D = dim(M), whereas (qi, pi) correspond to a general frame on T [1]M ⊕ T ∗[1]M . Then,

we can introduce twists in (T [1]M ⊕ T ∗[1]M)⊕ V [1]⊕ V ∗[1] by

exp(δe) ≡ exp(e i
a (x)q

api),

exp(δe−1) ≡ exp(eai(x)q
ipa).

This brings us into the position to introduce vielbein components. The resulting injection

into the generalized tangent bundle with frame bundle can then be written using local

coordinates as

ǰ : TM ⊕ (TM ⊕ T ∗M)⊕ V ⊕ V ∗ → T ∗[2]T [1]M ⊕ V [1]⊕ V ∗[1]
(

∂

∂xi
, xi, dxi, ∂i, u

a, ua

)
7→ (ξi, x

i, qi, pi, q
a, pa).

Note that {qa, pb} = δab and {qi, pj} = δij and all other combinations vanish.

Before introducing the vielbein components by twist, let us discuss the concept using

B- and β-transformations. The classical master equation of ΘS,H restricts the H-flux to

be closed, H ∈ H3(M,R). On the other hand, we can induce the local expression for the

H-flux in (4.5) by B-twist of (4.2) via

exp(−δB)ΘS,0 = qiξi +
1

2
∂iBjkq

iqjqk, (4.7)

so that Hijk = 3∂[iBjk] or H = dB.
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If we twist the standard space Hamiltonian ΘS,0 by β-transformation we arrive at

exp(−δβ)ΘS,0 = ξiq
i − βmiξmpi +

1

2
∂iβ

jkqipjpk +
1

2
βim∂mβjkpipjpk. (4.8)

The twist induces an R-flux term Rijk = 3β[i|m|∂mβjk] or R = 1
2 [β, β]S , where [−,−]S

denotes the Schouten bracket. One observes that if [β, β]S = 0, then

Θβ ≡ −βmiξmpi +
1

2
∂iβ

jkqipjpk (4.9)

induces a Poisson cohomology on the space of multivector fields C∞(T ∗[1]M) ≃ Γ(∧•TM)

with Lichnerowicz-Poisson differential dβ ≡ [β, ·]S . Since {ξiqi,Θβ} = 0, the resulting

cohomology associated to the Hamiltonian (4.8) for β a Poisson bivector is the total coho-

mology of the de Rham-Poisson double complex with total differential D = d + dβ acting

on elements φ ∈ Γ(∧•TM ⊕ ∧•T ∗M). The cohomology can be generalized to the so-

called standard cohomology of the Courant algebroid on C∞(T ∗[2]T [1]M) defined by the

Hamiltonian Θ [37].

In the case where the p3-coefficient is nonzero, we can describe the breaking of the

Poisson condition by a totally antisymmetric trivector R ∈ Γ(Λ3TM). Then, the resulting

structure is a so-called quasi-Poisson structure 1
2 [β, β]S = R.3 If one defines the Poisson

bracket associated to β as

{f, g}β = βij∂if∂jg, (4.10)

for f, g ∈ C∞(M), then the quasi-Poisson structure manifests itself by breaking of the

Jacobi identity,

{{f, g}β , h}β + {{h, f}β , g}β + {{g, h}β , f}β = Rijk∂if∂jg∂kh. (4.11)

In addition to the R-flux term we observe that a Q-flux term Qhk
i = ∂iβ

hk has been in-

duced by the β-twist. In terms of the Poisson bracket this expression can be rewritten as [12]

{xi, xj}β =

∫
Q

ij
k dx

k. (4.12)

Therefore, the Q-flux term can be associated to non-commutative structures on the closed

string.

With this knowledge we can rewrite (4.8) in the form

Θβ = qiξi + βimpiξm +
1

2
Q

jk
i qipjpk +

1

3!
Rijkpipjpk, (4.13)

defining Q
jk
i ≡ ∂iβ

jk and Rijk ≡ 3β[i|m|∂mβjk]. The β-transformation induces a differential

on the space of polyvectors, in addition to the de Rham differential on forms. Let us denote

the former by introducing ei♯ ≡ β♯ei = βij∂j ∈ TM , where ei ∈ T ∗M is the dual of ei, and

3The terminology of ‘quasi-Poisson’ in this paper follows the one in [26]. The authors of [38] give a

different definition of a quasi-Poisson structure.
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the latter by ei ≡ ∂i ∈ TM , following the notation of [12]. The classical master equation,

{Θβ,Θβ} = 0, then implies the Bianchi identities

∂[mQ
[jk]
i] = 0, (4.14)

3β[i|m|∂mQjk]
n − ∂nR

[ijk] + 3Q[i|m|
n Qjk]

m = 0, (4.15)

β[i|m|∂mRjkl] −
3

2
R[ij|m|Qkl]

m = 0. (4.16)

These relations coincide with the Jacobi identities for the commutation relations

[ei, ej ] = 0, (4.17)

[ei, e
j
♯ ] = Q

jm
i em, (4.18)

[ei♯, e
j
♯ ] = Rijmem +Qij

mem♯ , (4.19)

where [·, ·] denotes the usual commutator on the tangent bundle.

In fact, the Hamiltonian (4.13) defines the following Courant algebroid on TM⊕T ∗M .

Let X + α, Y + γ ∈ Γ(TM ⊕ T ∗M) be sections of the generalized tangent bundle. The

anchor map is defined as

ρ(X + α)f ≡ −j∗{{j∗(X + α),Θβ}, j∗(f)} = (X + β♯(α))f. (4.20)

The Dorfman bracket is defined by

[X + α, Y + γ]D ≡ −j∗{{j∗(X + α),Θβ}, j∗(Y + γ)}

= [X,Y ] + LXγ − ιY dα+ [α, γ]β + Lβ
αY − ιγdβX + ιαιγR. (4.21)

Here β♯(α) ≡ βijαi(x)
∂

∂xj for any one-form α = αi(x)dx
i. L

β
α denotes the Poisson-Lie

derivative along a one-form α,

Lβ
αY ≡ dβιαY + ιαdβY. (4.22)

The operator dβ denotes the Lichnerowicz-Poisson differential on polyvector fields and

[α, γ]β is the Koszul bracket, [α, γ]β ≡ Lβ♯(α)γ − ιβ♯(γ)dα. Since the pseudo-metric is

induced directly from the graded Poisson bracket,

〈X + α, Y + γ〉 ≡ j∗{j∗(X + α), j∗(Y + γ)}

= X(γ) + Y (α), (4.23)

it does not change upon the β-twist.

In order to provide a fully twisted Hamiltonian, that introduces local expressions for all

fluxes in terms of all potentials including the vielbeins, we now introduce two index ranges:

i, j, k, . . . will denote curved coordinates and a, b, c, . . . will denote flat coordinates.

Let us get warmed up with a discussion of the f -flux in the geometric supergravity

frame. In general, the f -flux is called geometric flux and is associated with the torsion-less

part of the projected spin connection. It is well known, that the T-dual of a three-torus
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with standard metric and non-zero H-flux is a nilmanifold with zero H-flux. The dual torus

can be formulated as S1-bundle over S2 with non-trivial spin connection. The appropriate

Hamiltonian, that models the dual torus nilmanifold, has to incorporate a notion of vielbein

e i
a and f -flux with the correct relation

fa
bc = 2e i

[c∂ie
a
je

j
b] . (4.24)

There are two approaches that facilitate such a correspondence. Firstly, the Hamiltonian

ΘS,F = e i
c ξiq

c +
1

2
f c
abq

aqbpc (4.25)

induces the relations

e
j
[b ∂je

i
a] = −

1

2
e i
c f

c
ab, (4.26)

e
j
[d∂jf

c
ab] = fe

[abf
c
|e|d], (4.27)

where [· · · ] denotes antisymmetrization with the corresponding combinatorial factor. The

first equation becomes (4.24) upon introduction of an inverse edi of e
i
c such that e i

c e
d
i = δdc .

