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stood. A paradigmatic example is d = 4, N = 4 super Yang-Mills coupled to Nf quark

flavors, which possesses a Landau pole at a UV scale ΛLP. The dual gravity solution ex-

hibits a UV singularity at a finite proper distance along the holographic direction. Despite

this, holographic renormalization can be fully implemented via analytic continuation to an

AdS solution. The presence of a UV cut-off manifests itself in several interesting ways.

At energies E � ΛLP no pathologies appear, as expected from effective field theory. In

contrast, at scales E . ΛLP the gravitational potential becomes repulsive, and at tem-

peratures T . ΛLP the specific heat becomes negative. Although we focus on N = 4

super Yang-Mills with flavor, our qualitative results apply to a much more general class of

theories, since they only depend on the fact that the metric near the UV singularity is a

hyper-scaling violating metric with exponent θ > d− 1.
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1 Introduction

Quantum field theories with a Landau pole are ultraviolet (UV) incomplete but may nev-

ertheless have interesting phenomenological applications. From the viewpoint of such ap-

plications one is usually interested in restricting the energy range to that sufficiently below

the Landau pole, so that the results are fairly insensitive to the UV behavior of the theory.

Our purpose in this paper is the opposite, namely to analyze from a holographic perspec-

tive the entire RG flow of a gauge theory afflicted by a Landau pole. Our motivation

is to shed light on holography for UV-incomplete theories in general, and to understand

how holography encodes the physics of the Landau pole singularity in particular. In other

words, rather than shielding ourselves from the Landau pole by focusing on safe infrared

(IR) physics, we are interested in understanding what UV features of the gauge theory,

pathological or not, can be reliably studied with supergravity.

The set of models that we will focus on consists of four-dimensional, quiver-like N = 1

super-conformal Yang-Mills theories coupled to Nf massless hypermultiplets in the fun-

damental representation of the gauge group. This set includes N = 4 super Yang-Mills
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(SYM) theory with gauge group SU(Nc) as a particular example. We will refer to the fun-

damental matter as “flavor” and, although it includes both bosonic and fermionic degrees

of freedom, also as “quarks”. Since the β-function of the super-conformal theory without

matter is exactly zero, the coupling to the quarks produces a positive β-function and a

Landau pole at a high energy scale ΛLP.

The string dual of the gauge theory above is given by type IIB string theory on the

background of Nc “color” D3-branes and Nf “flavor” D7-branes [1]. If the compact space

transverse to the D3-branes is S5 then the gauge theory is N = 4 SYM; if it is any other

Sasaki-Einstein manifold then the gauge theory is a quiver theory. The D3-D7 system

has been extensively studied in the so-called “probe approximation” (see [2, 3] for early

references and [4, 5] for reviews) in which the backreaction of the D3-branes on spacetime

is included but that of the D7-branes is neglected. In the gauge theory this corresponds

to a quenched approximation in which the effect of the quarks on the dynamics of the

gluons and the adjoint matter is ignored. This is justified over a large range of energies if

Nf/Nc � 1. One way to see this is to note that the β-function is proportional to Nf/Nc

and hence the running of the coupling is a small correction to the physics over energy

ranges that are not exponentially large in Nc/Nf. However, at sufficiently high energies the

running of the coupling cannot be ignored and the probe approximation inevitably breaks

down. To explore this high-energy regime holographically one must go beyond the probe

approximation and include the backreaction of the D7-branes.

In order to do so we will follow the approach of [6] (see [7] for a review) and smear the

Nf D7-branes over the internal geometry generated by the Nc D3-branes. In other words,

we consider a distribution of D7-branes that share all the D3-brane directions and are ho-

mogeneously smeared along the internal directions. On the gauge theory side the smearing

means that we are coupling the original super-conformal theory to quarks with all possible

R-symmetry quantum numbers compatible with N = 1 supersymmetry. The technical

advantages of the smearing procedure are that it reduces the problem to a codimension-

one problem on the gravity side [8], and that it enlarges the regime of validity of the

supergravity solution, as we will see in Sec. 3.

The supersymmetric solution describing the ground state of the D3-D7 system was

constructed analytically in [6] and we will review it in section 3. As expected, the solution

possesses a singularity at which the dilaton diverges located at a finite distance along

the holographic coordinate. This is interpreted as the gravity dual of the Landau pole

singularity in the coupling constant of the gauge theory that occurs at a finite energy

scale. The key result from section 3 is that, near the Landau pole singularity, the effective

five-dimensional metric obtained by reduction along the five internal directions takes the

form of a hyper-scaling violating (HV) metric with HV exponent θ > p, where p = 3 is the

number of spatial directions of the gauge theory. All the qualitative manifestations of the

Landau pole that we study in subsequent sections follow from this fact.

In section 4 we study these manifestations in the ground state solution of [6]. We show

that the presence of the Landau pole manifests itself, for example, in a maximum in the

possible density of degrees of freedom per unit volume in the gauge theory. In this section

we also determine the non-trivial map between the holographic coordinate and the energy
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scale in the gauge theory, which we use to compute the β-function. In section 5 we show

that the existence of a UV cut-off in the gauge theory is also visible in the behavior of the

quark-antiquark potential and the entanglement entropy (EE).

In section 6 we turn to the numerical construction of solutions with non-zero tempera-

ture. In ref. [9] these solutions were constructed perturbatively in T/ΛLP, and are therefore

valid only at low temperatures. We construct solutions valid at any temperature and use

them in section 7 to study the thermodynamics of the system. A crucial ingredient in this

analysis is the implementation of the holographic renormalization procedure, which allows

us to define a finite free energy, a finite boundary stress tensor, etc.1 Following [16, 17] we

show in appendix A that the near-Landau pole HV metric can be related to an AdS metric

through analytic continuation in the number of dimensions. As a result the holographic

renormalization of AdS can be continued back to define the procedure in full generality

for the HV metric. The main result of this section is that the solutions become locally

thermodynamically unstable at a temperature T . ΛLP because they develop a negative

specific heat. Interestingly though, before this happens, i.e. in the stable phase, the speed

of sound exceeds the conformal value, c2
s > 1/3.

We close in section 8 with a discussion of our results and a possibility suggested by

recent work in Quantum Electrodynamics.

2 Preliminaries

Four-dimensional, N = 4 SYM theory with Nc colors is holographically dual to super-

gravity solutions sourced by Nc D3-branes. In the supergravity description this is encoded

in a flux of the self-dual RR five-form through an appropriate five-dimensional compact

manifold M5,

F5 = Qc(1 + ∗)ω5 , (2.1)

where ω5 is the volume form of M5, whose total dimensionless volume we denote V5.

Quantization requires that the D3-brane charge is related to the number of colors through

Qc =
(2π`s)

4

2πV5
Nc . (2.2)

Note that, unlike in refs. [18–21], we work with an RR charge quantized in units of Nc

instead of gsNc (for a comparison between both normalizations, see e.g. section 4.1 of [22]).

The latter choice is convenient in situations in which there is natural factorization of the

dilaton φ of the form eφ = gse
φ̃. This is the case, for example, if the gauge theory is

conformal, since this means that the dilaton is constant and one can simply normalize it

so that φ̃ = 0 everywhere. If the gauge theory is not conformal but approaches a fixed

point in the infrared (IR) or in the UV then it is natural to normalize the dilaton so that

φ̃ = 0 at the corresponding fixed point. In contrast, in the solutions that we will consider

the dilaton will run from zero to infinity and there will be no natural factorization into a

1Holographic renormalization is best understood for conformal theories. Studies of non-conformal cases

include non-conformal branes [10, 11], HV Lifshitz theories [12, 13] and cascading theories [14, 15].
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constant piece and a running piece. We will therefore work with the full dilaton, which is

related to the running YM and ’t Hooft couplings through

g2
YM = 2πeφ, λ = g2

YMNc . (2.3)

In the simplest cases the metric supported by the F5 flux is AdS5 ×M5, with M5 a

Sasaki-Einstein (SE) manifold. The radii of these two spaces is related to the D3-brane

charge through

Qc = 4L4. (2.4)

If M5 =S5 then the gauge theory is N = 4 SYM; otherwise it is a non-maximally super-

symmetric theory. For example, ifM5 = T 1,1 then the gauge theory is the Klebanov-Witten

quiver. In the general case the rank of the gauge group and L are related through

L3

κ2
5

=
πN2

c

4V5
, (2.5)

where κ2
5 is the five-dimensional effective gravitational coupling (see eq. (2.11) below).

In order to add flavor to any of the theories above it is convenient to view the SE

manifold as a U(1) fibration over a four-dimensional Kähler-Einstein (KE) base. This

geometric construction is naturally equipped with an SU(2) structure characterized by a

real one-form, η, and a real two-form, J , which is the Kähler form of the KE manifold.

These satisfy the relations

dη = 2J ,
1

2
J ∧ J ∧ η = ω5 . (2.6)

They also close on each other under Hodge dualization on the SE manifold

∗5 η =
1

2
J ∧ J , ∗5J = J ∧ η . (2.7)

The addition of flavor on the gauge theory corresponds on the gravity side to the addition

of Nf D7-branes, as explained in section 1. Their presence is encoded in a flux of the RR

one-form

F1 = Qf η , (2.8)

where the D7-brane charge Qf is related to the number of D7-branes through

Qf =
V3

8πV5
Nf , (2.9)

with V3 =
∫
J∧η the dimensionless volume of the three-dimensional submanifoldM3 ⊂M5

wrapped by any of the D7-branes. Note that the smeared D7-branes lead to a violation of

the Bianchi identity for F1, namely to the fact that dF1 6= 0, as expected from a continuous

distribution of objects charged under F1 [6].

