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Abstract: We introduce a new basis for the gauge-invariant Hilbert space of lattice gauge

theory and loop quantum gravity in (2 + 1) dimensions, the fusion basis. In doing so, we

shift the focus from the original lattice (or spin-network) structure directly to that of the

magnetic (curvature) and electric (torsion) excitations themselves. These excitations are

classified by the irreducible representations of the Drinfel’d double of the gauge group, and

can be readily “fused” together by studying the tensor product of such representations. We

will also describe in detail the ribbon operators that create and measure these excitations

and make the quasi-local structure of the observable algebra explicit. Since the fusion basis

allows for both magnetic and electric excitations from the onset, it turns out to be a precious

tool for studying the large scale structure and coarse-graining flow of lattice gauge theories

and loop quantum gravity. This is in neat contrast with the widely used spin-network

basis, in which it is much more complicated to account for electric excitations, i.e. for

Gauß constraint violations, emerging at larger scales. Moreover, since the fusion basis

comes equipped with a hierarchical structure, it readily provides the language to design

states with sophisticated multi-scale structures. Another way to employ this hierarchical

structure is to encode a notion of subsystems for lattice gauge theories and (2 + 1) gravity

coupled to point particles. In a follow-up work, we have exploited this notion to provide a

new definition of entanglement entropy for these theories.
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1 Introduction

Yang-Mills theory and general relativity are prime examples of theories with gauge sym-

metries, which have become indispensable in modern physics. The Ashtekar formulation of

canonical general relativity [1, 2] brought the two theories even closer. Roughly speaking,

this was achieved by including the group of local rotations, as an extra gauge symmetry

beside space-time diffeomorphisms. This allowed to incorporate lattice gauge theory tech-

niques in the realm of background independent field theories and led to the development

of loop quantum gravity [3, 4].

Lattice gauge theories allow for non-perturbative quantization schemes, which are

needed in particular for the understanding of quantum chromodynamics as well as quan-

tum gravity. The success of such schemes relies on a clever choice of discrete observ-

ables [5, 6] transforming nicely under the gauge symmetries.1 These observables are based

on holonomies, built out of the gauge connection, and on fluxes, built out of the electric

field and — in non-Abelian gauge theories — out of the connection, too.

1The issue is, however, much more involved for the space-time diffeomorphism group [7–9].
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The major drawback of gauge formulations is, however, that it still needs the identi-

fication of a complete set of mutually independent gauge invariant degrees of freedom and

observables. This is particularly important when it comes to the quantum theory. A gauge

invariant basis for lattice field theory, allowing a convenient description of the gauge in-

variant Hilbert space, is the so-called spin-network basis [10]. Such a basis has found wide

applications in both lattice gauge theories and loop quantum gravity. In particular, it solved

the problem of over-completeness of the Wilson loop observables, as encoded by the Mandel-

stam identities, which plagued the early developments of loop quantum gravity, see e.g. [11].

The main purpose of the present work is to introduce another basis of the gauge-

invariant Hilbert space: the “fusion basis”. Among its desirable properties, one of the

most important ones is that in this basis coarse-graining of states simplifies considerably

with respect to an approach based on the spin-network basis [12, 13]. This feature makes it

the natural candidate to study the large scale dynamics of loop quantum gravity in terms

of coarse-graining and renormalization [9].

The amenability of the fusion basis to coarse-graining is due to the fact that in non-

Abelian gauge theories, effective electric excitations (or torsion excitations, in a gravity

context) emerge at large scales even if they are not present at the lattice scale [14]. Since

these excitations are not present from the onset in the spin-network basis, one needs to

devise extension of the “standard” framework. See [15] for proposals. In contrast, the fusion

basis improves this state of things in a twofold way: on the one hand it allows from the onset

for both magnetic (curvature) and electric (torsion) excitations, and on the other it can be

designed to have a notion of coarse-graining directly built in its combinatorial structure.

The fusion basis we introduce here is adapted from the theory of topological phases

in (2 + 1) dimensions. We will therefore restrict here to (2 + 1) dimensional lattice gauge

theories and loop quantum gravity. For a strategy to generalize the fusion basis to (3 + 1)

dimensions, see [16]. Furthermore, another simplification we introduce in order to focus

on the main ideas without bothering about technical details, is that we will consider only

a finite gauge or structure group G. We will comment on the application to Lie groups in

the discussion section, 7.

Let us briefly describe and compare the main features of the spin-network and fusion

basis. The spin-network basis diagonalizes at each link of the lattice the quadratic Casimir

operator built from the electric fluxes. These operators are gauge invariant and coincide

with the electric contribution to the Yang-Mills Hamiltonian. For a non-Abelian structure

group, additional, gauge-invariant, information on the electric fluxes is encoded at the

nodes, in so-called intertwiners. Thus, the spin-network basis provides a polarization of

the state space based on the flux observables.2

The fusion basis, on the other hand, diagonalizes Wilson loop operators, i.e. traces of

holonomies associated to closed paths. In this sense, the fusion basis provides a polarization

dual to the spin-network one. To avoid over-parametrization, one does, however, not

include all possible Wilson loops supported on the lattice, but only a certain hierarchically

ordered set.
2Flux observables do actually not commute in non-Abelian gauge theories. In [17], this is made explicit

and a polarization is constructed, in which fluxes compose by non-commutative multiplication.
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A crucial feature of non-Abelian gauge theories is that this set of Wilson loops does

not define a maximal set of commuting observables. In fact, it is necessary to also consider

certain flux observables, based again on closed loops, that capture the electric (or torsion)

degrees of freedom arising at scales larger than the lattice one.3 Maybe surprisingly, these

large scale data are not already encoded in the multilevel Wilson loop observables. The

fusion basis is designed to encode both Wilson loop and large scale flux observables in a

unified framework.

In fact, it turns out that the fusion basis diagonalizes closed “ribbon” operators, which

directly classify the magnetic (curvature) and electric (torsion) excitations. This notion

of excitation has to be understood with respect to some vacuum state. Here, the relevant

one is the so-called BF vacuum. Taking its name from the BF topological field theory, of

which it is a physical state, this vacuum state is a gauge invariant state peaked sharply on

vanishing curvature, i.e. on a flat connection. It is then not surprising, that the fusion basis

framework bares a close relationship with the theory of extended topological quantum field

theories on the mathematical side, and with topological phases and their defect excitations

on the condensed matter side. In particular, BF theory can be described by so-called

extended4 string net models [18–20].

The classification of the excitations comes with an interesting mathematical structure,

the Drinfel’d double D(G) of the gauge group G. For this reason we will introduce and

review various basic facts about the Drinfel’d double and its representation theory. This is

in fact the fundamental mathematical tool behind the definition of the fusion basis, since

the irreducible representations of D(G) characterize the excitations of the model, while

their tensor product describes their “fusion”.

After having introduced the fusion basis and the ribbon operators characterizing it, we

will give an overview of various applications. Firstly, we will discuss how to use the fusion

basis to easily design multi-scale states. It is interesting to compare the tools developed

here to the closely related philosophy underlying the introduction of tensor network states,

which provide an Ansatz for the ground state of Yang-Mills theories [21].5 Secondly, using

the muli-scale states, we describe a coarse-graining scheme based on the fusion basis. At

this point of the discussion, the advantage in using the fusion basis should be obvious:

coarse-graining is directly given by the fusion of excitations, which are in turn naturally

encoded in the fusion basis itself.

In a follow up work, we plan to discuss entanglement entropy in non-Abelian lattice

gauge theories, a topic which recently attracted increased attention [22–27]. Specifically,

we will make use of the fusion basis to provide a new definition of entanglement entropy

for such theories, and to compute it for a certain family of states.

3We already mentioned this effect when we discussed coarse-graining.
4Here the attribute ‘extended’ describes the addition of non-gauge-invariant group-representation-space

indices, encoding the choice of local reference frame, which are not present in the ‘pure’ string net models.
5In the context of (2 + 1)dimensional gravity, on the other hand, the BF vacuum already provides the

physical state of the theory, i.e. the state invariant under full diffeomorphism symmetry. Fusion basis

states, then, encode multi-particle states coupled to gravity. Therefore, this basis could be a useful tool to

understand their coupled dynamics.
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Let us conclude this introduction with a note. In this paper, we will rely on a lot

of previous work coming both from the context of topological phases with defects and

from extended topological field theories. This material will be translated and adapted

to our purposes. The reformulation of lattice gauge theory and loop quantum gravity in

terms of extended topological field theory is parallel to [28–30]. The fusion basis has been

constructed already for string-net models [18]. An explicit definition for SU(2)q, at q root

of unity, was given in [31], which is easily generalizable to modular fusion categories (see

also [28]). The fusion basis for more general fusion categories appeared — albeit only

implicitly — in [32].

Our characterization of basic excitations is adapted from arguments6 in [34–36] which

were developed also in the context of string-net models. Here, although we make use of

the same idea of gluing states, we rephrase it in a context more amenable for applications

to lattice gauge theory and loop quantum gravity. For this reason, we develop our ar-

guments for the BF representation [37, 38] and work in the holonomy polarization. This

will considerably facilitate the interpretation of the excitations generated and measured by

ribbon operators in terms of standard gauge theory and loop quantum gravity observables.

It will also help us to provide an interpretation of the corresponding operators defined for

the Turaev-Viro based representations [28], where the operators are constructed via more

abstract arguments within the flux (spin) polarization.

The Drinfel’d double of (finite) groups and their representations have been discussed

in [39, 40]. Ribbon operators were introduced by Kitaev [41] and studied in great detail by

Bombin et al. [42] in the context of a lattice gauge theory model. Our discussion, however,

will rather be based on a lattice-independent description of the ribbon operators. While we

believe that this can be fruitful in the study of Yang-Mills theory, it is definitely necessary

for application to background independent theories, such as loop quantum gravity.

This paper is organized as follows. In section 2 we formulate the BF representation

in (2 + 1)D. This provides also an interpretation of lattice gauge theories as topological

field theories with defects, making the fusion basis available for these cases. Then, we give

the main argument for the appearance of the Drinfel’d double D(G), in section 3; in this

section we also review the representation theory of the Drinfel’d double, and fix the relevant

notations for the rest of the paper. Section 4 is the core of the paper, where the fusion

basis is introduced. In section 5, we introduce the open ribbon operators that generate the

fusion basis by acting on the BF vacuum, as well as closed ribbon operators that project

onto the fusion basis states. Finally, in section 6, we discuss possible applications of the

fusion basis, firstly for the multi-scale design of states, and secondly for coarse-graining.

The paper has also a number of appendices, where technical calculations are relegated and

further details on the BF representation are provided.

2 BF representation in (2 + 1) dimension

In lattice gauge theories, observables can be given in terms of holonomies (or Wilson

lines), encoding the magnetic degrees of freedom, and fluxes, encoding the electric degrees

of freedom. In (2 + 1) dimension both holonomy and flux observables test the continuum

6See [33] for alternative derivations.
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field along a one-dimensional path embedded in the spatial manifold. On a fixed graph (or

lattice) one has only access to a restricted set of such holonomies and fluxes, that is those

that can be composed from the elementary holonomies and fluxes associated to the links of

the graph itself. In this way different graphs Γ lead to different Hilbert spaces HΓ, hence

providing a representation of the holonomies and fluxes based on Γ.

One can however consider also all possible graphs at once (or at least a suitable set of

graphs allowing for infinite refinement) by constructing a so-called inductive limit of the

family of Hilbert spaces {HΓ}Γ. This allows for the representation of holonomies and fluxes

based on arbitrary paths (or again based on a suitable set of paths). Such an inductive

limit construction led to the Ashtekar-Lewandowski-Isham (ALI) representation [43–46]

of the kinematical7 observable algebra in loop quantum gravity. Here the selection of a

(kinematical) vacuum state is essential, which in the case of the ALI representation is

given by a state for which the expectation values vanishes for all operators composed from

fluxes. This implies that the resulting Hilbert space supports states which have vanishing

flux expectation values almost everywhere. As the fluxes encode the spatial metric the

states describe therefore an almost everywhere degenerate geometry.

This was one of the motivations for the construction of an alternative representa-

tion based on a different — actually dual — vacuum, sharply peaked on vanishing cur-

vature [14, 37, 38]. This vacuum is a solution of a topological field theory known as BF

theory and describes in lattice gauge theory the weak coupling limit. BF theory plays also

an important role in the gravity context: it is itself a formulation of (2 + 1) dimensional

gravity, and moreover, in (3 + 1) dimensions, it is the starting point for the construction of

spin-foam models, a covariant version of loop quantum gravity [47]. A quantum deformed

version [28], based on the Turaev-Viro topological theory8 [48], describing (2 + 1) dimen-

sional Euclidean gravity with positive cosmological constant, is more directly formulated

as an extended topological field theory. Here the notion of defect excitations, supported in

(2 + 1) dimensions on punctures, is essential.

In this section we will shortly explain the BF representation for loop quantum gravity

and a related understanding of lattice gauge theory as an extended topological field the-

ory. The BF representation in [14, 37, 38] has been based on an inductive limit involving

triangulations and their dual lattices. We will review this notion and then lay out an al-

ternative construction, similar to [28], which is nearer to the spirit of extended topological

field theory. In the latter case the graphs or lattices have a less fundamental role. Instead

one uses punctures (or ‘defects’) which carry the excitations. These defect excitations are

to be understood as deviations from a vacuum or alternatively violations of constraints,

which characterize the vacuum. This vacuum is here given as the BF vacuum, i.e. a state

without curvature (magnetic excitation) or torsion (electric excitation).

These considerations will also allow to understand lattice gauge theory as an extended

topological field theory, that is a topological field theory with a (here fixed) number of

defects allowed.

7That is the observables are not completely space-time diffeomorphism invariant.
8This representation is so far only applicable to (2+1) dimensions, for a strategy to generalize to (3+1)

dimensions, see [16].
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2.1 Triangulation-based BF representation: review and limitations

The BF representation is based on a so-called inductive limit of Hilbert spaces. The

inductive limit is defined via a family of Hilbert spaces labelled by elements of a partially

ordered (and directed) set. Each Hilbert space of this family can be understood to capture

a certain subset of the degrees of freedom of the continuum, given by the inductive limit.

In this sense a given Hilbert space of this family defines also a discretization.

In [14, 37, 38], such an inductive limit was based on the refinement of triangulations

of a given 2D hypersurface Σ. Specifically, given Σ and a triangulation ∆ thereof, the

configuration space underlying the Hilbert space H∆ is given by the moduli space of flat

connection on Σ \∆0, that isMflat(Σ \∆0). Here ∆0 is the set of 0-simplices, i.e. vertices,

of the triangulation.

As is well known, Mflat(Σ \ ∆0) can be fully described by considering the set of

holonomies9 along the links of a graph Γ dual to the triangulation. Clearly, the flat-

ness conditions ensures that the specific choice of dual graph is irrelevant. Then, H∆ is

given by the gauge invariant functions of such holonomies, equipped with a specific inner

product. For a well-defined inductive limit, the measure on the underlying gauge group G
has to be discrete, even if G is a Lie group [37, 38].

It is often convenient to choose a marked point on the manifold, the ‘root’, at which

gauge invariance is relaxed. Fully gauge-invariant functions can be re-obtained via a gauge

averaging procedure. The advantage of having a root is clear if G is a Lie group: the gauge

averaging procedure over G equipped with a discrete measure would in general lead to

many subtleties [38]. Physically, the root can be interpreted as a reference frame internal

to the system.

So far we have described the structure of the Hilbert space H∆ on a fixed triangulation.

What is missing is the inductive limit construction of the continuum Hilbert space HΣ.

Consider two triangulations ∆ and ∆′, such that ∆′ is a refininement of ∆, i.e. ∆ ≺ ∆′.

Then, the inductive limit is based on the definition of embedding maps

ι∆,∆′ : H∆ ↪→ H∆′ . (2.1)

Roughly speaking, in the BF representation, the embedding maps multiply the states in

H∆ with a set of delta-functions — hence the relevance of the discrete measure on the

group — enforcing the triviality of the holonomy around every additional cycle present in

Γ′ but not in Γ. Notice that there is one such cycle for every element of ∆′0 \ ∆0. This

defines HΣ. However, we also need to define operators O compatible with the refinement

procedure. This is easily done by requiring,

O∆′ ◦ ι∆,∆′ = ι∆,∆′ ◦ O∆. (2.2)

In [14, 38], such operators have been constructed and fully characterized. They are of two

types. Firstly, there are holonomy operators along root-based closed cycles of Γ. These

9We use the word ‘holonomy’ for the group-valued path-ordered exponential of a connection along a path

between two points on the manifold. It transforms covariantly upon gauge transformations at its starting

and ending points, and it is invariant upon any other gauge transformation.
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operators are labelled by a representation of G and act by multiplication in the obvious way.

Secondly, there are so-called ‘exponentiated flux operators’. In (2+1)D, they are associated

to edges of the triangulation ∆ itself. They act by translating the holonomies associated

to the links of Γ dual to the relevant edges of ∆. Therefore, they act as exponentiated

derivate operators, hence their name.10 Notice that the holonomy translation by the action

of the exponentiated fluxes induces curvature defects at some vertices of the triangulation.

In other words, it introduces non-trivial monodromies around cycles of Γ dual to some

vertices of ∆. To obtain a state with a curvature defect at an arbitrary position x ∈ Σ,

one just has to first refine ∆ to ∆′ in such a way that x ∈ ∆′0. Finally, we stress that the

operators just described, and properly defined in [14, 38], are either gauge invariant or lead

to gauge violations confined at the root.

This last remark is important because in the present work we will allow torsion degrees

of freedom to be carried by the vertices of the triangulation. Which means that more general

gauge-invariance violations will be allowed than in the setting presented above. Although

to avoid technicalities we will do this in the context of a finite group gauge theory, this

generalization is conceptually of crucial importance for gravity (which is, of course, based

on a Lie group). This is because, spinning particles induce torsion violation [49, 50]. The

relevant operators, creating this more general type of excitations, have been introduced —

albeit in a slightly different manner with respect to ours — by Kitaev, in [41]. He called

them ‘ribbon operators’. In the context of (2 + 1)D gravity, ribbon operators crucially

provide Dirac observables [51]. We draw from this further motivation for the present work,

in that we want on the one hand to give a lattice-independent definition of ribbon operators,

and on the other to use their eigenvalues to fully characterize a basis of the quantum gravity

Hilbert space on Σ.

2.2 An alternative description of the BF representation

Here we present an alternative formulation of the BF-representation. Its advantages are

multiple: first, its language is closer to that of the Turaev Viro based representation [28].

Second, it translates a range of techniques used in the context of string-net models [18, 32]

to an holonomy-based formalism. Finally, it provides a lattice-independent description

of the Kitaev model [41], which can in turn be mapped onto an ‘extended’ string-net

model [19, 20].

The basic idea behind this alternative formulation is to replace the triangulation, its

vertices and its dual graph, with a less rigid structure provided by punctured surfaces and

general graphs on them. Introducing an equivalence class among graphs allows for a first

step towards the continuum limit. We say ‘a first step’ because in this paper we will work

with the defects’ locations, i.e. the punctures, kept fixed. The second, and last, step to

the continuum limit would be to consider the inductive limit in which one allows for the

addition of new punctures. A possible way to achieve this is sketched in appendix A.

Let us provide all the ingredients needed for the construction of this alternative de-

scription of the BF representation.

10In the ALI representation of loop quantum gravity, gravitational fluxes act as derivatives on the

holonomies.
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Finite group. As mentioned above, we will work with a finite gauge group G, with

|G| <∞ elements. Some of our results can be generalized to Lie groups, in both the BF and

ALI representations. This would, however, require lengthy (measure theoretical) technical

discussions. Here, we rather prefer to emphasize the underlying algebraic structures and the

many analogies to the TV representation. Indeed, one can understand the q-deformation

at root of unity characteristic of the TV representation, as in a certain sense turning SU(2)

into a finite (quantum) group SU(2)q. Spin-foam models with finite groups are used to

study the behaviour of spin-foams under coarse graining [13, 66–69], and we hope that the

techniques developed here will be useful also in this context. We denote general elements of

G by G,H, g, u, . . . and variations thereof, and the identity element by e. The delta-function

on the group is normalized so that δ(g, h) = 1 if g = h and vanishes otherwise.

Punctured surface. In our analysis we will for simplicity exclusively work in the case

in which Σ is the two-sphere S. Fix S to have a finite number |p| of marked points,

called punctures {p}. Define Sp to be the surface S with one disc removed around each

puncture and with one point marked on the boundary of each such discs. We will call these

points ‘puncture-nodes’. This structure is needed to describe torsion defects and later-on to

define the gluing of states along punctures. Now, consider finite directed graphs embedded

into this surface. The graphs can have ‘open links’, i.e. links ending in a one-valent node,

provided this node is a puncture-node. We require all other nodes to be two- or tri-valent.11

This is just a choice, that leads to a triangulation as dual complex and furthermore makes

a translation to string nets (via a standard group Fourier transform) more immediate. This

restriction can however be easily dropped.

Among all the possible graphs, there is a special subclass of ‘minimal graphs’. Minimal

graphs on a punctured sphere are defined by the following properties: (i ) they capture the

first fundamental group of the punctured sphere, π1(Sp), (ii ) they have no contractible

faces, that is all their faces enclose a puncture, (iii ) they have no two-valent node, and

(iv ) they have one open link associated to each puncture, see figure 1 for examples. Given

Sp, minimal graphs are by no means unique. From our definition, it is not difficult to see

that a minimal graph on Sp>1 must have exactly L = 1 + 2(p− 2) + 3(p− 1) = 5p− 6 links,

and N = 1
3(2L− p) internal nodes.

Before moving to the next point, notice that the puncture-nodes play the all-important

role of making possible the gluing of surfaces along the boundaries of the punctures’ discs.

Following Ocneanu’s insight [34, 35], we will show how this operation unveils a wealth of

algebraic structure hidden in the theory.

Hilbert space Hp. The configuration space underlying the BF representation is, exactly

as before, given by the moduli space of flat connections on S minus some points (or,

equivalently, discs). In this case, this reads Mflat(Sp). This space is now completely

characterized by the holonomies along the links of a minimal graph Γ. Hence, we define

the Hilbert space HΓ to be given by the set of gauge invariant functions {ψ} on such a

11Two-valent nodes are needed only as intermediate steps of the refining procedure.
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Figure 1. Examples of minimal graphs on S2 and S3, respectively.

space of holonomies:

ψ : GL → C, (2.3)

where L denotes the number of links of the minimal graph. Importantly, we require the

gauge group to act only at the internal nodes, and not at the puncture-nodes. Indeed,

imposing gauge invariance at the puncture-nodes would result in the trivialization of the

dependence of the state from the group element associated to the only link ending there.

In the following, it will become apparent that avoiding this trivialization is crucial to im-

plement both torsion excitations and a consistent cutting-and-gluing scheme of the states.

More specifically, a gauge transformation is parametrized by a choice {un}n ∈ GN

where n denotes an internal node and N their number. It acts on a holonomy configuration

{gl} ∈ GL as

{un}n . {gl}l = {u−1
t(l) gl us(l)}l , (2.4)

where s(l) and t(l) denote the source and target nodes of the link l, respectively.12 Finally,

the inner product in HΓ is defined by

〈ψ1, ψ2〉 =
1

|G|L
∑
{gl}

ψ1{gl}ψ2{gl}. (2.5)

To obtain a Hilbert space Hp associated directly to Sp, we need to show how to identify

various HΓ′ for different choices of (possibly non-minimal) graphs Γ′ in Sp. We do this

by declaring two states based on different graphs as equivalent if they are related by a

combination of the four operations we are now going to describe. The idea is that via a

minimal graph one can already characterize Mflat(Sp) completely: it gives access to the

holonomies associated to all the non-contractible cycles (those around the punctures), as

well as giving the holonomy (parallel transport) between any couple of punctures. Since the

connection is locally flat, the path underlying each holonomy can be smoothly deformed.