We conclude, that the local expression of the f -flux is induced by the classical master

equation of the Hamiltonian (4.25). This is in contrast to the H-flux and R-flux case,

where we introduced the local expression of the fluxes directly into the Hamiltonian by an

appropriate twist.

Let us investigate the possibility of doing so for the f -flux using an appropriate repre-

sentation of the generator of diffeomorphisms inside O(D,D) as canonical transformation

acting on our Hamiltonian. For this, we start with the Hamiltonian (4.2) and twist it

successively by exp(−δe), exp(δe−1) and again exp(−δe). We assume, that both vielbeins

are inverse to each other and orthogonal with respect to both contractions, e i
a e

a
j = δij and

e i
b e

a
i = δab . The result is

exp(−δe) exp(δe−1) exp(−δe)ΘS,0

= e m
a qaξm + e m

a ∂me i
b e

b
jq

jqapi + e m
a ∂me i

b e
c
iq

aqbpc. (4.28)

One first recognizes the anchor map, which now is depending on the vielbein itself. The

qaqbpc-coefficient gives the local expression of the f -flux in terms of the vielbeins

1

2
f c
ab = e i

[a∂ie
j
b] e

c
j

= e i
[b∂ie

c
je

j
a] . (4.29)

The mixed index coefficient corresponds to a connection on the frame bundle. Since in

general we will derive more complicated expressions of f -flux in non-geometric frames, we

denote the general flux by F and its basic part by

f c
ab ≡ 2e i

[b∂ie
c
je

j
a] . (4.30)

Introducing a vielbein basis on the tangent bundle TM by ea = e i
a ∂i, we can reformulate

this expression by a commutator

[ea, eb] = f c
abec. (4.31)
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We conclude, that the resulting Hamiltonian represents a local formulation of an f -flux

background.

The Hamiltonian that contains the local expressions for both the H-flux and f -flux in

terms of the potentials B and e i
a can be derived by twist in the same manner, via

exp(−δe) exp(δe−1) exp(−δe) exp(−δB)ΘS,0

= e m
a qaξm + e m

a ∂me i
b e

b
jq

jqapi + e m
a ∂me i

b e
c
iq

aqbpc +
1

2
∂iBjke

i
a e

j
b e k

c qaqbqc. (4.32)

This leads to the correct local expression of the H-flux in flat coordinates in the geomet-

ric supergravity frame via Habc = 3∂iBjke
i
[ae

j
b e k

c] . This can be rewritten as covariant

derivative Habc = 3∂[aBbc] − fd
[abB|d|c] ≡ 3∇[aBbc].

Let us in the following consider the full set of fluxes by inducing their local expressions

using the three different types of twist: B, β and vielbein. For this, we start again with (4.2)

and twist it by B-field and β-field successively,

exp(−δβ) exp(−δB)ΘS,0 = exp(−δβ)

(
ξiq

i +
1

2
∂iBjkq

iqjqk
)

= ξiq
i−ξmβmipi+

1

2
∂nBrsq

nqrqs−

(
∂mBns+

1

2
∂sBmn

)
βsipiq

mqn

+

[
1

2
∂iβ

hk −
1

2
∂iBrsβ

shβrk + ∂rBisβ
shβrk

]
qiphpk

+

[
−
1

2
∂lβ

ihβlk +
1

2
∂nBrsβ

siβrhβnk

]
piphpk. (4.33)

Finally, we introduce the vielbein freedom via

exp(−δe) exp(δe−1) exp(−δe) exp(−δβ) exp(−δB)ΘS,0

= ξie
i
b q

b − ξmβmleblpb + e m
b ∂me j

a eaipjq
iqb − βmlebl∂me j

a eaipjq
ipb

+ e m
c ∂me j

a ebjq
apbq

c − βmlecl∂me j
a ebjq

apbpc

+
1

2
∂nBrse

n
a e r

b e s
c qaqbqc −

(
∂mBns +

1

2
∂sBmn

)
βsieaie

m
b e n

c paq
bqc

+

[
1

2
∂iβ

hk −
1

2
∂iBrsβ

shβrk + ∂rBisβ
shβrk

]
e i
a e

b
he

c
kq

apbpc

+

[
−
1

2
∂lβ

ihβlk +
1

2
∂nBrsβ

siβrhβnk

]
eaie

b
he

c
kpapbpc

= e i
b ξiq

b − βmleblξmpb + βmlebl∂me j
a eai q

ipjpb + e m
b ∂me j

a eaiq
iqbpj

+
1

2
∂nBrse

n
a e r

b e s
c qaqbqc +

[
e m
b ∂me j

c eaj −

(
∂mBns +

1

2
∂sBmn

)
βsieaie

m
b e n

c

]
paq

bqc

×

[
−βmlecl∂me j

a ebj +

[
1

2
∂iβ

hk −
1

2
∂iBrsβ

shβrk + ∂rBisβ
shβrk

]
e i
a e

b
he

c
k

]
qapbpc

+

[
−
1

2
∂lβ

ihβlk +
1

2
∂nBrsβ

siβrhβnk

]
eaie

b
he

c
kpapbpc. (4.34)

The twisted Hamiltonian incorporates the local expressions for all fluxes in terms of the

potentials B, β and eai in the supergravity frame.
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Let us rewrite (4.34) by

ΘBβe = e i
b q

bξi + eblβ
lmpbξm − eblβ

lm∂me j
a eaiq

ipjpb + e m
b ∂me j

a eaiq
iqbpj

+
1

3!
Habcq

aqbqc +
1

2
F a
bcpaq

bqc +
1

2
Qbc

a q
apbpc +

1

3!
Rabcpapbpc, (4.35)

by defining

Habc = 3∇[aBbc], (4.36)

F a
bc = fa

bc −Hmnsβ
sieaie

m
b e n

c , (4.37)

fa
bc = 2e m

[b ∂me
j
c] e

a
j , (4.38)

Hmns = 3∂[mBns], (4.39)

Qbc
a = ∂aβ

bc + f b
adβ

dc − f c
adβ

db +Hisrβ
shβrke i

a e
b
he

c
k, (4.40)

Rabc = 3(β[a|m|∂mβbc] + f [a
mnβ

b|m|βc]n)−Hmnsβ
miβnhβskeaie

b
he

c
k. (4.41)

The classical master equation of this Hamiltonian encodes the Jacobi identities for the

commutators

[ea, eb] = F c
abec +Habce

c
♯, (4.42)

[ea, e
b
♯] = Qbc

a ec − F b
ace

c
♯, (4.43)

[ea♯ , e
b
♯] = Rabcec +Qab

c ec♯, (4.44)

as well as the Bianchi identity for the H-flux, where we defined ea ≡ e i
a ∂i and ea♯ = β♯ea =

βabeb with βab ≡ eaie
b
jβ

ij following [12]. This gives the following Bianchi identities,

e m
[a ∂|m|Hbcd] −

3

2
F e
[abH|e|cd] = 0, (4.45)

e
[a
lβ

|lm|∂mRbcd] −
3

2
Q[ab

e R|e|cd] = 0, (4.46)

edlβ
ln∂nH[abc] − 3e n

[a ∂nF
d
bc] − 3He[abQ

ed
c] + 3F d

e[aF
e
bc] = 0, (4.47)