The ten-dimensional string- and Einstein-frame metrics of the flavored solution take

the form

ds2
st = eφ/2ds2

E = eφ/2
[
h−1/2(−b dt2 + dx2

3) + h1/2e2f
√
Qc

(
d%2

b c
+ e2g−2fds2

KE + η2

)]
.

(2.10)
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The undetermined functions in this expression depend only on the radial coordinate %.

Note that this coordinate is dimensionless, consistent with the fact that Qc has dimensions

of (length)4. We have included a blackening factor b since below we will consider solutions

with non-zero temperature, as well as an additional function c since we want to fix the

radial gauge dynamically. We have also allowed for a relative squashing between the KE

base and the fiber, proportional to e2g−2f , which will only be absent in the case without

flavor.

It is convenient to reduce the ansatz above along the internal M5 compact manifold.

The result is the five-dimensional effective action2 [6, 25]

S5 =
1

2κ2
5

∫
(R− V ) ∗ 1− 4

5
dχ ∧ ∗dχ− 8

15
dψ ∧ ∗dψ − 1

2
dφ ∧ ∗dφ . (2.11)

The scalars χ, ψ in this action are related to the functions f, g parametrizing the internal

manifold as

eψ = h5/4e4g+f , eχ = ef−g, (2.12)

and the five-dimensional metric is related to the ten-dimensional one through

ds2 = eφ/2
[
e−

2
3
ψds2

5 +
√
Qc e

− 2
5

(χ−ψ)ds2
KE +

√
Qc e

2
5

(4χ+ψ)η2
]
, (2.13)

namely

ds2
5 = e

2
3
ψ

[
h−1/2(−b dt2 + dx2

3) + h1/2e2f
√
Qc

d%2

b c

]
. (2.14)

Although in most cases it will be clear from the context, to avoid any possible confusion

we will denote the ten-dimensional metric as G and the five-dimensional metric as g. If

necessary we will also write Gst and GE to distinguish between the string- and the Einstein-

frame metrics.

The potential in the five-dimensional action is derived from the superpotential

W =
e−

8
15
ψ

2 · 21/3L

[
e−

4
5
ψ − e−

4
5
χ(6 + 4 e2χ −Qf e

φ)
]

(2.15)

via the standard relation

V =
1

2

[
5

8

(
∂W

∂χ

)2

+
15

16

(
∂W

∂ψ

)2

+

(
∂W

∂φ

)2]
− W 2

3
. (2.16)

This potential encodes the effects of the two RR kinetic terms in the IIB supergravity

action as well as the smeared Dirac-Born-Infeld term describing the presence of the flavor

D7-branes.

The equations of motion for the entire system can be easily obtained as the Euler-

Lagrange equations associated to the action (2.11), and can be found in the references [6,

7, 9, 25, 26].

2In the case without flavor this reduction was done in [23, 24].
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3 Supersymmetric solution

In this section we will use the ten-dimensional parameterization of the metric given in (2.10)

with b = c = 1 and g traded in favor of χ as in (2.12). The D3-D7 system with smeared

D7-branes preserves N = 1 supersymmetry and the corresponding BPS equations are [6]

∂%φ = −Qf e
φ, ∂%χ = −3(1− e2χ) +

1

2
Qf e

φ,

∂%f = −3 + 2e2χ +
1

2
Qf e

φ, ∂%h = e4(χ−f).

(3.1)

When Qf = 0 this has the well known AdS5 ×M5 solution, with ∂%φ = 0 and χ = 0. In

the flavored case the solution reads

eφ =
eφ0

1 +Qf eφ0(%− %0)
,

eχ =
61/2

√
1 +Qf eφ0(%− %0)√

6 +Qf eφ0 [1 + 6(%− %0) + c1 e6/(Qf e
φ0 ) e6(%−%0)]

,

ef =
c2 e
−1/(Qf e

φ0 )

(Qf eφ0)1/6

61/2e−(%−%0)
√

1 +Qf eφ0(%− %0)[
6 +Qf eφ0 [1 + 6(%− %0) + c1 e6/(Qf e

φ0 ) e6(%−%0)]
]1/3 ,

h = c3 +

∫ %

e4χ(%̂) e−4f(%̂) d%̂ ,

(3.2)

where φ0 ≡ φ(%0) is the value of the dilaton at an arbitrary reference point %0, and c1,2,3

are constants of integration. In order for the dilaton to be real the radial coordinate must

satisfy

%LP < % (3.3)

where

%LP ≡ %0 −
1

Qf eφ0
. (3.4)

At precisely %LP the dilaton diverges, in agreement with the presence of a Landau pole at

which the coupling constant diverges. Using (3.4) one may rewrite the solution in terms of

%LP alone as

eφ =
1

Qf (%− %LP)
,

eχ = 61/2

√
%− %LP

1 + 6(%− %LP) + c1 e6(%−%LP)
,

ef = c2 61/2 e−(%−%LP)

√
%− %LP

[1 + 6(%− %LP) + c1 e6(%−%LP)]1/3
,

(3.5)

with h as in (3.2). We see that by choosing the Landau pole as the reference point the

solution takes a particularly simple form. By an additional shift of the radial coordinate

we will set %LP = 0 without loss of generality.

Let us now discuss the role of the integration constants. As noted in [6], if the integra-

tion constant c1 in (3.2) is non-zero then the proper radial distance from any point to the
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IR of the theory is finite, whereas if c1 = 0 there is an infinite throat. We will therefore

set c1 = 0 hereafter, since otherwise there would be an unphysical IR cut-off in the gauge

theory. This means, in particular, that the range of the radial coordinate is 0 < % < ∞.

We will refer to the region %→∞ as the IR part of the geometry. In this region the dilaton

approaches zero, as expected from the fact that the dual gauge theory is IR-free [27], and

the curvature invariants diverge, as we discuss below. This divergence is absent if the quark

mass is non-zero [7], as we discuss in section 8.

The constant c2 can be set to any convenient value through the following rescalings of

c3 and of the Minkowski coordinates

xµ → xµ c−1
2 , c3 → c3 c

−4
2 . (3.6)

Two particularly convenient choices are c2 = 1 and c2 = Q
1/6
f . With the former choice the

solution takes a particularly simple form in the UV, as we will see below, whereas with the

latter the flavorless limit Qf → 0 in (3.2) becomes manifestly smooth.

Setting c1 = 0 and redefining the last integration constant c3 appropriately, the warp

factor takes the form

h = c3 +

(
−1

2e

)2/3 6−2/3

c4
2

(
Γ

[
1

3
,−2

3
− 4%

]
− Γ

[
1

3
,−2

3

])
, (3.7)

where Γ[s, x] is the incomplete Gamma function. Since the arguments of the incomplete

Gamma functions are always negative and

Im

{
(−1)2/3 Γ

[
1

3
,−x

]}
=

√
3

2
Γ

(
1

3

)
if x > 0 , (3.8)

it follows that h is real if c3 is real. For the flavored case h vanishes linearly as % → 0 if

c3 = 0 and it approaches a constant if c3 6= 0. Following [6] hereafter we will set c3 = 0.

This is analogous to “dropping the 1” in the usual warp factor of D3-branes. It would be

interesting to extend our analysis to the case in which c3 6= 0, which would correspond to

studying smeared D7-branes in the asymptotically flat background sourced by D3-branes.

3.1 IR and UV asymptotics

Having fixed the solution, let us now examine its IR and UV limits. In the IR region we

have %� 1 and the metric components asymptote to

IR: eφ ' 1

Qf %
, eχ ' 1 , ef ' c2 61/6 %1/6 e−%, h ' e4% %−2/3

4 · 62/3c4
2

. (3.9)

The asymptotic form of the solution is most transparently understood in terms of a new

radial coordinate z defined through

% = log
z

L
. (3.10)

In this coordinate the IR region is at z →∞ and the asymptotic form of the five-dimensional

metric (2.14) is

ds2
5 '

1

28/3

[
4 · 61/3c2

2

(
L

z

)2(
log

z

L

)1/3

ηµνdxµdxν + L2 dz2

z2

]
. (3.11)
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Were it not for the presence of the logarithmic term this would be simply AdS5 spacetime.

This term is a deformation from this spacetime due to the presence of flavor in the system.

We will refer to this metric as “logarithmically-corrected AdS” or simply “log-AdS”. As we

will show below, this geometry behaves essentially as AdS for probes that do not explore

exponentially large distances along the z coordinate.

The metric (3.11) is accompanied by the three five-dimensional scalars whose asymp-

totic behavior is

eφ ' 1

Qf log(z/L)
, eψ ' 1

4
√

2
, eχ ' 1 . (3.12)

We see that asymptotically the squashing of the internal manifold disappears since eχ ' 1,

and the size of the compact part of the geometry approaches a finite value. The dilaton

vanishes logarithmically slowly towards the IR. As we will elaborate upon below, this is

intimately related to the logarithmic running of the YM coupling of the dual gauge theory

at energies much below the Landau pole.

In the UV we have %→ 0 and the solution becomes

UV: eφ =
1

Qf %
,

eχ '
√

6%
[
1− 3%+ · · ·

]
,

ef ' c2

√
6%
[
1− 3%+ · · ·

]
,

h ' %

c4
2

[
1 + 4%2 + · · ·

]
.

