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1 Introduction

A very important feature of scattering amplitudes is their factorization property when

generalized Mandelstam invariants go on-shell. The residues associated to such propagator

poles are given by the product of two lower-multiplicity amplitudes and this analytic struc-

ture puts strong constraints on the functional form of the amplitudes. This property also

lies at the heart of various modern on-shell techniques for scattering amplitudes developed

in the recent past being far more efficient than the traditional Feynman diagram based

approach.1 Of particular interest are the factorization properties on the two-particle poles

that involve three-point amplitudes which are subtle objects in massless quantum field

theories. For real momenta such a two-particle pole sij = 2pi ·pj = 0 implies collinearity of

the two momenta, pi = z p and pj = (1−z)p with z ∈ [0, 1]. Color ordered gluon scattering

amplitudes factorize in such a collinear limit according to

An

(
1h1 , 2h2 , . . .

)
1‖2−→

∑
h=±

Split−h

(
z; 1h1 , 2h2

)
An−1

(
ph, . . .

)
, (1.1)

with the universal splitting functions Split−h(z; 1h1 , 2h2), which diverge as 1/
√
p1 · p2 and

are known to very high loop-orders in QCD. Along with collinear properties other aspects of

infra-red(IR) physics like behavior under soft limits also provide deep insights into nature.

In the soft limit p → δ q with δ → 0 color-ordered gluon amplitudes display a universal

factorization [4–6]

An+1 (δ q, p1, . . . , pn) =
δ→0

(
1

δ
S[0] (q, {pa}) + S[1] (q, {pa})

)
·An (p1, . . . , pn) +O (δ) . (1.2)

Interestingly enough, this universal factorization extends beyond the leading singular term

in δ, for gauge theories up to the sub-leading order [5–7] and for gravity even to sub-sub-

leading order [8]. The universal factorization properties of gluon amplitudes in soft and

collinear limits have been studied extensively over many decades and lead to various inter-

esting properties including the all-loop universal form of IR divergences [9, 10]. Moreover,

recent insights into sub-leading and sub-sub-leading terms in the soft expansion for YM and

gravity theories have revealed their connections to hidden symmetries of the asymptotic

null infinity where soft theorems are manifest as Ward identities of such symmetries [11–13].

In light of this interesting structure in the soft limit at sub-leading level it is a natural

question to explore the collinear properties of scattering amplitudes at the sub-leading order

as well. In this work we provide a framework for studying such scenarios in a systematic

way for a wide class of quantum field theories and specifically focus on the explicit form

for the collinear limit of tree-level amplitudes of gluons at the sub-leading order. In fact,

computing such effects using standard textbook techniques is an arduous task requiring

to take into account the sum over a large number of contributing Feynman diagrams in

general. Modern on-shell methods usually provide a way to bypass these complications but

unlike the sub-leading soft theorem a straightforward BCFW [14, 15] analysis of the gluon

amplitudes with collinear kinematics up to the sub-leading level suggests that all possible

1See [1–3] for a text-book level introduction.
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BCFW factorization channels contribute, thus making it very hard to find a compact and

insightful expression.

However, a uniform formulation of tree-level scattering amplitudes for theories with

massless particles in any dimension has recently been proposed by Cachazo, He and

Yuan(CHY). The full tree-level S-matrix for the scattering of gluons and gravitons, as

well as massless cubically interacting scalars, in arbitrary dimensions may be represented

in an universal fashion as an integral over the moduli space of a punctured Riemann

sphere [16, 17]. The key ingredient are a set of scattering equations

fa =

n∑
b=1
b 6=a

2 pa · pb
σa − σb

= 0 , (1.3)

where the pµa denote the null-momenta of the scattered particles and the σa ∈ C are

the positions of the punctures. These equations have appeared a number of times in

the literature in various contexts [18–24]. They are known to possess (n − 3)! solutions

for an n particle scattering problem. This formulation of scattering amplitudes makes

many dimension independent properties and symmetries manifest. Especially the study of

single [16, 17] and multi-soft theorems [25–27]2 becomes quite straightforward. Inspired by

the successful study of soft theorems in CHY we will utilize the same formalism to study

collinear limits beyond the leading order.