−2e
[c
lβ

|ln|∂nF
d]
[ab] − 2e n

[a ∂nQ
[cd]
b] +He[ab]R

e[cd] +Q[cd]
e F e

[ab] + F
[c
e[aQ

|e|d]
b] = 0, (4.48)

3e
[b
lβ

|ln|∂nQ
cd]
a − e n

a ∂nR
[bcd] + 3F [b

eaR
|e|cd] − 3Q[bc

e Q|e|d]
a = 0. (4.49)

Let us derive the operations on the Courant algebroid induced by (4.35). For sections of

the generalized frame bundle, X + α = Xa∂a + αadx
a, the anchor map is given by

ρ(X + α)f ≡ −j∗{{j∗(X + α),ΘBβe}, j∗(f)}

= (Xae m
a ∂m + αaβ

am∂m)f

= (X + β♯(α))f, (4.50)

where f ∈ C∞(M). For readability, we derive the Dorfman bracket step by step. Let us

start with the Dorfman bracket of two vectors X = Xa∂a and Y = Y b∂b. We get

[X,Y ]D ≡ −j∗{{j∗(X),ΘBβe}, j∗(Y )}

= [X,Y ]∇ − β♯(ιY ιXH) + ιY ιXH

= [X,Y ]∇H + ιY ιXH, (4.51)
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where we defined [X,Y ]∇ as the covariant Lie bracket with covariant derivative ∇aX
b =

∂aX
b + Γb

aeX
e, where Γb

ae denotes the Weitzenböck connection related to the geometric

f -flux by f b
ae = 2Γb

[ae]. Furthermore, we defined the covariant H-twisted Lie bracket by

[X,Y ]∇H ≡ [X,Y ]∇ − β♯(ιY ιXH). (4.52)

The evaluation of the Dorfman bracket of two forms α and γ leads to

[α, γ]D ≡ −j∗{{j∗(α),ΘBβe}, j∗(γ)}

= L∇
β♯(α)γ − ιβ♯(γ)∇α+ ιβ♯(γ)ιβ♯(α)H + ιγιαR

= [α, γ]∇β,H + ιγιαR, (4.53)

where we defined the covariant H-twisted Koszul bracket by

[α, γ]∇β,H ≡ [α, γ]∇β + ιβ♯(γ)ιβ♯(α)H. (4.54)

The covariant Koszul bracket is defined by

[α, γ]∇β ≡ L∇
β♯(α)γ − ιβ♯(γ)∇α, (4.55)

using the covariant Lie derivative L∇
X along a vector X acting on forms given by

L∇
X = ∇ιX + ιX∇, (4.56)

where ∇ acts on a one-form γ by ∇γ = ∂aγbdx
a∧dxb−Γd

abγddx
a∧dxb. The mixed Dorfman

brackets can be evaluated leading to

[α, Y ]D ≡ −j∗{{j∗(α),ΘBβe}, j∗(Y )}

= −ιY ∇α+ ιY ιβ♯(α)H + L∇,β
α Y − β♯(ιY ιβ♯(α)H) (4.57)

and

[X, γ]D ≡ −j∗{{j∗(X),ΘBβe}, j∗(γ)}

= L∇
Xγ + ιβ♯(γ)ιXH − ιγ∇βX − β♯(ιβ♯(γ)ιXH), (4.58)

where L
∇,β
α denotes the covariant Poisson-Lie derivative defined by

L∇,β
α ≡ ∇βια + ια∇β . (4.59)

The symbol ∇β denotes the covariant Lichnerowicz-Poisson differential. Finally, we sum-

marize the full Dorfman bracket,

[X + α, Y + γ]D

= [X,Y ]∇H + [α, γ]∇β,H − ιγ∇βX − ιY ∇α+ L∇
Xγ + L∇,β

α Y + ιY ιXH

+ ιY ιβ♯(α)H + ιβ♯(γ)ιXH − β♯(ιY ιβ♯(α)H)− β♯(ιβ♯(γ)ιXH) + ιγιαR. (4.60)

We observe, that a lot of terms involve a β♯-lift, and conclude, that the existence of the

bivector β is crucial for the mixed vector-form contracted twists. This concludes the

derivation of the fully twisted Courant algebroid in the supergravity frame.
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4.2 Double field theory via graded symplectic manifolds

In the previous section we showed how to derive the local expressions of the fluxes H, F , Q

and R in terms of their potentials B, β and eai. We discussed the cohomological properties

of the associated Hamiltonians as well as twisted Courant algebroid structures in terms

of derived brackets. Finally, we derived the Bianchi identities incorporating all fluxes. In

this section, we step into the realm of double field theory. For this, the smooth underlying

manifold M is doubled by introducing what we want to call winding manifold M̃ .

Let us go into more detail. The graded manifold associated to the double space is

modeled via a P-manifold (M̂ = T ∗[2]T [1]M̂ , ω) of degree two with a vector field Q

of degree one and M̂ an even-dimensional smooth manifold. For our purpose we take

M̂ = M × M̃ , where M and M̃ are smooth manifolds. M will be interpreted as standard

spacetime and M̃ as its double. We choose Q so that LQω = 0. Then (M̂ = T ∗[2]T [1]M̂ , ω,

Q) is called a pre-QP-manifold [24]. In other words, a pre-QP-manifold is a QP-manifold,

where the nilpotency of the homological vector field is weakened.

Moreover, we assume the existence of an O(D,D)-invariant metric ηMN on the fibers.

Then, the manifold M̂ is parametrized by the local coordinates (xM = (xi, x̃i), qM =

(qi, q̃i), pM = (pi, p̃
i), ξM = (ξi, ξ̃

i)) of degrees (0, 1, 1, 2).

The local expression of the graded symplectic structure ω is given by

ω = δxM ∧ δξM + δqM ∧ δpM

= δxi ∧ δξi + δx̃i ∧ δξ̃i + δqi ∧ δpi + δq̃i ∧ δp̃i. (4.61)

It is a two-form of degree two.

Also in this case we introduce a map ĵ : TM̂ ⊕ (TM̂ ⊕ T ∗M̂) → M̂ that injects the

generalized double tangent bundle to M̂ by

ĵ :

(
∂

∂xi
,
∂

∂x̃i
, xi, x̃i, dx

i, dx̃i, ∂i, ∂̃
i

)
7→ (ξi, ξ̃

i, xi, x̃i, q
i, q̃i, pi, p̃

i). (4.62)

Finally, the vector field Q defines the Hamiltonian Θ by Q(−) = {Θ,−}. Due

to the large number of local coordinates, there exist many possible terms that can be

incorporated into Θ.

In order to describe the section condition in double field theory, let us begin by writing

down the non-twisted double field theory Hamiltonian

ΘDFT,0 = ξM (qM + ηMNpM )

= ξi(q
i + p̃i) + ξ̃i(pi + q̃i). (4.63)

The classical master equation, {ΘDFT,0,ΘDFT,0} = 0, gives us the relation

ξiξ̃
i = 0. (4.64)

This equation can be regarded as the double field theory section condition via [23]

{{f, {ΘDFT,0,ΘDFT,0}}, g} = 0. (4.65)
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The variables ξi and ξ̃i induce the derivatives ∂i and ∂̃i by the map ĵ, respectively. In order

to solve (4.64), we choose a proper graded symplectic submanifold of half rank consistent

with the ξ’s and the injection map, ĵ :
(
dxi, dx̃i, ∂i, ∂̃

i
)
7→ (qi, q̃i, pi, p̃

i). For example, if we

take ξ̃i = 0, we choose functions f, g dependent only on (xi, qi, pi, ξi), and therefore a struc-

ture subsheaf C∞(T ∗[2]T [1]M) ⊂ C∞(T ∗[2]T [1]M̂) is selected by setting q̃i = p̃i = 0, where

M is the smooth submanifold parameterized by xi. Here a function of C∞(T ∗[2]T [1]M) is

identified as a function on C∞(T ∗[2]T [1]M̂) by the pullback along the natural projection

pr : M̂ → M . T ∗[2]T [1]M is a QP-manifold since Q2 = 0 on C∞(T ∗[2]T [1]M).

