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1 Introduction

There is a rich interplay between the three ideas of T-duality, integrability and holography.

Perhaps the most well studied example of this is the use of the TsT transformation to

ascertain the gravitational dual space-times to certain marginal deformations of N = 4

super Yang-Mills gauge theory [1]. Whilst this employs familiar T-dualities of U(1) isome-

tries in space-time, T-duality can be extended to both non-abelian isometry groups and

to fermionic directions in superspace. Such generalised T-dualities also have applications

to holography. Fermionic T-duality [2, 3] was critical in understanding the scattering am-

plitude/Wilson loop duality at strong coupling. T-duality of non-abelian isometries has

been employed as a solution generating technique in Type II supergravity [4], relating for

instance AdS5×S5 to (a limit1 of) the space-times corresponding to N = 2 non-Lagrangian

gauge theories. Developing the recent results of [6, 7] this note will investigate further the

role generalised notions of T-duality can play in holography.

1A more precise field theoretic explanation of what this limit means has been proposed in [5].
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A new perspective on deformations of the AdS5 × S5 superstring has come from the

study of Yang-Baxter deformations of string σ-models [8–12]. These are integrable algebraic

constructions which deform the target space of the σ-model through the specification of an

antisymmetric r-matrix solving the (modified) classical Yang-Baxter equation ((m)cYBE).

If the r-matrix solves the mcYBE then, applied to the supercoset formulation of strings

in AdS5 × S5 [13, 14], these give rise to η-deformed space-times which are conjectured to

encode a quantum group q-deformation of N = 4 super Yang-Mills with a deformation

parameter q ∈ R [15–17]. However the η-deformed worldsheet theory appears to be only

globally scale invariant [18, 19], the target space-time does not solve exactly the Type II su-

pergravity equations [17] but rather a generalisation thereof [20]. Classically η-deformations

are related via a generalised Poisson-Lie T-duality [18, 21–25] to a class of integrable de-

formation of (gauged) WZW models known as λ-deformations [26–28], which do however

have target space-times solving the usual supergravity equations of motion [29–32]. There

is also evidence that the latter class corresponds to a quantum group deformation of the

gauge theory, but with q a root of unity [33].

If instead the r-matrix solves the unmodified cYBE (a homogeneous r-matrix), first

considered in [34], the YB σ-models have been demonstrated to give a wide variety of

integrable target space-times including those generated by TsT transformations [35–41].

For these models the corresponding dual theory can be understood in terms of a non-

commutative N = 4 super Yang-Mills with the non-commutativity governed by the r-

matrix and the corresponding Drinfel’d twist [42, 43]. Recently it has been shown that

such YB σ-models can be also be understood in terms of non-abelian T-duality: given an

r-matrix one can specify a (potentially non-abelian) group of isometries of the target space

with respect to which one should T-dualise [6]. The deformation parameter appears by

first centrally extending this isometry group and then T-dualising. Following a Buscher-

type procedure, the Lagrange multiplier corresponding to the central extension is non-

dynamical. In particular it is frozen to a constant value and thereby plays the role of

the deformation parameter. This conjecture was proven in the NS sector in [7], where a

slightly different perspective was also given. If one integrates out only the central extension,

the procedure above can be seen to be equivalent to adding a total derivative B-field

constructed from a 2-cocycle on the isometry group with respect to which we dualise and

then dualising.

In this note we develop this line of reasoning. We begin by outlining the essential

features of Yang-Baxter σ-models and the technology of non-abelian T-duality in Type II

supergravity. After demonstrating that a centrally-extended T-duality can be reinterpreted

as as non-abelian T-duality of a coset based on the Heisenberg algebra, we show how the ma-

chinery of non-abelian T-duality developed for Type II backgrounds can be readily applied

to the construction of [6, 7]. We confirm that the centrally-extended non-abelian T-duals

produce the full Type II supergravity backgrounds corresponding to β-deformations (when

the duality takes place in the S5 factor of AdS5×S5), non-commutative deformations (when

performed in the Poincaré patch of AdS5) and dipole deformations (when performed in both

the S5 and AdS5 simultaneously). In appendices A and B we outline our conventions for

supergravity and certain relevant algebras respectively. As a third appendix C we include
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some additional worked examples including one for which the non-abelian T-duality is

anomalous and the target space solves the generalised supergravity equations.

The supergravity backgrounds in this note have appeared in the literature in the past

but the derivation and technique presented here is both novel, simple and, we hope may

have utility in the construction of more general supergravity backgrounds.

2 Yang Baxter σ-models

Given a semi-simple Lie algebra f (and corresponding group F ) we define an antisymmetric

operator R obeying

[RX,RY ]−R ([RX,Y ] + [X,RY ]) = c[X,Y ] , X, Y ∈ f , (2.1)

where the cases c = ±1 and c = 0 are known as the classical and modified classical Yang

Baxter equations (cYBE and mcYBE) respectively. We adopt some notation X ∧ Y =

X ⊗ Y − Y ⊗X and define e.g.

r = T1 ∧ T2 + T3 ∧ T4 + . . . , RX = Tr2(r(I⊗X)) . (2.2)

We define an inner product by the matrix trace of generators, Tr(TATB), and lower

and raise indices with this inner product and its inverse. In this way the r-matrix acts as

R(TA) ≡ RABTB , RA
B = Tr

(
Tr2(r(I⊗ TA))TB

)
. (2.3)

Suppose we have a Z2 grading f = g⊕ k for a subgroup g. Let TA be generators for f,

Tα those of g and Ti the remaining orthogonal generators of k. We introduce a projector

to the coset defined by P (Tα) = 0 and P (Ti) = Ti or, in matrix form,

P (TA) ≡ PABTB , PA
B = Tr

(
P (TA)TB

)
. (2.4)

We also define the adjoint action for g ∈ F by

Adg TA ≡ gTAg−1 ≡ DA
B(g)TB , DAB = Tr(gTAg

−1TB) . (2.5)

Let the two-dimensional worldsheet field g be a coset representative for F/G with

which we define the currents

J± = JA±TA = g−1∂±g , JA± = Tr(g−1∂±gT
A) , (2.6)

where we use light-cone coordinates ∂± = ∂0 ± ∂1.

The standard (bosonic) σ-model whose target is the coset space F/G is

L = Tr(J+P (J−)) . (2.7)

To define the Yang-Baxter model first we let

Rg = Adg−1 RAdg , (Rg)A
B = D(g)A

CRC
DD(g−1)D

B , (2.8)
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and define the operator

O = I− ηRgP , OAB = δA
B − ηPAC(Rg)C

B , (2.9)

in which we have explicitly introduced the deformation parameter η. Later we will restrict

to the case c = 0 in (2.1), in which case the parameter η can be absorbed into the definition

of R. The Yang-Baxter σ-model on a coset is given by [15, 35]

L = Tr(J+P (O−1J−)) = JA+EABJ
B
− , EAB = O−1

B
CPCA . (2.10)

3 Non-abelian T-duality technology

In this section we will mainly follow the approach of [4, 44, 45] including the transformation

of RR fluxes. Some subtleties are caused by the dualisation in a coset space and the

approach here is slightly different to the one in [44].