Also, we can refine the graph, provided we ensure that the holonomies associated to the

contractible cycles are all trivial, and that gauge invariance is preserved. As a consequence

of gauge invariance, we can freely remove two-valent nodes. Likewise for a non-minimal

graph we can remove links, if the resulting graph still captures π1(Sp). Formally, the

operations are:

12In the equation above, we left understood that us(l) ≡ e if s(l) is a puncture-node. Similarly for t(l).
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i) Link deformation — A link can be (smoothly) deformed as long as no other link,

node or puncture is crossed. Two states ψ,ψ′ based on two graphs Γ,Γ′ related by

a link deformation are defined to be equivalent if they are described by the same

function, i.e. if ψ({g}) = ψ′({g}) as functions on GL.

ii) Link orientation flip — After flipping the orientation of a link l → l−1, the state ψ′

equivalent to ψ is

ψ′(gl−1 , · · · ) = ψ(g−1
l , · · · ). (2.6)

iii) Link subdivision/union — After the subdivision of a link l → l2 ◦ l1, the state

ψ′(gl1 , gl2 , · · · ) equivalent to ψ(gl, · · · ) is

ψ′(gl1 , gl2 , · · · ) = ψ(gl2gl1 , · · · ). (2.7)

iv) Face removal/addition — After the addition of a new link l, the graph gains a new

closed face (that is a contractible cycle) f with holonomy hf (we are assuming that

any link subdivision necessary to the addition of this new link has already been

performed). Then the state ψ′({gl′}) on the new graph which is equivalent to the

original ψ({gl}) is

ψ′({gl′}) =
√
|G| δ(e, hf )ψ({gl}). (2.8)

where the factor
√
G in (2.8) has been introduced to ensure that equivalent states

have the same norm.

At this point, it is a simple exercise to show that the inner product is independent of

the choice of representative in the equivalence class described above. This concludes the

construction of Hp.
Notice that the only information that is common to all HΓ, and therefore that is

proper to Hp itself, is the embedding of the punctures. This mirrors the properties of the

states in Hp: excitations are confined to the punctures and the state describe locally-flat

gauge-invariant connections away from the punctures.

To obtain a continuum Hilbert space allowing for excitations at arbitrary positions in

Σ we have to consider the inductive limit over Hilbert spaces Hp, where p stands not only

for the number of punctures (denoted by |p|) but also for their embedding information.

For a sketch on how to achieve this, we refer to appendix A.

All the construction presented here can be recast in a spin-network language, essentially

by decomposing the states ψ via the Peter-Weyl theorem onto a graph-dependent basis

labeled by representation-theoretic data. In this formulation one would recover the so-

called extended string nets [19, 20], and the conditions above would be rephrased in a

completely algebraic and combinatorial language.
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3 From Ocneanu’s tube algebra to the Drinfel’d double

So far, we have been describing states in a graph-dependent and redundant fashion. Graph

independence is then shown to be recovered thanks to the introduction of appropriate

equivalence relations. It would be, however, much more efficient to characterize the states

directly, with no reference to any choice of graph. To this end we turn our focus on the

punctures and the excitations they carry. Let us start by analyzing the simplest cases, Sp
with |p| = 1, 2, 3.

Clearly, S1 cannot carry excitations, since π1(S1) is trivial. Indeed, a minimal graph

on S1 has one link l surrounding the puncture, and one link l′ starting at n = s(l) = t(l)

and ending at the puncture-node; now, contractibility of l imposes ψ(gl, gl′) = δ(e, gl)f(gl′),

while gauge invariance at n requires f to be constant.

Thus, the simplest non-trivial case is that of the 2-punctured sphere, S2, which is

topologically just a cylinder. The study of states on the cylinder is the subject of this

section. The next-simplest case is S3. The three-punctured sphere is a fundamental object

in 2D topology. It goes under the names of ‘trinions’, or — for obvious topological reasons

— ‘pair-of-pants’. The analysis of states on S3 will be the subject of the next section

(section 4).

The reason why S3 is such a fundamental object is because out of it, by the procedure

of successive gluing, one can produce any Sp.13 Therefore, S2, S3 and the gluing procedure

are all that there is to know. Let us hence start by discussing cylinders.

3.1 Characterizing the excitations

Cylinders play a special role in the characterization of ‘basic’ excitations. Simply put, the

reason is that cylinders can be glued ‘around a puncture’ without changing the topology

of Sp. Therefore, via the gluing operation, states on a cylinder can also be interpreted as

maps acting on Hp. By successively gluing cylinders onto one-another, it is straightforward

to define a multiplication between cylinder states. In this way, states on the cylinder define

an algebra, called the Ocneanu ‘tube-algebra’.

But what is the physical interpretation of this algebra? By visualizing the cylinder as

an annulus of space, one can think of the gluing operation as the addition of ‘more-space’

around an excitation. Topological excitations relevant to 3D gravity should be stable under

this operation. Therefore, they are characterized by idempotents of the tube algebra, or

— equivalently — by its indecomposable (representation) modules [34–36]. As pointed out

by Ocneanu [34, 35], this allows the interpretation of such idempotents as viable boundary

conditions.

In the next subsection, we will show explicitly how the tube algebra is nothing but the

Drinfel’d double algebra D(G) [52]. Thus, it follows immediately that states on the cylinder

are labeled by irreducible representations ρ of D(G). Also, from the above discussion, we see

that any puncture on Sp should be labeled by such a ρ. Hence we conclude that excitations

in 3D Euclidean gravity can be classified in terms of irreducible representation ρ of D(G).

13Actually S3 is enough to build any Σp, although the gluing procedure for the states becomes more

subtle in this case. We will not discuss this in the present paper.
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In the case G = SU(2), the two labels defining such a ρ can be directly interpreted as the

mass and the spin of the excitation.

This result is not new, see e.g. [53–56]. However, in previous treatments, it was a

found as a consequence of the presence of group-valued constraints (moment maps).14 The

gluing of cylinder states seems, however, to provide so far the simplest and most direct

argument.

Of course, the next important question is to understand how different ‘local’ states

defined at each puncture, eventually fit together. Not surprisingly, the answer lies in the

study of the tensor product of representations, i.e. in the fusion algebra of Rep(D(G)). This

will be the content of section 4.

3.2 Two-punctured sphere

A minimal graph Γ2 on S2 possesses four links {li}i=1,...,4. We fix the compositions l−1
2 ◦ l4

to be a closed loop winding once around the cylinder, and l3 ◦ l2 ◦ l1 to go from the ‘source’

puncture to the ‘target’ puncture. Finally, label the links of the graph with group elements

{gli ∈ G}. For brevity we set gli = gi:

= = . (3.1)

A state in HΓ2 is given by a gauge invariant state

ψS2(g1, g2, g3, g4) = ψS2(ug1, vg2u
−1, g3v

−1, vg4u
−1), (3.2)

for any u, v ∈ G. Taking advantage of the gauge invariance of ψS2 , choosing v = g3 and

u = g3g2, we can fix g2 = e = g3. A basis of HΓ2 is then given by the gauge-fixed states

ψS2
G,H(g1, g4)|g.f. = |G|3/2δ(G, g1)δ(H, g4) ≡ |G|3/2 . (3.3)

where |G|3/2 is a normalization factor chosen for later convenience. In the above dia-

gram, dashed lines represent gauge fixed group elements, while solid lines carry the group

variables. In fully gauge-covariant form, these basis states read

ψS2
G,H(g1, g2, g3, g4) = |G|3/2δ(G, g3g2g1)δ(H, g3g4g

−1
2 g−1

3 ). (3.4)

This basis can readily proved to be orthogonal:〈
ψS2
G,H , ψ

S2

G̃,H̃

〉
=

1

|G|4
∑

g1,...,g4

ψS2
G,H(g1, . . . , g4)ψS2

G̃,H̃
(g1, . . . , g4) = |G|δ(G, G̃)δ(H, H̃).

14AR thanks Karim Noui and Florian Girelli for a useful discussion at this purpose.
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Notice that the states ψS2
G,H are not normalized. The reason for this choice will be made

clear later. Henceforth, we will often keep the {gi} implicit, and denote the basis states

simply ψS2
G,H .

A general element of H2 can then be written as

ψS2 =
∑

G,H∈G
α(G,H)ψS2

G,H . (3.5)

In particular, we define the (unnormalized) S2 vacuum state to be

ψS2
0 = δ(e, g4g

−1
2 ) 1(g1) 1(g3) , (3.6)

where 1(·) denotes the constant function evaluating to 1 on any group element. Therefore,

ψS2
0 is the following linear combination of basis states,

ψS2
0 = |G|−3/2

∑
G∈G

ψS2
G,e with 〈ψS2

0 , ψS2
0 〉 = |G|−1. (3.7)

3.3 Ocneanu’s tube algebra

As we have already mentioned, a fundamental property of punctured manifolds is the

possibility of gluing them together. Let us denote the gluing operation with a star, ?.

Then, denoting Σg
p the Riemann surface of genus g and p punctures,

Σg
p ? Σh

q = Σg+h
p+q−2. (3.8)

Clearly, gluing a cylinder S2 = Σ0
2 to any other Σg

p gives back Σg
p. At the level of the

graphs Γgp and Γhq , the gluing is defined by identifying the marked points associated to

the punctures along which the gluing is performed and matching the two edges which end

at these marked points. The marked points then become a single two-valent node n in

Γgp ? Γhq . Even if the two original graphs on Σg
p and Σh

q were minimal, the resulting graph

on Σg+h
p+q−2 is not. Indeed, it contains an extra closed face f , i.e. a face surrounding no

puncture. Therefore, if we want the gluing to be mirrored at the level of the state spaces,

this face must be associated with a trivial holonomy. This suggests to define first the gluing

operation on basis states based on graphs via

? : HΓ ⊗HΓ′ ↪→ F Γ?Γ′
P−→ HΓ?Γ′

ψΓ ⊗ φΓ′ 7→ ψΓ · φΓ′ 7→ ψΓ ? φΓ′ ' P(ψΓ · φΓ′),
(3.9)

and then to extend this by linearity to arbitrary states. The ' before the last term in

the diagram above signals that equivalence relations (section 2.2) are generally used at this

point. Here, FΓ?Γ′ is simply the space of functions on Γ?Γ′, and the first operation is trivial.

On the other hand P is a projector, and it is itself the combination of two operations:

P = Pflat ◦ Pgauge (3.10)

the first being a projection onto gauge invariant states at the newly created two-valent

node n of Γ?Γ′, and the second a projection onto states carrying trivial holonomies around

the newly created closed face f .
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To clarify the above construction, let us consider the important case of gluing two

cylinders to one-another. In this case, S2 ?S2 = S2, and the gluing defines a multiplication

operation on H2. Notice that this is not a standard structure on a Hilbert space. In

particular, thanks to the gluing operation, H2 carries a representation of algebra, named

Ocneanu’s tube algebra.

Consider two minimal states

ψS2
1 ({gi}), ψS2

2 ({g′i}) ∈ H2. (3.11)

Then, following the prescriptions above, we obtain

(ψS2
1 · ψ

S2
2 )({gi, g′i}) = (3.12)

where the gray face is the new closed face f on which the flatness constraint has to be

imposed. The node n is the one where the links l3 and l′1 meet. Gauge invariance at n can

be imposed by group averaging:

Ψ̃({gi, g′i}) :=
(
Pgauge(ψ

S2
1 · ψ

S2
2 )
)

({gi, g′i}) (3.13)

=
1

|G|
∑
k∈G

ψS2
2 (g′1k

−1, g′2, g
′
3, g
′
4)ψS2

1 (g1, g2, kg3, g4). (3.14)

Now, the flatness constraint at the new closed face f is readily imposed as

ψS2
1 ? ψS2

2 =
(
PflatΨ̃

)
({gi, g′i}) = δ(e, hf )Ψ̃({gi, g′i}) (3.15)

where hf = g3g4g
−1
2 g−1

3 g′−1
1 g′−1

4 g′2g
′
1. The state so constructed is not defined on a minimal

graph. However, it is in HΓ?Γ′ and hence via the equivalence relation described above, can

be identified with a state in H2.

Let us be even more specific, by gluing two basis states of H2. Graphically:

ψS2
G′,H′ ? ψ

S2
G,H = |G|3 ? ' Pflat ◦ Pgauge

(
|G|3 ·

)

but, on the other hand, the linked cylinder state is explicitly given by

· = =
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= δ(G, g3g2g1)δ(H, g3g4g
−1
2 g−1

3 )δ(G′, g′3g
′
2g
′
1)δ(H ′, g′3g

′
4(g′2)−1(g′3)−1) (3.16)

Hence, applying the projectors and rearranging the delta functions, we obtain

Pflat ◦ Pgauge

(
|G|3 ·

)
=

= |G|3 1

|G|
∑
k∈G

δ(G′, g′3g
′
2g
′
1k
−1)δ(g′2g

′
1g3g4g

−1
2 g−1

3 (g′1)−1(g′4)−1)

× δ(G′G, g′3g′2g′1g3g2g1) δ(H, (G′)−1H ′G′) δ(H ′, g′3g
′
4(g′2)−1(g′3)−1)

Now, we appeal to the equivalence relations of section 2 to remove the dependence on g4 by

removing the corresponding link (and associated face, see equation (2.8)). We then undo

three link subdivisions and declare l′1 ◦ l3 ◦ l2 ◦ l1 to be the new link l̃1. Hence, we finally

obtain the following crucial result15

ψS2
G′,H′ ? ψ

S2
G,H = |G|3/2δ(H, (G′)−1H ′G′) = δ((G′)−1H ′G′, H)ψS2

G′G,H′ . (3.17)

This multiplication law, together with the usual Hilbert space linear structure, defines the

Ocneanu tube algebra. As a matter of fact, the ? multiplication we have just constructed

is exactly the multiplication law of the Drinfel’d double algebra D(G). The present con-

struction can be readily generalized to the case where m ≥ 1 links are allowed to end at

the puncture, see appendix C.

3.4 Drinfel’d double of a finite group

Drinfel’d (or quantum) doubles of a finite group [52] are examples of quasi-triangular Hopf

algebras (or quantum groups). Here we will present the basic properties relevant for our

discussion. More details can be found e.g. in [57, 58].

As a linear space, the Drinfel’d double D(G) is isomorphic to

D(G) ' CG ⊗ F(G), (3.18)

15Note that there we could have made different choices to simplify the final form of the state, but all

choices have led to the same result.
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where F(G) is the Abelian algebra of linear complex-valued functions on G, and CG is the

complex group algebra. Both F(G) and CG can be made into Hopf algebras and moreover

as Hopf algebras are dual to each other.

Due to the isomorphism (3.18) we can state a basis of D(G) by {G⊗ δH}G,H∈G where

δH is the delta function peaked on H such that δH(•) = δ(H, •). To have a more symmetric

notation, we will denote such basis elements as [G,H] = G⊗ δH .

The Drinfel’d double being a Hopf algebra, it comes equipped with a series of operations

and maps satisfying certain compatibility axioms. This is a standard construction, and we

refer e.g. to [57, 58] for the complete list. Here, we just provide a brief reminder of some

of its structures.

i) Multiplication — It is denoted with a ? and is defined by

? : D(G)⊗D(G) −→ D(G) (3.19)

([G̃, H̃], [G,H]) 7−→ [G̃, H̃] ? [G,H] = δ(H̃, G̃HG̃−1)[G̃G, H̃].

It is associative and its identity element is

I =
∑
H∈G

[e,H]. (3.20)

Note, this multiplication does not come from the direct product of the algebras F(G)

and CG, but it rather has a semi-direct product structure where the CG factor acts

on the F(G) factor.

ii) Comultiplication — This is needed for defining the action of D(G) on tensor product

representations, and in D(G) it is non trivial:

∆ : D(G) −→ D(G)⊗D(G) (3.21)

[G,H] 7−→ ∆[G,H] =
∑
X,Y ∈G
XY=H

[G,X]⊗ [G, Y ].

Importantly, this operation is co-associative, i.e.

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆, (3.22)

where we introduced the identity map on the double, id(•) = •.

ii) Antipode — We will not make essential use of it in this paper, but since it is what

generalizes the inverse element to the context of quasitriangular Hopf algebras, it is

worth recalling its definition

S([G,H]) = [G−1, G−1H−1G]. (3.23)

The defining relation for the antipode, which qualifies it as the generalization of the

notion of inverse, is

(id ? S) ◦∆ = (S ? id) ◦∆ = ε, (3.24)

where ε is a linear map on D(G), known as the counit, defined by ε([G,H]) = δ(H, e)I.
Notice the role played by both the multiplication and the comultiplication in the

above identity.
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As our notation suggests, the ?-multiplication corresponds to the gluing product in-

troduced in the previous section. The ?-product of two basis states of the form ψS2
G,H is

a different basis state (of the same form). However, if we want to follow the idea that

physical excitations must be stable under the operation of gluing cylinders on the top of

them, we are motivated to look for an alternative basis, labeled by ρ, such that

ψρ′ ? ψρ ∝ δ(ρ, ρ′)ψρ. (3.25)

Mathematically speaking, we look for a basis of D(G) that is idempotent under the ?-

multiplication. Since the Drinfel’d double algebra D(G) is semisimple, the idempotent

states we are looking for are directly provided by the irreducible representations of the

Drinfel’d algebra. By this, we mean that the ρ-index above labels irreducible representa-

tions of the Drinfel’d algebra.

3.5 Irreducible representations of D(G)

Irreducible representations {ρ} of the Drinfel’d double D(G) are constructed as induced

representations [39, 40]. This is possible because the multiplication operation

[G̃, H̃] ? [G,H] = δ(H̃, G̃HG̃−1)[G̃G, H̃] (3.26)

can be roughly read as ‘G̃ multiplies G, while acting on H’.

Since G̃ acts on H by conjugation, a fundamental ingredient to build the {ρ} is the set

of conjugacy classes of G. The property of being conjugated to each other is an equivalence

relation:

H ∼ H ′ iff ∃G ∈ G, H ′ = GHG−1. (3.27)

Therefore, the group G is partitioned by the set of its conjugacy classes G =
⊔
C (to not

burden the notation even further we do not introduce an index labeling different conjugacy

classes). Denote the elements of C by ci with i = 1, . . . , |C|. And say that c1 ∈ C ⊂ G is

the ‘representative’ of the conjugacy class C.

Now, having fixed a representative, we can define NC to be the stabilizer (‘little group’)

of c1, i.e.

NC = {G ∈ G|Gc1G
−1 = c1}. (3.28)

We now want to define ‘standard’ transformations that bring the representative c1 to any

other element of C. Clearly, there is no canonical choice in G. And therefore we need to

make a set of choices, we will call {qi} = QC :

ci = qic1q
−1
i . (3.29)

Note that q1 can always be taken to be the identity, q1 = e. Note also that

QC ' G/NC (3.30)

and therefore |QC | = |C| exactly as desired.
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We also introduce a ‘label function’ kC that associates to any ci ∈ C their ‘number’

withing C,

kC(ci) = i. (3.31)

The last ingredient for constructing {ρ} is the set of unitary irreducible representations

(‘irreps’) of NC , {R}. Denote the matrix elements of Ĝ ∈ NC in the representation R, by

DR
M ′M (Ĝ) (3.32)

where M,M ′ are the ‘magnetic indices’ which take dR different values, dR being the di-

mension of the irrep R. The corresponding characters are

χR(Ĝ) = tr(DR(Ĝ)). (3.33)

A useful consequence of Schur’s orthogonality relations is that the (Kronecker) delta func-

tion on the group can be decomposed on the characters as

δ(e, •) =
1

|NC |
∑
R

dRχ
R(•) . (3.34)

The idea is then to separate the action of each element G ∈ G into its action within C

and NC . For this we unfortunately need to introduce some extra notation. Fixing a G ∈ G
and a label i in C, we define the index i′ via i′ = kC(GciG

−1), i.e.

ci′ = GciG
−1. (3.35)

Now, this allows us to construct out of G and i an element Ĝi ∈ NC as

Ĝi = q−1
i′ Gqi. (3.36)

Indeed, this follows by the comparison of the first and last terms of the following series of

equalities

qi′c1q
−1
i′ = ci′ = GciG

−1 = Gqic1q
−1
i G−1. (3.37)

At this point we have all is needed to introduce the irreducible representations {ρ} of

D(G). These are labeled by a conjugacy class C and an irrep R of NC : ρ = (C,R). The

relevant vector space on which ρ acts is given by the linear (complex) span of the following

vectors (in a ket-bra notation):

V (C,R) = Span
{
|ci,M〉

∣∣∣ i = 1, . . . , C; M = 1, . . . , dR

}
. (3.38)

The action of the Drinfel’d double D(G) algebra on V (C,R) is thus defined by the following

action on the above basis:

DC,R([G,H])|ci,M〉 = δ(H,GciG
−1)

∑
M ′

DR
MM ′(Ĝi)|GciG−1,M〉. (3.39)

Equivalently, the matrix elements of DC,R([G,H]) are

DC,R
i′M ′,iM ([G,H]) = δ(H, ci′) δ(ci′ , GciG

−1)DR
M ′M (Ĝi). (3.40)

This is then extended linearly to the whole vector space.
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We can interpret such a definition as follows. First one acts with the adjoint action of

G on ci ∈ C. However G contains also a part in NC , and this part acts via DR on the R

representation index. Then one projects out the H component |H, ·〉.
The representations DC,R can also be extended to elements of the Drinfel’d double of

the more general form

α =
∑

G,H∈G
αG,H G⊗ δH , (3.41)

by linearity, i.e.

DC,R(α) =
∑
G,H

αG,Hδ(H, ci′) δ(ci′ , GciG
−1)DR

M ′M (Ĝi)

=
∑
G

αG,ci′ δ(ci′ , GciG
−1)DR

M ′M (Ĝi). (3.42)

Often, it will be not necessary to have a grasp on the precise value of the magnetic

indices. For this reason we introduce the short-hand notation

Dρ
I′,I(•) ≡ D

C,R
i′M ′,iM (•), (3.43)

with ρ ≡ C,R, I ′ ≡ i′M ′ and I ≡ iM .

3.5.1 Some properties of the irreducible representations of D(G)

The dimension of the representation ρ = (C,R) is given by

dρ = dC,R = dR · |C|. (3.44)

The following consequence of Schur’s relation will be useful∑
R

d2
R = |NC |. (3.45)

Using the two equations above, it is easy to check that dim(D(G)) = |G|2 =
∑

C,R d
2
C,R.

From the contragradient representations of NC , we deduce an expression for the complex

conjugate of the matrix elements

DC,R
i′M ′,iM ([G,H]) = δ(H, c′i)δ(ci, G

−1c′iG)DR
MM ′(q

−1
i G−1qi′)

= DC,R
iM,i′M ′([G

−1, G−1HG]). (3.46)

Note that the element of D(G) appearing in the last term fails to be the antipode S([G,H])

of [G,H]. Therefore, the above formula does not define the representation dual to (C,R).

Anyway, such a notion of dual representation will not be necessary for our discussion.