4.3 Poisson Courant algebroid from double space

In [19] the authors constructed a Courant algebroid on a Poisson manifold serving as a

model for R-flux. The starting point is the graded manifold M = T ∗[2]T [1]M , where (M ,

π) is a smooth manifold with Poisson structure π. In local coordinates on M, (xi, qi, pi,

ξi) of degree (0, 1, 1, 2), the symplectic structure is given as usual by

ω = δxi ∧ δξi + δqi ∧ δpi. (4.66)

The Hamiltonian is defined by

Θπ = πijξipj −
1

2

∂πjk

∂xi
qipjpk +

1

3!
Rijkpipjpk. (4.67)

The classical master equation, {Θπ,Θπ} = 0, induces the relations [π,R]S = 0 and

[π, π]S = 0. Therefore, the bivector π has to be Poisson and the tri-vector R has to

be dπ-closed, where dπ is the Lichnerowicz-Poisson differential dπ(−) = [π,−]S acting on

the space of multivector fields Γ(∧•TM). Via the usual injection map j and derived bracket

constructions, the Hamiltonian Θπ induces the Poisson Courant algebroid [19].

Obviously, the anchor part of this construction delivers a notion of differential, which is

given by the Lichnerowicz-Poisson operator. By direct comparison to the H-fluxed Courant

algebroid one easily recognizes the following similarities,

πijξipj −
1

2

∂πjk

∂xi
qipjpk ⇔ ξiq

i,

1

3!
Rijkpipjpk ⇔

1

3!
Hijkq

iqjqk,

dπR = [π,R]S = 0 ⇔ dH = 0,

[π, π]S = 0 ⇔ d2 = 0.

Furthermore, a B-twist of the Courant algebroid without H-flux is in analogy with a β-

twist of the Poisson Courant algebroid without R-flux. The resulting local fluxes are then

given by

dπR = [π, β]S ∼ R ⇔ dB ∼ H.

One concludes that the introduction of Poisson cohomology is necessary to work with a

tri-vector flux in the same manner as with a three-form flux using de Rham cohomology.
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For non-degenerate Poisson structure one finds the well-known map between Poisson and

de Rham cohomologies and a relation between both Hamiltonians [19].

There are two ways to relate the Poisson Courant algebroid structure to double field

theory. The first way is by twist of the double field theory Hamiltonian in the geometric

frame. The second way is by direct comparison of the double field theory Hamiltonian with

the Hamiltonian realizing the Poisson Courant algebroid.

In order to discuss the former way, let us take local coordinates (yi, ỹi) such that

ΘDFT,0 = ηi(q
i + p̃i) + η̃i(pi + q̃i), where {yi, ηj} = {ỹj , η̃

i} = δij . We can choose a

nontrivial physical configuration space of double field theory, a D-dimensional submanifold

M ⊂ M̂ with local coordinate xi under the assumption that M has a Poisson structure π

as follows. Then consider a local coordinate transformation from the double coordinates

(yi, ỹi) of ΘDFT,0 to (xi, x̃i) with the following Jacobian,

∂(x, x̃)

∂(y, ỹ)
=

(
∂xi

∂yj
∂xi

∂ỹj
∂x̃i

∂yj
∂x̃i

∂ỹj

)
=

(
δij πij

0 δi
j

)
. (4.68)

This local coordinate transformation can be realized as the twist of the original ΘDFT,0

by a canonical function αp = 1
2π

ij(x)pipj . The canonical transformation deforms the

homological function,

Θ′
DFT,0 = eαpΘDFT,0

= ξi(q
i + p̃i) + ξ̃i(pi + q̃i) + πijξipj −

1

2

∂πjk

∂xi
(x)(qi + p̃i)pjpk. (4.69)

The section condition is deformed to

ξ̃i
(
4ξi −

1

2

∂πjk

∂xi
(x)pjpk

)
= 0. (4.70)

The projection to the standard frame recovers the Poisson Courant algebroid with a stan-

dard Courant algebroid part without fluxes,

Θ′
DFT,0|x̃=0 = ΘH=0 +Θπ,R=0. (4.71)

Note that, since {ΘH=0,Θπ,R=0} = 0, the projected Hamiltonian Θ′
DFT,0|x̃=0 defines a

double complex.

Now, let us relate the Poisson Courant algebroid by direct comparison of the associated

Hamiltonians,

ΘDFT,0 = ξi(q
i + p̃i) + ξ̃i(pi + q̃i),

Θπ,R=0 = πij(x̌)ξ̌ip̌j −
1

2

∂πjk

∂x̌i
(x̌)q̌ip̌j p̌k,

where we choose a special frame (q̌i, q̌i) for the Poisson Courant algebroid on a D-

dimensional submanifold M̌ ⊂ M̂ inside double field theory. The result is that a Pois-

son Courant algebroid depending on coordinates x̌i can be related to double field theory
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on double coordinates xi and x̃i in the winding frame (ξi = 0, qi = 0, pi = 0) by the

identification

q̌i = p̃i, p̌i = q̃i, πij(x̌)ξ̌i +
1

2

∂πjk

∂x̌i
q̌ip̌k = ξ̃j

and therefore

x̃i =

∫
π−1
ij (x̌)dx̌j .

The term 1
2
∂πjk

∂x̌i q̌
ip̌k is the Poisson connection induced on the total space. Then, the Poisson

structure π can be seen as a deformation of the double field theory winding frame and the

trivector freedom R inside the Poisson Courant algebroid lives inside this deformed winding

frame.

4.4 Introduction of fluxes

Starting from the double field theory Hamiltonian, the non-twisted supergravity frame

Hamiltonian is defined by ξ̃i = 0, whereas the non-twisted winding frame Hamiltonian

by ξi = 0. Then, ΘDFT,0 reduces to the following Hamiltonians on T ∗[2]T [1]M and

T ∗[2]T [1]M̃ , respectively:

ΘS,0 = qiξi, (4.72)

ΘW,0 = q̃iξ̃
i. (4.73)

As for the cohomological structure associated with the Hamiltonians, ΘS,0 and ΘW,0 induce

de Rham cohomologies on the space of forms on standard and winding space, respectively,

so that

dα ≡ −j̃∗{ΘS,0, j̃∗α}, (4.74)

d̃α̃ ≡ −j̃∗{ΘW,0, j̃∗α̃}, (4.75)

for any k-forms α ∈ Ωk(M) and α̃ ∈ Ωk(M̃).

In order to discuss double field theory, which treats all H-, F -, Q- and R-fluxes on the

same footing, we will derive the fully twisted Hamiltonian incorporating both de Rham

differentials d and d̃. Locally, these fluxes can be written in terms of their potentials: the

2-form B-field, the bivector β-field and vielbeins eia.