(3.13)

The asymptotic form of the solution is most transparently understood in terms of a new

radial coordinate u defined through

% =

(
L

u

)1/2

. (3.14)

In this coordinate the Landau pole is at u → ∞ and the asymptotic form of the five-

dimensional metric in this region is

ds2 ' 3 · 61/3

(
u

L

)− 2θ
p
(
c2

2

3

u2

L2
ηµνdxµdxν +

L2

u2
du2

)
, (3.15)

where p = 3 is the number of spatial dimensions and θ = 7/2. This geometry is accom-

panied by the three five-dimensional scalars which, up to subleading corrections of order

u−1/2, take the form

eφ ' 1

Qf

(
u

L

)1/2

, eψ ' 61/2

(
u

L

)−7/8

, eχ ' 61/2

(
u

L

)−1/4

. (3.16)

The metric (3.15) is a HV metric with HV parameter θ [28–30]. As we will see, all the

qualitative manifestations of the Landau pole that we study in subsequent sections follow

from this fact, which to our knowledge had not been noted before. The overall factor 3 ·61/3

and the c2
2/3 factor inside the brackets could be eliminated by appropriate rescaling of the
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length scale L and of the Minkowski coordinates. However, we will not do so and work

with the asymptotic normalization of gauge theory coordinates given in (3.15). Changing

this normalization would, for example, rescale our definition of temperature below.

Models with θ > p have appeared previously in the literature (see e.g. [31] for a recent

example) but in circumstances in which Lorentz invariance is broken and in which they

control the IR instead of the UV physics of the theory.

3.2 Regime of validity

We are now ready to determine the regime of validity of the solution. Since we are only

interested in parametric dependences, in this analysis we will ignore all purely numerical

factors. We must require that both supergravity and the smeared DBI action for the D7-

branes be valid. We begin with supergravity. In this case the first condition that we must

impose is

eφ � 1 . (3.17)

If this is not satisfied then string loop corrections become important and degrees of freedom

not included in supergravity, such as D-branes, become light. The other two conditions

that we must require are that the curvature of the string-frame metric be small in string

units, and that the curvature of the Einstein-frame metric be small in Planck units.3 The

result can be understood simply by considering the two asymptotic forms of the solution

in the IR and in the UV. The reason is that, as shown in figure 1, the curvatures exhibit

two simple behaviors separated by a rapid crossover around % ∼ 1. We will now see that

these behaviors are controlled by the IR and the UV asymptotic solutions. Since the

Ricci scalar, R = GmnRmn, and the square of the Ricci tensor, Ric2 = RmnRmn, behave

differently, we need to consider both. We have checked that the square of the Riemann

tensor, RmnpqRmnpq, does not give new independent conditions; presumably the same is

true for other curvature invariants. Through explicit calculation we find that the conditions

that the string-frame curvatures be small in string units take the form

IR: `4s R2
st ∼

Nf

Nc
eφ � 1 , (3.18)

`4s Ric2
st ∼

1

Nc eφ
� 1 , (3.19)

UV: `4s R2
st ∼ `4s Ric2

st ∼
N7

f

Nc
e6φ � 1 . (3.20)

The curvatures of the Einstein-frame metric in Planck units turn out to be proportional

to the string-frame curvatures in string units, both in the IR and in the UV:

`4p R2
Ein ∼ eφ `4s R2

st , `4p Ric2
Ein ∼ eφ `4s Ric2

st . (3.21)

It follows that the condition (3.17) and the requirement that the string-frame curvatures

be small in string units imply that the Einstein-frame curvatures are small in Planck units.

Therefore we will ignore the Einstein-frame curvatures in the following.

3Note that in our conventions `4
p ∼ `4

s because we are not factoring the dilaton into a constant times a

position-dependent part.
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√
Qc REin

%

√
Qc/Qf Rst

%
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Figure 1. Curvatures of the string-frame (left) and Einstein-frame (right) ten-dimensional metrics.

Using the dilaton profile

eφ ∼ 1

Nf %
(3.22)

in eqs. (3.18)–(3.20) it is easy to check that the %-dependence of the curvatures in the IR

and in the UV regimes matches the ρ � 1 and the ρ � 1 behaviors shown in figure 1,

respectively. Moreover, using the dilaton profile and the conditions (3.17)–(3.20) one can

determine the range of the % coordinate where the solution is reliably described by su-

pergravity. The point % ∼ 1 is particularly relevant since, as we will see below, several

interesting features of the solution begin to manifest themselves around this point. In

terms of the % coordinate the dilaton condition implies

1

Nf
� % . (3.23)

Since our construction based on smeared D7-branes requires Nf � 1, we see that this

condition is satisfied at % ∼ 1. This means that the region where (3.17) holds includes

parts of both the IR and the UV regions. Therefore we must make sure that the curvatures

are small in both regions. In the IR, the condition (3.19) translates into

%� Nc

Nf
, (3.24)
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whereas the UV condition (3.20) implies(
Nf

Nc

)1/6

� % . (3.25)

We see that if Nf/Nc ∼ 1 then there is essentially no region where the supergravity solution

is valid. We will therefore assume that

Nf

Nc
� 1 . (3.26)

Since Nf � 1 this automatically implies Nc � 1. Under these circumstances the IR

condition (3.18) is automatically satisfied. We will see below that (3.25) may be more or

less stringent than (3.23).

To summarize, supergravity is a valid description over a significant region provided

we have

1� Nf � Nc . (3.27)

Under these circumstances, in terms of the supergravity coordinate this region is given by

%UV � %� %IR , %IR =
Nc

Nf
, %UV = max

{
1

Nf
,

(
Nf

Nc

)1/6}
, (3.28)

whereas in terms of the gauge theory coupling we have

g2
YM � 1 , 1� λ� min

{
Nc,

(
Nc

Nf

)7/6}
, (3.29)

where λ = g2
YMNc.

We now turn to the constraints imposed by the requirement that the Abelian DBI

action for the D7-branes be valid [32, 33]. The first requirement concerns the characteristic

distance between nearby D7-branes, and it consists of two complementary conditions. On

the one hand, this distance must be small in macroscopic terms in order for the distribution

to be treated as continuous. This simply implies that Nf � 1. On the other hand, this

distance must be large in string units, since otherwise strings stretching between nearby

D7-branes would become light and the non-Abelian nature of the DBI action would be-

come important. Since all the D7-branes wrap the η-fiber in the internal geometry of the

metric (2.10) we must consider their separation in the KE base. The characteristic size of

this manifold is

` =
√
Gst

KE = Q1/4
c eφ/4h1/4efe−χ. (3.30)

Since inside the four-dimensional KE base the branes are co-dimension two objects, one

may effectively think of them as points in a two-dimensional space of volume ∼ `2. The

volume available to each of the branes is therefore `2/Nf. As a consequence, the typical

inter-brane distance is
√
`2/Nf. The requirement that this distance is large in string units

is thus
`4

N2
f `

4
s

� 1 . (3.31)
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Using (3.9) and (3.13) we find the leading asymptotic behaviors

IR: `4 ∼ Nc `
4
s

Nf %
, (3.32)

UV: `4 ∼ Nc `
4
s

Nf
. (3.33)

Substituting into (3.31) yields the two conditions

IR:
Nc

N3
f

1

%
� 1 , (3.34)

UV:
Nc

N3
f

� 1 . (3.35)

We see that the IR condition immediately implies the UV condition, since in the IR % > 1.

The UV condition implies the hierarchy

1� Nf � N1/3
c , (3.36)

which is more stringent than (3.27). Similarly, the IR condition implies that

%� %IR , %IR =
1

N2
f

Nc

Nf
, (3.37)

which is more stringent than the IR part of (3.28). Note that (3.36) is compatible

with (3.25) being more stringent than (3.23) or vice versa.

The second requirement for the DBI action to be valid is that the effective coupling

between open strings be small. In the absence of smearing this coupling would be eφNf.

However, in the presence of smearing not all the Nf branes but only the fraction contained in

a volume of string size can participate in a characteristic process involving open strings. As

argued above, this fraction is Nf `
2
s/`

2. The requirement that the effective string coupling

(squared) be small is therefore
e2φN2

f `
4
s

`4
� 1 . (3.38)

Using the asymptotic expressions (3.32) this equation turns into the two conditions

IR:
Nf

Nc

1

%
� 1 , (3.39)

UV:
Nf

Nc

1

%2
� 1 . (3.40)

The IR condition is automatically satisfied by virtue of (3.36), whereas the UV condition

implies that

%� %UV , %UV =

(
Nf

Nc

)1/2

, (3.41)

which is less stringent than (3.25).

Putting together the various constraints coming from supergravity and from the DBI

action we conclude that, in order for the gravity-plus-branes description to be valid, the
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Figure 2. Components of the five-dimensional metric (3.5) for the supersymmetric solution. The

dotted curves on the left- and the right-hand side indicate the UV and the IR approximations to

the solution given by (3.13) and (3.9), respectively.

number of colors and the number of flavors must obey (3.36). In this case the region of

validity in terms of the % coordinate is given by

%UV � %� %IR , %IR =
1

N2
f

Nc

Nf
, %UV = max

{
1

Nf
,

(
Nf

Nc

)1/6}
, (3.42)

whereas in terms of the gauge theory coupling this region is characterized by

g2
YM � 1 , 1� λ� min

{
Nc,

(
Nc

Nf

)7/6}
. (3.43)

In section 4 we will translate this region into a region in energy scale.

4 Landau pole physics

We will now examine some physical consequences of the presence of the Landau pole. The

fact that the HV metric (3.15) has θ > p means that the asymptotic form of the metric

satisfies the null-energy condition, as expected from the matter that sources it. More

importantly, it implies that the metric is conformal to AdS5 with a conformal factor that

vanishes faster than u−2 as the Landau pole is approached. We will now see that this

property has far-reaching consequences, all of them consistent with the presence of a UV

cut-off in the theory.