On a parallel track of recent research, various intriguing relations have been observed

between amplitudes in Yang-Mills theories and theories containing both gluons and gravi-

tons, namely the Einstein-Yang-Mills (EYM) theory. These have been explored both

from Type I [30–32] and heterotic string theory [33] as well as from field theory perspec-

tive [32, 34, 35]. A particularly interesting set of such identities holding in the collinear

limit were proposed by Stieberger and Taylor [36, 37]. Here specific linear combinations of

n-gluon sub-leading collinear amplitudes in YM theory are related to amplitudes in EYM

with one graviton and (n− 1) gluons. Effectively the two collinear gluons in the pure YM

amplitude are being replaced by a graviton. There is a nice understanding of this property

from superstring theory [37], but here a direct derivation in the field theory will be per-

formed. While intriguing the Stieberger-Taylor relations only provide half of the needed

(n − 3)! relations to completely determine the sub-leading collinear gluon structure. It is

also interesting to note that some of the above mentioned relations in the quantum field

theory regime find a natural description in terms of the CHY formalism [34, 35]. Since the

CHY formula for various theories shares many common building blocks it is very suitable

for studying relations among theories. One of the important motives for our framework to

compute sub-leading collinear effects in quantum field theories is also to explore and prove

such relations.

In this work we report on a detailed study of the collinear limit of adjacent gluons in YM

theory. Our main result is the amplitude for same helicity gluons 1 and 2 becoming collinear

2Also see [28, 29] for other approaches to multi-soft theorems in field theory.
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at the sub-leading order in a near collinear limit in the form of a CHY representation,

AYM,(1)
n, (1‖2) =

∫
dµn−1Kgluon

coll (εp, {pi}, {σi}) IYang-Mills
n−1 [(εp; p), {(ε3;p3) . . . (εn; pn)}, {σi}]. (1.4)

Note that the above sub-leading CHY formula of the collinear YM n−gluon amplitude is

given by the CHY integral over the (n−1)− particle YM integrand weighted by a collinear

kernel Kgluon
coll , whose form is given later in (4.5), such that this kernel is only dependent on

the helicity of the effective collinear particle εp even though it depends on the momenta and

the position of punctures for all the other particles. Hence, even though this collinear kernel

at the sub-leading order cannot be taken outside the CHY integral to yield factorization in

the form of a sub-leading splitting function, it does have robust universal structure that it is

not sensitive to the type of the non-collinear particles. We also note the intriguing relation

that a gauge transformation on the effective leg p of the sub-leading collinear amplitude

yields an (n− 1)-point gluon amplitude

p · ∂
∂εp
AYM,(1)
n, (1‖2) =

2z − 1

z(z − 1)
AYM
n−1(p, 3, . . . , n) . (1.5)

Moreover, one can use the expression (1.4) to recover the Stieberger-Taylor relations within

field theory such that this collinear kernel in fact magically combines to generate the CHY

integrand building block for the scattering of one graviton with the remaining (n−1)-gluons

in EYM theory.

As an extension to the new structures seen in the study of soft theorems for different

theories it is important to mention that recently there has also been a lot of interest in

exploring scattering amplitudes in certain effective field theories (EFT) which have been

proposed to have compact CHY formulae [38] as well. The interest in these theories not only

stems from their appearance in certain physical contexts but also due to the special behavior

of their amplitudes under soft limits which could be used to classify such EFTs [39, 40].

Not much is known about their properties under collinear limits. Their CHY formulation

is very suitable for such a study due to the framework we develop here. In this work we

also comment on the collinear limits of a number of EFTs.

We organize the paper in the following way: in section 2 we begin with setting-up

the kinematics for the collinear limit that we will study. We then discuss solutions of

the scattering equations and the behavior of various building blocks in the CHY formula

under this limit. In section 3 we compute the leading order collinear limits of gluons and

gravitons recovering the known gluonic and scalar splitting functions and find their graviton

cousins. In section 4 we present the results of the sub-leading collinear limits for scalars

and gluons with same helicity and the universal nature of the collinear CHY integrand

and follow it up in section 6 with further explorations in universal structure by adding a

soft limit on top of this. In section 6 we use the sub-leading YM results and show that it

directly reproduces the Stieberger-Taylor relations. Next in section 7, we extend our study

to scattering amplitudes in EFTs, namely the Non-Linear Sigma Models(NLSM), YM-

Scalar(YMS) and Einstein-Maxwell-Scalar(EMS) theories. We conclude with a summary

and outlook in section 8. Finally, we have an appendix to present some of the details of

the sub-leading collinear gluon computation and other observations that we made during

this project.
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2 Collinear kinematics in the scattering equations

In this section we introduce the reader to the basic concepts of the CHY formalism and we

establish all necessary preliminaries for the computation of the collinear limits.