Then, the B- and β-twisted double field theory Hamiltonian is given by

exp(−δβ) exp(−δB)ΘDFT,0 (4.76)

= (ξi −Bmiξ̃
m)qi + (ξ̃i − ξmβmi + ξ̃nBnmβmi)pi

+
1

2

[
−Bin∂̃

iBrs + ∂nBrs

]
qnqrqs

+

[
1

2
∂̃iBmn +

(
Blm∂̃lBns − ∂mBns +

1

2
Bls∂̃

lBmn −
1

2
∂sBmn

)
βsi

]
piq

mqn

+

[
1

2
∂iβ

hk −
1

2
Bli∂̃

lβhk + ∂̃hBinβ
nk

−
1

2

[
−Bli∂̃

lBrs + ∂iBrs −Bls∂̃
lBir + ∂sBir +Blr∂̃

lBis − ∂rBis

]
βshβrk

]
qiphpk
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+

[
1

2
∂̃iβhk −

1

4
∂lβ

ihβlk −
1

4
βli∂lβ

hk +
1

4
Bln∂̃

lβihβnk

+
1

4
Blnβ

ni∂̃lβhk −
1

2
∂̃iBmnβ

nhβmk

+
1

3!
(−Bln∂̃

lBrs + ∂nBrs −Bls∂̃
lBnr + ∂sBnr +Blr∂̃

lBns − ∂rBns)β
siβrhβnk

]
piphpk

+ ξip̃
i + ξ̃iq̃i +

1

2
(∂iBjkp̃

i + ∂̃iBjkq̃i)q
jqk +

1

2
(∂iβ

jkp̃i + ∂̃iβjkq̃i)pjpk

−∂iBjkβ
kmp̃iqjpm−∂̃iBjkβ

kmq̃iq
jpm+

1

2
∂iBjkβ

jmβknp̃ipmpn+
1

2
∂̃iBjkβ

jmβknq̃ipmpn.

One recognizes the emergence of the local expressions for all fluxes in terms of their po-

tentials. Furthermore, one recognizes that the anchor map has been twisted,

ΘDFT,A = (ξi −Bmiξ̃
m)qi + (ξ̃i − ξmβmi + ξ̃nBnmβmi)pi + ξip̃

i + ξ̃iq̃i. (4.77)

The anchor map part inside a Hamiltonian induces the differential on the associated space.

In the twisted case, a covariant differential is induced. For example, the expression pro-

portional to qi inside (4.77) induces the covariant differential

Di = ∂i +Bim∂̃m

on k-forms over M and the pi-part induces the covariant differential

D̃i = ∂̃i − βmi∂m +Bnmβmi∂̃n

on k-forms over M̃ . Note that we chose a certain order of twists: first B-twist, then β-

twist. If we reverse the order of twists, it would change the way of parameterization of the

local expressions for the fluxes. Furthermore, we will see that the local expression for the

generalized vielbein in double field theory is encoded in the anchor map. Before doing this,

we introduce vielbeins in our setup.

We again introduce a frame bundle, in this case for the double space T [1]M̂ ⊕T ∗[1]M̂ .

Let (qa, pa, q̃a, p̃
a) be local coordinates on V [1] ⊕ V ∗[1] ⊕ Ṽ [1] ⊕ Ṽ ∗[1] corresponding to a

flat frame, where Ṽ = V = R
D are flat vector spaces. (qi, pi, q̃i, p̃

i) correspond to a general

frame on T [1]M̂ ⊕ T ∗[1]M̂ . The injection of the double space frame bundle is then given

by

ˇ̂
j : TM̂ ⊕ (TM̂ ⊕ T ∗M̂)⊕ V ⊕ V ∗ ⊕ Ṽ ⊕ Ṽ ∗

→T ∗[2]T [1]M̂⊕V [1]⊕V ∗[1]⊕Ṽ [1]⊕Ṽ ∗[1]
(
∂

∂xi
,
∂

∂x̃i
, xi, x̃i, dx

i, dx̃i, ∂i, ∂̃
i, ua, ua, ũa, ũ

a

)
7→ (ξi, ξ̃

i, xi, x̃i, q
i, q̃i, pi, p̃

i, qa, pa, q̃a, p̃
a).

Applying the B-, β- and vielbein twists to the untwisted double field theory Hamilto-

nian (4.63) and rewriting the expression leads to

Θ̃Bβe = e i
d ξiq

d − e i
d Bmiξ̃

mqd + eclξ̃
lpc − βmleclξmpc + eclBnmβmlξ̃npc

+ e i
d (∂i +Bim∂̃m)e j

a eakpjq
kqd + ecl(∂̃

l + βlm∂m + βlmBmn∂̃
n)e j

a eakpjq
kpc

+ (ξi + ∂ie
j
a eakpjq

k + ∂ie
j
a ebjq

apb)p̃
i + (ξ̃i + ∂̃ie j

a eakpjq
k + ∂̃ie j

a ebjq
apb)q̃i
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+
1

2
(∂iBjkp̃

i + ∂̃iBjkq̃i)e
j
a e k

b qaqb +
1

2
(∂iβ

jkp̃i + ∂̃iβjkq̃i)e
b
je

c
kpbpc

− ∂iBjkβ
kme

j
b ecmp̃iqbpc − ∂̃iBjkβ

kme
j
b ecmq̃iq

bpc +
1

2
∂iBjkβ

jmβknebmecnp̃
ipbpc

+
1

2
∂̃iBjkβ

jmβknebmecnq̃ipbpc

+
1

3!
Habcq

aqbqc +
1

2
F a
bcpaq

bqc +
1

2
Qbc

a q
apbpc +

1

3!
Rabcpapbpc, (4.78)

where we defined

Habc = 3(∇[aBbc] +B[a|m|∂̃
mBbc] + f̃mn

[a Bb|m|Bc]n), (4.79)

F a
bc = fa

bc −Hmnsβ
sieaie

m
b e n

c + ∂̃aBbc + f̃ad
b Bdc − f̃ad

c Bdb, (4.80)

Qbc
a = f̃ bc

a + ∂aβ
bc + f b

adβ
dc − f c

adβ
db +Hisrβ

shβrke i
a e

b
he

c
k

+Bam∂̃mβbc + ∂̃[bBaeβ
e|c] + 2B[a|ef̃

be
d] β

dc − 2B[a|ef̃
ce
d] β

db, (4.81)

Rabc = 3(β[a|m|∂mβbc] + f [a
mnβ

b|m|βc]n + ∂̃[aβbc] − f̃
[ab
d β|d|c]

+Bln∂̃
lβ[abβ|n|c] + ∂̃[aBedβ

|e|bβ|d|c] + f̃ [a|e|
n Bedβ

|n|b|β|d|c])

−Hmnsβ
miβnhβskeaie

b
he

c
k, (4.82)

Hmns = 3(∂[mBns] +B[m|l|∂̃
lBns]), (4.83)

f̃ab
c = 2e[am∂̃me

b]
je

j
c . (4.84)

For calculational details, we refer to appendix A. The classical master equation then leads

to the following relations between the fluxes in the double space

e i
[aBin∂̃

nHbcd] + e m
[a ∂|m|Hbcd] −

3

2
F e
[abH|e|cd] = 0, (4.85)

(e[an + e
[a
lβ

lmBmn)∂̃
nRbcd] + e

[a
lβ

|lm|∂mRbcd] −
3

2
Q[ab

e R|e|cd] = 0, (4.86)

(edn + edlβ
lmBmn)∂̃

nH[abc] − 3e i
a Bin∂̃

nF d
bc + edlβ

ln∂nH[abc]

−3e n
[a ∂nF

d
bc] − 3He[abQ

ed
c] + 3F d

e[aF
e
bc] = 0, (4.87)

−2(e[cn + e
[c
lβ

lmBmn)∂̃
nF

d]
[ab] − 2e i

[aBin∂̃
nQ

[cd]
b] − 2e

[c
lβ

|ln|∂nF[ab]

−2e n
[a ∂nQ

[cd]
b] +He[ab]R

e[cd] +Q[cd]
e F e

[ab] + F
[c
e[aQ

|e|d]
b] = 0, (4.88)

3(e[bn + e
[b
lβ

lmBmn)∂̃
nQcd]

a − e i
a Bin∂̃

nR[bcd]

+3e
[b
lβ

ln∂nQ
cd] − e n

a ∂nR
[bcd] + 3F [b

eaR
|e|cd] − 3Q[bc

e Q|e|d]
a = 0. (4.89)

Note that these equations have been derived by twist of the classical master equation

{ΘDFT,0,ΘDFT,0} ∼ ξiξ̃i.