Finally, the characters of the irreducible representations labeled by (C,R) are defined

as χC,R(•) ≡ tr(DC,R(•)) and they satisfy the property

χC,R([G,H]) =

{
χR(ĜkC(H)) if H ∈ C and G−1H−1GH = e

0 otherwise
(3.47)

where recall that kC(ci) is the label function kC(ci) = i.
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Using this remark, it is easy to check the following character orthogonality relation [39]

1

|G|
∑
G,H

χρ1([G,H])χρ2([G,H]) = δρ1,ρ2 . (3.48)

Other important relations which directly descend from the definitions above are the

following (proofs are relegated to appendix B). First of all the fact that Dρ([G,H]) actually

defines a representation of the Drinfel’d double star product:

Dρ
I′I([G̃, H̃] ? [G,H]) =

∑
I′′

Dρ
I′I′′([G̃, H̃])Dρ

I′′I([G,H]) (3.49)

Then, come the orthogonality relations

1

|G|
∑
G,H

Dρ1
I′1I1

(
[G,H]

)
Dρ2
I′2,I2

(
[G,H]

)
=
δρ1,ρ2
dρ1

δI′1,I′2δI1I2 , (3.50)

as well as the completeness relations∑
ρ

∑
I′,I

dρ D
ρ
I′I([G,H])Dρ

I′I([G̃, H̃]) = |G|δ(G, G̃)δ(H, H̃). (3.51)

3.5.2 Diagonalizing the star-product

We have now all the ingredients needed to diagonalize the star product in the sense of

equation (3.25). Consider the following change of basis in H2:
ψS2
ρ,I′I =

1

|G|
∑
G,H

√
dρ D

ρ
I′I([G,H]) ψS2

G,H

ψS2
G,H =

∑
ρ

∑
I′,I

√
dρ D

ρ
I′I([G,H]) ψS2

ρ,I′I

(3.52)

Then, the new basis {ψρI′I} diagonalizes the star-product:

ψS2

ρ2,I′2I2
? ψS2

ρ1,I′1I1
=
δρ1,ρ2√
dρ1

δI2,I′1 ψ
S2

ρ1,I′2I1
. (3.53)

This crucial relation is proven in appendix B.4. Recall that according to the discussion

at the end of the previous section, the importance of such a basis is that it is labeled

by the physically ‘stable’ properties of the punctures. In other words ρ = (C,R) can be

interpreted as the ‘charge’ carried by the puncture.

With a little stretch of the formalism, we could in principle consider G = SU(2).

Then, interpreting the punctures as point particles, C would correspond to the mass of

the particle, as measured by the (curvature) conical defect it induces, and R ∈ N would

correspond to its spin, i.e. the torsion defect.
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3.5.3 Tensor products of representations and the Clebsch-Gordan series

In order to consider the tensor product of two representations, it is necessary to make

use of the comultiplication ∆ to ‘redistribute’ the Drinfel’d double elements to the various

factors:16

(DC1,R1 ⊗DC2,R2)(∆[G,H]) =
∑
X,Y ∈G
XY=H

(DC1,R1 ⊗DC2,R2)([G,X]⊗ [G, Y ]). (3.54)

The fact that the tensor product of representations can be itself decomposed onto irre-

ducible representations, leads to the notion of fusion category. More precisely, the fusion

structure relies on the existence of ‘fusion rules’ of the form

(C1, R1)⊗ (C2, R2) =
⊕
C3,R3

NC1C2C3
R1R2R3

(C3, R3). (3.55)

with the fusion coefficients NC1C2C3
R1R2R3

being integers. If NC1C2C3
R1R2R3

∈ {0, 1}, the fusion category

is said to be multiplicity free. Henceforth, we assume for notational convenience that the

fusion category of D(G) is multiplicity free, thus avoiding extra multiplicity indices. The

subsequent derivations, however, could be easily generalized. A non-zero fusion coefficient

signifies the presence of a non-trivial recoupling channel, which translates into the existence

of an invariant subspace in the tensor product of the corresponding three representation

spaces. Using the orthonormality of the characters, we obtain the following expression for

the fusion rules [39]

NC1C2C3
R1R2R3

=
1

|G|
∑

G,H∈G
tr
(
(DC1,R1 ⊗DC2,R2)(∆[G,H])

)
χC3,R3([G,H]) (3.56)

=
1

|G|
∑
G∈G

∑
H′∈C3
H∈C1

χC1,R1([G,H])χC2,R2([G,H−1H ′])χC3,R3([G,H ′]). (3.57)

Now, we look for a relation between the matrix elements of the representations ρ1⊗ρ2 =

(C1, R1) ⊗ (C2, R2) and the matrix elements of its irreducible components ρ3. From our

hypothesis, there exists a unitary map U [ρ1,ρ2] : ⊕ρ3∈ρ1⊗ρ2Vρ3 → Vρ1 ⊗ Vρ2 which satisfies

the relation

Dρ1
I′1,I1
⊗Dρ2

I′2,I2
(∆[G,H]) =

∑
ρ3

∑
I3,I′3

U [ρ1,ρ2]
I′1I
′
2,ρ3I

′
3
Dρ3
I′3I3

([G,H]) (U [ρ1,ρ2]†)ρ3I3,I1I2 , (3.58)

where the matrix indices are given by the composed labels I ′1I
′
2 and ρ3I

′
3. The map U

corresponds to the analogue of the Clebsch-Gordan coefficients for the Drinfel’d double

and therefore we will make use of the following notation

Cρ1ρ2ρ3I1I2I3
= U [ρ1,ρ2]

I1I2,ρ3I3
. (3.59)

16In the case of the tensor product of representations of a group, the comultiplication is in principle

needed as well. However, in this case, it is trivial (∆(g) = g⊗g, for g a group element) and passes therefore

unnoticed.
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Note that relaxing the multiplicity-free assumption of the fusion category would lead to

extra indices for the Clebsch-Gordan coefficients. As for the fusion rules, we can use the

orthogonality of the representation matrices, to obtain

1

|G|
∑
G

H1,H2

Dρ1
I′1I1

([G,H1])Dρ2
I′2I2

([G,H2])Dρ3
I′3I3

([G,H1H2]) =
1

dρ3
Cρ1ρ2ρ3
I′1I
′
2I
′
3
Cρ1ρ2ρ3I1I2I3

, (3.60)

from which one can compute explicitly the values of the Clebsch-Gordan coefficients (no-

tice that there is an ambiguous overall phase, exactly as in the SU(2) Clebsch-Gordan

coefficient).

From the unitarity of U , it follows the following orthogonality and completeness relation

for the Clebsch-Gordan coefficients:∑
I1,I2

Cρ1ρ2ρI1I2I
· Cρ1ρ2ρ

′

I1I2I′
= δρ,ρ′δI′I , (3.61)

and ∑
ρ

∑
I

Cρ1ρ2ρ
I′1I
′
2I
· Cρ1ρ2ρI1I2I

= δI′1I1δI′2,I2 . (3.62)

(One can easily prove this equation — see appendix B.5 — using the completeness of

the Dρ
I′I .)

Furthermore from the defining equation (3.58) one can derive the following invariance

property of the Clebsch-Gordan coefficients∑
H1,H2

∑
I1,I2,I3

Dρ1
I′1I1

([G,H1])Dρ2
I′2I2

([G,H2])Dρ3
I′3I3

([G,H1H2]) Cρ1ρ2ρ3I1I2I3
= Cρ1ρ2ρ3

I′1I
′
2I
′
3
. (3.63)

This is shown in appendix B.6. Note that in this formula the summations over H1 and H2

(not present in the analogue formula for a group instead of a double) have the following

origin: one sum over H1 and H2 restricted to H1H2 = H fixed, comes from the coproduct

∆(H), while the sum over all possible H is there because we are considering the Drinfel’d

double identity element I =
∑

H [e,H].

We can now use this invariance property to show that the Clebsch-Gordan coefficients

automatically implement both flatness and gauge invariance. Consider the following con-

traction of the Clebsch-Gordan coefficients∑
I1,I2,I3

Dρ1
I′1I1

([G1, H1])Dρ2
I′2I2

([G2, H2]) Cρ1ρ2ρ3I1I2I3
Dρ3
I3I′3

([G3, H3])

=
∑
H̃1,H̃2

∑
I1,I2,I3

∑
I′′1 ,I

′′
2 ,I
′′
3

Dρ1
I′1I1

([G1, H1])Dρ2
I′2I2

([G2, H2])Dρ3
I3I′3

([G3, H3])

×Dρ1
I1I′′1

([G, H̃1])Dρ2
I2I′′2

([G, H̃2])Dρ3
I3I′′3

([G, H̃1H̃2]) Cρ1ρ2ρ3
I′′1 I
′′
2 I
′′
3
, (3.64)

where on the r.h.s. we used equation (3.63), which holds for any G ∈ G. The summations

over I1, I2, I3 implement the ?-multiplication in the Drinfel’d double, leading to three delta
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functions. Two of these can be solved for H̃1 and H̃2, thus resolving also the sum over

these group elements. We finally obtain∑
I1,I2,I3

Dρ1
I′1I1

([G1, H1])Dρ2
I′2I2

([G2, H2]) Cρ1ρ2ρ3I1I2I3
Dρ3
I3I′3

([G3, H3])

=
∑

I1,I2,I3

δ(H3, G
−1
1 H1G1G

−1
2 H2G2)

×Dρ1
I′1I1

([G1G,H1])Dρ2
I′2I2

([G2G,H2]) Cρ1ρ2ρ3I1I2I3
Dρ3
I3I′3

([G−1G3, G
−1H3G]), (3.65)

with G ∈ G an arbitrary group element. When we will use the Clebsch-Gordan coefficients

to construct the fusion basis, the “extra” delta function on the r.h.s. of equation (3.65) will

ensure flatness of the state, while the fact that equation (3.65) holds for arbitrary G shows

the gauge invariance of the construction.

This concludes the set of preliminaries that we needed before getting to the core of

the paper.

4 The fusion basis

In this section, we make use of the notions introduced previously to construct a new basis for

the Hilbert space Hp. The idea is to label the punctures by its physical charges ρ = (C,R),

and to use the recoupling theory of D(G) to ‘put these charges together’ into singlet states

on Sp. The result of this construction is a basis with a direct physical interpretation, which

mathematically resembles a spin-network basis where G has been replace by D(G). Thanks

to the use of recoupling theory at the level of the defect charges, this basis will also trivialize

the notion of merging — or coarse-graining — defects. Heuristically, we can imagine the

merging of defects by replacing two punctures by a single one defined by a disc containing

the two puncture-discs to be merged:

→ (4.1)

In practice, such a merging will be realized by performing a fusion of the corresponding

irreducible representations. For this reason, we will refer to this basis as the fusion basis

and label the corresponding basis states with an f. Since any surface Sp can be decomposed

into trinions (a.k.a. ‘pair of pants’), it is only necessary to define the states ψS2
f and ψS3

f ,

as well as a procedure to glue them to one another.

4.1 The two-punctured sphere

In the case of S2, we have already introduced the fusion basis (although without naming

it this way). Consider the {ψS2
G,H} basis of H2,

ψS2
G,H(g1, . . . , g4) = |G|3/2δ(G, g3g2g1)δ(H, g3g4g

−1
2 g−1

3 ). (4.2)
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Then, the following change of basis defines the fusion basis {ψS2
f [ρ, I ′I]}:

ψS2
f [ρ, I ′I] =

1

|G|
∑
G,H

√
dρ D

ρ
I′I([G,H]) ψS2

G,H

ψS2
G,H =

∑
ρ

∑
I′,I

√
dρ D

ρ
I′I([G,H]) ψS2

f [ρ, I ′I]
(4.3)

With the above normalizations, the fusion basis can be shown to be orthonormal in H2:〈
ψS2
f [ρ, I ′I] , ψS2

f [ρ̃, Ĩ ′Ĩ]
〉

=
1

|G|6
√
dρdρ̃

∑
g1,...,g4

∑
G,H

G̃,H̃

ψS2
G,H(g1, . . . , g4)ψS2

G̃,H̃
(g1, . . . , g4)Dρ

I′I([G,H])Dρ̃

Ĩ′Ĩ
([G̃, H̃])

= δρ,ρ̃δIĨδI′Ĩ′ (4.4)

The calculation above uses the explicit form of ψS2
G,H and the orthogonality relation (3.50).

Similarly, one can explicitly show that the basis is complete in H2:∑
ρ

∑
I′I

ψS2
f [ρ, I ′I]({g})ψS2

f [ρ, I ′, I]({g̃})

= |G|2δ(g3g2g1, g̃3g̃2g̃1)δ(g3g4g
−1
2 g−1

3 , g̃3g̃4g̃
−1
2 g̃−1

3 ), (4.5)

where once more use was made of the explicit form of ψS2
G,H , as well as of the complete-

ness (3.51).17

4.2 The three-punctured sphere

Using the Clebsch-Gordan coefficients which play the role of intetwiners between the ir-

reducible representations of D(G), one can now construct the fusion basis states for the

3-punctured sphere. Once again, we start from the basis in the [G,H]-picture. After

gauge-fixing, a basis of HS3 is given by

ψS3
G1,H1;G2,H2

({g}, {g′})|g.f. = |G|3 · =ψS2
G1,H1

({g})|g.f.ψ
S2
G2,H2

({g′})|g.f..

(4.6)

where we borrowed the notation of equation (3.3). The definition on a non-gauge-fixed

state is readily recovered by reintroducing the other group elements and averaging over

the gauge action at the five internal nodes. Now, we perform the transformation to the

[ρ, I ′I]-picture on each of the S2 factors:

ψS3

ρ2,I′2I2;ρ1,I′1I1
=

1

|G|2
∑
G1,H1
G2,H2

√
dρ2dρ1 D

ρ2
I′2I2

([G2, H2]) Dρ1
I′1I1

([G1, H1]) ψS3
G1,H1;G2,H2

. (4.7)

17A generalization of this construction to cylinders with multiple marked points at the punctures is

provided in appendix C.
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where we have suppressed from our notation the dependence on {g, g′}. In this basis,

the charges at the “top” punctures 1 and 2 are fixed to ρ1 and ρ2. However, little can

be said for what concerns the charge of the bottom puncture. Moreover, we are left with

‘magnetic’ indices of D(G), I1 and I2, associated with the “bottom” of the two cylinders we

are gluing, which — from the trinion perspective — ‘sit’ in the very middle of the graph.

What is needed, is therefore a unitary transformation that maps two magnetic indices

into one representation label (the charge of the third puncture) and one magnetic index

(now sitting at the bottom of the graph). This is exactly the job of the Clebsch-Gordan

coefficients constructed in section 3.5.3. Hence, we finally define the fusion basis of HS3 as

ψS3
f

[
ρ1, I′1
ρ2, I′2
ρ3, I3

]
=

1

|G|2
∑
I1,I2

∑
G1,H1
G2,H2

√
dρ2dρ1 C

ρ1ρ2ρ3
I1I2I3

Dρ2
I′2I2

([G2, H2])Dρ1
I′1I1

([G1, H1])ψS3
G1,H1;G2,H2

ψS3
G1,H1;G2,H2

=
∑
ρ3,I3

∑
ρ1,I1I

′
1

ρ2,I2I
′
2

√
dρ2dρ1 C

ρ1ρ2ρ3
I1I2I3

Dρ2
I′2I2

([G2, H2]) Dρ1
I′1I1

([G1, H1]) ψS3
f

[
ρ1, I′1
ρ2, I′2
ρ3, I3

]

(4.8)

To prove the consistency of the two formulas above, it is sufficient to use the orthogonality

and completeness of both Cρ1ρ2ρ3I1I2I3
and Dρ

I′I([G,H]). That is equations (3.50), (3.51), (3.61)

and (3.62).

The orthonormality of the basis,〈
ψS3
f

[
ρ1, I′1
ρ2, I′2
ρ3, I3

]
, ψS3

f

[
ρ̃1Ĩ′1
ρ̃2, Ĩ′2
ρ̃3, Ĩ3

]〉
= δρ1,ρ̃1δρ2,ρ̃2δρ3,ρ̃3δI′1,Ĩ′1

δ
I′2,Ĩ
′
2
δ
I3,Ĩ3

,

is proved in appendix B.7, while its completeness follows from the completeness of the basis

{ψS3
G1,H1;G2,H2

} and the change of basis above.

4.3 States on Sp

Here we define the fusion basis states ψ
Sp
f for the p-punctured sphere by generalizing the

construction followed for the case of the three-punctured sphere. In particular, this means

that the S2 factors associated with p− 1 punctures are transformed to the [ρ′, I ′I]-picture

and then a fusion tree is constructed by contracting Clebsch-Gordan coefficients together.

In the following subsection, we will present how such states can be recovered by gluing

states defined on three-punctured spheres as outlined at the beginning of this section.

To make the construction more transparent, we introduce a more synthetic graphical

notation. Since all the operations defined on the fusion basis states can be performed at

the level of the representations, it is not necessary to look at the group variables {g} in

details. Therefore we will represent the fusion basis state ψS3
f as follows

ψS3
f

[
ρ1, I′1
ρ2, I′2
ρ3, I3

]
= . (4.9)
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The tube structure provides the following combinatorial information:

= Cρ1,ρ2,ρ3I1,I2,I3
(4.10)

while the bold edge signals where the group variables are inserted (see equation (4.6)), i.e.

in a sense where we consider the degrees of freedom to be. By this we mean that the lower

cylinder in (4.9) “does not carry any degree of freedom” because the flatness constraint

tells us that a complete knowledge of the state is encoded in the knowledge of the upper

tubes only. Nevertheless, it is possible to use the expression for the flatness constraint in

order to rewrite the states on the three-punctured sphere in a more symmetric form (see

equation (4.15)), in which each tube is associated to a representation matrix.

To obtain the states on Sp, we first perform the transformation to the [ρ′, I ′I]-picture

using equation (4.3) on each of the p − 1 upper tubes respectively associated to p − 1

punctures. The upper tubes are then connected to each other two by two via Clebsch-

Gordan coefficients so as to form a fusion tree. Using the graphical notation introduced

above, the resulting states are given by

ψ
Sp
f

[
{ρi}2p−3

i=1 , {I ′k}
p−1
k=1, Ip

]
=

=
1

|G|p−1

∑
{I}

∑
{Gk,Hk}p−1

k=1

Cρ1ρ2ρ(p+1)

I1I2I(p+1)
Cρ(2p−3)ρ(p−1)ρp
I(2p−3)I(p−1)Ip

ψ
Sp
{G,H}

×
p−1∏
k=1

√
dρkD

ρk
I′kIk

([Gk, Hk])

2p−4∏
i=p+1

Cρiρ(i−p+2)ρ(i+1)

IiI(i−p+2)I(i+1)
. (4.11)

The subindex i ∈ {1, . . . , 2p − 3} labels the edges of the fusion tree. The subindex k =

{1, . . . , p} labels the p punctures, which are in one-to-one correspondence with the leaves

of the fusion tree. The orthonormality of these states is proven in appendix B.7.

It is important to recall that the CG coefficients of D(G), Cρ1ρ2ρ3I1I2I3
, are not symmetric

in all its indices, and {ρ3, I3} actually play a distinguished role (see equation (3.60)).

Therefore the above graphs are directed. Different choices of root trees defining the states

above are related by a change of basis, as it is most easily seen by going back to a group

representation.

Notice that this is just the simplest example of fusion tree. More refined construction

can be built in a similar way, possibly with the idea in mind of reproducing the multi-scale

design underlying the tensor network states. For this we refer to section 6.
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4.4 Fusion basis via gluing

As we mentioned in the beginning of this section, every punctured-sphere can be decom-

posed into trinions so that the fusion basis state for Sp boils down to a “gluing” of states

defined on three-punctured spheres.

To start with we want to represent the fusion basis for the three-punctured sphere in

a more symmetric manner. To this end we use the equivalence relations in section 2.2 and

express the sate (4.6) on an extended graph

ψS3
G1,H1;G2,H2

({g}, {g′}, {g′′})|g.f. = |G|7/2
∑
G3,H3

(4.12)

= |G|7/2
∑
G3,H3

δ(g4, H1)δ(g1, G1G
−1
3 )δ(g′4, H2)δ(g′1, G2G

−1
3 )

× δ(g′′4 , H3)δ(g′′1 , G3) δ(G−1
3 H3G3, G

−1
1 H1G1G

−1
2 H2G2) .

Now the following identity (equation (4.13)) can be obtained from equation (3.65),

which spells out the relation of the Clebsch-Gordan coefficients to the flatness and

Gauß constraints, by first setting G3 = e and then summing over H3 ∈ G, that is by

evaluating it on the Drinfel’d double identity I =
∑

H3
[e,H3]:∑

I1,I2,I3

Dρ1
I′1I1

([G1, H1])Dρ2
I′2I2

([G2, H2]) Cρ1ρ2ρ3
I1I2I′3

(4.13)

=
∑

I1,I2,I3

Dρ1
I′1I1

([G1G
−1, H1])Dρ2

I′2I2
([G2G

−1, H2])Cρ1ρ2ρ3I1I2I3
Dρ3
I3I′3

([G,GG−1
1 H1G1G

−1
2 H2G2G

−1]).

Using equation (4.12) for the expression of ψS3
G1,H1;G2,H2

on an extended graph, we can

express the fusion state as

ψS3
f

[
ρ1, I′1
ρ2, I′2
ρ3, I′3

]
|g.f

=
1

|G|2
∑
I1,I2

∑
G1,H1
G2,H2

√
dρ2dρ1 C

ρ1ρ2ρ3
I1I2I′3

Dρ2
I′2I2

([G2, H2]) Dρ1
I′1I1

([G1, H1]) ψS3
G1,H1;G2,H2 |g.f

= |G|3/2
∑

I1,I2,I3

∑
G1,H1

G2,H2,G3,H3

√
dρ2dρ1 C

ρ1ρ2ρ3
I1I2I3

Dρ2
I′2I2

([G2G
−1
3 , H2]) Dρ1

I′1I1
([G1G

−1
3 , H1])

×Dρ3
I3I′3

([G3, H3]) δ(g4, H1)δ(g1, G1G
−1
3 )δ(g′4, H2)δ(g′1, G2G

−1
3 )

× δ(g′′4 , H3)δ(g′′1 , G3) δ(G−1
3 H3G3, G

−1
1 H1G1G

−1
2 H2G2) . (4.14)

We first translate the summation variables G1 → G1G3 and G2 → G2G3, then we apply

identity (3.65) again (this time with G = e), hence “reabsorbing” the delta function into

the Clebsch-Gordan coefficient. In this way, we finally arrive at the following representation
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of the fusion state on S3:

ψS3
f

[
ρ1, I′1
ρ2, I′2
ρ3, I′3

]
|g.f

=

|G|3/2
∑

I1,I2,I3

∑
G1,H1

G2,H2,G3,H3

√
dρ2dρ1 C

ρ1ρ2ρ3
I1I2I3

Dρ2
I′2I2

([G2, H2]) Dρ1
I′1I1

([G1, H1]) Dρ3
I3I′3

([G3, H3])

× δ(g4, H1)δ(g1, G1)δ(g′4, H2)δ(g′1, G2)δ(g′′4 , H3)δ(g′′1 , G3) . (4.15)

We have thus obtained a more symmetric representation of the fusion state on the three-

punctured sphere. Note however that the dimension factors dρ are still not equally dis-

tributed, which is due to an asymmetry in the Clebsch-Gordan coefficients.

The fusion basis state on the three-punctured sphere is now expressed such that each

leg carries a state that is locally equivalent to a cylinder state. We know how these states

behave under gluing and thus we can now proceed to build a fusion state on the e.g.

four-punctured sphere by gluing two three-punctured sphere fusion states:

ψS4
f [{ρi}5i=1, {I ′}3i=1, I4] = =

√
dρ5 (4.16)

=
√
dρ5 ψ

S3
f

[
ρ1, I′1
ρ2, I′2
ρ5, I5

]
? ψS3

f

[
ρ5, I5
ρ3, I′3
ρ4, I4

]

=
1√
dρ5

∑
I5

ψS3
f

[
ρ1, I′1
ρ2, I′2
ρ5, I5

]
? ψS3

f

[
ρ5, I5
ρ3, I′3
ρ4, I4

]
, (4.17)

where in the first line we used that for the gluing of cylinder states the “glued” indices I

have to coincide but drop out in the final result (see equation (3.53)), while in the last line

we summed over this index and included the corresponding normalization factor.

4.5 Gauge invariant projections of the fusion basis

The fusion basis ψ
Sp
f describes both curvature and torsion excitations at the punctures. Of-

ten we are interested in having only curvature excitations, that is states that are also gauge

invariant at the punctures. We can obtain such states by applying the Gauß constraint

projector Pgauge to the punctures.