A first consequence is that the components of the five-dimensional metric |gtt| = gxx
and g%% asymptotically decrease towards, and eventually vanish at, the Landau pole. Since

these functions respectively vanish and go to a constant with positive corrections in the

IR, it follows that they are non-monotonic functions of the holographic coordinate. This

is shown in figure 2, where we present both functions evaluated in terms of the radial

coordinate % of (3.5), in which the IR is at % → ∞ and the LP is at % = %LP ≡ 0. In

the figure we have also set c2 = 1. This non-monotonicity has several implications. From
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a purely general-relativist’s viewpoint, it signals a pathology since it means that gravity

becomes repulsive in the UV region where |gtt| decreases. From a holographic viewpoint,

it implies a minimum size and a maximum energy in the gauge theory associated to an

object of fixed proper size and fixed proper energy in the bulk. Indeed, consider such an

object in the IR part of the geometry. As we move this object closer to the boundary, its

gauge theory size decreases and its gauge theory energy increases. This situation, which

is the usual one in holography, underlies the correspondence between holographic position

in the bulk and energy scale in the boundary [34, 35]. However, beyond the turning point

of |gtt| = gxx this behavior is reversed and the gauge theory size of the object begins to

increase while its gauge theory energy begins to decrease. Therefore, there is a minimum

of the gauge theory size and a maximum of the gauge theory energy. The existence of a

minimum length scale or a maximum energy scale are both consistent with the presence of

a UV cut-off in the gauge theory.

The non-monotonicity of the five-dimensional metric is intimately related to the behav-

ior of the holographic c-function defined in [36, 37]. This function satisfies two properties:

its value coincides with the central charge of the corresponding conformal field theory at

fixed points, and it is monotonically increasing towards the UV if the weak energy con-

dition holds. For the D3-D7 solution (3.5) the c-function was computed in [38].4 This

reference found that the c-function takes the value c = 27N2
c /64 at the deep IR, grows

from there towards the UV and diverges towards +∞ at the point where the components

of the five-dimensional metric attain a maximum (see figure 2). Passed this point the

c-function continues growing from c = −∞ to c = 0− at the Landau pole.

While this result may suggest that the effective number of degrees of freedom diverges

at an energy scale below the Landau pole, one must remember that the c-function can be

directly interpreted as the number of degrees of freedom only at a fixed point. Moreover,

the thermal entropy that we will compute below actually shows a maximum number of

degrees of freedom per unit volume. In any case, it would be interesting to investigate this

issue further in the future.

A second consequence is that the proper distance along the radial direction to the end

of the geometry is finite, since the integral∫ uUV √
guu du ∼

∫ uUV du

u
1+ θ

p

∼ 1

(uUV)
θ
p

(4.1)

converges as uUV → ∞. This should be contrasted with the pure AdS5 case, in which

θ = 0 and this distance diverges logarithmically. The fact that the Landau pole is located

at a finite distance along the holographic direction is consistent with its interpretation as

a maximum energy scale. This idea can be made more precise by noticing that there is

a maximum mass for a string stretching from the IR (% → ∞) to a brane at fixed radial

position in the bulk. In the gauge theory this is interpreted as the self-energy of a charged

4In [38] the authors refer to the a-function since for theories dual to two-derivative gravity the central

charges a and c coincide.
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Figure 3. Mass of a string stretching from the IR (%→∞) to a radial distance %. The dashed red

line corresponds to M = a1 − a2 log %, with a1, a2 positive constants.

particle, and it is given by

M(%) =
1

2π`2s

∫ ∞
%

√
−Gst

tt G
st
%% d% , (4.2)

where we recall that Gst is the ten-dimensional string-frame metric. Using the supersym-

metric solution (3.5) (with %LP = 0) and (3.7) we find

M(%) =
c2

2π`2s

Q
1/4
c

Q
1/2
f

(6e)1/6 Γ

(
2

3
,

1

6
+ %

)
. (4.3)

This result is plotted in figure 3. We see that the energy of the string attains the finite

limit

ΛLP =
c2

2π`2s

Q
1/4
c

Q
1/2
f

(6e)1/6 Γ

(
2

3
,

1

6

)
(4.4)

as we integrate all the way to the end of the geometry at %LP = 0. This means that there

is a maximum mass for an external quark that the gauge theory can be coupled to. As

we have already indicated by our choice of notation in (4.4) we will take this mass as the

definition of the scale of the Landau pole itself. More generally, the function M(%) can be

used to associate a gauge theory energy scale to a radial position on the gravity side in

a diffeomorphism-invariant way. Note, however, that the absolute value of this energy is

meaningless unless other scales are introduced in the theory. This is reflected in the fact

that ΛLP is proportional to the integration constant c2, whose value cannot be fixed on

physical grounds in the absence of other scales. Put differently, in the absence of other

microscopic scales the Landau pole simply provides a unit of energy and can be set to any

value. In contrast, ratios of scales are meaningful, and in our case this is reflected in the

fact that the dependence on c2 cancels out in such ratios. If one adds another scale to the

theory, for example by introducing a non-zero temperature T (as we will do in section 7) or
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Figure 4. (Left) Gauge theory β-function extracted from the supersymmetric gravity solution.

We have chosen the overall normalization so that β(g2YM)/g4YM → 1 as g2YM → 0. With this choice

β(g2YM)/g4YM → e1/66−1/3Γ[2/3, 1/6] ∼ 0.604 as g2YM → ∞. (Right) YM coupling as a function of

the energy scale.

a non-zero quark mass Mq, then one can determine the absolute scale of the Landau pole,

in units of T or Mq, in terms of the value of the coupling measured at the scale T or Mq.

In our case the specification of the coupling at one of these physical scales would indeed

fix c2 and hence the overall normalization of M(%), thus making absolute scales and not

just ratios of scales meaningful.

With the map M(%) in hand we can examine the dependence of the Yang-Mills coupling

on the energy scale and extract the corresponding β-function as

β(g2
YM) = M

d

dM
g2

YM = 2πM
d

dM
eφ(ρ(M)). (4.5)

We will ignore purely numerical factors and also the overall normalization of M(%). We

begin in the IR. Expanding the Γ-function in the limit ρ→∞ we have

IR: M ∼ e−% → eφ ∼ 1

%
∼ − 1

logM
→ β(g2

YM) ∼ g4
YM , (4.6)

where the first equations holds up to terms of O(%1/3). In the UV we expand the Γ-function

around % = 0 to find

UV: ΛLP −M ∼ % → eφ ∼ 1

%
∼ 1

ΛLP −M
→ β(g2

YM) ∼ g4
YM . (4.7)

As shown by the dashed red line in figure 3 there also seems to be an intermediate regime

where

Interm.: M ∼ − log % → eφ ∼ 1

%
∼ eM → β(g2

YM) ∼ g2
YM log g2

YM . (4.8)

The full β-function is shown in figure 4(left), and the coupling itself in figure 4(right).

It is interesting that the two different UV and IR asymptotic behaviors of M(%) give

rise to two β-functions that, up to an overall constant, coincide with the one-loop β-function

in a perturbative theory with positive β-function.
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Using the UV and the IR forms of M(%) we see that the scales corresponding to the

regime of validity of supergravity (3.42) satisfy

M(%UV) ∼ ΛLP ,
M(%UV)

M(%IR)
∼ exp

(
1

N2
f

Nc

Nf

)
. (4.9)

The first of these equations says that the maximum energy scale in the region covered by

supergravity is of the same order as the Landau pole scale. The second equation says that

this scale is exponentially higher than the lowest IR scale in the regime described by (3.36).

Note that the smaller Nf is compared to Nc the larger this range is. This hierarchy would

have been even larger, of order exp(Nc/Nf), if we had only considered the constraints (3.28)

imposed by the validity of supergravity. In any case, this hierarchy is consistent with the

general expectation based on the fact that the β-function is suppressed in the regimes (3.28)

or (3.42), which implies that the Landau pole must be pushed off to infinity if Nc → ∞
while Nf and the IR scale are kept fixed.

A third consequence is the existence of a maximum density of degrees of freedom per

unit volume in the gauge theory, again as expected from the existence of a UV cut-off.

This number can be obtained on the gravity side by computing the area of a constant-t,

constant-r surface in Planck units, following [34]. The calculation can be done either in

the five-dimensional metric (2.14) or in the ten-dimensional Einstein-frame metric (2.10),

including in the latter case the volume of the five-dimensional internal geometry. The result

is of course the same. Expressed in terms of the five-dimensional quantities it is simply

n ∼ `−3
p

√
g3
xx . (4.10)

Since gxx attains a maximum as a function of the radial coordinate %, so does the density

of degrees of freedom. In the IR this density grows with the energy scale M . However,

this behavior is reversed if the energy increases beyond the maximum of gxx. As we will

see below, the entropy density as a function of temperature, s(T ), behaves qualitatively in

the same way as n(M), which will imply a thermal instability (negative specific heat) at

temperatures above the scale where gxx attains its maximum.

5 Quark-antiquark potential and entanglement entropy

In this section we discuss two gauge-invariant observables, whose detailed calculations are

given in appendices B and C. Our goal is to verify the expected effect of a UV cut-off in

the theory.