Let us consider the standard (bosonic) σ-model whose target is the coset space F/G

whose Lagrangian is given in eq. (2.7), and perform the non-abelian T-dual with respect

to a subgroup H ⊂ F (which need not, and in our applications mostly will not be, either

semi-simple or a subgroup of G). Let Ha be the generators of h and H̃a generators of a

dual algebra h? normalised such that Tr(HaH̃
b) = δba.

Let us we parametrise the coset representative as g = hĝ. We define Ĵ = ĝ−1dĝ and

L = LaHa = h−1dh such that

J = Ĵ + LaH ĝ
a , H ĝ

a = Adĝ−1 Ha . (3.1)

We also define

Gab = Tr(H ĝ
aP (H ĝ

b )) , Qa = Tr(ĴP (H ĝ
a)) . (3.2)

In this notation the H isometry of the target space is manifest since the metric correspond-

ing to eq. (2.7) is

ds2 = Tr(ĴP (Ĵ)) + 2QTL+ LTGL = Tr(ĴP (Ĵ))−QTG−1Q+ eT e , (3.3)

where we introduce the frame fields

G = κTκ , e = κ
(
L+G−1Q

)
. (3.4)

We perform the dualisation by introducing a h-valued connection with components

A± = Aa±Ha and a h?-valued Lagrange multiplier V = vaH̃
a. We covariantise currents

J∇± = g−1dg + g−1A±g , (3.5)

such that we are gauging a left action of some h̃ ∈ H

g → h̃g , A→ h̃Ah̃−1 − dh̃h̃−1 , (3.6)

and consider

L∇ = Tr(J∇+P (J∇− )) + Tr(V F+−) , (3.7)

where the field strength is F+− = ∂+A− − ∂−A+ + [A+, A−].
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We continue by gauge fixing on the group element g = ĝ i.e. h = 1.2 Integrating the

Lagrange multipliers enforces a flat connection and one recovers the starting model since

A± = h−1∂±h = L± , (3.8)

and upon substituting back into the action one recovers the starting σ-model.

On the other hand, integrating by parts the derivative terms of the gauge fields yields

L∇ = Tr(Ĵ+P (Ĵ−)) +Aa+A
b
−Mab +Aa+(∂−va +Q−a)−Aa−(∂+va −Q+a) , (3.9)

in which we have pulled back the one-forms Q and Ĵ to the worldsheet and defined

Fab = Tr([Ha, Hb]V ) = fab
cvc , Mab = Gab + Fab . (3.10)

The gauge field equations of motion now read

A− = −M−1(∂−v +Q−) , A+ = M−T (∂+v −Q+) . (3.11)

Combining these equations of motion for the gauge field in eqs. (3.11) and (3.8) sets up the

canonical transformation between T-dual theories. Substitution of the gauge field equation

of motion (3.11) into the action yields the T-dual model given by

Ldual = Tr(Ĵ+P (Ĵ−))−AT+MA−

= Tr(Ĵ+P (Ĵ−)) + (∂+va −Q+a)(M
−1)ab(∂−vb +Q−b) ,

(3.12)

where in the first line A± are evaluated on the gauge field equation of motion eq. (3.11).

The NS fields can be read directly from this σ-model and in particular the dual metric

is given as

d̂s
2

= Tr(ĴP (Ĵ))−QTG−1Q+ êT±ê± , (3.13)

with ê± given by the push forwards to target space of

ê± = κ
(
A± +G−1Q±

)
, (3.14)

evaluated on the gauge field equation of motion (3.11). On the worldsheet left and right

moving fermionic sectors couple to the frame fields ê+ and ê− respectively. Since they

define the same metric they are related by a local Lorentz rotation

Λê− = ê+ , Λ = −κM−TMκ−1. (3.15)

This Lorentz rotation lifts to spinors via

Ω−1ΓaΩ = (Λ · Γ)a . (3.16)

Using the Clifford isomorphism we convert the poly-form sum of RR fluxes

P = eΦ(F1 + F3 + F5 − ?F3 + ?F1) , (3.17)

2In some cases it can be that this doesn’t fully fix the gauge and additional fixing should be imposed on

the Lagrange multipliers V = vaH̃
a, details of this are discussed in [44].
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to a bi-spinor matrix. The T-duality rule is then given by

P̂ = P · Ω−1 . (3.18)

The relationship between the local Lorentz rotations and RR field transformation in the

case of abelian T-duality in curved space was made explicit in the work of Hassan [46] and

developed in the present context in [4]. Note that although we have “bootstrapped” the

transformation rule for the RR sector from knowledge of the NS sector it seems rather likely

that the same conclusion can be reached in e.g. the pure spinor superstring by a straightfor-

ward extension of the arguments presented for abelian [47] and fermionic T-duality [48].3

Finally let us turn to the transformation of the dilaton field under non-abelian

T-duality. For the non-abelian duality to preserve conformality the dualisation proce-

dure must avoid the introduction of a mixed gravitational-gauge anomaly [50, 51] and the

structure constants of the algebra in which we dualise should satisfy

na ≡ fabb = 0 . (3.19)

When this is the case the dual dilaton comes from the Gaussian integration in the path

integral [52]

Φ̂ = Φ− 1

2
log detM . (3.20)

On the other hand if na 6= 0 the dual model is not expected to be conformal, however

it will be globally scale invariant. In this case we still define the dual “dilaton” to be

given by (3.20). The global scale invariance then implies that, for example, the one-loop

metric and B-field beta-functions (defined in (A.1) of appendix A) only vanish up to

diffeomorphisms and gauge transformations. This is in contrast to the conformal case, for

which the beta-functions of the metric, B-field and dilaton vanish identically, while the RR

fluxes solve the first order equations in eq. (A.2) of appendix A.

It transpires that the globally scale invariant models that arise from dualising with

na 6= 0 satisfy a stronger set of equations than those of global scale invariance [6]. These

are a modification of the Type II supergravity equations [20, 53, 54] that depend on a

particular Killing vector I of the background such that when I = 0 standard Type II

supergravity is recovered. These equations are given in eqs. (A.3) of appendix A.

As mentioned above we take the dual “dilaton” field in these equations to still be

defined in terms of the original dilaton via the transformation (3.20), while the one-forms

X, Z and W are defined in terms of Φ and the Killing vector I as in eq. (A.5) of appendix A.

To show that the dual background solves the modified supergravity equations we follow

the derivation in [6]. After splitting the Lagrange multiplier as va = ua + yna, it transpires

that shifting y is a symmetry of the dual background and T-dualising y → ỹ gives a

conformal σ-model with a dilaton linear in ỹ. From the results of [20] this then implies that,

in our conventions, the dual model solves the modified supergravity equations with Iy = −1.