Let us for example consider a fusion basis state on a cylinder

ψS2
f [CR, i′M ′, iM ](g1, · · · , g4) = |G|1/2

∑
G,H

√
dC,R δ(H, ci′) δ(ci′ , GciG

−1)DR
M ′M (q−1

i′ Gqi)

×δ(G, g3g2g1)δ(H, g3g4g
−1
2 g−1

3 ) (4.18)
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and apply Pgauge to the source node of the link carrying g1, i.e. at the source puncture of

the cylinder state.

P(s)
gauge ψ

S2
f [CR, i′M ′, iM ] = |G|−1/2

∑
h

∑
G,H

√
dC,R δ(H, ci′) δ(ci′ , GciG

−1)DR
M ′M (q−1

i′ Gqi)

×δ(G, g3g2g1h)δ(H, g3g4g
−1
2 g−1

3 ). (4.19)

One finds (see appendix B.8)

P(s)
gauge ψ

S2
f [CR, i′M ′, iM ] = δR,0δM ′0δM0

1

|QC |
∑
j

ψS2
f [C0, i′0, j0]. (4.20)

Likewise, applying Pgauge to the target puncture we find

P(t)
gauge ψ

S2
f [CR, iM, i′M ′] = δR,0δM ′0δM0

1

|QC |
∑
j′

ψS2
f [C0, j′0, i0]. (4.21)

Note that the gauge averaged states have now norm equal to 1/|QC |, to get normalized

state we should multiply by
√
|QC |.

This generalizes to the fusion basis for p-punctured spheres: applying a gauge averaging

at a puncture p forces the corresponding labels Rp and Mp to be trivial and leads to an

averaging over the ip index.

5 Ribbon operators

In the previous section we have introduced the fusion basis, which gives immediate access

to the excitation structure of a state. We are now going to construct operators that

generate and measure these excitations. For reasons that will be clear soon, these operators

are called ‘ribbon operators’. They come in two families: open ribbon operators, which

generate excitations, and closed ribbon operators, which measure them. In particular, we

will see that we can define operators that are diagonal in the fusion basis.

5.1 Open ribbon operators

Choosing as our configuration space group holonomies, that describe locally flat connec-

tions, we have at our disposal two types of operators. On the one hand, multiplication

operators, known as holonomy or Wilson path (loop) operators; on the other hand, trans-

lation operators, which translate an argument of the wave function either on the left or on

the right.

Wilson path operators, W f
γ , multiply wave functions by an f : G → C,

(W f
γ ψ)(g1, . . . , gL) = f(hγ)ψ(g1, . . . , gL), (5.1)

where hγ = glN · · · gl1 is the holonomy associated to the path γ = lN ◦ · · · ◦ l1 (clearly,

care must be taken with respect to the orientation of the links). Being a multiplication

operator, W f
γ preserves any flatness constraints, which are multiplication operators them-

selves. Gauge invariance (i.e. Gauß constraints) is preserved only if γ is a loop and f a

class function.
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Translation operators Tk[H] act by finite translations, and can therefore be thought of

as the exponentiated version of momenta. In loop quantum gravity momenta are known

as fluxes, hence the name of ‘exponentiated flux’. On a group translations can act either

on the left or on the right. We choose to work with left multiplication:18

(Tk[H]ψ)(. . . , gk, . . .) = ψ(. . . , H−1gk, . . .). (5.2)

Note, however, that Tk[H] in general violates all flatness constraints involving the group

element gk carried by the link lk, as well as the Gauß constraints at the target node of lk,

n = t(lk). Thus, this operator in general takes a state out of its definition Hilbert space,

HSp , and is therefore not viable as it is. Hence, we need to adjust the definitions of the

above operators to correct this issue. Before doing this, however, we need to understand

the structure of constraint violations their action induces.

A translation of — say — the group element associated to the link l1 will change

the holonomies of the two faces — say — f1 and f2 which are adjacent to l1. Now, by

changing in a precise way also the holonomy associated to another link — say — l2 ∈ f2,

it is clear that we can re-gain flatness at f2. Nevertheless, this comes in general at the

cost of changing the holonomy of a third face f3, and so on. The argument can be used to

push around Gauß constraint violations as well. To do so, we can first parallel transport

the argument gk which is about to be translated from its target node to another node n

along a path γ. Once the translation is performed, we then transport back the translated

holonomy. The resulting operators are denoted by Tk,γ [H] and their action reads

(Tk,γ [H]ψ)(. . . , gk, . . .) = ψ(. . . , h−1
γ H−1hγgk, . . .) (5.3)

with hγ the holonomy along the path γ. Notice how hγ involves an implicit dependence

on all the group elements gl corresponding to links l ∈ γ.

What we actually learn from this discussion is that curvature excitations and Gauß con-

straint violations are always generated in pairs. Now, recall that — by construction —

punctures are locations in Sp where constraint violations are allowed. Therefore, we are led

to considering operators that generate pairs of excitations whose positions coincide with a

pair of punctures.19 Also, Wilson path operators W f
γ , which are associated to open paths

γ, generate defects in pairs. In this case the defects are Gauß constraint violations that

appear at the two ends of the Wilson path. Again, such violations are allowed if the Wilson

path starts and ends at punctures.

5.1.1 Kitaev’s ribbon operators

Kitaev, in [41], combined translation operators and Wilson path operators into so-called

ribbon (or dyonic) operators. He also showed that ribbon operators carry an algebraic

structure given by the Drinfel’d double of the underlying (discrete) gauge group.

We first define ribbon operators on S2 (with a minimal graph), and generalize to

more general punctured surfaces in a second moment. We will show that ribbon operators

18Right translation can be implemented by Tk[gkHg−1
k ].

19Operators generating curvature defects at the end of a certain path have been defined in [14, 37, 38] as

(integrated) exponentiated flux operators.
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generate the basis {ψS2
G,H} (equation (3.3)) of H2, thus revealing already a connection to

the Drinfel’d double D(G).

Kitaev’s ribbon on S2. Kitaev’s ribbon operator on S2 is defined as the combination

of a translation and a Wilson path operator.

The translation operator acts at the link l4, going ‘around’ the cylinder. The trans-

lating element is parallel transported to the target puncture, i.e. the target node of l3. We

write this

(T4,3[H]ψS2)(g1, . . . , g4) = ψS2(g1, . . . , g
−1
3 H−1g3g4). (5.4)

After the action of T4,3[H] the inner vertices remain gauge invariant. The Wilson path

operator involves the ‘longitudinal’ holonomy in between the two punctures, and it is

characterized by a function f which acts by multpilication. A basis for these operators is

provided by delta functions {δ(G, ·)}G∈G :

(W321[G]ψS2)(g1, . . . , g4) = δ(G, g3g2g1) ψS2(g1, . . . , g4). (5.5)

With these ingredients, we define on S2 the Kitaev’s ribbon operator R[G,H] to be:

R[G,H] = W321[G] ◦ T4,3[H]. (5.6)

Acting on the cylinder (global) vacuum state,

ψS2
0 (g1, . . . , g4) := δ(e, g4g

−1
2 )1(g1)1(g3) (5.7)

with 1(·) the constant function of value 1 ∈ C, we see that T [H] and W [G] generate the

whole basis {ψS2
G,H} of H2 (equation (3.3)):

(R[G,H]ψS2
0 )(g1, . . . , g4) =

(
W321[G]T4,3[H]ψS2

0

)
(g1, . . . , g4) (5.8)

= = = |G|−3/2 ψS2
G,H . (5.9)

Hence, ribbon operators R[G,H] generate all possible pairs of excitations at the punc-

tures of S2.

Let us briefly mention the fact that reversing the direction of the ribbon operator

involves the antipode in D(G):

(Rrev[G,H]ψS2
0 )(g1, . . . , g4) = (R(S[G,H])ψS2

0 )(g1, . . . , g4) , (5.10)

where S([G,H]) = [G−1, G−1H−1G] is the antipode of [G,H] defined in equation (3.23).
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Figure 2. Action of the open ribbon operator.

Kitaev’s ribbon on Sp. The above considerations can be generalized, to ribbon op-

erators on Sp which start and end at two punctures. Consider two punctures connected

by a directed link ` , possibly composed of several elementary links ` = lN` ◦ · · · ◦ l1 with

associated group elements gN` · · · g1, from which several links are departing to the right and

to the left with respect to the orientation of `. If necessary, we change orientations so that

edges departing to the left are ingoing to `, see figure 2. Note that the graph underlying

the state under consideration can be always brought into this form using the equivalences

of section 2.2.

We can now define the action of a ribbon operator acting from the left. To this end,

draw a ribbon to the left of the link `, connecting the two punctures. It will be (over–

)crossed by all the links departing to the left of `. We denote the group elements associated

to these links h1, · · · , hN ′` as in figure 2. We also denote by g′l the ordered products of the

{gl} from the target of hl to the target puncture of `.

The (left) ribbon operator along `, R`[G,H], is then defined by

(R`[G,H]ψ)(g1, · · · , gN` , h1, · · · , hN ′L , · · · )
= δ(G, gN` · · · g1)ψ(g1, · · · , gN` , (g

′
1)−1H−1g′1h1 · · · , , (g′N ′`

)−1H−1g′N ′`
hN ′` , · · · ) . (5.11)

As before the action of the ribbon operator splits into two parts: a Wilson path operator

part which fixes to G the holonomy from the source to the target punctures of `, and a

translation operator part which translates by H−1 and from the left the (anti-clockwise)

holonomy around the target puncture of `:

(g′N ′`
)hN ′` · · · (g

′
N ′`

)−1 7→ H−1 (g′N ′`
)hN ′` · · · (g

′
N ′`

)−1. (5.12)

At the same time the (clockwise) holonomy around the source puncture of ` is changed by

(g′0)−1h1 · · · g′0 7→ (g′0)−1(g′1)−1 · · · (g′N ′`)
−1H−1g′N ′`

· · · g′1h1 · · · g′0
= G−1H−1G (g′0)−1h1 · · · g′0. (5.13)

Note that the face holonomies stay trivial for any closed face. To ensure this the pre-

scription of how the group elements hl are translated is essential: for any closed face being
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affected, there are always two group elements hl and (hl+1)−1 translated in an opposite

manner, so that the net effect is leaving the face holonomy trivial.

In fact we can imagine that we slide the ribbon operator from one face (lying left to

the link `) to the next face, keeping the upper end fixed at the target puncture. By this

‘sliding’ curvature and torsion excitations are moved from one face to the next, until one

reaches the source puncture.

5.1.2 Charge ribbon operators

As we have seen the ribbon operators R[G,H] generate the basis {ψS2
G,H} of the two-

punctured sphere (equation (3.3)). Then, the same transformation that allowed us to

introduce the fusion basis can be used to define ribbon operators generating the basis

{ψS2
f [ρ, I ′I]} (equation (4.3)). This is just a Fourier-Peter-Weyl transform performed from

the functions on the Drinfel’d double to functions on its representation labels:20
R[ρ, I ′I] =

dρ
|G|
∑
G,H

R[G,H]Dρ
I′I([G,H])

R[G,H] =
∑
ρ

∑
I′,I

R[ρ, I ′I]Dρ
I′I([G,H])

. (5.14)

And

ψS2
f [ρ, I ′I] =

|G|3/2√
dρ

(R[ρ, I ′I]ψ0)(g1, · · · , g4) ≡ |G|
3/2√
dρ

. (5.15)

The fusion basis had projective (idempotence) properties under the gluing operation defin-

ing the ?-product for cylinder states. This qualified its labels as physical charges carried

by the punctures. For this reason, we refer to R[ρ, I ′I] as the ρ-charge ribbon operator.

In calculations, the following expression of R[ρ, I ′I] is sometimes more useful

R[C,R; i′M ′, i,M ] =
dC,R
|G|

∑
G,H

δ(ci, G
−1ci′G) δ(H, ci′)D

R
M ′M (q−1

i′ Gqi)R[G,H]

=
dR
|NC |

∑
n∈NC

DR
M ′M (n)R[qi′nq

−1
i , ci′ ] . (5.16)

It is straightforward to extend the definition of the charge ribbon operators to Sp. It

is indeed enough to transform the [G,H] labels of R`[G,H] to [ρ, I ′I].

5.2 Properties of ribbon operators

Deformation invariance of ribbons. The action of the ribbon operator R`[G,H] be-

tween two punctures p1 and p2 along ` changes the quasi-local charges at the punctures.

This action, however, does not depend on the precise path `. Indeed, one can check that

20The factor dρ is not evenly distributed across the following two formulas in order to have equation (5.21)

to hold as it is, with no extra dimensional factors.
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the action is invariant under isotopic deformations of the path (with regard to other punc-

tures). On the one hand, only the holonomies around the punctures are changed by the

ribbon. This translation is determined by the parameter H and the parallel transport

along ` from p1 to p2. On the other hand, the state is multiplied by a delta-function, which

fixes the holonomy from puncture p1 to puncture p2 along `. And since we are dealing

with locally flat states, only the isotopy class of ` matters, for both the parallel transport

and the evaluation of the holonomies. This is the reason why the action of R`[G,H] is

invariant under isotopic deformations of `.

Ribbon operators can be combined in different ways. We can glue two ribbons by

their extremities and in this way define a lengthwise product. Or we can consider the

operator product of two ribbons associated with the same path, which we call lateral

product, obtaining a linear combination of ribbon operators. Again, these operations can

be described by the structure of the Drinfel’d double of the group [41].

Lengthwise product. To combine ribbons lengthwise, we consider a ribbon R`1 [G1, H1]

extending from a source puncture p1 to a target puncture p2, as well as a second ribbon

R`2 [G2, H2] extending from the (now) source puncture p2 to a target puncture p3. We

assume that p2 does not carry any excitation, i.e. Wilson loops around the puncture give

trivial results, and the wave function has a trivial dependence on the holonomy associated

to the link arriving at the puncture.21

We then demand that the lengthwise product should be such that it does not induce

any excitation at the ‘middle’ puncture p2. And hence that this product in fact coincides

with some (not self-crossing) ribbon operator along ` = `2 ◦`1, directly going from p1 to p3.

To achieve this we will project onto the flatness and Gauß constraints at the puncture p2.

This construction is analogous to the gluing of ribbons for the SU(2)k case described in [28].

Moreover, as it will be apparent, this construction parallels the gluing of cylinder states.

If the links `1 and `2 are consistently oriented, to preserve the flatness at p2 we need

to require

H1
!

= G−1
2 H2G2. (5.17)

On the other hand, to avoid torsion excitations at p2, we have to apply a group averaging

at p2 to the resulting state. This operation eliminates the delta-function δ(G1, g`1) (here,

g`1 is the holonomy along `1), which results from the action of R`1 [G1, H1], but keeps the

delta-function δ(G2G1, g`2g`1) fixing the holonomy along the combined path ` = `2 ◦ `1.

The resulting action of the procedure we just described is — as expected — equivalent

(modulo normalizations) to that of a single ribbon operator acting along ` = `2 ◦ `1 and

modifying the charge structure at p1 and p3:

|G|Pp2gaugeP
p2
flat R`2 [G2, H2]R`1 [G1, H1] = δ(H1, G

−1
2 H2G2)R`2◦`1 [G2G1, H2]. (5.18)

appendix D.1 exemplifies the gluing of two ribbons for states on the three-punctured sphere.

21Later, we will define closed ribbon operators that project onto wave functions with prescribed charges

at a given puncture.
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We now consider the lengthwise product of charge ribbon operators R`2 [ρ, I ′I] and

R`1 [ρ, I ′I]. Using (5.18) one finds (see appendix D.2)

|G|Pp2gaugeP
p2
flatR`2 [ρ2, I

′
2I2]R`1 [ρ1, I

′
1I1] = δρ2,ρ1δI2,I′1 R`2◦`1 [ρ2, I

′
2I1]. (5.19)

Note that the resulting ribbon does not involve the indices I2 = I ′1 at the ‘middle’ puncture

p2. Thus, for the gluing of two charged ribbons, we can also define that the magnetic indices

of the ribbons meeting at the puncture have to be contracted. This would introduce an

extra factor dρ1 = |C1|dR1 in the final result.

Comparison with equations (3.17) and (3.53) immediately shows that there is a direct

relation between the gluing of cylinders and the lenghtwise multiplication of open ribbon

operators. This means that the composition of ribbons agrees with the multiplication of

the D(G) algebra. To make this completely explicit, we introduce a ?-product notation for

the left-hand side of equations (5.18) and (5.19):

R`2 [G2, H2] ?R`1 [G1, H1] = δ(H1, G
−1
2 H2G2)R`2◦`1 [G2G1, H2] (5.20)

and

R`2 [ρ2, I
′
2, I2] ?R`1 [ρ1, I

′
1, I1] = δρ1,ρ2δI2,I′1 R`2◦`1 [ρ2, I

′
2, I1]. (5.21)

Lateral product. We now consider the operator product of two ribbons based on the

same path `, which we name lateral product. Due to the deformation invariance of the

ribbons this is equivalent to having the product of two ribbons that are based on paths

parallel to each other, and which start as well as end at the same punctures. Hence, we

can drop in this section the path label, from R[Gi, Hi], i = 1, 2. It is straightforward to

verify that the lateral product of two ribbons is a third ribbon operator (of course based

on the same path):

R[G2, H2]R[G1, H1] = δ(G1, G2)R[G1, H2H1]. (5.22)

To prove the previous formula one can e.g. consider the consecutive action of two ribbons

on the (global) vacuum state on S2:

(R[G2, H2]R[G1, H1]ψS2
0 )(g1, · · · , g4) =

= δ(G1, g3g2g1)(R[G2, H2]ψS2
0 )(g1, · · · , g−1

3 H−1
1 g3g4)

= δ(G1, g3g2g1)δ(G2, g3g2g1) ψS2
0 (g1, · · · , g−1

3 H−1
1 H−1

2 g3g4) =

= δ(G1, G2) (R[G1, H2H1]ψS2
0 )(g1, · · · , g4). (5.23)
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We can also consider the lateral product of two charge ribbons based, i.e. the operator

product of two charge ribbons based on the same path. Here, the two ribbons generate two

basic excitations at the same puncture. We therefore expect that the resulting excitation

should arise from a fusion of the two basic excitations. In fact, the lateral product involves

the tensor product of the Drinfel’d double representations (and their dual):

R[ρ2, I
′
2I2]R[ρ1, I

′
1I1]

=
dρ1dρ2
|G|2

∑
G1,H1
G2,H2

Dρ2
I′2I2

([G2, H2])Dρ1
I′1I1

([G1, H1])R[G2, H2]R[G1, H1]

(5.22)
=

dρ1dρ2
|G|2

∑
G

H1,H2

Dρ2
I′2I2

([G,H2])Dρ1
I′1I1

([G,H1])R[G,H2H1]

=
dρ1dρ2
|G|2

∑
G

H1,H2

∑
ρ3

∑
I3I′3

Dρ2
I′2I2

([G,H2])Dρ1
I′1I1

([G,H1])Dρ3
I′3I3

([G,H2H1])R[ρ3, I
′
3I3]

=
1

|G|
∑
ρ3

∑
I3I′3

dρ2dρ1
dρ3

Cρ2ρ1ρ3
I′2I
′
1I
′
3
Cρ2ρ1ρ3I2I1I3

R[ρ3, I
′
3I3]. (5.24)

Note that also the lateral product of two ribbons reflects an algebraic structure of the

Drinfel’d double, namely its co-multiplication ∆([G,H]) =
∑

H2,H1
δ(H2H1, H)[G,H2] ⊗

[H,H1]. Similarly the lateral product allows us to write a given ribbon as a sum over all

possible pairs of ribbon operators whose product is the desired one:

R[G,H] =
1

|G|
∑
H2,H1

δ(H2H1, H)R[G,H2]R[G,H1] . (5.25)

5.3 Closed ribbons

By gluing the ends of an open ribbon, starting and ending at the same puncture, we

obtain a closed ribbon. Closed ribbons do not generate excitations, they just measure the

excitation content of the region they enclose. In the context of BF theory on a surface with

fixed punctures (or higher genus), closed ribbon operators provide a complete basis of Dirac

observables. This is because closed ribbons are defined in such a way to commute with the

flatness and Gauß constraints. And the fusion basis constructed in section 4 diagonalizes

the (charge) closed ribbon operators.

To explicitly construct a closed ribbon operator, we start with an open one as in sec-

tion 5.1. It might be necessary to introduce an auxiliary puncture, at which the open

ribbon starts and ends. By applying the refining operations detailed in section 2.2, we can

always consider this puncture connected to the graph underlying the state under consid-

eration via a link carrying a holonomy k (see figure 3). The refined state would then be

constant in k, i.e. not depend on this holonomy. The ribbon crosses L links with associated

group elements h1, · · · , hL which are incoming to a closed (circular) combination of links

with associated holonomy g′L · · · g′2g′1. We also define g′Ll := g′Lg
′
L−1 · · · g′l, i.e. g′Ll is the

parallel transport from the target node carrying hl to the target node carrying h1. Note
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Figure 3. The construction of a closed ribbon operator. The left panel shows the auxiliary

puncture and an auxiliary link with holonomy k going to this puncture. This holonomy plays no

role in the final action of the closed ribbon operator as described in (5.28).

that g′L1 := g′Lg
′
L−1 · · · g′1 is given by the holonomy going around the cycle defined by the

ribbon. The (open) ribbon operator, then acts as

(R[G,H]ψ) (k, g′1, · · · , h1, · · · , · · · ) (5.26)

= δ(G, kg′L1k
−1)ψ(g′1, · · · , (g′L1)−1k−1H−1kg′L1 h1, · · · , (g′L)−1k−1H−1kg′L hL, · · · ).

We know that the ribbon will preserve both the flatness and Gauß constraints for every

faces, with the only exception given by (i) the flatness constraints for the face containing

the auxiliary puncture, since this face contains the holonomy combination h−1
1 g′LhL, and

(ii) the Gauß constraint at the target node of the link carrying the holonomy k.

To deal with the flatness violation,22 we first notice that the holonomy combination

h−1
1 g′LhL is shifted to

h−1
1 g′LhL → h−1

1 (g′L1)−1k−1Hkg′L1g
′
L(g′L)−1k−1H−1kg′LhL = h−1

1 k−1G−1HGH−1kg′LhL .

(5.27)

Therefore, to avoid a curvature excitation at the auxiliary puncture, we need to demand

GHG−1H−1 = e, which can be taken care of by introducing an extra delta-function factor

δ(GHG−1H−1, e).

Then, we have to ensure gauge invariance at the target node of the link carrying k.

This is achieved by applying the gauge averaging projector for this node. Using that the

initial state is gauge invariant this results in(
Pngauge ◦ PnflatR[G,H]ψ

)
(k, g′1, · · · , l′1, · · · , · · · )

=δ(GHG−1H−1, e)
1

|G|
∑
h

δ(G, hkg′L1k
−1h−1)ψ(g′1,· · ·, (g′L1)−1k−1h−1H−1hkg′L1l1, · · ·, · · · )

=δ(GHG−1H−1, e)
1

|G|
∑
h

(
R[hGh−1, hHh−1]ψ

)
(g′1, · · · , l′1, · · · , · · · ). (5.28)

Note that due to the group averaging the dependence on the (auxiliary) holonomy k

disappears. Furthermore the (projected) closed ribbon operator does not depend anymore

22Even if the face we are considering here is a priori not closed, we can apply the refinement operations

detailed in section 2.2, so that this face is closed. After applying the closed ribbon operator we can go

back to the coarser graph again, applying a coarse graining transformation, to reach a state based on the

initial graph.
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on the choice of face, among the faces crossed by the ribbon, at which the auxiliary puncture

was inserted. Analogously to the open ribbons, the closed ribbons path dependence is

limited to its isotopy class.

Note also that, due to the projections onto flatness and Gauß constraints, not all

information contained in the pair (G,H) is actually relevant. To see this we first rewrite G

using the notation of section 3.5 for the description of the Drinfel’d Double representations.