The first observable is the Wilson loop associated to the worldlines of a static quark-

antiquark pair separated a distance L in the gauge theory.5 Note that in our theory this is

not strictly speaking the same quantity as the quark-antiquark potential energy, since the

string can break due to the presence of dynamical quarks (or, equivalently, D7-branes in

the bulk). Nevertheless, for convenience we will still refer to the quantity extracted from

the Wilson loop as the energy of a quark-antiquark pair. This quantity can be computed

5The L in this section should not be confused with that in eq. (2.4).
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Figure 5. Quark-antiquark potential for the supersymmetric solution. The dashed, red line on the

left plot corresponds to the scaling Ē ∼
√
L̄. The dimensionless quantities L̄ and Ē are related to

their dimensionful counterparts through eqs. (B.9) and (B.10), respectively. The relation between

ΛLP and Λ̄LP is the same as that between E and Ē.

on the gravity side by considering a fundamental string hanging form the quark and the

antiquark. The result, given by eq. (B.6) and plotted in figure 5, is finite without the need

to subtract the energy of a disconnected quark-antiquark pair. In fact, not only the energy

at arbitrary separations is finite, but also the short-distance limit, L → 0, is finite. This

limit is controlled by the near-Landau pole geometry and leads to the scaling E ∼
√
L, as

indicated by the dashed, red line in figure 5(left). These properties are again manifestations

of the finite UV cut-off set by the Landau-Pole. In the opposite limit, L→∞, the energy

approaches a constant E∞ in such a way that

(E − E∞) · L ∼ (1− 0.15 log10 L) . (5.1)

In this limit the result is controlled by the IR, log-AdS geometry. Correspondingly, the

pure AdS result (E − E∞) ∼ 1/L receives a logarithmic correction. In figure 5(right) we

plot minus the binding energy of the quark-antiquark pair, defined by comparing its energy

to that of two disconnected quarks:

− Ebind = 2ΛLP − E . (5.2)

We see from the plot that the binding energy is always negative, meaning that the con-

nected configuration is always energetically preferred. We also note the curious fact that

the binding energy does not approach zero as L → ∞. In other words, there is a gap

between the energy of the bound state and the energy of the disconnected quarks even

when the separation between the constituents of the bound state is taken to infinity. This

result should be taken with some caution, though, since for large L the string explores

the IR regime of the geometry and eventually becomes sensitive to the region where the

supergravity+DBI description ceases to be valid.

The second observable is the entanglement entropy (EE). In figure 6 we show the

result for a three-dimensional stripe on the boundary as a function of its width L. For

small values of the width we see the scaling

SE ∼ L3/2, (5.3)
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Figure 6. Entanglement entropy, in the supersymmetric ground state of the gauge theory, for a

three-dimensional stripe of width L. The dashed, red line on the left plot corresponds to the Landau

pole scaling S̄E ∼ L̄3/2, whereas the dashed, black horizontal line is the EE of the disconnected

configuration. The dimensionless quantities L̄ and S̄E are related to their dimensionful counterparts

through eqs. (B.9) and (C.7), respectively. The relation between ΛLP and Λ̄LP is the same as that

between E and Ē given in (B.10).

which is controlled by the Landau-Pole geometry. In the opposite limit, the entanglement

entropy approaches a constant. The dashed, black, horizontal line in figure 6(left) is the

EE of a disconnected configuration. These results exhibit one important similarity and

one important difference with the quark-antiquark potential. The similarity is that the EE

does not exhibit any UV divergence (see e.g. [39]), again as expected for a theory with a

UV cut-off. The difference is that the EE is multivalued in a certain range of widths. In

this range there is more than one extremal surface in the bulk anchored at the same region

at the boundary. This leads to a phase transition in the EE at a value L̄Λ̄LP ' 1.2, as

can be seen in figure 6(right). Note that, unlike in [40], the transition occurs between two

connected configurations, since the disconnected configuration never corresponds to that

of minimal area. We will come back to this point in section 8.

6 Finite-temperature solutions

We now turn to the construction of black hole solutions describing the finite-temperature

states of the theory. In ref. [9] analytic, perturbative solutions in the flavor parameter

Qf were constructed. The condition Qf � 1 implies a hierarchy between the scale of the

Landau pole and the temperature, meaning that the solutions constructed in [9] are valid

in the low-temperature regime, T � ΛLP. Here we will go beyond this approximation by

solving the equations of motion numerically.

In order to integrate the equations of motion for the functions given in the ansatz (2.10)

we choose a gauge for the radial coordinate such that the warp factor takes its AdS form

h =
Qc

4 r4
. (6.1)

Making this choice, the constraint coming from the rr-component of Einstein’s equations

and the equation of motion for h allow us to solve algebraically for c and c′, respectively.
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Substituting these back into the rest of the equations, we see that the function c drops out

completely, in a fully consistent manner, and we are left with four, second-order, ordinary

differential equations (ODEs) for the functions f, g, φ and b. However, one can further

reduce this system of equations by requiring that

b = 1−
r4

h

r4
, (6.2)

with rh the radius of the horizon. The equation of motion for b then becomes a first order

ODE involving f, g, φ and it is a simple exercise to show that it is consistent with the

second-order equations that these fields have to obey. All in all, the set of equations to

be solved consists of two second-order ODEs and one first-order ODE. The integration is

done numerically, subject to appropriate boundary conditions, using a shooting method.

We now discuss the boundary conditions to be imposed. As r → ∞ we demand that

the solutions approach the Landau pole geometry. By comparing (6.1) to the UV behavior

of the function h in the supersymmetric solution (3.13), at leading order, the relationship

between the radial coordinates % and r in the UV is given by (we set c2 = 1)

UV: % =
Qc

4 r4
. (6.3)

In terms of the r coordinate, the Landau pole geometry and the UV asymptotic expansion

around it read

ef =

√
3

2
Qc

1

r2

[
1 +

κf
r4

+
κf2
r8

+O(r−12)

]
,

eg = 1−
κφ
4r4

+O(r−8) ,

eφ =
4 r4

QfQc

[
1 +

κφ
r4

+O(r−8)

]
,

(6.4)

where

κf2 =
12κ2

f − 8κfκφ + κ2
φ + 6Q2

c + 8κf r
4
h + 4κφ r

4
h

24
. (6.5)

The expansion (6.4) is given in powers of r−4 and is specified in terms of two unknown

constants κf , κφ. Note that κf and κφ have units of (length)4 whereas κf2 has units of

(length)8. Since the only constant with units of length available in the setup is Q
1/4
c it is

convenient to work with the dimensionless quantities

r

Q
1/4
c

,
κf
Qc

,
κφ
Qc

,
κf2
Q2

c

. (6.6)

Using these variables is equivalent to setting Qc = 1 in the equations of motion, i.e., using

the D3-brane charge as the unit of length. Also, in the action (2.11) the D7-brane charge,

Qf, always appears multiplying the dilaton, suggesting a more appropriate variable

Qf e
φ (6.7)

in terms of which all the dependence on Qf has been modded out. As in the case above,

this is equivalent to setting Qf = 1 in the equations of motion. In the numerical calculation
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Figure 7. IR coefficients of the solutions as a function of the horizon radius.

we have set Qc = Qf = 1, but we present results here reinstating the appropriate factors

of the charges.

In the IR we assume that we have a regular black hole horizon located at r = rh. We

thus demand that, as r → rh, we can write a regular expansion of the form

ef = efh +O(r − rh) ,

eg = egh +O(r − rh) ,

eφ = eφh +O(r − rh) .

(6.8)

This expansion is specified in terms of the radius of the horizon rh and three dimensionless

constants fh, gh, φh that fix the values of the five-dimensional scalars at the horizon.

As explained above, the set of equations to be solved consists of two second order and

one first order equations and hence a solution is specified by five constants of integration.

On the other hand, we have six parameters appearing in the boundary conditions. We thus

expect to find a one-parameter family of solutions, labeled by rh, for fixed Qc and Qf.

In figure 7 we plot the numerically obtained parameters of the IR expansion (6.8). In

these plots we observe how the parameters nicely interpolate between two different types

of behavior, one for rh � 1 (cold solutions) and one for rh � 1 (hot solutions). In the case

of the hot solutions we see that the three coefficients follow power laws as functions of the

horizon radius, seen as a line of constant slope on the logarithmic scale of the plot:

Large rh: efh =

√
3

2

Q
1/2
c

r2
h

, egh = 1 , eφh =
4 r4

h

QfQc
. (6.9)

These behaviors agree with those dictated by the leading terms in the UV expansion (6.4)

if one cuts off the geometry at r = rh. In other words, the IR coefficients at asymptotically

high temperatures are completely determined by the near-Landau pole geometry of the

supersymmetric solution, since the blackening function (6.2) increases rapidly from b = 0

at the horizon to b = 1, which is the supersymmetric value, when rh/Q
1/4
c � 1.

For the cold solutions we see that both efh and egh follow again power laws as functions

of rh given by

Small rh: efh = egh = rh/Q
1/4
c , (6.10)
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−κf/Qc

rh
Q

1/4
c

−κφ/Qc

rh
Q

1/4
c

Figure 8. UV coefficients as a function of the horizon radius.

with egh approaching this behavior with a positive correction and efh approaching it with

a negative correction. This means that the squashing of the sphere persists in the near-

horizon region, but this squashing decreases as the limit rh → 0 is approached, in agreement

with the zero-temperature, supersymmetric solution. The dilaton behavior is more intri-

cate, and can be understood from the IR of the supersymmetric solution (3.9) with the

change of radial coordinate

IR: e−2ρ%1/3 =
6−1/3

√
Qc

r2 (6.11)

applied to the supersymmetric dilaton profile

eφh =
1

Qf %h(rh)
, (6.12)

where the function %h(rh) is given by the solution to (6.11). All in all this shows that the

IR parameters of the hot and cold solutions are dictated by the UV and IR geometry of

the supersymmetric solution, respectively.