3An explicit demonstration of the RR transformation law in the context of supersymmetry in SU(2)

non-Abelian T-duality can be found in [49].
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The classical bosonic string Lagrangian in conformal gauge,

L = ∂+x
m(Gmn +Bmn)∂−x

n , (3.21)

has the property that when we replace ∂−x
m → Im it equals Wn∂+x

n where the one-form

W , defined in eq. (A.5), is given by

Wn = Im(Gmn −Bmn) . (3.22)

Following this procedure in the dual model (3.12) with Iy = −1 and the remaining com-

ponents vanishing, we find that

Wn∂+x
n = −Aa+na , (3.23)

with A+ evaluated on the gauge field equation of motion (3.11). To summarise; if the T-

duality is anomalous then the background solves the modified supergravity equations with

the one-form W , which can be used to define the modification, given by the push forward

of the A+ component of the gauge field evaluated on its equations of motion.

4 Centrally-extended duality

Let us now consider non-abelian T-dualities with respect to centrally-extended algebras.

In particular we consider the setup considered in [6, 7] in which case the dualities are

equivalent to Yang-Baxter deformations for homogeneous r-matrices. The aim of this

section is to extend this to the RR fluxes using the technology outlined in section 3. We

start by recalling that for a homogeneous r-matrix for a Lie algebra f

r =
∑
j

ηj

n(j)∑
i=1

aij Xij ∧ Yij

 , (4.1)

the generators {Xij , Yij} (for each fixed j) form a basis for a subalgebra h, which admits a

central extension. In eq. (4.1) ηj are free parameters, while aij are fixed real coefficients.

For each free parameter we introduce a central extension, such that the centrally-extended

algebra has a basis hext = {Xij , Yij} ⊕ {Zj}, with commutation relations [Xij , Yij ]
ext =

[Xij , Yij ] + a−1
ij Zj (for fixed i and j), and [Xij , Zj ]

ext = [Yij , Zj ]
ext = 0. This is the

centrally-extended algebra with respect to which we dualise.

The precise relation between the centrally-extended non-abelian T-dual and the Yang-

Baxter deformation was made in the NS sector in [7]. The R-operator (see eq. (2.3)) gov-

erning a certain Yang-Baxter deformation defines an invertible map from h? to h. Recalling

our parametrisation of the F/G coset representative g = hĝ with h ∈ H, we may write

h = exp(R(X)) for X ∈ h?. If h is abelian then the relation between the Lagrange multipli-

ers parametrising the T-dual model and the YB deformed model is simple: V = η−1R(X).

When h is non-abelian the relation is more involved [7].

One can formally set up the non-abelian T-dual of the central extension by considering

the coset of the centrally-extended algebra by the central generators. To see this precisely

let us consider the Heisenberg algebra, i.e. the central extension of U(1)2

[X,Y ] = Z , [X,Z] = [Y,Z] = 0 . (4.2)

– 7 –
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We let T1 = X,T2 = Y and T3 = Z and hence the only non-vanishing structure constant

is f12
3 = 1. We introduce the matrix generators

T1 =

 0 1 0

0 0 0

0 0 0

 , T2 =

 0 0 0

0 0 1

0 0 0

 , T3 =

 0 0 1

0 0 0

0 0 0

 , (4.3)

and the group element

g = exp

[
x1T1 + x2T2 +

(
x3 −

1

2
x1x2

)
T3

]
=

 1 x1 x3

0 1 x2

0 0 1

 . (4.4)

The left-invariant one-forms g−1dg = LiTi are

L1 = dx1 , L2 = dx2 , L3 = dx3 − x1dx2 . (4.5)

We consider a σ-model based on this algebra

L = EabL
a
+L

b
− = f1L

1
+L

1
− + f2L

2
+L

2
− + λL3

+L
3
− , (4.6)

i.e. E = diag(f1, f2, λ), where we allow f1,2 to be functions of any spectator coordinates.

In the limit λ → 0 the theory develops a gauge invariance (the coordinate x3 drops

out of the action all together) and reduces to the σ-model whose target space is sim-

ply ds2 = f1dx
2
1 + f2dx

2
2. This Rube Goldberg construction allows us to now go head and

perform a non-abelian T-duality on the coset following the techniques of [44].

The resulting dual σ-model is given by

Ldual = ∂+va(M
−1)ab∂−v

b (4.7)

in which

Mab = Eab + fab
cvc =

 f1 v3 0

−v3 f2 0

0 0 λ

 ,

(M−1)ab =

 hf2 −hv3 0

hv3 hf1 0

0 0 1
λ

 , h =
1

f1f2 + v2
3

.

(4.8)

The matrix M−1 diverges in the limit of interest λ → 0. In particular, the coefficient of

the kinetic term for v3 becomes infinite in the limit and this can be understood as freezing

v3 to a constant value. To see this let us rewrite the dual σ-model as

Ldual = ∂+vα(M−1)αβ∂−v
β + λa+a− + a+∂−v3 − a−∂+v3 , α, β = 1, 2 , (4.9)

where we integrate over a±. Now taking λ → 0 and then integrating out a± we find

∂±v3 = 0 and indeed v3 is frozen to a constant value. This final step is analogous to

– 8 –
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the Buscher procedure considered in [6]. The true target space of the dual model is then

spanned by the coordinates v1 ≡ y2 and v2 ≡ y1, while v3 ≡ ν is a constant parameter.

The dual metric, B-field and dilaton shift are easily ascertained:

d̂s
2

= h(f1dy
2
1 + f2dy

2
2) , B̂ = νhdy1 ∧ dy2 , Φ̂ = Φ +

1

2
log h . (4.10)

Frame fields for the dual geometry as seen by left and right movers [44] are given by

ê i+ = (κ ·M−1)aidva ê i− = −(κ ·M−1)iadva , i = 1, 2 , a = 1, 2, 3 . (4.11)

where 1
2(E + ET ) = κTκ. Explicitly we have

ê+ =

(
h
√
f1(f2dy2 + νdy1)

h
√
f2(f1dy1 − νdy2)

)
, ê− =

(
h
√
f1(−f2dy2 + νdy1)

h
√
f2(−f1dy1 − νdy2)

)
. (4.12)

The plus and minus frames are then related by a Lorentz rotation

Λ · ê− = ê+ , Λ = h

(
ν2 − f1f2 −2ν

√
f1f2

2ν
√
f1f2 ν2 − f1f2

)
, det Λ = 1 , Λ · ΛT = I . (4.13)

This coset-based construction is interesting, however for calculation purposes it is

enough to follow the T-duality rules for the non-centrally-extended dualisation, while re-

placing the structure constants entering the dimH × dimH matrix Fab = Tr([Ha, Hb]V )

with the corresponding central extension and the centrally-extended Lagrange multipliers

i.e. V ext = vaH
a + vµZ

µ and F ext
ab = Tr([Ha, Hb]

extV ext).

5 Applications

Let us now turn to specific examples for which we construct the dual RR fluxes correspond-

ing to various centrally-extended non-abelian T-dualities of AdS5×S5 using the technology

outlined in section 3. Here we will consider certain deformations that are well-known to

correspond to TsT transformations. In appendix C we consider further examples that cor-

respond to Yang-Baxter deformations with time-like abelian and non-abelian r-matrices.