Since the section condition has not been imposed before twisting, the twisted classical

master equation is not solved. In conclusion, the flux expressions (4.79)–(4.84) do not solve

the equations (4.85)–(4.89). However, upon solving the section condition, the projected

flux expressions solve the projected expressions, which then become Bianchi identities.
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For instance, by imposing (ξ̃i = 0, q̃i = 0, p̃i = 0), the set of equations condense to the

supergravity frame Bianchi identities presented above.

On the other hand, solving the section condition by (ξi = 0, qi = 0, pi = 0) projects to

winding frame parametrized flux expressions and their corresponding Bianchi identities. In

order to derive local flux expressions in the winding frame, we have to twist by a different

set of canonical transformations. We will come to this point below.

The double field theory formulation now brings us into the position to also discuss the

winding frame by solving the section condition by (ξi = 0, qi = 0, pi = 0). Then, we are

left with the untwisted winding frame Hamiltonian

ΘW,0 = ξ̃iq̃i. (4.90)

This Hamiltonian induces a de Rham complex in the winding frame. The classical master

equation is trivially solved.

From the perspective of the untwisted double field theory Hamiltonian, the standard

and winding frames are totally symmetric. The asymmetry between both frames is intro-

duced by the order of twists. Above, we made the choice to first twist by B and then twist

by β. This provided us with a certain parametrization of the fluxes. For instance, the R-flux

in the supergravity frame (denote R-space) has the form of 1
2 [β, β]S . In contrast to that,

the translation of the R-space into a winding frame perspective leads to the Hamiltonian

ΘW,R = ξ̃iq̃i +
1

3!
Rijk(x̃)q̃iq̃j q̃k, (4.91)

whose classical master equation in turn forces the R-flux to be in third de Rham

cohomology over M̂, R ∈ H3(M̃,R). This is analogous to having H ∈ H3(M,R) due to

the classical master equation of (4.5).

The H-twisted Hamiltonian that sees the H-flux from the winding frame is given by

ΘW,H = ξ̃iq̃i +
1

3!
Hijk(x̃)p̃

ip̃j p̃k. (4.92)

It is clear that from the winding frame perspective the H-flux plays the role of the R-flux

in standard space, which is resembled by this Hamiltonian.

The winding frame flux expressions are induced from

exp(−δẽ) exp(δẽ−1) exp(−δẽ) exp(−δβ̃) exp(−δB̃)ΘDFT,0

by solving the section condition via (ξi = 0, qi = 0, pi = 0), where

exp(δB̃) ≡ exp

(
1

2
Bij p̃

ip̃j
)
, exp(δẽ) ≡ exp(e i

a p̃
aq̃i),

exp(δβ̃) ≡ exp

(
1

2
βij q̃iq̃j

)
, exp(δẽ−1) ≡ exp(eaip̃

iq̃a).

The result is

Habc = 3(B[a|m∂̃mBbc] + f̃mn
[a Bb|m|Bc]n), (4.93)

F a
bc = Hmnsβ

sieaie
m
b e n

c + ∂̃aBbc + f̃ad
b Bdc − f̃ad

c Bdb, (4.94)
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Qbc
a = f̃ bc

a +Hisrβ
shβrke i

a e
b
he

c
k +Bam∂̃mβbc + ∂̃[bBaeβ

e|c]

+ 2B[a|ef̃
be
d] β

dc − 2B[a|ef̃
ce
d] β

db, (4.95)

Rabc = 3(∂̃[aβbc] − f̃
[ab
d β|d|c] +Bln∂̃

lβ[abβ|n|c] + ∂̃[aBedβ
|e|bβ|d|c]

+ f̃ [a|e|
n Bedβ

|n|b|β|d|c])−Hmnsβ
miβnhβskeaie

b
he

c
k, (4.96)

Hmns = 3B[m|l∂̃
lBns], (4.97)

f̃ab
c = 2e[am∂̃me

b]
je

j
c . (4.98)

By construction, they obey the following Bianchi identities,

e i
[aBin∂̃

nHbcd] −
3

2
F e
[abH|e|cd] = 0, (4.99)

(e[an + e
[a
lβ

lmBmn)∂̃
nRbcd] −

3

2
Q[ab

e R|e|cd] = 0, (4.100)

(edn + edlβ
lmBmn)∂̃

nH[abc] − 3e i
[aBin∂̃

nF d
bc] − 3He[abQ

ed
c] + 3F d

e[aF
e
bc] = 0, (4.101)

−2(e[cn + e
[c
lβ

lmBmn)∂̃
nF

d]
[ab] − 2e i

[aBin∂̃
nQ

[cd]
b] +He[ab]R

e[cd] +Q[cd]
e F e

[ab]

+F
[c
e[aQ

|e|d]
b] = 0, (4.102)

3(e[bn + e
[b
lβ

lmBmn)∂̃
nQcd]

a − e i
a Bin∂̃

nR[bcd] + 3F [b
eaR

|e|cd] − 3Q[bc
e Q|e|d]

a = 0. (4.103)

4.5 T-duality as canonical transformation

In order to discuss T-duality, we consider the anchor part of the double field theory Hamil-

tonian, which is twisted by B-, β and vielbein fields in the standard as well as in the

winding frame,

exp(−δẽ) exp(δẽ−1) exp(−δẽ) exp(−δβ̃) exp(−δB̃) exp(−δe) exp(δe−1)

× exp(−δe) exp(−δβ) exp(−δB)ΘDFT,0 = ΘDFT,A +ΘDFT,Flux.

The flux part ΘDFT,Flux is third order in (qa, pa, q̃a, p̃
a) and encodes the local expressions

of the H-, F -, Q- and R-fluxes. The anchor part ΘDFT,A can be rewritten using generalized

vielbeins

ΘDFT,A = e i
a ξi(q

a + p̃a) + e l
a Bliξ̃

i(qa + p̃a)

+ (eai + ealBimβml)ξ̃i(pa + q̃a) + ealβ
liξi(pa + q̃a)

= E i
a ξi(q

a + p̃a) + Eaiξ̃
i(qa + p̃a) + Ea

iξ̃
i(pa + q̃a) + Eaiξi(pa + q̃a), (4.104)

where we defined

E i
a ≡ e i

a , Eai ≡ e l
a Bli, Ea

i ≡ eai + ealBimβml, Eai ≡ ealβ
li. (4.105)

These vielbeins can be reassembled into a generalized vielbein

EA
M =

(
E i

a Eai

Eai Ea
i

)
=

(
e i
a e l

a Bli

ealβ
li eai + ealBimβml

)
. (4.106)

– 26 –



J
H
E
P
0
2
(
2
0
1
7
)
0
7
8

Introducing the vectors ΞM ≡ (ξi, ξ̃
i), QA ≡ (qa, pa) and P̃A ≡ (p̃a, q̃a), we can write the

anchor part in a manifest form

ΘDFT,A = EA
M (e,B, β)ΞM (QA + P̃A). (4.107)

We conclude, that T-duality as O(D,D;Z)-transformation relates the generalized vielbeins

associated to different backgrounds. A T-duality in xk-direction is the transformation

xk ↔ x̃k, ξk ↔ ξ̃k, qk ↔ q̃k, pk ↔ p̃k.