This way we obtain, G = qic1q
−1
i , where c1 is a representative of the conjugacy class C

of G and qi ∈ QC = G/NC with NC the stabilizer group of c1. Now, due to the delta

function δ(GHG−1H−1, e) in (5.28) we see that H must be of the form H = qiñq
−1
i for

some ñ ∈ NC . Therefore, using the fact that G and H must commute, we have∑
h∈G
R[hGh−1, hHh−1] =

∑
h∈G
R[hq−1

i qic1q
−1
i qih

−1, hq−1
i qiñq

−1
i qih

−1]

=
∑
qj∈QC

∑
n∈NC

R[qjc1q
−1
j , qjnñn

−1q−1
j ]

= |ND|
∑
qj∈QC

∑
d∈D
R[qjc1q

−1
j , qjdq

−1
j ] (5.29)

where in the first step we shifted the summation argument by qi, and in the second step

we split the summation over h ∈ G into a one over qj ∈ QC and n ∈ NC (here, we use that

each group element has a unique representation of the form h = qjn). In the third step,

we split again the summation over NC into one over the stabilizer group ND ⊂ NC and a

conjugacy class D of the group NC .

Thus the group averaging over ribbons R[G,H] (with G and H commuting) does only

depend on the conjugacy class C of G (such that G ∈ C) and a conjugacy class D of NC

(such that H is conjugated to an element of D).

Hence, we define closed ribbon operators as

K[C,D] :=
∑
qj∈QC

∑
d∈D
R[qjc1q

−1
j , qjdq

−1
j ], (5.30)

where C is a conjugacy class of G and D is a conjugacy class of NC , the stabilizer group

of c1 ∈ C.

We constructed closed ribbon operators from gluing open ribbons. We arrive at the

same definition as in [42], where the closed ribbons K[C,D] are defined (via the third line

of (5.29)) based on more abstract reasoning.

5.3.1 Closed charge ribbon operators

In the case in which we consider punctured spheres only, the closed ribbon operators

measure the excitation content of the region enclosed by the ribbon.23 We are now going

to construct closed ribbons with projective properties, which allow to project onto a region

with a certain charge content. In this case, what is needed, is the projective property with

respect to the lateral product, rather then the (lengthwise) ?-product.

23On higher genus surfaces, the closed ribbons could wind around non-contractible cycles.
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Using (5.22) of the R[G,H], we can deduce the lateral product for the closed ribbons:

K[C2, D2]K[C1, D1] =
∑

qi∈QC2
qj∈QC1

∑
d2∈D2
d1∈D1

δ(qic
(2)
1 q−1

i , qjc
(1)
1 q−1

j ) R[qic
(2)
1 q−1

i , qid2q
−1
i qjd1q

−1
j ]

(5.31)

= δC2,C1

∑
q∈QC2

∑
d1∈D1,d2∈D2

R[qc
(2)
1 q−1, qd2d1q

−1]. (5.32)

Defining coefficients ND3
D2D1

via24∑
d1∈D1,d2∈D2

d2d1 =
∑
D3

ND3
D2D1

∑
d3∈D3

d3 (5.33)

(both sides are to be understood as elements of the group algebra C[NC2 ]) we arrive at

K[C2, D2]K[C1, D1] = δC2,C1

∑
D3

ND3
D2D1

K[C2, D3]. (5.34)

Therefore, the closed ribbon K[C,D] are already projective in C, but not so in D. To

reach fully projective closed ribbons under the lateral product, we define the charge closed

ribbons via the formula

K[C,R] :=
dR
|NC |

∑
D

χR(D)K[C,D] , (5.35)

where R is an irrep of the stabilizer group NC (see also [42] — although, there slightly

different conventions are used). The inverse transformation is given by

K[C,D] =
|NC |
|ND|

∑
R

1

dR
χR(D) K[C,R]. (5.36)

Now, it is straightforward to check (see appendix D.3) that the lateral product of two

charge closed ribbons is simply

K[C,R]K[C ′, R′] = δC,C′δR,R′K[C,R]. (5.37)

Hence, the charged closed ribbons K[C,R] define a family of orthogonal projectors. We are

now going to show that they do actually project precisely on the fusion basis states.

Diagonalization of closed ribbon operators. We consider the action of a closed

charge ribbon K[C,R] applied to a fusion basis state on the cylinder. (We will later

generalize to fusion basis states on Sp.) Using a minimal graph, the fusion basis state can

be expressed in the holonomy representation as

ψS2
f [CR; i′M ′, iM ] = |G|1/2

√
dC,R

∑
n∈NC

δ(qi′nq
−1
i , g3g2g1) δ(ci′ , g3g4g

−1
2 g−1

3 )DR
M ′M (n). (5.38)

We apply a closed ribbon K[C ′, R′] that goes anti-clockwise around the cycle with

holonomy g−1
2 g4 and crosses only the link with holonomy g1, as in figure 4.

24The set {
∑
d∈D d}D, where D is an index labelling the conjugacy classes of NC , gives a basis of (group

algebra) elements commuting with all n ∈ NC . Thus also the product of
∑
d2∈D2

d2 with
∑
d1∈D1

d1
commutes with n ∈ NC and can be expanded in this basis.

– 39 –



J
H
E
P
0
2
(
2
0
1
7
)
0
6
1

Figure 4. The closed ribbon operator applied to a state on a cylinder.

Then, the action of the closed ribbon K[C ′, R′] on ψS2
f [CR; i′M ′, iM ] can be readily eval-

uated in the holonomy basis (see appendix E). We expect that the closed ribbon does not

change the charge content of the states. And indeed, the fusion basis states are eigenstates

of the closed ribbon operator:

K[C ′, R′] ψ[CR; i′M ′, iM ] = δC,C′δR,R′ ψ
S2
f [CR; i′M ′, iM ]. (5.39)

Or, more succinctly

K[ρ′] ψ[ρ, I ′I] = δρ,ρ′ ψ
S2
f [ρ, I ′I]. (5.40)

Thus the closed charge ribbon operator K[C ′, R′] projects onto the basis states

ψS2
f [CR; i′M ′, iM ].

This result can be immediately generalized to the fusion basis states on Sp. In this

case, we consider a closed ribbon going around one leg of the trinion decomposition of Sp
underlying the fusion basis. We can then choose the graph on this trinion to be the same

as in figure 4. Hence, the action of the closed charge ribbon can be evaluated in the same

way as there. Again, the closed charge ribbon K[C,R] will project onto fusion basis states

with charge labels (C,R) for the trinion leg in question.

5.4 An alternative closed ribbon operator

In the previous section we started with a ribbon R[G,H] based on a closed path, and

then projected onto its flatness and gauge-invariance preserving component. We saw that

the resulting operators only depend on the conjugacy class C of G and a conjugacy class

D in the stabilizer group NC . Alternatively, we could also start with the charge ribbons

R[ρ; I ′I], again based on a closed path, and project these. This provides an alternative

basis of closed ribbon operators. We are going to discuss these here, as these ribbons

mimic the closed ribbons discussed in [28] for the quantum group case SU(2)k, where the

group representation is not available. We will in particular see that the two types of closed

ribbons are in a certain sense dual to each other: they are related by a specific transform

that can be interpreted as Fourier transform within D(G) [59].

Recall the following expression of the charge ribbon operators

R[C,R; i′M ′, iM ] =
dR
|NC |

∑
n∈NC

DR
M ′M (n)R[qi′nq

−1
i , ci′ ]. (5.41)

Aiming at the definition of a closed ribbon operator, we sum over the indices i = i′ and

M = M ′: ∑
i,M

R[C,R; iM, i,M ] =
dR
|NC |

∑
n∈NC

χR(n)
∑
qi∈QC

R[qinq
−1
i , qic1q

−1
i ]. (5.42)
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As ci = qic1q
−1
i and n is in the stabilizer group of c1 we see that G = qinq

−1
i and H = ci

do commute, and hence the flatness constraints are already satisfied. The contraction of

the ribbon as defined in (5.42) is also invariant under the group averaging projector:

Pgauge

∑
i,M

R[C,R; iM, i,M ] =
dR

|NC ||G|
∑
h∈G

∑
n∈NC

χR(n)
∑
qi∈QC

R[hqinq
−1
i h−1, hqic1q

−1
i h−1]

=
dR
|NC |2

∑
n∈NC

χR(n)
∑
qj∈QC

∑
n′∈NC

R[qjn
′n(n′)−1q−1

j , qjc1q
−1
j ]

=
dR
|NC |

∑
ñ∈NC

∑
qj∈QC

χR(ñ) R[qjñq
−1
j , qjc1q

−1
j ]

=
∑
i,M

R[C,R; iM, i,M ]. (5.43)

In the above calculation, we first shifted the summation over h by q−1
i , making the sum

over qi ∈ Qi superfluous. Then, we split again h as h = qjn
′ and redefined the variable n

to ñ = n′n(n′)−1, hence making the sum over n′ superfluous.

This shows that the following is a viable definition of an operator on Hp, since it

preserves both the flatness and Gauß constraints:

K̃[C,R] :=
∑
i,M

R[C,R; iM, i,M ], (5.44)

or, equivalently,

K̃[ρ] :=
∑
I

R[ρ; II]. (5.45)

In particular, the above formulas show that K̃[C,R], when expressed in terms of

R[G,H], has essentially the same form as the ribbon operators K[C,R] defined at equa-

tions (5.30) and (5.35). The only difference is that the role of the entries in the ribbon

operator R[G,H] is exchanged. Indeed, the transformation between the two types of closed

ribbon operators reveals why this is the case.

To express K̃[C,R] in terms of K[C ′, R′] operators, we write

K̃[C,R] = Pgauge

∑
i,M

R[C,R; iM, i,M ]

=
dR
|NC |

∑
n∈NC

χR(n)
∑
qi∈QC

PgaugeR[qinq
−1
i , qic1q

−1
i ]

(5.29)
=

dR
|NC |

∑
n∈NC

χR(n)
|ND(n,c1)|
|NC |

K[Cn, Dn,c1 ]

(5.35)
=

dR
|NC |

∑
n∈NC

χR(n)
∑
R′

1

dR′
χR′(Dn,c1) K[Cn, R

′], (5.46)

where in the third line, we used the definition (5.29) of the ribbon operators K[C,D], and

where we made use of the following notation: Cn stands for the conjugacy class of n in G
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and Dn,c1 for the conjugacy class in NCn , which includes the element

nq
−1
k c1 nqk where n = nqk nc1 nq

−1
k and nqk ∈ QCn , nc1 ∈ Cn. (5.47)

Therefore, we conclude that K̃[C,R] is a linear combination of operators K[C ′, R′]. This

can be summarized with the formula,

K̃[C,R] =
∑
C′,R′

SCR,C′R′ K[C ′, R′], (5.48)

where

SCR,C′R′ =
dR

dR′ |NC |
∑
n∈NC

χR(n)χR′(Dn,c1) δC′,Cn . (5.49)

This matrix turns out to be related to the so-called S-matrix of the Drinfel’d double of the

group. This is defined as [39, 60]

SCR,C′R′ =
1

|G|
∑

hi∈C,h′j∈C′
δ(hih

′
j , h

′
jhi) χ

R(q−1
i h′jqi) χ

R′((q′j)
−1hiq′j). (5.50)

where hi := qic1q
−1
i and h′j := qjc

′
1q
−1
j , with c1 ∈ C, c′1 ∈ C ′ and qi ∈ QC , q′j ∈ QC′ . As it

is shown in appendix F, the S-matrix SCR,C′R′ can be rewritten as

SCR,C′R′ =
1

|G|
∑
hi∈C

∑
n∈NC

δC′,Cn χ
R(n) χR′(Dn,c1)

=
1

|NC |
∑
n∈NC

δC′,Cn χ
R(n) χR′(Dn,c1) , (5.51)

and thus

SCR,C′R′ =
dR
dR′

SCR∗,C′R′ , (5.52)

where R∗ denotes the contragredient representation to R.

Using this result, it is straightforward to deduce the action of K̃[C,R] on the fusion

basis. In the conventions of figure 4, and with the usual short-hand notation:

K̃[ρ] ψ[ρ, I ′I] = Sρ,ρ′ ψ[ρ′, I ′I], (5.53)

i.e. the fusion basis states are also eigenstates of K̃[C,R], but this time with eigenvalues

determined by the entries of the S-matrix.

The relation between the two basis of closed ribbon operators and the fusion basis

on the cylinder can be understood as follows. The label C in ψS2
f [CR; i′M ′, iM ] denotes

the conjugacy class of the holonomy (H) around the cylinder, whereas the representation

label R encodes information about the functional dependence of the wave function on the

‘longitudinal’ holonomy (G) along the cylinder. Going back to the construction of the

closed charge ribbon K[C,R] (equations (5.29) and (5.35)), we see that C is again the
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Figure 5. Two braided closed ribbon operators. These can be constructed by gluing open ribbon

operators, which act in a certain order, e.g. under-crossing pieces of ribbons act before the over-

crossing pieces of ribbons.

conjugacy class of the holonomy around the cylinder and R captures information about

the holonomy along the cylinder. This explains why K[C,R] projects onto wave functions

ψS2
f [C,R; I ′, I].

In turn, if we consider a closed ribbon K̃[C,R] going around the cylinder, C now

captures information about the ‘longitudinal’ holonomy along the cylinder (the one crossed

by the ribbon), whereas R encodes information about the holonomy going around the

cylinder.

In fact, on the torus T — obtained e.g. by gluing the two punctures of the cylinder — we

can consider closed ribbons associated to the two cycles generating the torus fundemental

group. We can then define two different basis of HT diagonalizing the two different closed

ribbons. The transformation between these two basis is given by the S-matrix. This is

for the same reason why the S-matrix appears in the transformation between K and K̃: it

exchanges the role of the longitudinal and transverse holonomies. But, on the torus, the

role of longitudinal and transverse holonomy is the same. Hence, the complete duality in

this case.

At the level of the Drinfel’d double, D(G) = F(G)∗ ⊗ F(G), the S-matrix defines

a transform exchanging the role of F(G) and its dual F(G)∗ ' CG [59]. In particular,

this translates into the fact that the role of multiplication and co-mutiplication are also

exchanged in a proper sense. This is why, in the analysis above, we have seen both the

?-multiplication and the co-multiplication structures appearing naturally in the context of

lateral products.

The S-matrix can also be defined through the eigenvalues for the operator defined by

two interwoven closed K̃-ribbons (figure 5): to define this interwoven operator one needs

to build the closed ribbons by ‘gluing’ open ribbons, after having applied the latter to the

state in the appropriate order. See [28] for details.

5.5 Back to the fusion basis

We have previously shown that the charge ribbon operators generate the fusion basis on

the cylinder

ψS2
f [ρ, I ′, I] =

|G|3/2√
dρ

(R[ρ, I ′, I]ψS2
0 )(g1, · · · , g4) ≡ |G|

3/2√
dρ

. (5.54)
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Figure 6. Construction of the fusion basis states on the three-punctured sphere using charge

ribbon operators. An auxiliary puncture is introduced at which the three ribbons are fused via a

Clebsch-Gordan coefficient.

This statement can be generalized to spheres Sp with more punctures. Consider for instance

the three-punctured sphere S3. We wish to obtain a fusion basis state by using the charge

ribbon operators R1[ρ1, I
′
1, I1], R2[ρ2, I

′
2, I2] and R3[ρ3, I

′
3, I3] for each of the legs of the

three-punctured sphere. However the three ribbons need to be fused (or glued) at an

auxiliary puncture, we therefore need to consider a four-punctured sphere, see figure 6.

Moreover, we need to contract the free indices arriving at the auxiliary puncture with a

Clebsch-Gordan coefficient.

By construction, the fusion procedure at the auxiliary puncture includes a projection

of this puncture to vanishing electric and magnetic (curvature and torsion) charge. This

allows us to understand the resulting state as a state on the three-punctured sphere again.

As shown in appendix G this gives∑
I′1,I
′
2,I
′
3

((
R1[ρ1, I

′
1, I1]R2[ρ2, I

′
2, I2] Cρ1ρ2ρ3I1I2I3

)
? R3[ρ3, I3, I

′
3]

)
ψS3

0

=
1

|G|3
dρ3
√
dρ1dρ2 ψS3

f

[
ρ1, I′1
ρ2, I′2
ρ3, I′3

]
. (5.55)

This construction can be easily generalized to spheres with more punctures.

6 Applications: multi-scale design of states and coarse graining

We finally come to applications of the fusion basis and the related ribbon operators. Here

we will discuss applications that make use of the multi-scale control the fusion basis offers.

In a follow-up work we will discuss a new notion of entanglement entropy for non-Abelian

lattice gauge theories that can be defined with the help of the fusion basis [61].

6.1 Multi-scale design of states

In the previous sections we constructed the fusion basis as well as ribbon operators which

either generate it (open ribbon operators R) or project onto it (closed ribbon operators

K). Crucially, the fusion basis is quite different from e.g. a spin-network basis, since it
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Figure 7. We can embed a regular square lattice on the sphere by closing it with an exterior ‘big

plaquette’. Each plaquette, including the exterior one, can carry an elementary curvature excitation.

The solid lines represent the embedded graph while the dashed lines represent a possible scheme

for coarse-graining the lattice.

allows a direct access to observables at different scales. In fact, the {ρ} labels of a fusion

basis state ψ
Sp
f [{ρ}, {I}] correspond to the ρ labels appearing in the set of closed ribbon

operators {K[ρ]}, which project onto the fusion basis state. In turn, such closed ribbon

operators go around different number of punctures. This number provides us with a notion

of ‘scale’, which we can associate to the closed ribbon operator K[ρ], and hence to the label

ρ itself. In the case of gravity the geometry is encoded in the states. Thus this notion of

‘scale’ is not a priori associated to a notion of length or metric. It is rather an auxiliary

notion, from which one can however deduce a length scale once a choice of state is given,

see e.g. [9, 62].

Note that we are not forced to follow the ‘linear’ construction of the fusion basis as

indicated in section 4.3: we can be more flexible. Take for example a regular square

lattice25 with N × N plaquettes, with N = 2K for some K ∈ N. To obtain the topology

of a punctured sphere26 we close off this lattice with one ‘big plaquette’, see figure 7. This

corresponds to the choice of free boundary conditions for the original lattice. The ‘big

plaquette’ has 4 two-valent and (4N − 4) three-valent nodes along its boundary.

Each plaquette can then carry an elementary curvature (i.e. magnetic) excitations.

The Gauß constraint violations (i.e. torsion or electric excitations) would usually sit on the

nodes of the lattice.27 However, for the regular square lattice it is immediate (and natural)

to move also these excitations onto the plaquettes. To do this, we restore gauge invariance

at the two-, three- and four-valent nodes, but add an open link to all the four-valent nodes,

25This lattice (or graph) would of course have four-valent nodes. Nevertheless, the techniques developed in

this paper can be straightforwardly applied to graphs with nodes of valence higher than three. Alternatively,

four-valent nodes can always be expanded into three-valent ones in a regular manner.
26Alternatively, we can allow for a punctured torus topology, for which one can also define a fusion basis.

This implements periodic boundary conditions.
27In lattice gauge theories, as well as in loop quantum gravity, one restricts quite often attention to

gauge invariant states, which would make the introduction of open links unnecessary. As we will see, coarse

graining of non-Abelian gauge theories does however introduce torsion excitations, and one might want thus

to include such cases in the discussion. On the other hand it is straightforward to restrict to a basis which

is gauge invariant, by setting the torsion excitations for the initial plaquettes to zero.
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pointing in one direction, toward the center of — say — the top-left plaquette. Thus it

is only the two-valent and three-valent nodes on the boundary of the ‘large’ plaquette,

for which we ignore the Gauß constraint violations. To also allow for a Gauß constraint

violation at the ‘big plaquette’ we introduce an open link at one of its corners.

We are now in the setting discussed in this paper: each plaquette can be identified with

a puncture, which can carry both curvature and torsion excitations. To define a fusion basis

we have to decide on an ordering in which the punctures or plaquettes are fused to larger

ones. To reach a homogeneous definition, we can first fuse pairs of plaquettes in x-direction

and then pairs of plaquettes in y-direction (leaving the ‘big plaquette’ untouched). This

coarse-graining procedure can be repeated until we remain with just two plaquettes, which

represent the two-punctured sphere.

The corresponding fusion basis diagonalizes closed ribbon operators, K1 that go around

single plaquettes, operators K2 that go around pairs (in x-direction) of plaquettes, operators

K4 that enclose quadruples of plaquettes, and so on. Correspondingly, the different scales of

the basis states are described by sets of representation labels {ρik}, where k = 0, 1, 2, . . . ,K

indicates the scale given by the number 2k of plaquettes surrounded.

Hence, we see that the fusion basis is ideal to design states with a prescribed multi-

scale behavior of observables. We expect that this will help to design low-energy states

for Yang-Mills (lattice) theory, by merging our tools with the techniques developed for

this purpose in the context of tensor network states or MERA (multi-scale entanglement

renormalization Ansatz, [63]), see [21] and also [64, 65] for some recent developments.

The advantage of using the fusion basis is that it comes with multi-scale observables,

that are automatically diagonalized by the fusion basis itself.

The fusion basis can also be useful in covariant (space-time) approaches to renormal-

ization and coarse graining of lattice gauge theories and spin-foams [13, 66–71]. Here, the

partition function associated to a space-time building block can be represented by a state

on the boundary of this block [62, 72, 73]. Using the fusion basis to represent this state

would allow to keep control in particular over the torsion excitations, which are generated

by coarse graining in non-Abelian gauge theories, and which are rather difficult to handle

in the spin-network basis (see next section, and especially [13]).

6.2 Coarse-graining in lattice gauge theories and loop quantum gravity

6.2.1 Coarse-graining in terms of density matrices

We will discuss here the coarse-graining of gauge theory and loop quantum gravity states,

explain the intricacies of this procedure, and motivate the use of the fusion basis to define

coarse-graining. We will work in the context of a fixed (initial) graph, or lattice, thus the

discussion in this section is independent of the question on which representation (ALI versus

BF) we use. In the context of loop quantum gravity coarse graining has been discussed

in [12, 14, 15, 38, 74].

To start with, one considers an (initial) graph Γ and associates to it the Hilbert space

HΓ of functions ψ ∈ F(GL) of the graph connection. Here, L denotes the number of links,

while the inner product in HΓ is given by (2.5).
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Coarse graining in a canonical framework is usually discussed using density matrices,

which we will here denote by D (instead of ρ which we reserved for the representation labels

of the Drinfel’d double D(G)). Pure states are then represented in the holonomy basis by

D =
∣∣∣ψ〉〈ψ∣∣∣ =

∑
g,g̃

d
[
{g}, {g̃}

]∣∣∣{g}〉〈{g̃}∣∣∣, (6.1)

where

d
[
{g}, {g̃}

]
= ψ({g}) ψ({g̃}) . (6.2)

The coarse-graining of a density matrix is defined as follows. First, choose a splitting

of the holonomies {g} attached to the links of the graph Γ under consideration, into two

sets of finer {gf} and coarser {gc} holonomies. Starting from a density matrix D for the

initial system, a coarser density matrix can then be defined by summing over the finer

degrees of freedom,

dc({gc}, {g̃c}) =
1

|G|Lf
∑
gf

d({gc}, {gf}, {g̃c}, {gf}) , (6.3)

where Lf denotes the number of finer links, i.e. those links carrying ‘finer’ holonomies.

In general, however, the graph under consideration will ‘break apart’ once the finer

links are removed. To avoid this, we can first (unitarily) transform the state onto a lattice

where all the finer links one wishes to integrate out are given by loops, see e.g. [12, 21].

(In [21] such transformations are called ‘controlled rotation unitary gates’.) This way,

removing these loops leaves us with a connected coarser lattice. But this coarse-graining

procedure has at least two major drawbacks.

(a) Despite providing a certain control over the coarser and finer variables in terms of

the holonomies, it completely lacks control over their conjugated variables, i.e. the (electric)

fluxes. This is an important issue, especially in the context of loop quantum gravity, where

the fluxes encode the metrical information of the (spatial) geometry. From this perspective,

one would rather be tempted by defining a coarse-graining procedure in terms of both

holonomies and flux variables.