The UV coefficients are shown in figure 8. These interpolate between two different

behaviors for cold and hot solutions. The behaviors one obtains from the numeric solu-

tions are

Small rh: κf = −3

4
Qc , κφ = −1

2
r4

h , (6.13)

and

Large rh: κf = −0.55
Q3

c

r8
h

, κφ = −3

2

Q2
c

r4
h

. (6.14)

The first case corresponds to cold solutions and hence the value of the UV coefficients

can be obtained from those of the zero-temperature, supersymmetric solution. This is not

possible for the large-rh solutions.

7 Thermodynamics

The IR and UV parameters occurring in the asymptotic expansions (6.8) and (6.4) encode

the thermal properties of the dual gauge theory. The analysis of the thermodynamics
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requires the definition of an appropriate thermodynamic potential, in this case the free

energy F (T ). In the holographic context this free energy is given by the renormalized

on-shell action. The holographic renormalization procedure is well understood when the

spacetime in question is asymptotically (locally) AdS, corresponding to a UV fixed point in

the gauge theory. Nevertheless, we show in appendix A that holographic renormalization

can also be fully implemented in our case despite the presence of a singularity at a finite

value of the holographic coordinate. The key observation is that the HV metric (3.15) can

be related to an AdS metric through analytic continuation in the number of dimensions,

along the lines of [16, 17]. Thus, in order to holographically renormalize our Landau pole

geometry we simply need to analytically continue back the results from the AdS case. We

emphasize that this procedure does not provide a UV completion of the theory but simply

a prescription to renormalize a UV-incomplete theory. As we will now see, the result is

quite intuitive.6

Our starting point is the Euclidean version of the bulk action (2.11). Since the Einstein

equations imply that the on-shell Lagrangian can be expressed as a total derivative, the

on-shell action can be written as

Ion-shell =
1

2κ2
5

∫
d4x

∫
dr 2
√
g Rx

x = −β V
2κ2

5

√
gtt gxx g

′
xx√

grr

∣∣∣∣
r→∞

, (7.1)

where the contribution at the horizon vanishes, V is the spatial three-volume and β = 1/T

is the period of the Euclidean time. Despite the fact that the Landau pole at r = ∞
is at a finite proper distance, (7.1) diverges as r4 due to the singularity at the Landau

pole. Remarkably, this divergence is exactly cancelled by adding the standard boundary

terms consisting of the Gibbons-Hawking term plus the usual counterterms for an AdS

gravity-plus-scalars type of action. These are given by (see e.g. [41, 42])

Iboundary =
1

2κ2
5

∫
d4x
√
γ (2K +W )

∣∣
r→∞ , (7.2)

with γab the induced metric on constant-r slices, K = Ka
a the trace of the extrinsic

curvature of these slices, and W the superpotential (2.15). This contribution also diverges

as r4, but exactly with the right coefficient to cancel out the divergence present in Ion-shell,

thus giving a finite result for the total action7

Irenormalized = Ion-shell + Iboundary = −4β V

L5κ2
5

(κf − κφ − r4
h + 3L4) . (7.3)

The fact that the counterterms (7.2) take the familiar form is the intuitive result that we

referred to at the beginning of this section, and it follows from the analytic continuation

discussed in appendix A.

6An alternative way to proceed would be to use the results of [13], where the procedure of holographic

renormalization was worked out for asymptotically HV Lifshitz metrics. Our solution falls in the class

labelled IIIb in table (1.8) of [13].
7These counterterms have been used in the same system already in ref. [43], where transport coefficients

were studied.
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The free energy density of the theory is given by

F = −Irenormalized/βV . (7.4)

The boundary stress-energy tensor also follows straightforwardly from the functional deriva-

tive of the renormalized on-shell action with respect to the metric induced on a constant-r

surface. The result takes the standard form

T a
b =

V

2κ2
5

√
γ
[
− 2Ka

b + 2δab(2K +W )
]
r→∞ = diag(−E,P, P, P ) , (7.5)

where the explicit expressions for the energy and the pressure in our case are

E = 2
2κf − 2κφ − r4

h + 6L4

L5 κ2
5

, P = −F . (7.6)

We can now perform a check of our calculations. On the one hand the expressions above

determine the product TS as

TS = E − F . (7.7)

On the other hand this product can be computed directly from the horizon expressions for

T and S:

T =
r6

h

4
√

2 efh+4ghL7π
, S =

8
√

2 efh+4ghL2π

r2
hκ

2
5

. (7.8)

It is easy to check that both calculations yield the same result. We have also verified the

first law of thermodynamics in differential form

S = −dF

dT
, (7.9)

by computing both sides in terms of the coefficients shown in figures 7 and 8.

From now on we will factor out appropriate powers of the radius L in order to work

with dimensionless quantities. For example, we will work with a dimensionless free energy

F defined through

F =
4

L5κ2
5

(κf − κφ − r4
h + 3L4) =

16

Lκ2
5

(
κf
Qc
−
κφ
Qc
−
r4

h

Qc
+

3

4

)
≡ L3

κ2
5

F
L4

. (7.10)

The analogous expressions for the energy, the temperature and the entropy are

E =
16

Lκ2
5

(
κf
Qc
−
κφ
Qc
−

r4
h

2Qc
+

3

4

)
≡ L3

κ2
5

E
L4

,

T =

√
2 r6

h/Q
3/2
c

efh+4ghπ L
≡ T
L
,

S =
8
√

2 efh+4ghL2π

r2
hκ

2
5

≡ L3

κ2
5

S
L3

.

(7.11)

Recalling eqs. (2.4) and (2.5) we see that F , E and S scale as N2
c , as expected, and that

we are simply using L as a unit with which to measure all dimensionful quantities. The
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−F

T

S

T

Figure 9. Log-log plot of the dimensionless free energy and entropy densities as functions of the

dimensionless temperature. The dashed, red curves correspond to the low-temperature approx-

imation (7.15). The vertical lines correspond to the different temperatures defined around and

below (7.18).

dimensionless functions above obey the same relations as their dimensionful counterparts,

namely

F = E − T S , dF = −S dT . (7.12)

For later reference we also introduce a dimensionless specific heat

CV = T
dS

dT
=

1

κ2
5

T dS
dT
≡ L3

κ2
5

CV
L3

, (7.13)

in terms of which the speed of sound may be written as

v2
s =

dP

dE
=

dP
dE

=
S
CV

. (7.14)

Substituting the coefficients shown in figures 7 and 8 in the expressions above we obtain

all the thermodynamic quantities. The free energy and the entropy densities are plotted as

a function of the temperature in figure 9, and the horizon value of the dilaton is plotted in

figure 10. As mentioned above, ref. [9] constructed black hole solutions in a perturbative

expansion in Qf e
φh ∼ Nf g

2
YM(T ) that are valid in the limit T � ΛLP. Their result for F

and S to quadratic order in the expansion parameter is8

F = −π
4

2
T 4

[
1 +

1

2
Qf e

φh(T ) +
1

6

(
Qf e

φh(T )
)2

+ · · ·
]
,

S = 2π4T 3

[
1 +

1

2
Qf e

φh(T ) +
7

24

(
Qf e

φh(T )
)2

+ · · ·
]
.

(7.15)

Note that the leading term is precisely the same as in a CFT (which is N = 4 SYM if

the internal manifold is S5). This illustrates the fact that, in the IR, the log terms in the

metric (3.11) are a small correction to the AdS5 metric. We see in our dilaton plot that,

8Ref. [9] renormalized the free energy by subtracting the zero-temperature, supersymmetric solution,

instead of via the inclusion of counterterms, as we have done here. Nevertheless, the fact that both

prescriptions preserve supersymmetry at T = 0 (which implies that F vanishes in this limit) guarantees

that both prescriptions yield the same result.
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Qf e
φh

T

Figure 10. Log-log plot of the horizon value of the dilaton as a function of the dimensionless

temperature.

indeed, Qf e
φh � 1 at low temperatures. Using this dilaton profile we have checked that

our numerical results for F and S agree with (7.15) in the region T � 1, as can be clearly

seen in figure 9.

The behavior at high temperatures is dramatically different. In this region we find

F ∼ −T deff , S ∼ T deff−1, (7.16)

where

deff = p− θ + 1 =
1

2
. (7.17)

This power-law behavior is dictated by the asymptotic form of the HV metric (3.15) with

p = 3 and θ = 7/2. In other words, the high-temperature thermodynamics is determined

by the Landau pole. We see that the thermodynamic quantities in the UV effectively scale

as in a lower -dimensional conformal theory of dimension deff < 4. This is consistent with

the fact that the analytic continuation needed to define holographic renormalization for

the HV metric connects this metric to an AdS metric in deff + 1 dimensions, see eq. (A.10).

As is clear from figure 9, the transition from the low- to the high-temperature behavior

takes place around T ∼ 1. Around this point several interesting features of the solution

arise. We have marked the temperatures at which each of them takes place with a vertical

line in figures 9, 10, and 11. In order of increasing temperature these features are as follows:

1. At a temperature T1 = 0.21, denoted with a black solid line in the figures, the

parameter controlling the backreaction of the flavor becomes 1, i.e.

Qf e
φh = 1 . (7.18)

Note that at this temperature the horizon is well within the region where supergravity

is valid since, in view of (3.22), this region is roughly speaking the analog of the

% ∼ 1 region in the zero-temperature solution. Supergravity is also valid at the three
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CV

T

v2s

T

Figure 11. Dimensionless specific heat and speed of sound as a function of the dimensionless

temperature. The dashed, red curves correspond to the values derived from the low-temperature

approximation (7.15).

other regions that we will discuss below, since the corresponding temperatures are

parametrically of the same order. At T1 the speed of sound (7.14) is v2
s(T1) = 0.29.