5.1 Application 1: non-commutative deformations

The first application we consider is the string background dual to non-commutative N = 4

super Yang-Mills [55, 56]

ds2 =
du2

u2
+ u2

(
−dt2 + dx2

1 + h̃(dx2
2 + dx2

3)
)

+ dΩ2
5 , h̃ =

1

1 + a4u4
,

B = a2h̃u4dx2 ∧ dx3 , exp 2Φ = g2
0h̃ ,

F3 = − 4

g0
a2u3dt ∧ dx1 ∧ du , F5 =

4

g0
h̃u3(1 + ?) du ∧ dt ∧ dx1 ∧ dx2 ∧ dx3 .

(5.1)

Starting from the undeformed background

ds2 =
du2

u2
+ u2

(
−dt2 + dx2

1 + dx2
2 + dx2

3

)
+ dΩ2

5 , exp 2Φ = g2
0 ,

F5 =
4

g0
u3(1 + ?) du ∧ dt ∧ dx1 ∧ dx2 ∧ dx3 ,

(5.2)

– 9 –
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we now consider the non-abelian T-dual with respect to the central extension of U(1)2,

where the U(1)2 is generated by shifts in x2 and x3. Using eqs. (4.10)–(4.13) with y1 = x3
a2

,

y2 = x2
a2

, f1 = f2 = u2 and setting the deformation parameter ν = a−2 we find that the

plus and minus frames are given by

ê+ =

(
hu
a4

(a2u2dx2 + dx3)
hu
a4

(a2u2dx3 − dx2)

)
, ê− =

(
hu
a4

(−a2u2dx2 + dx3)
hu
a4

(−a2u2dx3 − dx2)

)
, h =

a4

1+a4u4
. (5.3)

The Lorentz rotation of (4.13) induces a spinorial action according to (3.16) given by

Ω =

√
h

a4

(
I− a2u2Γ23

)
. (5.4)

Now let us consider the duality transformation of the five-form RR flux supporting the

AdS5 × S5 geometry (5.2). The self-dual five-form flux can be written as F5 = (1 + ?)f5,

where

f5 =
4

g0
u3du ∧ dt ∧ dx1 ∧ dx2 ∧ dx3 ≡

4

g0
eu ∧ e0 ∧ e1 ∧ e2 ∧ e3 . (5.5)

The corresponding poly-form of eq. (3.17) is then given by

P = 4Γu0123 − 4Γ56789 . (5.6)

The transformation of the poly-form under T-duality is given by

P̂ = P · Ω−1 = 4

√
h

a4
Γu0123 − 4

√
h

a4
a2u2Γu01 + duals . (5.7)

Extracting the dual background from the above data we find

d̂s
2

=
du

u2
+ u2

(
−dt2 + dx2

1 +
h

a4
(dx2

2 + dx2
3)

)
+ dΩ2

5 ,

B̂ = −a−2 h

a4
dx2 ∧ dx3 , exp(2Φ̂) = (g0a

2)2 h

a4
, (5.8)

F̂3 = − 4

g0a2
a2u3du ∧ dt ∧ dx1 , F̂5 =

4

g0a2

h

a4
u3(1 + ?) du ∧ dt ∧ dx1 ∧ dx2 ∧ dx3 .

Noting that h̃ = a−4h, we then immediately see that this is precisely the background (5.1)

up to the constant shift of the dilaton g0 → g0a
−2. A small subtlety is that while there is

precise agreement between H = dB in (5.1) and (5.8), the B-field itself differs by a gauge:

B̂ = −a−2 1

1 + a4u4
dx2 ∧ dx3 = −a−2dx2 ∧ dx3 +

a2u4

1 + a4u4
dx2 ∧ dx3 . (5.9)

This is always the case in these comparisons [6, 7] and from now on by agreement we always

mean up to a gauge term in the B-field.
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5.2 Application 2: marginal deformations

N = 4 super Yang-Mills with gauge group SU(N) admits a class of marginal deformations

that preserve N = 1 supersymmetry [57]. The corresponding superpotential for these

theories is

W = κTr

(
Φ1[Φ2,Φ3]q +

h

4

(
3∑
i=1

Φ2
i

))
, (5.10)

in which the commutator is q-deformed i.e. [Φi,Φj ]q = ΦiΦj − qΦjΦi. For the case where

h = 0 and q = eiβ with β real, known as the β-deformation, the seminal work of Lunin

and Maldacena [1] provides the gravitational dual background constructed via a TsT so-

lution generating technique consisting of a sequence of T-duality, coordinate shift and

T-duality. In this case integrability has been shown on both the string [58–60] and gauge

side [58, 61–63] of the AdS/CFT correspondence. The cubic deformation (q = 1 and h 6= 0)

is far less understood, with integrability not expected and, as of now, no known complete

gravitational dual constructed.

A more general class of non-supersymmetric deformations4 of this gauge theory are

defined by a scalar potential

V = Tr
(
|[Φ1,Φ2]q3 |2 + |[Φ2,Φ3]q1 |2 + |[Φ3,Φ1]q2 |2

)
+ Tr

(
3∑
i=1

[Φi, Φ̄i]

)2

, (5.11)

where qi = e−2πiγi . This three parameter deformation, known as the γ-deformation, enjoys

integrability both in the gauge theory [66] and in the worldsheet σ-model with the target

space given by the postulated gravitational dual background constructed in [59]. Upon

setting all three deformation parameters equal this reduces to the β-deformation with

enhanced N = 1 supersymmetry and hence we will proceed with the general case.

Rather remarkably the string σ-model in the γ-deformed target space can be obtained

as Yang-Baxter σ-model [40, 41]. Let us consider the bosonic sector, restricting our atten-

tion to the five-sphere of AdS5×S5; the AdS factor plays no role in what follows. It is con-

venient to follow [59] and parametrise the S5 in coordinates adapted to the U(1)3 isometry

ds2
S5 = dα2 + S2

αdξ
2 + C2

αdφ
2
1 + S2

αC2
ξdφ

2
2 + S2

αS2
ξ dφ

2
3 =

∑
i=1...3

dr2
i + r2

i dφ
2
i , (5.12)

where r1 = Cα, r2 = SαCξ, r3 = SαSξ with Cx and Sx denoting cos x and sinx respec-

tively. The sphere can be realised as the coset SU(4)/SO(5) for which a particular coset

representative is given by

g = e
1
2

∑3
m=1 φ

mhme−
ξ
2
γ13e

i
2
αγ1 , (5.13)

where γ13 and γ1 are certain SU(4) generators (see appendix B for conventions) and hi are

the three Cartan generators. Letting P be the projector onto the coset and J± = g−1∂±g

4Care needs be taken in the interpretation of this deformation. Away from the supersymmetric point

the γi deformation is not conformal due a running coupling of a double-trace operator [64] and indeed the

gravitational dual has a tachyon [65].
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pull backs of the left-invariant one-form, the S5 σ-model Lagrangian is

L = Tr(J+P (J−)) , (5.14)

with the parametrisation (5.13) giving the σ-model with target space metric (5.12).