(b) Moreover, the coarse density matrix is in general gauge invariant only under di-

agonal transformations, that is under those gauge transformations which agree in their

action on the {gc} and {g̃c} variables. This is the case even if the finer density matrix was

invariant under arbitrary gauge transformations at every single node. This full invariance

holds in particular for pure density matrices constructed as in (6.1) from gauge invariant

states. Note that this issue arises only in non–Abelian gauge theories. Indeed, in Abelian

gauge theories this issue does not appear if the finer variables are associated to loops. The

reason being that gauge transformations act by adjoint action on holonomies associated to

loops and are therefore trivial for Abelian structure groups. In other terms, in this latter

case one has a simple procedure to coarse-grain gauge-invariant variables. On the contrary,

for non-Abelian gauge theories, the spin-network basis for density matrices is not stable

under coarse graining, and is therefore quite inconvenient for this purpose.
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Of course, one could consider an extension to non-gauge invariant spin-network states

as proposed in [12, 15], however, the main appeal of the spin-network basis is the straight-

forward implementation of gauge invariance.

A neat solution to issue (b) would consist in providing a basis which allows for a

coarse-graining in terms of gauge-invariant variables. Here, one not only needs a maxi-

mally commuting subset of observables (which specifies a choice of basis), but also their

conjugated observables, which brings us back to issue (a).

Before discussing a proposal for such a procedure in the next section, let us mention

another possibility based on density matrix factorization. This consists in finding a trans-

formation which decouples the finer holonomy variables (which we assume to be based on

loops) from the rest of the state. That is, after the transformation, the density matrix

takes the product form

d
[
{gc}, {gf}, {g̃c}, {gf}

]
= dc

[
{gc}, {g̃c}

]
× dloops

[
{gf}, {gf}

]
. (6.4)

Upon coarse-graining, this would simply yield the density matrix Dc. In this case Dc

would be fully gauge invariant — provided this is the case for the initial density matrix D.

However, such a transformation which allows us to cast density matrices into a product

form, clearly depends on the initial states. Therefore, the coarse-graining itself would not

be controlled by a choice of coarser and finer observables, but rather by the form of the

initial states. We mention this possibility here, because this type of decoupling of finer and

coarser variables underlies the MERA approach [63].

6.2.2 Coarse-graining based on the splitting of the observable algebra

Let us now discuss a coarse-graining procedure in which the splitting of the observable

algebra into coarser and finer variables is central. Here one can consider the kinematical,

that is gauge covariant observable algebra, or the algebra of almost28 gauge invariant ob-

servables. Such splittings of the observable algebra are also important for the construction

of the continuum Hilbert spaces by an inductive limit [14] or projective techniques [75–77].

We will use a phase space description, and to this end assume that G is a compact

semi-simple Lie group. In this case29 the phase space associated to a graph is given by

pairs (gl, Xl) for each link l of the graph. Xl ∈ Lie(G) are the Lie algebra valued (electric)

fluxes. We will often express them in the basis τ i as Xl =
∑

iX
i
l τ
i. The phase space

carries the canonical symplectic structure

{Xi
l , X

j
l′} = δl,l′f

ijkXk
l , {Xi

l , gl′} = δl,l′glτ
i − δl−1,l′τ

igl′ and {gl, gl′} = 0. (6.5)

Here, it is understood that we associate to an inverted link l−1 an hololonomy gl−1 =

g−1
l and a flux Xl−1 = −glXlg

−1
l . Both fluxes and holonomies transform under gauge

transformations, which are parametrized by {un ∈ G}n, with n labeling the nodes of

the graph:

gl → ut(l)glu
−1
s(t) and Xl → us(l)Xlu

−1
s(l). (6.6)

Here, s(l) and t(l) denote the source and target nodes of l, respectively.

28since we will use a root that provides a global reference system.
29See e.g. [14] for a more detailed review of the phase space structures.
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A coarse-graining procedure based on gauge-covariant observables can be achieved in

two steps, as follows. (1) First, find a canonical transformation such that the new variables

split into coarser and finer sets of variables. Crucially, the sets of coarser and finer variables

must commute with each other. Also, one should take care of preserving the form of the

symplectic structure given by (6.5), since this is at the basis of the interpretation of the

variables in terms of holonomies and fluxes. (2) Then, as before, one can simply use a

polarization of the wave functions in the new holonomy variables and integrate out the

finer holonomy variables, while keeping the coarser holonomies fixed, as in (6.3). The

coarser holonomies and the coarser fluxes give (conjugated) observables characterizing the

coarser states.

Therefore, this procedure is not different from the one described at the end of sec-

tion 6.2.1, but rather an amendment thereof. This amendment, which basically prescribes

in more detail how to split the holonomies into coarser and finer sets, allows us, to gain

control over the coarse-graining of the fluxes as well.

Now, one can ask what kind of transformations would preserve the symplectic struc-

ture (6.5) hence keeping the interpretation of the variables as holonomies and fluxes intact.

Examples for such transformations are constructed in detail in [14, 38, 78]. We review the

construction in [14, 38] shortly, as it is closely related to ribbon operators.

Holonomies are easy to treat, since we can simply consider compositions gl′ = gln · · · gl1
that result in ‘new’ holonomies gl′ attached to ‘new’ links l′ = ln ◦ · · · ◦ l1 built out of the

corresponding links on the initial graph. For the fluxes, we can consider combinations of

the following type (see [14] for more detailed definitions)

Xl′ :=
∑
l∈S(l′)

g−1
s(l)s(l′)Xl gs(l)s(l′). (6.7)

Here, S(l′) is a set of links, so that the dual of these links form a connected path made

out of edges of the triangulation (or — more generally — out of edges of the dual complex

to the graph under consideration). This connected path should be interpreted to be dual

to a ‘new’ link l′. The holonomies gs(l)s(l′) denote the parallel transport from a node s(l′),

which will be the source node of the new link l′ to the source node s(l) of the link l. In

this way, we sum up the fluxes in one and the same reference system, provided by s(l′).

An explicit procedure to find phase space splittings into coarser and finer variables based

on such transformations can be found in [14].

In a loop quantum gravity context, the fluxes are su(2)-valued and encode the edge

vectors — for the edges dual to the links — in a reference frame associated to the nodes

of the graph. This interpretation also holds for the coarse-grained fluxes (6.7) and thus

justifies such a coarse-graining prescription.

The exponentiated action of the coarser or ‘integrated’ fluxes, as defined in (6.7), agrees

with the translation part of the open ribbon operators as discussed in section 5.1, see [38].

The holonomy (or multiplication) part of the ribbon operator is also constructed via a

composition of holonomies, following the same prescription we employed in this section.

Hence, ribbon operators use a coarse-graining of fluxes and holonomies analogous to the

one described here. There is nevertheless an important difference. The holonomy part and
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Figure 8. Each link of the graph is associated with an holonomy and the thick arrow represents

the corresponding conjugated flux. The black dot represents the root at which gauge invariance

is relaxed. The left panel shows an example of construction of a coarser flux. Fluxes are first

parallel transported to the root following the path defined by the wiggly line and then added to

form a coarser flux. The right panel shows an example of closed path. As before, fluxes must

be first parallel-transported to a common frame before being added to each other. In presence of

curvature, this sum will not be zero meaning that the Gauß constraint is violated.

the translational part of a ribbon operator commute with each other: the translational

part corresponds to a flux integrated along a path of edges in the triangulation, and the

holonomy part is associated to a path in the dual lattice. For the ribbon these two paths

are parallel (in fact could be seen as the boundaries of the ribbon), whereas a holonomy

and its conjugated flux are based on a link and edge respectively, that are transversal to

each other.

We have so far discussed the gauge covariant phase space. The coarse-graining proce-

dure described above would give us control over the coarser holonomy and flux variables,

but would suffer also from a violation of (full) gauge invariance for the coarse density ma-

trix. In the canonical formalism, gauge invariance is encoded in Gauß constraints associated

to each node n,

Gn =
∑

l:s(l)=n

Xl +
∑

l:t(l)=n

Xl−1 . (6.8)

Geometrically, these constraints demand the closure30 into a polygon of the edges dual to

the links ending or starting at n.

With such an interpretation, one might expect that the Gauß constraint are preserved

under coarse-graining, as the coarser Gauß constraints would demand that the coarser edges

of the coarser triangulation close, too. This is, however, generally not the case [14]. The

reason is the following. The coarser fluxes have to be parallel transported to a common

frame (see figure 8). Now, if this parallel transport has to go through a region with

curvature, the coarser Gauß constraint will in general not hold. Hence, we effectively obtain

torsion, defined as a violation of the Gauß constraint, due to the presence of curvature.

Such an effect, which was named curvature-induced torsion in [14], is strictly related to the

need of deforming the Gauß constraint in phase spaces describing piecewise homogeneously-

curved (instead of piecewise flat) geometries [55, 79–83] (see also [84–87], for an analysis in

four dimensions). In terms of defect excitations discussed in this paper, torsion excitations

interpreted as spinning particles can arise from the fusion of two spinless defects, since two

particles can have orbital angular momentum.

30Sometimes, Gauß constraints are renamed ‘closure constraints’.
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As mentioned, we could attempt to use gauge invariant variables for the coarse-

graining, which would avoid loosing gauge invariance. At the phase space level, this would

also mean that the Gauß constraints become redundant. In fact, implementing gauge

invariance in phase space means to consider only the constraint hypersurface where the

Gauß constraint is satisfied, and at the same time only gauge invariant functions on such

phase space.

But it is a very involved task to come up with a phase space description involving only

completely gauge invariant observables. It is much easier to work with an almost gauge

invariant set-up. This consists in choosing a node, called root r, as global reference frame,

to which all fluxes and holonomies are parallel transported. In other words, in considering

only root-based holonomies and fluxes. The resulting variables are invariant under all

gauge transformations, except for those at the root, which act by adjoint action.

A further, necessary, step consists in identifying an independent set of observables.

Indeed, the fluxes are related by the Gauß constraints (6.8), while holonomies along loops

must satisfy certain algebraic relations. Such an independent set of variables can be ob-

tained by choosing a rooted spanning-tree of the underlying graph Γ. This defines leaves `,

i.e. links which are not part of the tree. Each leaf ` defines a unique closed loop, which starts

and ends at the root and which contains only links of the tree and the one leaf `. Hence,

each leaf defines an holonomy variable h`. Furthermore, for what concerns the fluxes, we

can consider the leaf’s flux X` parallel transported to the root: X` = g−1
s(`)rX` gs(`)r. The set

of variables {(h`,X`)}`, with ` running through all leaves, gives a complete parametrization

of the almost gauge invariant phase space.31 And they do so by essentially preserving the

form of the symplectic structure of the gauge covariant phase space:

{Xi
`,X

j
`′} = δl,l′f

ijkXk
` , {Xi

`, h`′} = δ`,`′h`τ
i − δ`−1,`′τ

ih`′ and {h`, h`′} = 0. (6.9)

The coarse-graining procedure can now be run analoguesly to the gauge covariant case.

In particular, there is a well defined sense in which both the graph and the tree are coarse-

grained to a coarser graph and tree. Based on such a choice of coarser graph and tree, one

can perform a split into coarser and finer variables, as needed for coarse-graining. All this

is discussed in detail in [38].

Notice that within this procedure, one is working with an “almost” gauge-invariant

state space, which after coarse-graining still captures the “almost” gauge-invariant observ-

ables. Therefore, we have in this way exhibited a structure which is stable under the

coarse-graining procedure. This comes, however, at a price: whereas all the initial fluxes

could have been reconstructed via the Gauß constraint, this is not the case at the level

of the coarser fluxes. Of course, one could use some (ad hoc) Gauß constraints of the

form (6.8) to define fluxes associated to the links of the coarse tree. But these fluxes would

not correspond to the fluxes one obtains via coarse-graining from the finer fluxes. In this

sense, one looses important information, which in the case of loop quantum gravity encodes

31The leaf-associated loops allow the reconstruction of all other (root based) loops by construction.

Furthermore we are only left with the fluxes associated to the leaves. The fluxes associated to the remaining

links can be reconstructed using the Gauß constraints (see [14] for the procedure).
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the coarser spatial metric. Once again, the underlying reason is that curvature can lead to

torsion on a coarse-grained level. This is naturally taken into account in a coarse-graining

scheme based on the fusion basis. We now turn to describing such a scheme.

6.2.3 Coarse-graining in the fusion basis

As discussed in section 6.1, the fusion basis diagonalizes operators which can be natu-

rally interpreted as describing different coarse-graining scales. Therefore, the fusion basis

ψf[{ρj}, {Ik}] comes equipped with a natural coarse-graining scheme, in which one sums

directly over its D(G) representation labels.

Let us first review, what kind of observables these representation labels are related

to. As discussed in section 5.3.1, the fusion basis diagonalizes the closed charge ribbon

operators associated to the fusion tree structure. More generally, closed ribbon operators

Ki[ρ′] project onto states ψf[{ρj}, {Ik}] for which ρi = ρ′, where i and j label the branches

in the fusion tree associated to the fusion basis, whereas k labels its one-valent nodes (i.e.

its endpoints).

We want now to compare the coarse-graining procedure provided by the fusion basis

and closed ribbon operators, to the one provided by the holonomy polarization in the

almost gauge invariant set-up. To this end, we assume that we work with a p-punctured

sphere Sp and a minimal graph, but do not have torsion excitations at the punctures, i.e.

we have gauge invariant wave functions.

The holonomy polarization uses a basis which can be symbolically written as

ψ[{G`}](•) =
∏
` δ(G`, •), where ` runs over the leaves of a spanning tree in the graph

Γ, and the number of leaves is given by |`| = p − 1. The operators diagonalizing this

basis are given by root-based Wilson loop operators W f . These Wilson loops need not be

restricted to class functions, i.e. functions of the trace of the loop holonomy.

On the other hand, the closed ribbon operators Kj [Cj , Rj ] are fully gauge invariant

observables. In particular, the label Cj measures the conjugacy class (or trace) of the

Wilson loop along the closed ribbons, instead of the full loop holonomy. While with the

holonomy basis we describe holonomies only around a fundamental set of (p − 1) cycles,

the subindex j of the fusion basis ψf[{ρj = (Cj , Rj)}, {Ik = (Mk, ik)}] runs over (2p − 3)

values and we have as many (not completely independent)32 closed ribbon operators.

In addition to the holonomy information, the closed ribbon operators Kj [Cj , Rj ] en-

code flux observables within the labels {Rj}. More precisely, these are integrated fluxes

associated to a closed path. Note that in the almost gauge invariant phase space, discussed

in the previous section, we only had fluxes associated to open paths,33 provided we assume

that the graph does not include loops (i.e. links with the same source and target node).

32The closed charge ribbon operators result not being completely independent, since their possible results

are restricted by the coupling rules. E.g. for an Abelian theory, all the coarser closed ribbon operators are

determined by the finest closed ribbons around (p− 1) punctures.
33Before coarse-graining one can obtain fluxes associated to closed paths by combining the open paths

fluxes and by using the Gauß constraints to reconstruct the fluxes associated to the tree links. The Gauß con-

straints are however not anymore valid for ‘coarse grained’ nodes.
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Another way to talk about the {Rj} labels is to say that they measure torsion (electric

charge). Indeed, if we assume a gauge invariant state we immediately find (see section 4.5)

that Rj is equal to the trivial representations for those ribbons Kj [Cj , Rj ] that go directly

around the punctures. Notice that there are exactly p of such punctures. But for non-

Abelian groups, we can well have non-trivial labels Rj for the remaining (p − 3) closed

ribbons. These observables are crucial to keep track of how the Gauß constraint gets

deformed under coarse-graining.

As explained in section 4.5, a basis for fully gauge invariant states satisfying the

Gauß constraints at all punctures can be obtained from the fusion basis ψf[{ρj}, {Ik}] by

setting the appropriate indices Rk equal to the trivial representation, denoted by 0. Cor-

respondingly, the relative Mk indices in the Ik = (Mk, ik) multi-index are also trivialized.

Furthermore, we also sum over the {ik} labels

ψg.i.
f [{(Cm, Rj)}, {Ck}] =

(∏
k

1√
|QCk |

) ∑
{ik}

ψf[{(Cm, Rm)}, {Ck, 0}; {ik, 0}]. (6.10)

In this formula, we have split the index j running over the edges of the fusion tree into

two sets k and m, labelling the punctures (or leaves of the fusion tree) and the remaining

edges of the fusion tree, respectively.

Note that if one allows for states violating the Gauß constraints at the punctures, the

{Ik} labels encode only local information, and are measured by projective operators given

by gluing cylinder fusion basis states ψS2
f [ρ, I, I].

The closed ribbon operators Kj [Cj , Rj ] and the operation of gluing of the cylinder

fusion basis states give together a maximal commuting set of observables characterizing

the fusion basis. Coarse-graining in the fusion basis means that these observables determine

the splitting into coarser and finer ones.

In addition, there are conjugated observables, given by open ribbon operators extend-

ing from one puncture to another puncture. We leave it to future research to find a complete

set of such independent operators. The coarse-graining scheme based on the fusion basis

will also induce a splitting of the conjugated observables into a coarser and a finer set. To

deduce this splitting one needs to study in more detail the commutation relations or the

corresponding symplectic structure in phase space.

The coarse-graining is now given by summing over the finer variables, just as usual.

Consider a density matrix defined using a fusion basis by

D =
∑
{ρ},{I}

∑
{ρ̃},{Ĩ}

d
[
{ρ}, {I}; {ρ̃}, {Ĩ}

] ∣∣∣ψf[{ρ}, {I}]
〉〈
ψf[{ρ̃}, {Ĩ}

∣∣∣. (6.11)

This density matrix is adapted to the intended coarse-graining (or fusion) of punctures

into new ‘larger’ punctures. That is the p punctures are partitioned into p′ ≤ 1
2p sets, each

including at least two punctures. The fusion tree needs then to include a subtree for each

set that describes the fusion of the punctures in this set. We label the variables attached

to the subtrees with a super-index f , except for the pairs (Cs, Rs)
p′

s=1, which prescribe the

excitations for the fused punctures. We label these pairs and the remaining variables with

a super-index c.
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Working in the polarization given by the fusion basis variables, the coarser density

matrix is then defined by

dc
[
{ρc}, {ρ̃c}

]
=

∑
{ρf},{If}

d
[
{ρc}, {ρf}, {If}; {ρ̃c}, {ρf}, {If}

]
. (6.12)

In this scheme we get rid of all indices Ik, assuming that these are all classified as finer

information. An alternative scheme introduces new indices Ick′ for the coarser punctures.

This scheme is based on an extension of the Hilbert space (before coarse-graining). We will

explain this scheme34 in the forthcoming work [61], where we will also discuss entanglement

entropy.

7 Discussion

In this work we introduced the fusion basis for (2 + 1) dimensional lattice gauge theories,

in particular with non-Abelian structure groups. The basis is well adapted for the weak

coupling regime and for describing topological BF theory with defects. The latter theory

can also be taken as a description of (2 + 1) dimensional gravity coupled to (possibly

spinning) point particles.

In contrast to the spin-network basis [10], the fusion basis is a multi-scale basis. It

diagonalizes the traces of a certain multi-scale set of Wilson loop observables. This set does

in itself not form a maximal set of commuting observables: for non-Abelian gauge groups

one has rather to add further gauge-invariant observables describing electric excitations.

Importantly, the electric (or torsion, in a gravitational context) excitation might emerge on

larger scale even for gauge invariant states. This fact make it hard to control large scales in

a spin-network basis. For this reason, the fusion basis is ideally suited for coarse-graining

in lattice gauge theories and loop quantum gravity [12, 13, 15, 64–73].

More specifically, we have seen that the fusion basis comes with a number of advan-

tages. That we list and comment here below.

• The fusion basis incorporates the notion of basic excitations and their fusion to coarse

grained excitations, hence making explicit the quasi-local structure of the excitations

relative to the BF vacuum;

• it makes transparent the Drinfel’d double algebra structure, which in past (loop

quantum gravity) discussions was rather hidden in the algebra of constraints [55, 56];

• it incorporates a notion of cutting and gluing pieces of spatial manifolds along bound-

aries and thus comes automatically with a natural notion of local subsystems (see

e.g. [88] for a different notion).

34Note that for the definition of entanglement entropy based on subdividing the manifold into two regions

the extension involves only a very limited set of additional degrees of freedom, which arises from cutting

one edge of the fusion tree. In contrast, for the application to coarse-graining, one usually needs to cut

many trees of the fusion tree. Correspondingly the extension would involve a much larger set of additional

degrees of freedom.
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Moreover, in the context of (2 + 1) dimensional loop quantum gravity coupled to point

particles, the fusion basis

• provides naturally and directly the physical states of the theory, even for states

including spinning particles (i.e. states with torsion);

• and diagonalizes the gauge and diffeomorphism invariant (Dirac) observables of the

theory, which are given in terms of the closed ribbon operators.

This shows that the fusion basis is a convenient tool for describing the coupling of multiple

particles to (2 + 1) dimensional gravity. It would be of particular interest to consider a

thermodynamic or continuum limit, possibly resulting in gravity coupled to a matter field,

see also [89, 90]. A further question in this direction is whether the resulting system can

be described by a matter field propagating on an effective non-commutative space-time, as

derived in a covariant framework by [91, 92].

The use of the fusion basis emphasizes the Drinfel’d algebra or quantum double struc-

ture of (2 + 1) gravity coupled to point defects. This facilitates the comparison with other

quantization schemes [93], such as the combinatorial quantization for Chern-Simons the-

ory [94–97]. Let us also point out the recent work [98, 99], which reformulates Kitaev

models as a special case of combinatorial quantization via a reformulation of the latter in

terms of a Hopf-algebra gauge theory.

Furthermore, in relation to coarse-graining, we emphasized that the fusion basis

• solves a deep problem related to coarse-graining in the spin-network basis: in non-

Abelian gauge theories, coarse-graining generally leads to torsion degrees of freedom,

even though these are not initially present, therefore the spin-network basis cannot

be stable under coarse-graining. The fusion basis, on the other hand, incorporates

torsion degrees of freedom from the onset, hence allowing for a consistent coarse-

graining scheme;

• moreover, the fusion basis can be naturally used to design multi-scale states, in the

sense that it diagonalizes a set of operators defined at all available scales (cf. e.g. [21]),

a fact that makes it ideal for discussing coarse-graining schemes.

We hope to make all this explicit within a new tensor network coarse-graining framework,

by generalizing the recently developed schemes of [13, 73]. One of our principal aims

is studying the continuum limit and coarse-graining of spin-foam models [9, 13, 66–71].

In the context of (2 + 1) dimensional gravity models, a particularly intriguing question

is how to flow via coarse-graining from models based on flat building blocks to models

based curved building blocks, hence recovering in the quantum theory the classical result

of [79, 80]. More specifically, for spin-foam models one expects a transition from SU(2) to

the quantum deformed SU(2)q. This requires besides a condensation of curvature degrees of

freedom to a constant curvature state, also a condensation of torsion degrees of freedom. It

is therefore important to have coarse-graining schemes which do not throw away the torsion

degrees of freedom. Notice also that the fusion basis is already available for SU(2)q, with
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q root of unity, [28, 31] and has in some aspects even a simpler structure than in the finite

group case. (Even more so, if one compares with SU(2), since the corresponding fusion

category is not finite.) The finiteness of SU(2)q makes this choice particularly attractive

for numerical approaches to coarse-graining, see e.g. [100].

We have also anticipated that

• the fusion basis can be used to provide a new definition of entanglement entropy for

non-Abelian gauge theories. Let us add here, that in contrast to other proposals, this

new definition leads to finite results, even in the continuum limit, for states describing

a finite number of defects [61].

Finally, we conclude with some remarks about open problems and further directions

of investigation.