Let us do some example computations of T-duality on pre-QP-manifolds. The easiest

example concerns T-duality on an S1-isometry background without B- and β-fields, where

the circle has radius R. It is well known, that T-duality maps the radius R 7→ R′ = 1
R
.

The corresponding Hamiltonian is given by

ΘR = e 1
1 ξ1(q

1 + p̃1) + e11ξ̃
1(p1 + q̃1)

= Rξ1(q
1 + p̃1) +R−1ξ̃1(p1 + q̃1). (4.108)

We can project into the supergravity frame by taking (ξ̃1 = 0, q̃1 = 0, p̃1 = 0) leading to

ΘR = Rξ1q
1.

Applying the transformation described above, the Hamiltonian, which models the T-dual

background, is given by

Θ′
R−1 = R−1ξ1(q

1 + p̃1) +Rξ̃1(p1 + q̃1). (4.109)

In this case, the projection into the supergravity frame gives

Θ′
R−1 = R−1ξ1q

1.

We conclude, that this transformation effectively exchanges R ↔ R−1. Alternatively one

can derive all T-dual frames from the double field theory Hamiltonian directly by choosing

different solutions of the section condition. In the S1-isometry case we could have projected

into the winding frame directly by (ξ1 = 0, q1 = 0, p1 = 0) to get the result

ΘR = R−1ξ̃1q̃1.

In the next step, the dual variables have to be interpreted as the standard ones leading

again to (4.5). This reasoning works in general. If we start with an H-flux background,

then it looks like F -, Q- and R-flux depending on how we solve the section condition.

Finally, let us discuss the case of a three-torus in the directions i = 1, 2, 3 with flat

metric and H-flux H123 = 1. Its background data is given by

eai =



1 0 0

0 1 0

0 0 1


 , B12 = x3 = −B21, H123 = ∂3B12 = 1.
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We can write down the anchor part of this background

ΘH,A = e i
i ξi(q

i + p̃i) + e 1
1 B12ξ̃

2(q1 + p̃1) + e 2
2 B21ξ̃

1(q2 + p̃2) + ei iξ̃
i(pi + q̃i)

= ξi(q
i + p̃i) + x3ξ̃2(q1 + p̃1)− x3ξ̃1(q2 + p̃2) + ξ̃i(pi + q̃i). (4.110)

The flux expressions can be computed by plugging the background local information into

the flux part of the Hamiltonian associated to that background geometry.

We have two isometry directions x1 and x2. Let us T-dualize in x1-direction. The

result is

ΘF,A = ξi(q
i + p̃i)− x3ξ1(q

2 + p̃2) + ξ̃i(pi + q̃i) + x3ξ̃2(p1 + q̃1). (4.111)

From the coefficients of (4.111) we can read off, which fluxes have been turned on or off:

B̌ = 0, ěai =



1 x3 0

0 1 0

0 0 1


 , ǧij =




1 x3 0

x3 1 + (x3)2 0

0 0 1


 , f̌1

23 = 2ě m
[2 ∂mě

j
c] ě

a
j = 1.

This background describes a twisted torus. If we take the T-dual of (4.111) into direction

of x2 we arrive at

ΘQ,A = ξi(q
i + p̃i) + ξ̃i(pi + q̃i)− x3ξ1(p2 + q̃2) + x3ξ2(p1 + q̃1). (4.112)

Again, we can read off from the coefficients of the Hamiltonian the respective local field,

êai =



1 0 0

0 1 0

0 0 1


 , β̂12 = x3, Q̂12

3 = ∂3β̂
12 = 1.

We conclude, that the second T-dual turned the metric twist into the non-geometric po-

tential β. Finally, we can take the T-dual in x3-direction leading to

ΘR,A = ξi(q
i + p̃i) + ξ̃i(pi + q̃i)− x̃3ξ1(p2 + q̃2) + x̃3ξ2(p1 + q̃1). (4.113)

In this case, the former standard coordinate x3 turned into its dual x̃3 and vice versa so that

ēai =



1 0 0

0 1 0

0 0 1


 , β̄12 = x̃3, R̄123 = ∂̃3β̄12 = 1.

In general, we can write down any background geometry in terms of the local fields e, B

and β and compute the T-dual background geometry in terms of new fields e′, B′ and β′

by using the procedure presented above. We conclude, that we can discuss T-duality by

making sole use of canonical transformations on pre-QP-manifolds of degree two.

T-duality is the change of the solution to the section condition on the pre-QP-manifold

(M̂, ω,Q). To each solution of the section condition, there is an associated Courant al-

gebroid. T-duality is then a map between different Courant algebroids realized via the

respective QP-manifolds associated to different solutions, T : M1 → M2.
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5 Conclusion and discussion

In the first part of this paper, we constructed a Hamiltonian on a QP-manifold of degree

two, which incorporates the local expressions of NS H-flux, F -flux and non-geometric Q-

and R-fluxes in terms of vielbeins, B-field and β-bivector. We discussed the cohomological

properties of some special cases of this Hamiltonian and deduced the flux Bianchi identities

from the classical master equation. Then, we defined the operations on the resulting

Courant algebroid using the derived bracket formalism.

In the second part of this paper, we extended our analysis to the double field theory

setting by starting from a pre-QP-manifold. Again, by twist of the associated Hamilto-

nian we could derive all local expressions for the fluxes in the double field theory setting.

Through projection to the winding frame we deduced the associated local expressions for

all fluxes in winding space and their Bianchi identities.

We discussed the formerly introduced Hamiltonian of the Poisson Courant algebroid,

a Courant algebroid on a Poisson manifold, in light of our results. The Poisson Courant

algebroid as a model for trivector R-flux turned out to live in the double field theory

winding frame deformed by the Poisson structure.

In the third part, we rewrote the anchor part of the Hamiltonian in a O(D,D)-covariant

form that resembles the double field theory generalized vielbein. Based on this observation

we proposed a representation of T-duality as a canonical transformation between graded

symplectic manifolds and computed two simple examples of T-duality in this formulation.

The failure of the double field theory Hamiltonian to obey the classical master equation

is measured by the section condition. The conclusion is that the algebra of double field

theory does not constitute a Courant algebroid. The projection of the twisted or non-

twisted double field theory Hamiltonian onto the standard or winding sector infers the

twisted or non-twisted Courant algebroid structure.

DFT Hamiltonian

pre-QP-manifold

Fluxes (4.79)–(4.84)

Standard frame

ξ̃i=0

<
Winding frame

ξi=0

>

Courant algebroid =========T-duality========⇒ Courant algebroid

Fluxes (4.36)–(4.41) Fluxes (4.93)–(4.98)

Bianchi identities (4.45)–(4.49) Bianchi identities (4.99)–(4.103)

Operations (4.50), (4.60) Operations

The twisted operations of the Courant algebroid in the winding frame remain to be

computed by derived brackets. Further topics of future investigation include associated

current algebras and topological sigma models. Applications to gravity models can also

be thought of. Due to the recent interest in U-duality analogues of double field theory, an
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extension of this approach to incorporate exceptional duality groups is wished for. Several

directions are under exploration.