2. At T2 = 0.28, marked with a gray solid line in the figures, the specific heat (7.13)

has a maximum, as shown in figure 11(left). At temperatures below T2 the specific

heat is a monotonically increasing function of the temperature, whereas it becomes

monotonically decreasing at higher temperatures. It is interesting that at T2 the

speed of sound exceeds the conformal value, since

v2
s(T2) = 0.43 > 1/3 . (7.19)

Note that the conformal value is recovered at T = 0, as expected from (7.15), which

determines the low-temperature speed of sound to be

v2
s =

1

3

[
1− 1

6

(
Qf e

φh(T )
)2

+ · · ·
]
. (7.20)

3. At T3 = 0.37, marked with a dashed grey line in the figures, the speed of sound (7.14)

becomes equal to the speed of light, as shown in figure 11(right).

4. At T4 = 0.57, marked with a dotted grey line in the figures, the specific heat becomes

negative, as clearly seen in figure 11(left). Therefore at this point the system becomes

locally thermodynamically unstable. From eqs. (7.13) and (7.14) we also see that

at this temperature the entropy density attains a maximum as a function of the

temperature, and the speed of sound diverges.

We will discuss these results further in the next section.

8 Discussion

Our study of the gravity dual of a gauge theory with a Landau pole has identified several

features consistent with the presence of a maximum energy scale in the theory. For example,
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the energy (4.4) of a string stretching along the entire range of the holographic coordinate

is finite, and in fact may be used to define the scale of the Landau pole itself. Similarly,

the area in Planck units of slices of constant holographic coordinate attains a maximum

at a scale slightly below the Landau pole, meaning that there is a maximum density of

degrees of freedom per unit volume that the theory can describe. Ultimately, this property

follows from the fact that the gtt component of the effective five-dimensional metric (3.15)

exhibits non-monotonic behavior as a function of the holographic coordinate, as illustrated

in figure 2. In contrast, the Gtt component of the ten-dimensional metric, either in string

or in Einstein frame, is monotonic. In other words, the behavior of gtt arises from the

behavior of the volume of the internal directions of the ten-dimensional geometry.

Interestingly, this difference between the five- and the ten-dimensional metrics seems to

be captured by two gauge-invariant, non-local observables in the gauge theory, the quark-

antiquark potential and the EE. The former is sensitive to the ten-dimensional string-frame

metric, since this is the metric that the hanging string couples to. Correspondingly, it does

not exhibit any phase transitions as a function of the quark-antiquark separation. In con-

trast, the EE is computed from an extremal surface in the five-dimensional metric, and

it does exhibit multivaluedness and a phase transition as a function of the width of the

boundary region, as can be seen in figure 6. This behavior is not purely a LP effect in

the sense that the near-LP HV metric gives the single-valued and simple result (5.3). In-

stead, the phase transition is a result of “gluing” together the IR metric in which gxx
increases with the energy scale and a UV metric in which gxx decreases with the energy

scale. In other words, the phase transition is a consequence of the non-monotonicity of

the five-dimensional metric and it occurs around the scale at which gxx attains a maxi-

mum. Note also that, unlike in the case of confining backgrounds discussed in [40], the

phase transition that we have encountered takes place between two connected configura-

tions of the holographic surface, as opposed to between a connected and a disconnected

configuration.

Ref. [44] discussed the calculation of the EE using a higher-dimensional surface that

entirely wraps the internal directions of the ten-dimensional geometry. In a full version of

this calculation one would explicitly see that the multivaluedness of the EE is associated

to the behavior of the internal components of the metric. However, the multivaluedness

cannot be seen in the specific calculation in [44] because this was done perturbatively in

the number of flavors. This means that it is valid for widths much larger than 1/ΛLP,

whereas the multivaluedness appears at widths of order 1/ΛLP.

The maximum number of degrees of freedom in the system can also be seen in the

entropy density of thermal solutions, which attains a maximum as a function of the tem-

perature, as illustrated in figure 9. This property is intimately connected with an instability

of the finite-temperature physics at high temperatures, namely the fact that the specific

heat becomes negative above the temperature T4 defined in the previous section, as il-

lustrated in figure 11. It is remarkable that this temperature lies in the regime where

supergravity is applicable. This thermal instability may be seen as a feature to be avoided

from the viewpoint of phenomenological applications. In contrast, from the perspective of

our motivation we view this situation as a holographic success, because it means that inter-
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esting high-energy features of the gauge theory, including its possible thermal instabilities,

can be reliably studied via supergravity.

Another property of the thermal solutions that holography can predict is the fact that

the speed of sound exceeds the conformal value at some temperature below the tempera-

ture T2 at which the specific heat attains its maximum value. Remarkably, this happens

before any thermal instability takes place, since T2 < T4. It would be interesting to inves-

tigate possible phenomenological applications of this result, as well as possible connections

with [45]. In particular, a large value of the speed of sound codifies a stiff equation of

state, which could provide an explanation for the existence of neutron stars with a certain

mass-size relationship [46].

At the qualitative level, all the features discussed above follow exclusively from the

fact that the effective five-dimensional metric (3.15) near the Landau pole is a HV metric

with HV exponent θ > p, where p is the number of spatial dimensions of the gauge theory.

This suggests that many of these features may actually be rather universal among the

class of Landau pole-afflicted gauge theories with a gravity dual. Moreover, as shown in

appendix A, holographic renormalization can be fully implemented for all such theories by

analytically continuing the gravitational solutions to an AdS solution. We emphasize that

this procedure does not provide a UV completion of the theory but simply a prescription

to renormalize a UV-incomplete theory.

Although we have focused on the case of massless quarks throughout the paper, it

is easy to understand how the physics would be modified in the presence of a non-zero

quark mass Mq. This modification only depends on the ratio Mq/ΛLP and, at a qualitative

level, amounts to cutting off the geometry at the scale Mq at which the quarks decouple,

and replacing the region below by pure AdS. Thus, if Mq . ΛLP then one only sees the

Landau pole geometry glued to pure AdS in the IR. In contrast, if Mq � ΛLP then one

sees essentially the same solution that we have discussed except in the deep IR, where the

log-AdS geometry eventually turns into pure AdS. In all cases, as long as Mq is non-zero,

the singularity in the IR gets replaced by the smooth AdS geometry.

We close with a possibility suggested by Quantum Electrodynamics (QED). Since the

one-loop β-function of QED is positive, at the perturbative level one concludes that the

theory possesses a Landau pole. However, recent non-perturbative studies [47–49] suggest

a more elaborate picture. The key non-perturbative insight is that, above a certain value of

the bare coupling, spontaneous chiral symmetry breaking takes place. As a consequence the

renormalized electron mass is non-zero even if the bare mass is set to zero. This results in a

region in the renormalized mass-coupling plane that is physically excluded in the sense that

it cannot be obtained from any value of the bare parameters. The putative Landau pole

would lie in the excluded region. However, QED is still trivial even at the non-perturbative

level because the only point in the allowed region where the continuum limit can be taken

corresponds to a vanishing value of the renormalized coupling. The key point is that the

strong-coupling physics triggers the spontaneous breaking of a symmetry which modifies

the naive perturbative expectation. It would be interesting to investigate whether a similar

picture could be realized in a theory with a gravity dual, in particular whether some sort

of symmetry breaking (chiral or otherwise) could change the UV behavior of the solution
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and render it regular. This could be investigated in our current set-up by considering a

more general, less symmetric ansatz than the one that we have studied.
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A Holographic renormalization

Let us consider a simple model of gravity plus a scalar in D dimensions

S =
1

2κ2
D

∫ (
R ∗ 1− 1

2
dΦ ∧ ∗dΦ− V (Φ) ∗ 1

)
, (A.1)

with an exponential type potential

V (Φ) = V0 e
αΦ, (A.2)

for some constants V0 and α. This action has a hyperscaling violating solution

ds2
D =

(
r

R

)− 2θ
p
[(
r

R

)2

dx2
1,p +

(
R

r

)2

dr2

]
,

eαΦ =

(
r

R

)2θ
p

, (A.3)

where clearly D = p + 2 and the parameters in the solution are related to those in the

action through

θ =
p2 α2

pα2 − 2
, R2 = −2p[2 + p(2− α2)]

V0(pα2 − 2)2
. (A.4)

Suppose now that q out of the p spatial directions are compact of size l and let us reduce

on this q-torus. The ansatz for the reduced metric to be in Einstein frame is thus

ds2
D = e

2d
(q−p)ϕ ds2

D−q + e2ϕ dx2
q . (A.5)

Defining κ2
D−q = (2πl)qκ2

D we get the reduced action

S =
1

2κ2
D−q

∫ (
R ∗ 1− 1

2
dΦ ∧ ∗dΦ− p q

(p− q)
dϕ ∧ ∗dϕ− V (Φ) e

2q
(q−p)ϕ ∗ 1

)
. (A.6)

It is consistent to truncate this action to a single scalar by identifying −αpϕ = Φ and,

after redefining [
1 +

2q

α2p(p− q)

]
Φ2 = Φ̃2, (A.7)
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we get a (D − q)-dimensional action of the form (A.1) with a modified parameter

α̃ = α

[
1 +

2q

α2p(p− q)

]1/2

. (A.8)

It is then immediate that this action admits a hyperscaling violating solution with p − q
spatial directions and coefficient

θ̃ =
(p− q)2α̃2

(p− q)α̃2 − 2
= θ − q . (A.9)

This hyperscaling solution reduces to AdS if q = θ. Notice the curious fact that the AdS

solution exists even if the potential in the reduced action (A.6) does not seem to admit any

critical points. This happens because for θ = q the truncation gives a constant potential

and the system reduces to the Einstein-Hilbert term plus a cosmological constant. For our

particular value of θ = 7/2 this AdS space would have fractional dimension

D − θ = 5− 7

2
=

3

2
, (A.10)

which would be dual to a gauge theory in deff = 1/2 dimensions, as in eq. (7.17).