In this paper our analysis has been confined to lattice gauge theories with finite gauge

groups. It is, however, an important point to generalize our analysis to Lie groups. For

Lie groups there are two very different choices for the underlying topology of the state

space and the related inner product. One possibility is to choose a discrete topology

and measure on the gauge group, which is in fact necessary for the BF representation for

continuum loop quantum gravity. In particular, this is needed for the BF vacuum to have a

finite norm [38]. Alternatively, if one is only interested in lattice gauge theory with a fixed

lattice or with a fixed number of excitations (i.e. of punctures), one can also adopt the usual

(continuous) Haar measure on the gauge group. Drinfel’d double representations and their

tensor product, based on this choice, have been discussed in the case of SU(2) in [101, 102].

At last, a further interesting research direction consists of generalizing the fusion ba-

sis to (3 + 1) dimensions. One possibility to achieve this is to use the idea formulated

in [16, 103], where it is proposed to formulate a (3 + 1) dimensional theory of flat connec-

tions with defects, as a theory of flat connections in one less dimensions at the price of

defining it on some topologically complicated Cauchy surface based on a Heegard splitting

of the 3-dimensional hypersurface. The idea is then to use the machinery described in

this paper to define a basis and operators for the (3 + 1) dimensional theory, in order to

find a characterization of its basic excitations. Also in (3 + 1) dimensions, one expects the

maximal set of commuting observables to include a multi-scale set of Wilson loops. Torsion

degrees of freedom, on the other hand, are now captured by electric flux observables based

on closed surfaces, as defined in [14, 38]. However, using the techniques of [16], these can

be recast into ribbon operators acting around the non trivial cycles of the topologically

complicated Cauchy surface designed to encode the (3 + 1) dimensional theory.
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A Inductive limit on {Hp}

In this appendix, we explain how to construct an inductive limit of the Hilbert spaces Hp
over the number of punctures |p|. Here, the index p in Sp and Hp will not only denote the

number of punctures (which we here denote by |p|) but also the embedding information of

the punctures. Importantly, this embedding information includes not only the position of

the punctures, which themselves are infinitesimally small disks removed from the manifold.

But also a marked point on the boundary of each of these small disks. Alternatively a

puncture can be described by a point in the manifold equipped with a tangent vector at

this point [29]. The open links of the graphs have to end at the marked points of the small

disks (in one description) or to approach the punctures tangential to the associated vector

(in the other description). This additional structure of the punctures allows the inclusion

of torsion defects and is also crucial in order to make the gluing operation well defined.

It however leads also to an entire family of continuum Hilbert spaces constructed via the

inductive limit, as we will now explain.

We fix once and for all a coordinate atlas for the sphere S. For the inductive limit we

need to specify a partial ordering of a label set. This label set will be given by the punctures,

including their embedding (and marked points) information. Given two punctured spheres

Sp and Sp′ we say that Sp′ is a refinement of Sp, denoted by p ≺ p′, if all the punctures of

Sp are punctures of Sp′ . That is there are |p| punctures in Sp′ whose positions and marked

points agree with those of the punctures in Sp.

Thus we have a family of Hilbert spaces Hp, labelled by the embedding information

p of a set of |p| punctures. Theses labels are now equipped with a directed partial order

≺. What is needed for completing the definition of an inductive Hilbert space is the

specification of (consistent) embedding maps ιpp′ : Hp → Hp′ for any pair p ≺ p′.
We construct such an embedding map as follows: given a state ψ on Sp we can w.l.o.g.

assume that this state is defined on a minimal graph Γp. We add links and nodes to Γp
so that is becomes a minimal graph for Γp′ . This is done in |p′| − |p| steps and we denote

the graph after each step by Γp+i, i = 1, . . . , |p′| − |p|. We label the new punctures with

i = 1, . . . , |p′| − |p|. For a new puncture added in the i-th step we do the following: we

enclose the new punctures with a cycle and furthermore add a path (composed out of links)

that connects the marked point of the puncture to some (new) node on the graph Γp+i−1,

see figure 9.

The embedding map from Hp to Hp′ can be given as a composition of maps ιp1p2 with

|p2| = |p1|+ 1. For |p′| = |p|+ 1 the refinement of the graph adds the following additional

holonomies:

• One link l0 of Γp needs to be subdivided into two links l = l2 ◦ l1 with a new two-

valent node n. Correspondingly we will have two new holonomies gl1 , gl2 satisfying

gl0 = gl2gl1 .

– 57 –



J
H
E
P
0
2
(
2
0
1
7
)
0
6
1

Figure 9. Adding a puncture and extending correspondingly the minimal graph.

• There will be a new path consisting of three new links l′3 ◦ l′2 ◦ l′1 starting from the

new node n to the marked point of the puncture. We will denote the associated

holonomies by k1, k2, k3.
• Furthermore there is one additional link l′4 starting at the target node of l′1 sur-

rounding the new puncture and ending at the target node of l′2. We denote the

corresponding holonomy by k4.

The embedding ιpp′ : Hp → Hp′ mapping a state ψ(gl0 , {gl}l 6=l0) is then given as

ιpp′(ψ)(gl1 , gl2 , {gl}l 6=l0 , k1, . . . , k4) =
√
G δ(e, k−1

2 k4) ψ(gl2gl1 , {gl}l 6=l0) . (A.1)

That is the refined state describes a trivial holonomy for the cycle around the new puncture,

whereas it is totally spread on the holonomy k = k3k2k1, that gives the parallel transport

from the added node on the coarser graph to the new puncture. In summary the new

puncture carries neither a curvature nor a torsion excitation.

The embedding maps are consistent, that is reaching a given refinement via different

smaller steps, leads to the same result. We have further chosen the pre-factor in (A.1) so

that the embedding map is isometric.

Consider now a family of Hilbert spaces {Hp}{p∈P}, so that P carries a directed partial

order. The inductive limit Hilbert space HP is defined as the (closure) of the union over

all Hilbert spaces Hp with the following equivalence relation imposed: two states ψ ∈ Hp
and ψ′ ∈ Hp′ if they can be made equal under some refinement. That is, if there exist a p′′

with p ≺ p′′ and p ≺ p′ such that

ιpp′′(ψ) = ιp′p′′(ψ
′) . (A.2)

On this inductive limit Hilbert space one can define an inner product between as well as

the addition of two states ψ ∈ Hp and ψ′ ∈ Hp′ by first embedding these two states in a

common refinement Hilbert space Hp′′ with p ≺ p′′ and p′ ≺ p′′.
Note that the inductive limit Hilbert space HP depends on the set of labels P and that

we demanded that this set is directed. The latter property means that we can find for each

two elements p, p′ a common refinement p′′. By construction, this excludes the case that

p, p′ have a puncture position in common, for which the marked points disagree, since in

this case there is no common refinement.35 Also, for HP to describe a sensible continuum

limit one can demand for P to include some regular and infinite family of refinements.

35Alternatively, one can introduce a refinement of the punctures itself, i.e. allow that an arbitrary number

of open links end at a given puncture. We will discuss the consequences of this choice elsewhere.
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B Properties of the irreducible representations of the Drinfel’d double

B.1 Defining property of the representations

The irreducible representations of the Drinfel’d double are homomorphisms and as such

they preserve the algebraic structure. The following shows how the irreducible representa-

tions are compatible with the definition of the star-product:

DC,R
i′M ′,iM ([G̃, H̃] ? [G,H])

= DC,R
i′M ′,iM ([G̃G, H̃])δ(G̃−1H̃G̃,H)

= δ(G̃−1H̃G̃,H)δ(H̃, c′i)δ(ci, G
−1G̃−1c′iG̃G)DR

M ′M (q−1
i′ G̃Gqi)

=
∑
i′′,M ′′

δ(G̃−1H̃G̃,H)δ(H̃, c′i)δ(ci, G
−1G̃−1c′iG̃G)δ(H, c′′i )

×DR
M ′M ′′(q

−1
i′ G̃q

′′
i )DR

M ′′M (q−1
i′′ Gqi)

=
∑
i′′,M ′′

δ(H̃, c′i)δ(c
′′
i , G̃

−1c′iG̃)DR
M ′M ′′(q

−1
i′ G̃qi′′)δ(H, c

′′
i )δ(ci, G

−1c′′iG)DR
M ′′M (q−1

i′′ Gqi)

=
∑
i′′,M ′′

DC,R
i′M ′,i′′M ′′([G̃, H̃])DC,R

i′′M ′′,iM ([G,H]) (B.1)

where we have first used the linearity of the representations as well as the definition of

the multiplication in D(G) together with the definition of the induced representations,

and then the fact that the irreducible representations of the stabilizers preserve the group

multiplication rule.

B.2 Orthogonality of the irreducible representations

The space of functions on G × G is equipped with an inner product defined by

〈f, f ′〉 =
1

|G|
∑

G,H∈G
f(G,H)f ′(G,H) . (B.2)

Furthermore, the matrix elements of the irreducible representations of the Drinfel’d double

form an orthogonal set with respect to this inner product, i.e.

1

|G|
∑

G,H∈G
DC1,R1

i′1M
′
1,i1M1

([G,H])DC2,R2

i′2M
′
2,i2M2

([G,H]) (B.3)

=
1

|G|
∑

G,H∈G
δ(H, ci′1)δ(ci1 , G

−1ci′1G)δ(H, ci′2)δ(ci2 , G
−1ci′2G)

×DR1

M ′1M1
(q−1
i′1
Gqi1)DR2

M ′2M2
(q−1
i′2
Gqi2)

=
1

|C1|.|NC1 |
∑
G∈G

δC1,C2δi′1,i′2δi1,i2δ(ci1 , G
−1c′i1G)DR1

M ′1M1
(q−1
i′1
Gqi1)DR2

M ′2M2
(q−1
i′1
Gqi1)

=
δC1,C2

|C1|
δi′1,i′2δi1,i2

δR1,R2

dR1

δM ′1,M ′2δM1,M2 . (B.4)
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where we used between the third and last line the orthogonality of the irreducible repre-

sentations of the stabilizer NC1 . Note that for all G, the Kronecker delta δ(ci1 , G
−1ci′1G)

ensures that q−1
i′1
Gqi1 ∈ NC1 . However it does not mean that the summand is non-vanishing

for all values of G. As a matter of fact only NC1 configurations are non-vanishing which

explains why the summation over G does not produce any additional factors.

B.3 Completeness of the set of irreducible representations

The irreducble representations form a complete set of representations, since they resolve

the identity on D(G):

∑
C,R

∑
i′,M′
i,M

dC,RD
C,R
i′M ′,iM ([G,H])DC,R

i′M ′,iM ([G̃, H̃]) (B.5)

=
∑
C,R

∑
i′,M
i,M

dC,RD
C,R
i′M ′,iM ([G,H])DC,R

iM,i′M ′([G̃
−1, G̃−1H̃G̃]) (B.6)

=
∑
C,R

dC,Rχ
C,R([GG̃−1, H])δ(G−1HG, G̃−1H̃G̃) (B.7)

=
∑
R

dR.|C|χR(q−1
k(H)GG̃

−1qk(H))δ(GG̃
−1H,HGG̃−1)δ(G−1HG, G̃−1H̃) (B.8)

= |C|.|NC |δ(q−1
k(H)GG̃

−1qk(H))δ(GG̃
−1H,HGG̃−1)δ(G−1HG, G̃−1H̃) (B.9)

= |G|δ(G, G̃)δ(H, H̃) (B.10)

First, the formula (3.46) for the complex conjugate of the representation matrices is used

together with the property (3.49); this allows us to obtain the character of the represen-

tation labeled by C,R. Then, we apply the definition (3.34) of the delta function for the

stabilizer NC and use the fact that the identity in NC is the same as the identity in G.

Finally, we find that this resolves the identity in the following sense:

1

|G|
∑

G,H∈G
|G|δ(G, G̃)δ(H, H̃)f(G̃, H̃) = f(G,H) (B.11)

B.4 Diagonalization of the star-product

As an algebra, the Drinfel’d double is semi-simple and therefore a decomposition into

irreducible modules is provided via an idempotent decomposition. This means that the

irreducible representations of the algebra are idempotent with respect to the multiplication.

In other words, the irreducible representations diagonalize the star-product. Considering

two basis states respectively labeled by the irreducible representations ρ1 and ρ2 as well as

– 60 –



J
H
E
P
0
2
(
2
0
1
7
)
0
6
1

their corresponding matrix indices, we have indeed the following relation:

ψS2

ρ2,I′2I2
? ψS2

ρ1,I′1I1
=

=

√
dρ1dρ2
|G|2

∑
G1,H1
G2,H2

Dρ2
I′2I2

([G2, H2])Dρ1
I′1I1

([G1, H1])ψS2
G2,H2

? ψS2
G1,H1

=

√
dρ1dρ2
|G|2

∑
G1,H1
G2,H2

∑
ρ3

∑
I′3,I3

Dρ2
I′2I2

([G2, H2])Dρ1
I′1I1

([G1, H1])δ(G−1
2 H2G2, H1)

×
√
dρ3ψ

S2

ρ3,I′3I3
Dρ3
I′3I3

([G2G1, H2])

=

√
dρ1dρ2
|G|2

∑
G1,H1
G2,H2

∑
ρ3

∑
I′3I3

∑
I′′3

Dρ2
I′2I2

([G2, H2])Dρ1
I′1I1

([G1, H1])
√
dρ3

×Dρ3
I′3I
′′
3
([G2, H2])Dρ3

I′′3 I3
([G1, H1])ψS2

ρ3,I′3I3

=
√
dρ1dρ2

∑
ρ3

∑
I′3,I3

∑
I′′3

1

d
3/2
ρ3

δρ2,ρ3δI′2,I′3δI2,I′′3 δρ1,ρ3δI′1,I′′3 δI1,I3ψ
S2

ρ3,I′3I3

=
δρ1,ρ2√
dρ1

δI2,I′1 ψ
S2

ρ1,I′2I1
(B.12)

B.5 Completeness of the Clebsch-Gordan coefficients

The Clebsch-Gordan coefficients for the Drienfel’d double are unitary maps and as such

they resolve the identity. Indeed, we have∑
ρ

∑
I

Cρ1ρ2ρ
I′1I
′
2I
· Cρ1ρ2ρI1I2I

=
1

|G|
∑
G∈G

∑
H′∈C
H∈C1

∑
ρ

dρD
ρ1
I′1I1

([G,H])Dρ2
I′2I2

([G,H−1H ′])χρ([G,H ′])

(B.13)

=
∑
K∈G

∑
H∈C1

Dρ1
I′1I1

([e,H])Dρ2
I′2I2

([e,H−1K]) (B.14)

= δI′1I1δI′2,I2 (B.15)

where we made use between the first and the second of the following relation∑
ρ

dρχ
ρ([G,H ′]) =

∑
ρ

dρδ(GH
′, H ′G)χR(q−1

kC(H′)GqkC(H′)) (B.16)

= |C| · |NC |δ(GH ′, H ′G)δ(e,G) (B.17)

B.6 Invariance property of the Clebsch-Gordan coefficients

We rewrite the defining equation for the Clebsch-Gordan coefficients (3.58)

Dρ1
I′1I1
⊗Dρ2

I′2I2
(∆[G,H]) =

∑
ρ3

∑
I3,I′3

U [ρ1,ρ2]
I′1I
′
2,ρ3I

′
3
Dρ3
I′3I3

([G,H]) (U [ρ1,ρ2]†)ρ3I3,I1I2 (B.18)
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as

Dρ1
I′1I1
⊗Dρ2

I′2I2
(∆[G,H]) U [ρ1,ρ2]

I1I2,ρ3I3
=
∑
ρ3

∑
I3,I′3

U [ρ1,ρ2]
I′1I
′
2,ρ3I

′
3
Dρ3
I′3I3

([G,H]) . (B.19)

We now make use of the equation∑
I′′3

∑
H∈G

Dρ3
I′3I
′′
3
([G,H])Dρ3

I′′3 I3
([G−1, G−1HG])=

∑
H∈G

Dρ3
I3I′′3

([e,H]) = Dρ3
I3I′′3

(I) = δI3I′′3 . (B.20)

after multiplying (B.19) from the right with Dρ3
I′′3 I3

([G−1, G−1H,G]) and summing over

H. Resolving the co-product and using the property (3.46) of the matrix elements under

complex conjugation we obtain the invariance property of the Clebsch-Gordan coefficients

(remember that Cρ1ρ2ρ3I1I2I3
= U [ρ1,ρ2]

I1I2,ρ3I3
)∑

H1,H2

∑
I1,I2,I3

Dρ1
I′1I1

([G,H1])Dρ2
I′2I2

([G,H2])Dρ3
I′3I3

([G,H1H2]) Cρ1ρ2ρ3I1I2I3
= Cρ1ρ2ρ3

I′1I
′
2I
′
3
. (B.21)

B.7 Orthonormality of the fusion basis states

The basis states {ψS3
f } defined on the three-punctured sphere are orthonormal with respect

to the inner product of H3 (this is defined in (2.5) and the following pages):〈
ψS3
f

[
ρ1, I′1
ρ2, I′2
ρ3, I3

]
, ψS3

f

[
ρ̃1Ĩ′1
ρ̃2, Ĩ′2
ρ̃3, Ĩ3

]〉
=

=
1

|G|13

∑
g0,g1,...,g4
g′1,...,g

′
4

∑
G1,H1,G̃1,H̃1
G2,H2,G̃2,H̃2

∑
I1,Ĩ1
I2,Ĩ2

ψS3

{G},{H}({gk}, {g
′
k})ψ

S3

{G̃},{H̃}
({gk}, {g′k})

×
2∏

k=1

√
dρkdρ̃k

2∏
k=1

Dρk
I′kIk

([Gk, Hk])D
ρ̃k
Ĩ′k Ĩk

([G̃k, H̃k])Cρ1ρ2ρ3I1I2I3
· C ρ̃1ρ̃2ρ̃3

Ĩ1Ĩ2Ĩ3

=
1

|G|2
∑

G1,H1,G̃1,H̃1
G2,H2,G̃2,H̃2

∑
I1,Ĩ1
I2,Ĩ2

2∏
k=1

δ(Gk, G̃k)δ(Hk, H̃k)

×
2∏

k=1

√
dρkdρ̃k

2∏
k=1

Dρk
I′kIk

([Gk, Hk])D
ρ̃k
Ĩ′k Ĩk

([G̃k, H̃k])Cρ1ρ2ρ3I1I2I3
· C ρ̃1ρ̃2ρ̃3

Ĩ1Ĩ2Ĩ3

=
1

|G|2
∑
G1,H1
G2,H2

∑
I1,Ĩ1
I2,Ĩ2

2∏
k=1

√
dρkdρ̃k

2∏
k=1

Dρk
I′kIk

([Gk, Hk])D
ρ̃k
Ĩ′k Ĩk

[Gk, Hk])Cρ1,ρ2,ρ3I1,I2,I3
· C ρ̃1ρ̃2ρ̃3

Ĩ1Ĩ2Ĩ3

=
∑
I1,I2

Cρ1ρ2ρ3I1I2I3
· Cρ1ρ2ρ̃3

I1I2Ĩ3
δ
I′1,Ĩ
′
1
δ
I′2,Ĩ
′
2
δρ1,ρ̃1δρ2,ρ̃2

= δ
I3,Ĩ3

δ
I′1,Ĩ
′
1
δ
I′2,Ĩ
′
2
δρ3,ρ̃3δρ1,ρ̃1δρ2,ρ̃2 . (B.22)

Here, we used the orthogonality of the irreducible representations together with the or-

thogonality relation (3.62) of the Clebsch-Gordan coefficients. Similarly, the completeness
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relation for the fusion basis on the 3-punctured sphere follows from the completeness re-

lation of the 2-punctured sphere together with the orthogonality relation (3.61). These

properties generalize to the fusion basis states on the p-punctured sphere. For instance,

the orthonormality is given by〈
ψ

Sp
f

[
{ρi}2p−3

i=1 , {I ′k}
p−1
k=1, Ip

]
, ψ

Sp
f

[
{ρ̃i}2p−3

i=1 , {Ĩ ′k}
p−1
k=1, Ĩp

]〉
=

1

|G|5p−6
.

1

|G|2p−2

∑
{gi}5p−6

i=1

∑
{I},{Ĩ}

∑
{Gi,Hi,G̃i,H̃i}p−1

i=1

ψ
Sp
{G,H}({g})ψ

Sp
{G̃,H̃}

({g})

× Cρ1ρ2ρ(p+1)

I1I2I(p+1)
Cρ(2p−3)ρ(p−1)ρp
I(2p−3)I(p−1)Ip

Cρ̃1ρ̃2ρ̃(p+1)

Ĩ1Ĩ2Ĩ(p+1)

Cρ̃(2p−3)ρ̃(p−1)ρ̃p

Ĩ(2p−3)Ĩ(p−1)Ĩp

×
p−1∏
i=1

√
dρidρ̃iD

ρi
I′iIi

([Gi, Hi])D
ρ̃i
Ĩ′i Ĩi

([G̃i, H̃i])

2p−4∏
i=p+1

Cρiρ(i−p+2)ρ(i+1)

IiI(i−p+2)I(i+1)
Cρ̃iρ̃(i−p+2)ρ̃(i+1)

ĨiĨ(i−p+2)Ĩ(i+1)

=
1

|G|p−1

∑
{I},{Ĩ}

∑
{Gi,Hi}p−1

i=1

Cρ1ρ2ρ(p+1)

I1I2I(p+1)
Cρ(2p−3)ρ(p−1)ρp
I(2p−3)I(p−1)Ip

Cρ̃1ρ̃2ρ̃(p+1)

Ĩ1Ĩ2Ĩ(p+1)

Cρ̃(2p−3)ρ̃(p−1)ρ̃p

Ĩ(2p−3)Ĩ(p−1)Ĩp

×
p−1∏
i=1

√
dρidρ̃iD

ρi
I′iIi

([Gi, Hi])D
ρ̃i
Ĩ′i Ĩi

([Gi, Hi])

2p−4∏
i=p+1

Cρiρ(i−p+2)ρ(i+1)

IiI(i−p+2)I(i+1)
Cρ̃iρ̃(i−p+2)ρ̃(i+1)

ĨiĨ(i−p+2)Ĩ(i+1)

=
∑
{I},{Ĩ}

Cρ1ρ2ρ(p+1)

I1I2I(p+1)
Cρ(2p−3)ρ(p−1)ρp
I(2p−3)I(p−1)Ip

Cρ1ρ2ρ̃(p+1)

I1I2Ĩ(p+1)

Cρ̃(2p−3)ρ(p−1)ρ̃p

Ĩ(2p−3)I(p−1)Ĩp

p−1∏
i=1

δ
I′i Ĩ
′
i
δρiρ̃i

×
2p−4∏
i=p+1

Cρiρ(i−p+2)ρ(i+1)

IiI(i−p+2)I(i+1)
Cρ̃iρ̃(i−p+2)ρ̃(i+1)

ĨiĨ(i−p+2)Ĩ(i+1)

= δ
IpĨp

p−1∏
i=1

δ
I′i Ĩ
′
i

2p−3∏
i=1

δρiρ̃i (B.23)

where we followed the same steps as for the case of the three-punctured sphere.

B.8 Gauge invariant projection of the fusion basis

Here we consider the Gauß constraint projector Pgauge applied to a fusion basis state on a

cylinder:

Pgaugeψ
S2
f [CR, i′M ′, iM ] = |G|−1/2

∑
h

∑
G,H

√
dCR δ(H, ci′) δ(ci′ , GciG

−1)DR
M ′M (q−1

i′ Gqi)

× δ(G, g3g2g1h
−1)δ(H, g3g4g

−1
2 g−1

3 )

= |G|−1/2
∑
h

∑
G,H

√
dCR δ(H, ci′) δ(ci′ , Ghcih

−1G−1)DR
M ′M (q−1

i′ Ghqi)

× δ(G, g3g2g1h)δ(H, g3g4g
−1
2 g−1

3 ) . (B.24)

One now writes h as h = qjnqi and splits the sum over h ∈ G into a sum over n ∈ NC and

qj ∈ QC . We have thus

hcih
−1 = cj , hqi = qjn . (B.25)
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Hence the summation variable n only appears in DR
M ′M (q−1

i′ Ghqi) = DR
M ′M (q−1

i′ Gqjn)

which gives (Note that q−1
i′ Gqj is in NC due to the delta function in (B.24).)