Starting with the r-matrix

r =
ν1

4
h2 ∧ h3 +

ν3

4
h1 ∧ h2 +

ν2

4
h3 ∧ h1 , (5.15)

it was shown in [35, 39] that the NS sector of the Yang-Baxter σ-model matches the γ-

deformed target space explicitly given by

ds2 = ds2
AdS +

∑
i=1...3

(dr2
i +Gr2

i dφ
2
i ) +Gr2

1r
2
2r

2
3

( ∑
i=1...3

νidri

)2

,

B = G(r2
1r

2
2ν3dφ1 ∧ dφ2 + r2

1r
2
3ν2dφ3 ∧ dφ1 + r2

2r
2
3ν1dφ2 ∧ dφ3) ,

(5.16)

with

G−1 ≡ λ = 1 + r2
1r

2
2ν

2
3 + r2

3r
2
1ν

2
2 + r2

2r
2
3ν

2
1 , (5.17)

where the parameters νi are related to the γi of the field theory by a factor of the AdS

radius [59], which we suppress throughout.

We would like to interpret this in terms of the centrally-extended (non-)abelian T-

duality introduced in section 4. To do so we find it expedient to make a basis transformation

of the Cartan generators; let us assume ν3 6= 0 and define

h̃1 = h1 −
ν1

ν3
h3 , h̃2 = h2 −

ν2

ν3
h3 , h̃3 = h3 +

ν1

ν3
h3 +

ν2

ν3
h3 . (5.18)

In this basis the r-matrix simply reads

r =
ν3

4
h̃1 ∧ h̃2 . (5.19)

We also introduce a new set of angles such that h̃iφ̃i = hiφi (where the sum over i is

implicit). Written in this way it is clear that we should consider a centrally-extended (non-

)abelian T-duality along the h̃1 and h̃2 directions. To proceed we defined a slightly exotic

set of frame fields for the S5, adapted to the dualisation as described

eα = dα , eξ = sinαdξ , e1 =
1

ϕ
√
λ− 1

(
r2

1ϕ
2dφ1 − r2

2r
2
3ν1ν2dφ2 − r2

2r
2
3ν1ν3dφ3

)
,

e2 =
1

ϕ

(
r2

2ν3dφ2 − r2
3ν2dφ3

)
, e3 =

r1r2r3√
λ− 1

∑
i

νidφi , (5.20)

where ϕ = (r2
2ν

2
3 + r3

3ν
2
2)

1
2 . Though these frames depend on νi the overall metric remains

the round S5 independent of νi. The advantage of this basis is that the T-dualisation acts

only on the e1 and e2 directions. We non-abelian T-dualise with respect to the central

extension of h̃1 and h̃2 making the gauge fixing choice

ĝ = e
1
2
φ̃3h̃3e−

ξ
2
γ13e

i
2
αγ1 (5.21)
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and by parametrising the Lagrange multiplier parameters as

v1 = − 2

ν3
φ̃2 , v2 =

2

ν3
φ̃1 , v3 =

4

ν3
, dv3 = 0 . (5.22)

After some work one finds the dual metric is exactly that of eq. (5.16) with a B-field

matching up to a gauge transformation.5 The dual dilaton is given by

eΦ̂−φ0 =
ν3

4
√
λ
. (5.23)

The frame fields produced by dualisation, using eq. (3.14), are

êα = eα , ê ξ = eξ , ê 3 = e3 ,

ê 1 ≡ ê 1
+ =

1

λϕ
√
λ− 1

(
r2

1ϕ
2dφ1 − r2

2(r2
3ν1ν2 + (λ−1)ν3)dφ2 − r2

3(r2
2ν1ν3 − (λ−1)ν2dφ3

)
,

ê 2 ≡ ê 2
+ =

1

λϕ

(
r2

1ϕ
2dφ1 + r2

2(ν3 − ν1ν2r
2
3)dφ2 − r2

3(ν2 + ν1ν3r
2
2)dφ3

)
. (5.24)

Following the dualisation procedure the Lorentz transformation in eq. (3.15) is given by

Λ =
1

λ

(
2− λ −2

√
λ− 1

2
√
λ− 1 2− λ

)
, (5.25)

for which the corresponding action on spinors is simply

Ω =
1√
λ
I−
√
λ− 1√
λ

Γ12 . (5.26)

Then acting on the poly-form we ascertain the T-dual fluxes

F̂3 = −4e−φ0r1r2r3 e
α ∧ eξ ∧ (ν1dφ1 + ν2dφ2 + ν3dφ3) ,

F̂5 = (1 + ?)
4e−φ0

λ
r1r2r3 e

α ∧ eξ ∧ dφ1 ∧ dφ2 ∧ dφ3 ,
(5.27)

in complete agreement with the results of [59].

To close this section let us make a small observation. For the β-deformation ν1 = ν2 =

ν3 ≡ γ there a special simplification that happens when γ = 1
n , n ∈ Z. In this case the

deformed gauge theory is equivalent to that of D3 branes on the discrete torsion orbifold

C3/Γ with Γ = Zn × Zn. These cases are also special in the dualisation procedure above.

Notice that the Lagrange multiplier v corresponding to the central extension is inversely

proportional to γ and hence the orbifold points correspond to cases where v is integer

quantised. Moreover, recalling that non-abelian T-duality with respect to a centrally-

extended U(1)2 is equivalent to first adding a total derivative B-field, i.e. making a large

gauge transformation, and then T-dualising with respect to U(1)2, where the required total

derivative is again given by the expression in footnote 5, we find that at the orbifold points

(ν1 = ν2 = ν3 ≡ γ = 1
n) the integral of this total derivative

1

4π2

∫
B2 =

n

12π2

∫
(dφ2 ∧ dφ3 + dφ1 ∧ dφ2 + dφ3 ∧ dφ1) = n , (5.28)

is also integer quantised.

5As with the previous example the B-field obtained by the central extension dualisation procedure differs

by a closed piece ∆B = 1
ν21+ν

2
2+ν

2
3

(ν1dφ2 ∧ dφ3 + ν3dφ1 ∧ dφ2 + ν2dφ3 ∧ dφ1).
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5.3 Application 3: dipole deformations

Dipole theories [67, 68] are a class of non-local field theories obtained from regular (or even

non-commutative) field theories by associating to each non-gauge field Φa a vector Lµa and

replacing the product of fields with a non-commutative product

(Φ1?̃Φ2)(x) ≡ Φ1

(
x− 1

2
L2

)
Φ2

(
x+

1

2
L1

)
. (5.29)

Whilst intrinsically non-local, these theories can be mapped to local field theories with a

tower of higher-order corrections. For small L the leading correction is the coupling to a

dimension 5 operator, which for N = 4 SYM was identified in [67] as

∆L = Lµ · Oµ , OIJµ =
i

g2
YM

tr
(
Fµ

νΦ[IDµΦJ ] + (DµΦK)Φ[KΦIΦJ ]
)
. (5.30)

In [68] the supergravity dual to this dipole deformation was constructed. When aligned in

the x3 direction the dipole vector L specifies a constant element in su(4) which defines in

the 4 a 4× 4 traceless hermitian matrix U and in the 6 a 6× 6 real antisymmetric matrix

M . In terms of these matrices the supergravity metric is given by [68]

ds2 =
R2

z2

(
−dt2 + dx2

1 + dx2
2 + f−1

1 z2dx2
3

)
+R2

(
dnTdn + λ2f−1

1 (nTMdn)2
)
, (5.31)

where n is a unit vector in R6, λ = R4(α′)−2 = 4πg2
YMN and

f1 =
z2

R2
+ λ2nTMTMn . (5.32)

The deformation acts in both S5 and AdS5. The eigenvalues of a 6× 6 real antisymmetric

matrix are three imaginary numbers and their complex conjugates. If we take three of the

independent eigenvalues of M to be equal, MTM is a positive constant, l2/λ2, times the

identity matrix, and hence

f1 = z2 + l2 , (5.33)

where we have set R = 1. Though this case preserves no supersymmetry, it does yield a

simple metric on the five-sphere; viewed as a U(1) fibration over CP2 (given in appendix B

in eq. (B.14)) the deformation acts to change the radius of this fibration such that it

depends on the function f1 [68], which now only depends on the AdS radial coordinate.