Let us finally comment on the global issues [39–42] of double field theory and how

the QP-manifold approach can be used to tackle these issues. Since double field theory

introduces new coordinates, it is fundamental to analyze how they are relate to a patching

of the associated double spaces. There are several ansätze and we refer to above-mentioned

references for further reading. From the perspective of the pre-QP-manifold presented in

this paper, we have a description of the infinitesimal symmetries of double field theory. It is

known, that in some cases, the symplectic Lie n-algebroid associated with a QP-manifold, or

symplectic NQ-manifold, can be integrated to a symplectic Lie n-groupoid [43–46]. Having

the QP-manifold of infinitesimal symmetries at hand, its integration may lead to a higher

groupoid of finite symmetries, which can be used to find a prescription of patching double

field theory via higher gerbe-like objects. Note that the classical master equation of the

associated (pre-)QP-manifold is broken and therefore the feasibility of such an integration

process has to be assessed with care.
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A Twisted double field theory Hamiltonian in geometric frame

The twist of the double field theory Hamiltonian by B-field, β-field and vielbein in the

geometric frame leads to

exp(−δe) exp(δe−1) exp(−δe) exp(−δβ) exp(−δB)ΘDFT,0

= e i
d ξiq

d − e i
d Bmiξ̃

mqd + eclξ̃
lpc − βmleclξmpc + eclBnmβmlξ̃npc

+ e i
d (∂i +Bim∂̃m)e j

a eakpjq
kqd + ecl(∂̃

l + βlm∂m + βlmBmn∂̃
n)e j

a eakpjq
kpc

+
1

2

[
−Bin∂̃

iBrs + ∂nBrs

]
e n
a e r

b e s
c qaqbqc

+

[
e i
b (∂i +Bim∂̃m)e j

c eaj +
1

2
∂̃iBmn+

+

(
Blm∂̃lBns − ∂mBns +

1

2
Bls∂̃

lBmn −
1

2
∂sBmn

)
βsi

]
eaie

m
b e n

c paq
bqc

+

[
ecl(∂̃

l + βlm∂m + βlmBmn∂̃
n)e j

a ebj +
1

2
∂iβ

hk −
1

2
Bli∂̃

lβhk + ∂̃hBinβ
nk

−
1

2

[
−Bli∂̃

lBrs + ∂iBrs −Bls∂̃
lBir + ∂sBir +Blr∂̃

lBis − ∂rBis

]
βshβrk

]
e i
a e

b
he

c
kq

apbpc
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+

[
1

2
∂̃iβhk −

1

4
∂lβ

ihβlk −
1

4
βli∂lβ

hk +
1

4
Bln∂̃

lβihβnk +
1

4
Blnβ

ni∂̃lβhk −
1

2
∂̃iBmnβ

nhβmk

+
1

3!
(−Bln∂̃

lBrs+∂nBrs−Bls∂̃
lBnr+∂sBnr+Blr∂̃

lBns−∂rBns)β
siβrhβnk

]
eaie

b
he

c
kpapbpc

+ (ξi + ∂ie
j
a eakpjq

k + ∂ie
j
a ebjq

apb)p̃
i + (ξ̃i + ∂̃ie j

a eakpjq
k + ∂̃ie j

a ebjq
apb)q̃i

+
1

2
(∂iBjkp̃

i + ∂̃iBjkq̃i)e
j
a e k

b qaqb +
1

2
(∂iβ

jkp̃i + ∂̃iβjkq̃i)e
b
je

c
kpbpc

− ∂iBjkβ
kme

j
b ecmp̃iqbpc − ∂̃iBjkβ

kme
j
b ecmq̃iq

bpc +
1

2
∂iBjkβ

jmβknebmecnp̃
ipbpc

+
1

2
∂̃iBjkβ

jmβknebmecnq̃ipbpc. (A.1)
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[28] D. Lüst, T-duality and closed string non-commutative (doubled) geometry,

JHEP 12 (2010) 084 [arXiv:1010.1361] [INSPIRE].

[29] D. Mylonas, P. Schupp and R.J. Szabo, Membrane σ-models and quantization of

non-geometric flux backgrounds, JHEP 09 (2012) 012 [arXiv:1207.0926] [INSPIRE].

[30] D. Roytenberg, Courant algebroids, derived brackets and even symplectic supermanifolds,

math/9910078.

– 32 –

http://dx.doi.org/10.1142/S0217751X15500979
https://arxiv.org/abs/1408.2649
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.2649
http://dx.doi.org/10.1007/JHEP12(2013)083
https://arxiv.org/abs/1306.4381
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4381
http://dx.doi.org/10.1007/JHEP06(2013)101
https://arxiv.org/abs/1304.1472
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.1472
https://arxiv.org/abs/math/0401221
http://inspirehep.net/search?p=find+EPRINT+math/0401221
https://arxiv.org/abs/1106.1747
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.1747
http://dx.doi.org/10.1088/1126-6708/2009/04/075
https://arxiv.org/abs/0807.4527
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.4527
http://dx.doi.org/10.1007/JHEP04(2016)170
https://arxiv.org/abs/1511.03425
http://inspirehep.net/search?p=find+EPRINT+arXiv:1511.03425
http://dx.doi.org/10.1007/s00220-004-1115-6
https://arxiv.org/abs/hep-th/0306062
http://inspirehep.net/search?p=find+EPRINT+hep-th/0306062
http://dx.doi.org/10.4310/ATMP.2005.v9.n5.a4
https://arxiv.org/abs/hep-th/0412268
http://inspirehep.net/search?p=find+EPRINT+hep-th/0412268
http://dx.doi.org/10.1142/S0217751X15501821
https://arxiv.org/abs/1503.05720
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.05720
http://dx.doi.org/10.1007/s00220-015-2443-4
https://arxiv.org/abs/1406.3601
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.3601
https://arxiv.org/abs/1611.02772
http://inspirehep.net/search?p=find+EPRINT+arXiv:1611.02772
http://dx.doi.org/10.1063/1.4931137
https://arxiv.org/abs/1412.5966
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.5966
http://dx.doi.org/10.1088/1751-8113/44/38/385401
https://arxiv.org/abs/1106.0316
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.0316
http://dx.doi.org/10.1088/1751-8113/44/1/015401
https://arxiv.org/abs/1010.1263
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.1263
http://dx.doi.org/10.1007/JHEP12(2010)084
https://arxiv.org/abs/1010.1361
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.1361
http://dx.doi.org/10.1007/JHEP09(2012)012
https://arxiv.org/abs/1207.0926
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.0926
https://arxiv.org/abs/math/9910078


J
H
E
P
0
2
(
2
0
1
7
)
0
7
8

[31] P. Bouwknegt, Lectures on cohomology, T-duality and generalized geometry,

Lect. Notes Phys. 807 (2010) 261 [INSPIRE].

[32] N. Ikeda, Lectures on AKSZ σ-models for physicists, arXiv:1204.3714 [INSPIRE].

[33] Z.-J. Liu, A. Weinstein and P. Xu, Manin triples for Lie bialgebroids, J. Diff. Geom. 45

(1997) 547 [dg-ga/9508013] [INSPIRE].

[34] Y. Kosmann-Schwarzbach, Quasi-, twisted, and all that... in Poisson geometry and Lie

algebroid theory, in The Breadth of Symplectic and Poisson Geometry, Festschrift in honor of

Alan Weinstein, Progr. Math. 232 (2005) 363 [math/0310359].
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