1

|NC |
∑
n∈NC

DR
M ′M (q−1

i′ Gqjn) = δR,0δM ′0δM0 δ(q
−1
i′ Gqj , e) . (B.26)

where we denote the trivial representation of NC with R = 0. We are left with the

summation over qj which leads to the final result

Pgaugeψ
S2
f [CR, i′M ′, iM ] = |G|1/2

∑
G,H

√
dC0 δ(H, ci′)

1

|QC |
∑
qj

δ(ci′ , Gqjc1q
−1
j G−1)

×δ(G, g3g2g1h
−1)δ(H, g3g4g

−1
2 g−1

3 )

= δR,0δM ′0δM0
1

|QC |
∑
j

ψS2
f [C0, i′0, j0] . (B.27)

C Generalized fusion basis

Here we discuss an extension of the fusion basis, resulting from a generalization of the gluing

procedure of section 3.3. There, using the fact that the gluing of two cylinders is another

cylinder, we found that such a gluing procedure defines at the level of the states (defined

modulo appropriate equivalence relations, as in section 2.2) a multiplication mirroring that

of the Drinfel’d algebra:

([G̃, H̃], [G,H]) 7−→ [G̃, H̃] ? [G,H] = δ(H̃, G̃HG̃−1)[G̃G, H̃] . (C.1)

In defining the gluing procedure of cylinders and states, it was necessary to specify a

marked point on the boundary of the punctures at which a link of the underlying graph

terminates. This prescription can be readily generalized by introducing several, say m ≥ 1,

marked points at a given puncture, prescribing now where m different links can terminate.

We will refer to such a puncture as a m-puncture. We can then consider the gluing of

manifolds along two m-punctures.

As an example consider a cylinder with two 2-punctures denoted a and b. Labeling

the marked points at a by a1, a2 and at b by b1, b2 we can associate four independent

holonomies to such a cylinder:

G = h(b1, a1), H = h(b1, b2)h(b2, b1), K ′ = h(b2, b1) ,K = h(a2, a1), (C.2)

where h(y, x) denotes the holonomy from the marked point x to the marked point y.

All other holonomies between the marked points can be reconstructed using the flatness

condition, e.g.

h(a2, b2) = K ′GK−1 . (C.3)
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Considering a minimal embedded graph for the cylinder with two marked points at each

puncture, we can define the following basis states via gauge fixing

ψS2
G,H;K′K = , (C.4)

where the graphical notation is the same as in the main text. We can thus label a (basis)

element of the algebra describing these cylinder states by [G,H;K ′,K]. Compared to the

cylinder basis state with simple 1-punctures, these states contain additional information

given by the holonomies between the two marked points at each of the punctures. In this

sense, these are ‘refined’ punctures.

Consider now gluing two such cylinders:

? = Pflat ◦ Pgauge

( )
(C.5)

= δ(H̃, G̃HG̃−1)δ(K̃,K ′) (C.6)

That is,

[G̃, H̃; K̃ ′, K̃] ? [G,H;K ′,K] = δ(K̃,K ′)δ(H̃, G̃HG̃−1) [G̃G, H̃; K̃ ′,K] . (C.7)

Note that this new multiplication rule (C.5) is essentially the same as the original Drinfel’d

algebra multiplication (C.1): the [G,H; ·, ·] part multiply precisely as in the Drinfel’d

algebra, while the [·, ·,K ′,K] part functions as a factor with trivial multiplication rule

[·, ·; K̃ ′, K̃] ? [·, ·;K ′,K] = δ(K̃,K ′) [·, ·; K̃ ′,K] . (C.8)

In a way, this part already behaves like matrix indices in a representation. It is therefore not

difficult to see, that the representations of this new algebra are given by a trivial extension

of the Drinfel’d algebra representations V (C,R) of section (3.5). It is indeed enough to

extend the representation spaces to V
(C,R)

ext whose basis |ci,M, k〉 is the tensor product of

the basis |ci,M, 〉 of V (C,R) with the basis |k〉 of the group algebra C[G], k ∈ G. This leads

to the matrix elements

(DC,R
ext )i′M ′k′,iMk([G,H;K ′,K]) = δ(k,K)δ(k′,K ′)DC,R

i′M ′,iM ([G,H]) . (C.9)
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It is easy to see that the representation property holds, as well as the generalizations of

the orthogonality and completeness relations (equations (3.50) and (3.51), respectively).

Thus, it follows that the basis states for the cylinder with (m = 2)-punctures carry an

additional label k ∈ G, which can again be absorbed into an extended multi-index I. This

construction gives straightforwardly an extended fusion basis, which distinguishes itself

from the original one only by its extended index structure associated to the punctures.

Generalizations to (m > 2)-punctures is obvious: for each additional marked point

at a given puncture one obtains an additional index k ∈ G, describing the holonomy

between two consecutive marked points. The generalization of the cylinder algebra and its

representations is also obvious. In particular, the dimension of the corresponding extended

representation is given by |C| × dim(R)× |G|m−1.

Therefore, we see that the physical content of the states, which is encoded in the set of

charges ρ = (C,R), is not altered at all by a refined puncture structure. This mirrors the

Morita equivalence of tube algebras (with different number of open legs) discussed in [36].

What changes is only the ‘amount of information’ retained at the gluing interfaces. For

a more thorough discussion of this point see the final sections of [61], where the effect of

refined punctures is discussed in relation to entanglement entropy.

D Properties of ribbon operators

D.1 Gluing of ribbons

Here we consider the gluing of two ribbons Ri[Gi, Hi], i = 1, 2 at a puncture. We assume

that the state does not carry charges at this puncture.

Applying a ribbon R1 ending at a puncture p and then a ribbon R2 starting at the

puncture p we obtain

R2[G2, H2]R1[G1, H1]ψ =

= δ(G2, g8g7g6g
−1
2 g−1

3 g−1
4 ) δ(G1, g4g3g2g1)

× ψ(· · · , g−1
4 H−1

1 g4g5(g8g7g6g
−1
2 )−1H2g8g7g6g

−1
2 , · · · , g−1

8 H−1
2 g8g9)

= δ(G2G1, g8g7g6g1)δ(G1, g4g3g2g1)

× ψ(· · · , g−1
4 H−1

1 g4g5g
−1
3 g−1

4 G−1
2 H2G2g4g3, · · · , g−1

8 H−1
2 g8g9) . (D.1)

Here R1 shifts g5 and R2 shifts g9 and g−1
5 .

A state without any charge at the puncture p2 would have a g5 dependence of the form

δ(g−1
3 g5). For this factor to be left invariant we need H1 = G−1

2 H2G2. Thus the flatness

projector Pflat at the puncture p leads to the corresponding delta function. Also, we can

now use that g−1
2 g−1

5 g3g2 = e in the first delta-function on the (last) r.h.s. of (D.1) so that
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for a state ψ = δ(g−1
3 g5)ψ′ we have

PflatR2[G2, H2]R1[G1, H1](δ(g−1
3 g5)ψ′) = δ(H1, G

−1
2 H2G2)δ(G2G1, g8g7g6g

−1
2 g−1

5 g3g2g1)

×δ(G1, g4g3g2g1)δ(g−1
3 g5)ψ′(· · · , g−1

8 H−1
2 g8g9).

(D.2)

We also apply a group averaging at the puncture

|G|PgaugePflatR2[G2, H2]R1[G1, H1](δ(g−1
3 g5)ψ′) (D.3)

=
∑
h

δ(H1, G
−1
2 H2G2)δ(G2G1, g8g7g6g

−1
2 g−1

5 g3g2g1) (D.4)

× δ(G1, hg4g3g2g1)δ(g−1
3 g5)ψ′(· · · , g−1

8 H−1
2 g8g9)

= δ(H1, G
−1
2 H2G2)δ(G2G1, g8g7g6g

−1
2 g−1

5 g3g2g1)δ(g−1
3 g5)ψ′(· · · , g−1

8 H−1
2 g8g9), (D.5)

where we used that ψ′ is gauge invariant at the target node of l4, i.e. cannot depend on g4.

Now the r.h.s. of (D.3) can be written as

|G|PgaugePflatR2[G2, H2]R1[G1, H1](δ(g−1
3 g5)ψ′)

= δ(H1, G
−1
2 H2G2)R3[G2G1, H2](δ(g−1

3 g5)ψ′), (D.6)

where the path underlying R3 is as follows

.

The ribbon does also cross the link l2 and hence should shift the holonomy g2. However

we assumed that ψ = δ(g−1
3 g5)ψ′ does not carry charges at the puncture p and that means

that ψ′ does not depend on g2 (and also not on g4, as we used earlier).

We conclude that for a gluing of ribbons at an (auxiliary) puncture which does not

carrying any charge, we have

|G|PgaugePflat R2[G2, H2]R1[G1, H1] = δ(H1, G
−1
2 H2G2)R3[G2G1, H2]. (D.7)
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D.2 Gluing of charge ribbon operators

Using the previous result, equation (D.7), we can now repeat the same construction in the

case of two charge ribbon operators

|G|PgaugePflatR2[C2, R2; i′2M
′
2, i2M2]R2[C1, R1; i′1M

′
1, i1M1]

=
dR2

|NC2 |
dR1

|NC1 |
∑
n1,n2

DR2

M ′2M2
(n2)DR1

M ′1M1
(n1) δ(c

(1)
i′1
, c

(2)
i2

)R[qi′2n2q
−1
i2
qi′1n1q

−1
i1
, c

(2)
i′2

]

= δC1,C2

dR2

|NC2 |
dR1

|NC1 |
∑
n1,n2

DR2

M ′2M2
(n2)DR1

M ′1M1
(n1)R[qi′2n2n1q

−1
i1
, c

(2)
i′2

]

= δC1,C2

dR2

|NC2 |
dR1

|NC1 |
∑

n1,n,M ′′2

DR2

M ′2M
′′
2

(n)DR2

M2M ′′2
(n1)DR1

M ′1M1
(n1)R[qi′2nq

−1
i1
, c

(2)
i′2

]

= δC1,C2δR2,R1δM2M ′1

dR2

|NC2 |
∑
n

DR2

M ′2M1
(n) R[qi′2nq

−1
i1
, c

(2)
i′2

]

= δC1,C2δR2,R1δi2i′1δM2M ′1
R[C2, R2; i′2M

′
2, i1M1]. (D.8)

The delta function in the second line enforces i2 = i′1, which we used in the third line.

Furthermore, it requires that C2 = C1. We then performed a variable transformation and

used orthogonality of the representation matrix elements.

D.3 Lateral product of closed ribbons

Here we consider the lateral product of two charge closed ribbons as defined in (5.35):

K[C,R]K[C ′, R′] =
dR
|NC |

dR′

|NC′ |
∑
D,D′

χR(D)χR
′
(D′)K[C,D]K[C ′, D′] (D.9)

(5.32)
= δC,C′

dRdR′

|NC |2
∑
D,D′

∑
q∈QC

∑
d∈D
d′∈D′

χR(D)χR
′
(D′)R[qc1q

−1, qdd′q−1] (D.10)

= δC,C′
dRdR′

|NC |2
∑
q∈QC

∑
d,d′∈NC

χR(d)χR
′
(d′) R[qcq−1, qdd′q−1]

= δC,C′
dRdR′

|NC |2
∑
q∈QC

∑
d,d′′∈NC

χR(d) χR
′
(d−1d′′) R[qcq−1, qd′′q−1]

= δC,C′δR,R′
dR
|NC |

∑
q∈QC

∑
d′′∈NC

χR(d′′) R[qcq−1, qd′′q−1]

= δC,C′δR,R′K[C,R]. (D.11)

In the first step we used the result (5.32). We then rearranged the sums according to∑
D

∑
d∈D =

∑
d∈NC , together with the fact that χR(D) = χR(d) for all d ∈ D. Fi-

nally, we performed a change of variables and used the orthogonality of the irreducible

representations for the stabilizers.

Thus, we conclude that the closed ribbons K[C,R] define a family of orthogonal pro-

jectors under the above lateral product.
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E Action of closed ribbons on cylinder states

Here we consider the action of a closed ribbon on a fusion basis state on the cylinder. The

minimal graph we use as well as the specific ribbon are indicated in figure 4.

Using the expression (5.38) for a fusion basis state on the cylinder and the defini-

tions (5.30), (5.35) for the closed ribbon we obtain

K[C ′, R′]ψS2
f [CR; i′M ′, iM ]

= |G|1/2
√
dR,C

dR′

|NC′ |
∑
n∈NC

∑
q∈QC′

∑
n′∈NC′

χR
′
(n′)DR

M ′M (n)δ(qc′1q
−1, g−1

2 g4) δ(ci′ , g3g4g
−1
2 g−1

3 )

× δ(qi′nq−1
i , g3g2g

−1
4 g2q(n

′)−1q−1g−1
2 g4g1). (E.1)

To lighten the formulas we will evaluate the resulting wave function in a gauge-fixed form,

g3 = g2 = e. Hence,(
K[C ′, R′]ψS2

f [CR; i′M ′, iM ]
)
|g.f.

= |G|1/2
√
dR,C

dR′

|NC′ |
∑
n∈NC

∑
q∈QC′

∑
n′∈NC′

χR
′
(n′)DR

M ′M (n)δ(qc′1q
−1, g4) δ(ci′ , g4)

× δ(qi′nq−1
i , g−1

4 q(n′)−1q−1g4g1) . (E.2)

The first two delta functions on the r.h.s. of (E.2), enforce C = C ′, and also allow us to

determine q from the condition

qc′1q
−1 = qc1q

−1 = qi′c1q
−1
i′ , (E.3)

which in turn follows from the definition ci′ = qi′c1q
−1
i′ . Indeed, we find q = qi′ (as now

both q, qi′ ∈ QC).

Next, we turn to the last delta function in (E.2). Using g4 = qc′1q
−1 = qc1q

−1, one

can show that g4 and q(n′)−1q−1 do commute (since n′ ∈ NC). Therefore, the condition

enforced by the last delta function simplifies to

qi′nq
−1
i = q(n′)−1q−1g1. (E.4)

This can in turn be solved for n′:

n′ = q−1g1qin
−1q−1

i′ q = q−1
i′ g1qin

−1. (E.5)

Now, apart from determining n ∈ NC , equation (E.5) also requires that

q−1
i′ g1qi ∈ NC . (E.6)

We encode this into a characteristic function

θNC (g) = 1 if g ∈ NC , and vanishing otherwise. (E.7)
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Now, (E.2) can be written as(
K[C ′, R′] ψS2

f [CR; i′M ′, iM ]
)
|gf

(E.8)

= δC,C′ |G|1/2
√
dR,C

dR′

|NC′ |
∑
n∈NC

χR′(q
−1
i′ g1qin

−1)DR
M ′M (n)δ(ci′ , g4) θNC (q−1

i′ g1qi)

= δC,C′δR,R′ |G|1/2
√
dR,C DR

M ′M (q−1
i′ g1qi) θNC (q−1

i′ g1qi) δ(ci′ , g4)

= δC,C′δR,R′ ψ
S2
f [CR; i′M ′, iM ]|gf . (E.9)

Thus the closed ribbon operator K[C,R] projects onto states ψ[CR; i′M ′, iM ]. In particu-

lar, the projective cylinder states are eigenstates for the closed ribbons K.

F The S-matrix

The S-matrix can be defined as [39, 60]

SCR,C′R′ =
1

|G|
∑

hi∈C,h′j∈C′
δ(hih

′
j , h

′
jhi) χ

R(q−1
i h′jqi) χ

R′((q′j)
−1hiq

′
j). (F.1)

with hi := qic1q
−1
i and h′j := qjc

′
1q
−1
j where c1 ∈ C, c′1 ∈ C ′ and qi ∈ QC , q′j ∈ QC′ .

As h′j commutes with hi, it has to be of the form

q′jc
′
1(q′j)

−1 = h′j = qinq
−1
i with n ∈ NC . (F.2)

Here, n is given by

n = q−1
i qjc

′
1(q′j)

−1qi = nqk c
′
1 nq

−1
k . (F.3)

The second equation comes from (5.47) and defines nqk. Note that we use c′1 = nc1.

Thus (q′j)
−1hiq

′
j = nq

−1
k c1 nqk ∈ Dn,c1 . This shows that the summation over hi ∈ C is

superfluous, and we can write

SCR,C′R′ =
1

|G|
∑
hi∈C

∑
n∈NC

δC′,Cn χ
R(n) χR′(Dn,c1)

=
1

|NC |
∑
n∈NC

δC′,Cn χ
R(n) χR′(Dn,c1) . (F.4)

G Constructing the fusion basis via charge ribbon operators

Here we construct the fusion basis on the three-punctured sphere by applying three charge

ribbon operators, ending at an auxiliary puncture, see figure 10.

We start with a vacuum on the three punctured sphere, which in gauge fixed form is

given by

ψS3
0 |g.f. = δ(g4, e)δ(g

′
4, e) . (G.1)
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Figure 10. Construction of the fusion basis states on the three-punctured sphere using charge

ribbon operators. An auxiliary puncture is introduced at which the three ribbons are fused via a

Clebsch-Gordan coefficient.

We now introduce an auxiliary puncture, using the embedding map detailed in (A.1):

ψ3→4
0 |g.f. := (ιpp′(ψ

S3
0 ))|g.f. = |G|1/2δ(g4, e)δ(g

′
4, e)δ(g

′′
4 , e) . (G.2)

This allows us to apply three ribbon operators, as indicated in figure 10:

(
R1[G1, H1]R2[G2, H2]R3[G3, H3]ψ3→4

0

)
|g.f.

= |G|1/2δ(g′′1g0, G3)δ(g′′4G
−1
1 H1G1G

−1
2 H2G2, H3) δ(g′1(g′′1)−1, G2)δ(g′4, H2)

× δ(g1(g′′1)−1, G1)δ(g4, H1) . (G.3)

To glue the ribbons together we apply the flatness projector Pflat and the gauge av-

eraging |G|Pgauge at the auxiliary puncture. The flatness projector leads to an additional

delta function δ(g′′4 , e). We use its solution in the second delta function factor on the r.h.s.

in (G.3). The gauge averaging leads in this gauge fixed setting to a summation over g′′1 ,

that is we can solve e.g. the first delta function in (G.3) for g′′1 . This results in

|G|PgaugePflat

(
R1[G1, H1]R2[G2, H2]R3[G3, H3]ψ3→4

0

)
|g.f.

= |G|1/2δ(G−1
1 H1G1G

−1
2 H2G2, H3) δ(g′′4 , e) δ(g

′
1g0, G2G3)δ(g′4, H2)

× δ(g1g0, G1G3)δ(g4, H1) . (G.4)

We have now projected away any charge contend at the auxiliary puncture, and can there-

fore use the equivalence relations in section 2.2, to express the state on a minimal graph

for the 3-punctured sphere. (The gauge fixing is the same as in (4.6)). We write this as

(
(|G|PgaugePflat(R1[G1, H1]R2[G2, H2]R3[G3, H3]))ψS3

0

)
|g.f.

= δ(G−1
1 H1G1G

−1
2 H2G2, H3) δ(g′1, G2G3)δ(g′4, H2)δ(g1, G1G3)δ(g4, H1) . (G.5)
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We now transform the three ribbons to charge ribbons and contract the appropriate

I-indices with a Clebsch-Gordan coefficient. This gives((
|G|PgaugePflat

∑
I1,I2,I′3

Cρ1ρ2ρ3
I1I2I′3

R1[ρ1, I
′
1, I1]R2[ρ2, I

′
2, I2]R3[ρ3, I

′
3, I3]

)
ψS3

0

)
|g.f.

=
∑

G1,G2,G3,
H1,H2,H3

∑
I1,I2,I′3

(
3∏

α=1

dρα
|G|

Dρα
I′αIα

([Gα, Hα])

)
Cρ1ρ2ρ3
I1I2I′3

× δ(G−1
1 H1G1G

−1
2 H2G2, H3) δ(g′1g0, G2G3)δ(g′4, H2)δ(g1g0, G1G3)δ(g4, H1)

=
∑

G1,G2,G3,
H1,H2

∑
I1,I2,I′3

dρ1dρ2dρ3
|G|3

Dρ1
I′1I1

([G1G
−1
3 , H1])Dρ2

I′2I2
([G2G

−1
3 , H2]) Cρ1ρ2ρ3

I1I2I′3

×Dρ3
I′3I3

([G3, G3G
−1
1 H1G1G

−1
2 H2G2G

−1
3 ]) δ(g′1g0, G2)δ(g′4, H2)δ(g1g0, G1)δ(g4, H1) .

(G.6)

For the second equation we solved the delta function for H3, and furthermore translated the

summation variables G1 → G1G
−1
3 and G2 → G2G

−1
3 . We proceed by using equation (4.13)∑

I1,I2,I′3

Dρ1
I′1I1

([G1G
−1
3 , H1])Dρ2

I′2I2
([G2G

−1
3 , H2]) Cρ1ρ2ρ3

I1I2I′3
Dρ3
I′3I3

([G3, G3G
−1
1 H1G1G

−1
2 H2G2G

−1
3 ])

=
∑
I1,I2

Dρ1
I′1I1

([G1, H1])Dρ2
I′2I2

([G2, H2]) Cρ1ρ2ρ3I1I2I3
, (G.7)

and performing the (now trivial) summation over G3:((
|G|PgaugePflat

∑
I1,I2,I′3

Cρ1ρ2ρ3
I1I2I′3

R1[ρ1, I
′
1, I1]R2[ρ2, I

′
2, I2]R3[ρ3, I

′
3, I3]

)
ψS3

0

)
|g.f.

=
∑
G1,G2
H1,H2

∑
I1,I2,I′3

dρ1dρ2dρ3
|G|2

Dρ1
I′1I1

([G1, H1])Dρ2
I′2I2

([G2, H2]) Cρ1ρ2ρ3I1I2I3

× δ(g′1g0, G2)δ(g′4, H2)δ(g1g0, G1)δ(g4, H1) . (G.8)

The right hand side of this equation can be compared with the definition of the fu-

sion basis state in (4.6) and (4.8). (Note that ψS3
G1,H1;G2,H2

= |G|3δ(g′1g0, G2)δ(g′4, H2)

δ(g1g0, G1)δ(g4, H1).)

We finally obtain( ∑
I1,I2,I′3

(
R1[ρ1, I

′
1, I1]R2[ρ2, I

′
2, I2]Cρ1ρ2ρ3

I1I2I′3

)
?R3[ρ3, I

′
3, I3])

)
ψS3

0

:=

(
|G|PgaugePflat

∑
I1,I2,I′3

Cρ1ρ2ρ3
I1I2I′3

R1[ρ1, I
′
1, I1]R2[ρ2, I

′
2, I2]R3[ρ3, I

′
3, I3]

)
ψS3

0

=

√
dρ1dρ2dρ3
|G|3

ψS3
f

[
ρ1, I′1
ρ2, I′2
ρ3, I3

]
. (G.9)
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[85] H.M. Haggard, M. Han, W. Kamiński and A. Riello, Four-dimensional Quantum Gravity

with a Cosmological Constant from Three-dimensional Holomorphic Blocks, Phys. Lett. B

752 (2016) 258 [arXiv:1509.00458] [INSPIRE].

[86] H.M. Haggard, M. Han, W. Kaminski and A. Riello, SL(2,C) Chern-Simons Theory, Flat

Connections and Four-dimensional Quantum Geometry, arXiv:1512.07690 [INSPIRE].

[87] H.M. Haggard, M. Han and A. Riello, Encoding Curved Tetrahedra in Face Holonomies:

Phase Space of Shapes from Group-Valued Moment Maps, Annales Henri Poincaré 17 (2016)
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