To arrive at this dipole deformation via centrally-extended non-abelian T-duality we

gauge the central extension of the U(1)2 subgroup generated by {P3, (S12 + S34 + S56)}.
We gauge fix the coset representative

ĝ = gAdS5 ⊕ gS5 , x3 → 0 , φ→ 0 , (5.34)

where gAdS5 is the parametrisation relevant for the Poincaré patch (B.6) and gS5 is given

in eq. (B.12). The Lagrange multipliers are then parametrised as

v1 =
φ

l
, v2 =

x3

l
, v3 =

1

l
. (5.35)
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Following the general formulae one arrives at the T-dual frame fields

ê 1
± =

z

z2 + l2
(
dx3 ± lΨ

)
, ê 2

± =
z

z2 + l2

(
−zΨ± l

z
dx3

)
, (5.36)

in which Ψ is the global one-form corresponding to the U(1) fibration defined in eq. (B.14).

It is a simple matter to extract the Lorentz rotation in the spinor representation

Ω =
1√

z2 + l2

(
zI− lΓ12

)
. (5.37)

Here Γ12 refers to the directions in tangent space given by frames ê 1 and ê 2. This is a

product of two gamma matrices, one with legs in S5 and the other in AdS5. Therefore, the

action of Ω only produces a five-form in the dualised target space. In fact since, for example,

zê 2
+− lê 1

+ = −zΨ one finds that F5 is only altered by an overall constant scaling that could

be re-absorbed into a shift of the dilaton. The final result is the target space geometry

d̂s
2

=
1

z2

(
−dx2

0 + dx2
1 + dx2

2 + dz2
)

+ ds2
CP2 +

1

z2 + l2
dx2

3 +
z2

z2 + l2
Ψ2 ,

B̂ =
l

z2 + l2
Ψ ∧ dx3 +

1

l
dx3 ∧ dφ , e2(Φ̂−φ0) =

z2l2

z2 + l2
, F̂5 =

1

l
F5 .

(5.38)

Modulo a gauge transformation in B̂ this agrees with the geometry of [68].

6 Concluding comment

In this article we have demonstrated that the holographic dual of many known deforma-

tions of gauge theories can be understood in terms of non-abelian T-duality, extending the

construction in the NS sector of [6, 7] to the RR sector. In section 5 we tested the con-

struction on a number of examples: a non-commutative deformation, the γ-deformation,

a dipole deformation and, in appendix C, a unimodular non-abelian deformation and a

jordanian deformation.

There are a number of interesting open directions. Our construction involved only

bosonic generators of the psu(2, 2|4) algebra of the superstring; it would be interesting to

extend this to more general r-matrices, including those containing fermionic generators.

Furthermore, to formalise the relation between the Yang-Baxter deformations and non-

abelian dualities it would be useful to understand how the spinor rotation defining the

deformed RR fluxes in the former [69] is related to that in the latter, which was the

subject of the present article. Additionally, one would like to understand whether solutions

of the modified cYBE (i.e. η-deformations and their Poisson-Lie dual λ-deformations) can

be understood in this framework. Finally, and perhaps optimistically, one might hope

that generalised notions of T-duality can be employed to find gravitational duals of other

non-integrable marginal deformations of gauge theories.
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A (Modified) supergravity conventions

In this appendix we summarise our conventions for the (modified) Type IIB supergravity

equations. Similar equations exist for Type IIA. Let us define the following beta-functions

βGmn = Rmn + 2∇mnΦ− 1

4
HmpqHn

pq

− e2Φ

(
1

2
(F1

2)mn +
1

4
(F3

2)mn +
1

96
(F5

2)mn −
1

4
gmn

(
F 2

1 +
1

6
F 2

3

))
,

βBmn = d[e−2Φ ? H]− F1 ∧ ?F3 − F3 ∧ F5 ,

βΦ = R+ 4∇2Φ− 4(∂Φ)2 − 1

12
H2 .

(A.1)

For a globally scale invariant σ-model the beta-functions for the metric and B-field vanish

up to diffeomorphisms and gauge transformations. There should then be similar second-

order equations for the RR fluxes.

The Type IIB supergravity equations, i.e. the critical string equations, are given by

βGmn = 0 , βBmn = 0 , βΦ = 0 ,

dF1 = dΦ ∧ F1 , d ? F1 +H ∧ ?F3 = dΦ ∧ ?F1 ,

dF3 −H ∧ F1 = dΦ ∧ F3 , d ? F3 +H ∧ ?F5 = dΦ ∧ ?F3 ,

dF5 −H ∧ F3 = dΦ ∧ F5 , F5 = ?F5 ,

(A.2)

where we have defined F = eΦF .

There exists a modification to the supergravity equations that still imply the global

scale invariance conditions, but now depend on an additional Killing vector of the back-

ground I. These modified supergravity equations can be understood as follows. We start

from a solution of the Type II supergravity equations for which the metric, B-field and

weighted RR fluxes F have a U(1) isometry corresponding to shifts in the coordinate y,

but where the dilaton breaks this isometry via a piece linear in y, i.e. Φ = cy+ . . .. The su-

pergravity equations only depend on dΦ and hence we can ask what happens if we formally

T-dualise in y. The dual background then solves the modified equations with the Killing

vector corresponding to shifts in the dual coordinate to y [20]. Alternatively they follow

from the requirement that the Type II Green-Schwarz string action is κ-symmetric [53].
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Recently they have also been formulated in an O(d, d) invariant manner, as a modification

of Type II double field theory [54]. The modified Type IIB supergravity equations are

βGmn = −∇mWn −∇nWm , e2ΦβBmn = 2 ? dW + 2W ∧ ?H ,

βΦ = 4 ? d ? W − 4 ? ((W + 2dΦ) ∧ ?W ) ,

dF1 = Z ∧ F1 + ?(I ∧ ?F3) , d ? F1 +H ∧ ?F3 = Z ∧ ?F1 , ?(I ∧ ?F1) = 0 ,

dF3 −H ∧ F1 = Z ∧ F3 + ?(I ∧ ?F5) , d ? F3 +H ∧ ?F5 = Z ∧ ?F3 − ?(I ∧ F1) ,

dF5 −H ∧ F3 = Z ∧ F5 − ?(I ∧ F3) , F5 = ?F5 , (A.3)

where I is a one-form corresponding to a certain Killing vector of the background, i.e.