The reduced action can be renormalized by including the standard counterterm

Sct = − 1

2κ2
D−q

∫ √
−γD−q−1 W̃ , (A.11)

with γD−q−1 the induced metric on the (D − q − 1)-dimensional boundary. The superpo-

tential W̃ is related to the potential as

Ṽ =
1

2

(
dW̃

dΦ̃

)2

− 1

4

(
D − q − 1

D − q − 2

)
W̃ 2 (A.12)

and reads explicitly

W̃ = 2

(
− 2V0(D − q − 2)

2− (D − q − 2)(α̃2 − 2)

)1/2

e
α̃
2

Φ̃. (A.13)

This counterterm can be uplifted on the q-torus and gives precisely

Sct = − 1

2κ2
D

∫ √
−γD−1W , (A.14)

with

W = 2

(
− 2V0(D − 2)

2− (D − 2)(α2 − 2)

)1/2

e
α
2

Φ, (A.15)

that is, the superpotential associated with the original action (A.1), which of course renor-

malizes it.

These considerations can be extended to the case of several scalars, when the hyper-

scaling solution needs not be exact but only asymptotic. One can see that the leading
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exponential, which can be made of a combination of scalars, is the only one that matters,

and all the considerations above apply to it.

In the particular case under study in this paper it is easy to check that the two leading

terms in our potential (2.16) arise from two contributions of similar size that can be traced

back to the kinetic terms of the F5 and F1 RR forms in the ten-dimensional supergravity

action. Specifically we have

V ' 1

8 · 22/3L2

(
e−

8
3
ψ +Q2

f e
2φ− 8

5
χ− 16

15
ψ
)
' 1

4 · 22/3L2
e−

8
3
ψ ≡ V0 e

αΦ, (A.16)

which can be obtained from the superpotential

W ' 1

24/3L

(
e−

4
3
ψ +Qfe

φ− 4
5
χ− 8

15
ψ
)
' 1

21/3L
e−

4
3
ψ = 2

√
V0 e

α
2

Φ. (A.17)

To read the correct value of α we need to properly normalize the kinetic term for the scalars,

as in (A.1). At leading order in the UV we get the relation ψ = ±(21/32)1/2Φ, which gives

the parameter α = ∓(14/3)1/2 required to reproduce the hyperscaling coefficient θ = 7/2.

B Calculation of the quark-antiquark potential

A natural observable to study is the Wilson loop. We perform a simple calculation for a

time invariant configuration of two external sources placed on the boundary, separated by

a distance L, and a string hanging between them in the bulk. We choose a parametrisation

on the world-sheet by coordinates σ and τ . The string world-sheet in the bulk is then given

by an embedding XM (σ, τ) and the action is

SNG =
1

2π`2s

∫
C
dσdτ

√
det
ab

(Gst
MN∂aX

M∂bXN ) . (B.1)

We choose t = τ , x = σ, % = R(σ) ≡ R(x) and we obtain the following action

SNG =
1

2π l2s

∫ L/2

−L/2

∫ T

0
dtdx

√
Gst
ttG

st
xx +Gst

%%G
st
ttR
′2 . (B.2)

Since the problem is invariant under translations in x, the “energy”

H =
δL

δ(∂xR)
∂xR− L =

Gst
xx

√
Gst
tt√

Gst
xx +Gst

%%R
′2
, (B.3)

with L is the Nambu-Goto Lagrangian, is conserved. Its value can be computed at the

turning point of the string, which for convenience is taken to be at x = 0 and % = %0.

Since at that point R′(0) = 0, we have H =
√
Gst
xx(0)Gst

tt(0). This leads us to the following

differential equation for R

R′ =

√
Gst
xx

Gst
%%

√
Gst
xxG

st
tt −Gst

xx(0)Gst
tt(0)√

Gst
xx(0)Gst

tt(0)
. (B.4)
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Using the UV expansion (6.4) one can show that close to the Landau-Pole R′(x) → ∞.

The significance of this is that the string ends at the boundary perpendicularly, despite

the boundary being located at finite proper distance, and thus there is no extremal force

being exerted on the quarks. The length of the string stretching between the two quarks

is given by
L

2
=

∫ L/2

0
dx =

∫ ∞
%0

d%

R′
, (B.5)

while the energy of the system is evaluated by calculating the on-shell action divided by

the integral over time as follows

E =
SNG

∆t
= 2

∫ ∞
%0

√
Gst
tt(G

st
xx +Gst

%%R
′2)

d%

R′
. (B.6)

In contrast with the usual Wilson loop calculation, the above quantity is in fact finite and

the integrand goes to zero in the UV of our geometry. This is consistent with the existence

of a UV cut-off set by the Landau-Pole scale, in the sense that the quarks can not be

infinitely massive.

As was explained around equation (6.6), the dependence of the supergravity equa-

tions of motion on the charges of the theory, Qc, Qf, can be removed through appropriate

rescalings. In particular, we perform the following rescalings of the metric functions

Gst
tt = Q

−1/2
f Ḡst

tt , Gst
xx = Q

−1/2
f Ḡst

xx , Gstρρ = Q
−1/2
f Q1/2

c Ḡstρρ . (B.7)

In order to reduce the Nambu-Goto equations of motion to the same dependence we must

further rescale the x-coordinate as x → Q
1/4
c x. Under these circumstances the Nambu-

Goto action scales homogeneously as

SNG = Q
−1/2
f Q1/4

c S̄NG , (B.8)

where S̄NG is given by the same expression as SNG but with Qc, Qf set to unity. One

immediate consequence of this is that the distance between the endpoints of the strings

satisfies the scaling property

L = Q1/4
c L̄ , (B.9)

where L̄ is given by the same expression as L but with Qc, Qf set to unity. The energy of

the system, which is evaluated by calculating the on-shell action divided by the integral

over time, can also be expressed in terms of dimensionless variables as

E =
SNG

∆t
=
Q

1/4
c

Q
1/2
f

S̄NG

∆t
≡ 1

2π`2s

Q
1/4
c

Q
1/2
f

Ē , (B.10)

where

Ē = 2

∫ ∞
%0

√
Ḡst
tt(Ḡ

st
xx + Ḡst

%%R̄
′2)

d%

R̄′
. (B.11)

Applying the above procedure for the Landau-Pole geometry, we obtain

L̄ ∼ %2
0 , Ē ∼ %0 . (B.12)
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C Calculation of the entanglement entropy

To define the entanglement entropy of the boundary field theory, we start by dividing a

boundary constant-time, spatial slice into two regions, A and B. In what follows we will

choose region A to be an infinitely long stripe of width L, described by x1 ∈ [−L/2,+L/2],

x2 ∈ (−∞,+∞) and x3 ∈ (−∞,+∞), and region B to be its complement. According

to the holographic dictionary, the entanglement entropy is then given by the area of the

minimal surface in the bulk that is anchored on the boundary of A, ∂A. We choose a

parametrisation of the minimal surface by coordinates σ1, σ2 and σ3. The minimal surface

in the bulk is then given by an embedding XM (σ1, σ2, σ3) and the action is

S =
1

2π`2s

∫
C
dσdτ

√
det
ab

(gMN∂aXM∂bXN ) , (C.1)

where g is the effective five-dimensional metric (2.14). We choose

x1 = σ1 , x2 = σ2 , x3 = σ3 , % = R(σ1) ≡ R(x1) (C.2)

and we obtain the following action

S =
L2L3

2π`2s

∫ L/2

−L/2
dx1 gxx

√
gxx + g%%R′2 , (C.3)

where Li =
∫∞
−∞ dxi. Since the problem is invariant under translations in x, the “energy”

H =
δL

δ(∂xR)
∂xR− L =

gxx
2√

gxx + g%%R′2
(C.4)

is conserved. Its value can be computed at the turning point of the string, which for

convenience is taken to be at x1 = 0 and % = %0. Since at that point R′(0) = 0, we have

H = gxx(0)3/2. This leads us to the following differential equation for R

R′ =

√
gxx
g%%

√
gxx 3 − gxx(0)3√

gxx(0)3
(C.5)

for which we get

L = 2

∫ L/2

0
dx1 = 2

∫ ∞
%0

d%

R′
≡ Q1/4

c L̄ . (C.6)

The entanglement entropy density associated with region A is evaluated by calculating the

on-shell action

SE =
1

4G

S

L2L3
=

1

4G

2

2π`2s

∫ ∞
%0

gxx

√
gxx + g%%R′2

d%

R′
≡ 1

4G

1

2π`2s

Q
1/4
c

Q
3/4
f

S̄E . (C.7)

In the above

L̄ = 2

∫ ∞
%0

d%

R̄′
,

S̄E = 2

∫ ∞
%0

ḡxx

√
ḡxx + ḡ%%R̄′2

d%

R̄′
(C.8)
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Figure 12. Width (left) and EE (right) as a function of the penetration depth %0 of the extremal

surface in the bulk.

are dimensionless, and to obtain them we have used the scaling (B.7). Applying the above

procedure to the Landau-Pole geometry we find

L̄ ∼ %2
0 , S̄E ∼ %3

0 , (C.9)

which is valid for small %0. The result for arbitrary %0 is shown in figure 12. We see that

in a certain range of values of L̄ there is more than one possible value of %0, i.e. there is

more than one extremal surface. This results in the EE being a multivalued function of L,

as shown in figure 6.
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