LIG = LIB = LIΦ = LIF1,3,5 = 0 , (A.4)

and the one-forms Z, X and W are constructed from I and Φ

Z = dΦ− ιIB , X = I + Z , W = X − dΦ = I − ιIB . (A.5)

It is important to note that for the modified system of equations to be invariant under

the gauge freedom B → B + dΛ (where for simplicity we assume that LIΛ = 0) the

“dilaton” field Φ must now transform as Φ→ Φ− ιIΛ, and hence is not unique. This can

be understood by starting from a Weyl-invariant background with a dilaton linear in an

isometric direction y, Φ = cy+ . . .. If we shift y by an arbitrary function of the transverse

coordinates this ansatz is preserved, however the explicit form of the dilaton is changed.

After “T-dualising” in y this coordinate redefinition then maps to a gauge transformation

under which the dual “dilaton” field now transforms.

B Conventions for algebras

In this appendix we outline our conventions for the algebras so(4, 2) and so(6) for which

we largely adopt those of [70]. For SO(4, 2) we start by defining the γ matrices

γ0 = iσ3 ⊗ σ0 , γ1 = σ2 ⊗ σ2 , γ2 = −σ2 ⊗ σ1 , γ3 = −σ1 ⊗ σ0 , γ4 = σ2 ⊗ σ3 , (B.1)

in terms of which the generators of SO(4, 2) are given by

Tij =
1

4
[γi, γj ] , Ti5 =

1

2
γi , i, j = 0, . . . , 4 . (B.2)

The SO(4, 1) subgroup is generated by Tij for i, j = 0, . . . , 4. The projector onto the

orthogonal complement is given by

P (X) = −Tr(XT0,5)T0,5 +

4∑
i=1

Tr(XTi,5)Ti,5 . (B.3)

A useful adapted basis when considering Poincaré patch is

D = T45 , Pµ = Tµ5 − Tµ4 , Kµ = Tµ5 + Tµ4 , Mµν = Tµν , µ = 0, . . . , 3 . (B.4)
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We also use M+i = M0i + M1i for i = 2, 3. The bosonic AdS5 σ-model is given by

L = Tr(J+P (J−)) , (B.5)

for J = g−1dg and when the gauged fixed group element is parametrised as

g = exp [ηµνxµPν ] zD , (B.6)

the target space metric is given on the Poincaré patch by

ds2 =
1

z2

(
dz2 + ηµνdxµdxν

)
. (B.7)

As usual the coordinate u used in section 5.1 is related to z by u = z−1. In the examples

that we consider we dualise with respect to a subalgebra h ⊂ so(4, 2) which does not

necessarily need to be a subgroup of the so(4, 1) subalgebra specified above.

For so(6) ∼= su(4) we supplement γi i = 1, . . . , 4, defined above with γ5 = −iγ0 and

construct the (anti-hermitian) generators

Sij =
1

4
[γi, γj ] , Si6 =

i

2
γi , i, j = 1, . . . , 5 . (B.8)

The Cartan subalgebra is generated by

h1 = i diag(1, 1,−1,−1) , h2 = i diag(1,−1, 1,−1) , h3 = i diag(1,−1,−1, 1) (B.9)

We take the so(5) subalgebra to be generated by Sij for i = 1, . . . , 5, such that the projector

onto the orthogonal complement of this subgroup is

P (X) =

5∑
i=1

Tr(X · Si6)Si6 , (B.10)

where here Tr stands for the negative of the matrix trace. A coset representative for

SO(6)/SO(5) can be chosen as

g = exp

[
1

2
φmhm

]
exp

[
−ξ

2
γ13

]
exp

[
iα

2
γ1

]
, (B.11)

leading to the σ-model parametrisation of S5 employed in section 5.2.

An alternative parametrisation is given by

g = exp

[
iφ

2
γ5

]
·
[
s I+

it

2

(
eiφα(γ1−iγ2)+e−iφᾱ(γ1+iγ2)+eiφβ(γ3−iγ4)+e−iφβ̄(γ3+iγ4)

)]
,

(B.12)

where

r = 1 + |α|2 + |β|2 , s2 =
1

2
√
r

(1 +
√
r) , t2 =

1

2
√
r(1 +

√
r)
. (B.13)

These coordinates give a metric on S5 that makes manifest the structure of S5 as a U(1)

fibration over CP2

ds2
S5 = ds2

CP2 + Ψ2 , ds2
CP2 =

1

r
(|dα|2 + |dβ|2)− 1

r2
|ω|2 ,

Ψ =dφ+
1

r
=(ω) , ω = ᾱdα+ β̄dβ .

(B.14)
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The global one-form Ψ =
∑

i=1...3 xidyi − yidxi where zi = xi + iyi are coordinates on C3

given by z1 = 1√
r
eiφ, z2 = α√

r
eiφ, z3 = β√

r
eiφ. One can think of Ψ as a contact form whose

corresponding Reeb vector has orbits which are the S1 fibres. For computational purposes

we note that frame fields for CP2 can be found in e.g. [71].

When dealing with the dipole deformation in section 5.3 we will need the full ten-

dimensional space-time. This is readily achieved by taking a block diagonal decomposition,

i.e. g = gAdS5 ⊕ gS5 , with the generators of su(2, 2) ⊕ su(4) given by 8 × 8 matrices, with

the su(2, 2) and su(4) generators in the upper left and lower right 4×4 blocks respectively.

Traces are then replaced with “supertrace” (the bosonic restriction of the supertrace on

psu(2, 2|4)) given by the matrix trace of the upper su(2, 2) block minus the matrix trace of

the lower su(4) block.

C Further examples of deformations in AdS5

In section 5 we considered non-abelian T-dualities with respect to a centrally-extended two-

dimensional abelian algebra, demonstrating that this is equivalent to a TsT transformation

of the full supergravity background. There are additional classes of deformations that

can be constructed as non-abelian T-duals. These come from considering particular non-

semisimple subalgebras of su(2, 2)⊕ su(4), whose existence relies on the non-compactness

of su(2, 2). There are a number of such algebras that are non-abelian and admit central

extensions [69], such that when we T-dualise the metric with respect to this centrally-

extended subalgebra we find a deformation of the original metric [6, 7] that coincides with

a certain Yang-Baxter deformation. To illustrate this richer story we present a summary of

two examples showing how the techniques described in this paper also apply, i.e. the R-R

fluxes following from non-abelian T-duality agree with those of the Yang-Baxter σ-model.

An r-matrix

r = rabTa ∧ Tb , (C.1)

is said to be non-abelian if [Ta, Tb] 6= 0 for at least some of the generators. An r-matrix is

said to be unimodular if

rab[Ta, Tb] = 0 . (C.2)

For a solution of the classical Yang-Baxter equation the unimodularity of the r-matrix is

equivalent to the unimodularity (fab
b = 0) of the corresponding subalgebra. In [69] it was

shown that the background defined by a Yang-Baxter σ-model based on a non-unimodular

non-abelian r-matrix is not a supergravity background, but rather solves the modified

supergravity described above. The first example we discuss corresponds to a non-abelian

but unimodular r-matrix, while the second is a non-unimodular r-matrix.

C.1 Unimodular r-matrix

The first example corresponds to an r-matrix considered in [69]

r = η M23 ∧P1 + ζ P2 ∧P3 . (C.3)

– 19 –



J
H
E
P
0
2
(
2
0
1
7
)
0
5
9

This is non-abelian e.g. [M23,P2] = −P3, but since [M23,P1] = [P2,P3] = 0 it is unimod-

ular. In [69] it was shown that the corresponding deformation is nevertheless equivalent

to two non-commuting TsT transformations, with a non-linear coordinate redefinition in

between. On the other hand it was discussed from the perspective of non-abelian T-duality

in [6] where the relevant subalgebra was h = {M23,P1,P2,P3}. The gauge freedom can

be used to fix the coset representative in eq. (B.6) to ĝ = e−x0P0zD, but there remains one

residual gauge symmetry which is used to fix a Lagrange multiplier to zero. The Lagrange

multipliers are parametrised by

v1 = −x1

η
+
r2

2ζ
, v2 =

θ

η
, v3 =

r

ζ
, v4 = 0 , v5 =

1

η
, v6 =

1

ζ
, (C.4)

where v5 and v6 correspond to the two central generators and r and θ are polar coordinates

on the x2, x3 plane. Applying the non-abelian T-duality technology one finds the dual

geometry is

d̂s
2

=
1

z2

(
dz2 − dx2

0

)
+ ê± · ê± + ds2

S5 ,

ê 1
+ =

dx1

(
ζ2 + z4

)
+ ηr

(
−ζdr + rz2dθ

)
zf

,

ê 2
+ =

z
(
ζdr + ηrdx1 − rz2dθ

)
f

,

ê 3
+ =

−dr
(
η2r2 + z4

)
+ ζηrdx1 − ζrz2dθ

zf
,

(C.5)

where f = ζ2 + η2r2 + z4, while the remaining NS fields are

B̂ =
−ζηrdr ∧ dθ +

(
ζ2 + z4

)
dx1 ∧ dθ

ηf
, e−2(Φ̂−φ0) =

f

ζ2η2z4
. (C.6)

The Lorentz rotation Λe− = e+ is given by

Λ =
1

f

 z4 + ζ2 − r2η2 −2rz2η 2rζη

2rz2η z4 − ζ2 − r2η2 −2z2ζ

2rζη 2z2ζ z4 − ζ2 + r2η2

 , (C.7)

with the corresponding spinor representation

Ω =
1√
f

(
z2I− rηΓ12 − ζΓ23

)
. (C.8)

This completes the IIB supergravity solution with the three-form and five-form flux

F3 =
4e−φ0

z5ζη
(ζdx0 ∧ dx1 ∧ dz − rηdx0 ∧ dr ∧ dz) ,

F5 = (1 + ?)
−4e−φ0r

zζηf
dx0 ∧ dx1 ∧ dr ∧ dz ∧ dθ ,

(C.9)

in agreement with the expressions following from the Yang-Baxter σ-model [69].
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C.2 Non-unimodular r-matrix

The final example we consider is an r-matrix that can be found by infinitely boosting the

Drinfel’d-Jimbo solution to the modified classical Yang-Baxter equation for su(2, 2) [72]

r = η (D ∧P0 + M01 ∧P1 + M+2 ∧P2 + M+3 ∧P3) . (C.10)

This r-matrix of jordanian type and the corresponding deformations of the AdS5 × S5

superstring were first studied in [34, 73]. Furthermore, the r-matrix is non-unimodular

and the corresponding dualisation of AdS5 with respect to the non-abelian subalgebra

h = {D,P0,M01,P1,M+2,P2,M+3,P3} , (C.11)

is afflicted with a mixed gravity/gauge anomaly (i.e. na = fab
b 6= 0) [51]. The algebra h

admits a single central extension with the commutator of each pair of generators in (C.10)

being extended by the same generator. Since all directions are dualised the coset repre-

sentative is fully fixed to ĝ = 1 leaving three further gauge fixings to be made on the

dynamical Lagrange multipliers. We parametrise these as

v1 =
x0

η
, v2 =

−1 + z

η
, v3 =

x1

η
, v5 + iv7 =

reiθ

η
, v4 = v6 = v8 = 0 , v9 =

1

η
,

(C.12)

where v9 corresponds to the central direction. The dual metric is given by

d̂s
2

= ei±ηije
i
± + d̂s

2

S5 , ηij = diag(1,−1, 1, 1, 1) ,

ê 1
+ =

1

p
(−ηdx0 + zdz) , ê 2

+ =
1

p
(−zdx0 + ηdz) , ê 3

+ = −z
q

(z2dx1 + rηdr) ,

ê 4
+ + iê 5

+ =
eiθ

q

(
rzηdx1 − z3dr − iqr

z
dθ

)
, (C.13)

where p = z2 − η2 and q = z4 + r2η2. The remaining NS fields are

B̂ =
z

pη
dz ∧ dx0 +

rη

q
dr ∧ dx1 , e−2(Φ̂−φ0) =

pqz2

η8
. (C.14)

The SO(1, 4) Lorentz rotation has a block diagonal decomposition Λ = Λ1 ⊕ Λ2 with

Λ1 =
1

p

(
z2+η2 2zη

2zη z2+η2

)
, Λ2 =

1

q

 z4 − r2η2 2rz2ηCθ 2rz2ηSθ
−2rz2ηCθ z4 − r2η2C2θ −r2η2S2θ

−2rz2ηSθ −r2η2S2θ z4 + r2η2C2θ

. (C.15)

The corresponding spinor rotation Ω = Ω1 · Ω2 is given by (recalling the signature is such

that (Γ2)2 = −I whilst the remaining (Γi)2 = I)

Ω1 =
1
√
p

(
zI + ηΓ12

)
, Ω2 =

1
√
q

(
z2I + rη cos θΓ34 + rη sin θΓ35

)
. (C.16)

This gives the fluxes

F1 =
4e−φ0

η2
r2dθ , F3 =

4e−φ0rz4

η3q
dx1 ∧ dr ∧ dθ −

4e−φ0r2z

η3p
dx0 ∧ dz ∧ dθ ,

F5 = (1 + ?)
−4e−φ0rz5

η4qp
dx0 ∧ dx1 ∧ dr ∧ dz ∧ dθ .

(C.17)
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These fluxes do not solve their Bianchi identities, nor their equations of motions. Instead

they solve the generalised supergravity equations above with the modification determined

by the one-form W given by the push forward of the worldsheet gauge field A+ as in

eq. (3.23), which in turn, via eq. (A.5), yields

I = 4
η

p
dx0 − 2

z2η

q
dx1 . (C.18)

The expressions for the metric, eΦ̂F and I agree with those of the background presented

in [74]. Recalling that the “dilaton” field now transforms under the gauge freedom B →
B + dΛ, we also find that the “dilaton” and B-field match up to a gauge transformation.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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