2.1 CHY formula

In terms of the CHY formula [25, 38, 41] the scattering amplitude for n massless bosons

with momenta pa and polarizations εa takes the general form of an integral over positions

of the punctures σa on a Riemann sphere

An({p, ε}) =

∫
dµn In({p, ε, σ}) , (2.1)

where

dµn := d′σn ∆′n = (σij σjk σki) (σpq σqr σrp)

n∏
a=1

a 6=i,j,k

dσa

n∏
b=1

b 6=p,q,r

δ(fb) , σab := σa − σb . (2.2)

We write d′σn for the CP1 measure and ∆′n for the product of δ-functions which impose

the scattering equations (1.3). The prime is the commonly used notation for deleting

three arbitrary integrals and δ-functions, manifest in the second equality. In this work we

will focus on theories whose integrand, In({p, ε, σ}), is constructed from a combination

of two building blocks, namely the Park-Taylor factor Cn(1, . . . , n) and the Pfaffian of an

anti-symmetric 2n× 2n matrix Ψn, i.e. Pf′Ψn({p, ε, σ}) where

Cn =
1

σ12σ23 . . . σn1
, Ψn =

(
A −CT

C B

)
, (2.3)

with the entries

Aab =

{
2pa·pb
σa−σb a 6= b ,

0 a = b ,
B
ha|hb
ab =

2εhaa ·ε
hb
b

σa−σb a 6= b ,

0 a = b ,
Chaab =


2εhaa ·pb
σa−σb a 6= b ,

−
∑
c 6=a

2εhaa ·pc
σa−σc a = b .

(2.4)

The superscript hi is labeling the helicity state of particle i and the prime of the Pfaffian

indicates that two rows and columns must be deleted according to

Pf ′ Ψn =
(−1)i+j

σij
Pf Ψi,j

n , (2.5)

where we use the superscript to denote which rows and columns {i, j} ∈ {1, . . . , n}
are deleted. Combining both building blocks one defines the tree-level n-particle

S-matrix [16, 17] of pure gravity, pure Yang-Mills and scalar φ3-theory as

Igravity
n = (Pf ′ Ψn)2 , IYang-Mills

n = Cn Pf ′ Ψn , Iscalar
n = C2

n . (2.6)
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Furthermore, single-trace S-matrices of Einstein-Yang-Mills theory [41] can be constructed

easily, e.g. for k gravitons and n− k gluons we have

IEYM
n ({p, ε, σ}) = Cn−k Pf Ψk Pf ′Ψn. (2.7)

Note that the Pfaffian Pf Ψk is not primed and that one should treat the indices of the

integrands as sets, i.e. the index k on Ψk means that only the graviton labels are present

and Cn−k only includes the labels of the gluons.

2.2 The adjacent collinear limit in CHY

Now we move on to discuss the proper implementation of the collinear kinematics in the

CHY formalism.

2.2.1 Kinematic definitions

Consider the scattering of n particles thereby taking the neighboring particles 1 and 2 to

be collinear. Then their spinor-helicity variables3 may be conveniently parametrized as [36]

|1〉 = c |p〉 − ε s |r〉 , |1] = c |p]− ε s |r] , c = cosφ ,

|2〉 = s |p〉+ ε c |r〉 , |2] = s |p] + ε c |r] , s = sinφ ,
(2.8)

where we use the perturbation parameter ε to probe the sub-leading collinear effect as

ε → 0. Here pµ = pµ1 + pµ2 + O(ε2) is the limiting collinear momentum vector and rµ is

a null reference momentum not parallel to pµ. This translates the four-momenta of the

collinear particles to

p1 = c2 p− ε cs (|p〉[r|+ |r〉[p|) + ε2 s2 r ,

p2 = s2 p+ ε cs (|p〉[r|+ |r〉[p|) + ε2 c2 r .
(2.9)

Defining q = |p〉[r|+ |r〉[p| we have q2 = −2p · r and

(p1 + p2) = p+ ε2 r , (p1− p2) = (c2− s2)(p− ε2 r)− 2ε cs q , (p1 · p2) = ε2 p · r . (2.10)

Collinearity of two particles affects their polarizations. In four dimensions we have

ε+
a = +

√
2
|a] 〈r|
〈r a〉

, ε−a = −
√

2
|a〉 [r|
[r a]

, (2.11)

where we have chosen the same r as in (2.8) to be the reference vector for all particles. Then

ε±1 = ε±p − ε
s

c
ε̃±p,r , ε±2 = ε±p + ε

c

s
ε̃±p,r . (2.12)

Here ε±p is the polarization of a leg carrying the limiting collinear momentum p and

ε̃±p,r :=

+
√

2 |r〉 [r|〈r p〉 pos. helicity

−
√

2 |r〉 [r|[r p] neg. helicity .
(2.13)

A very important consequential identity is

ε̃
hp
p,r · p = −εhpp · q , (2.14)

which follows directly from εh11 · p1 = εh22 · p2 = 0.

3See e.g. [1–3] for a text-book introduction.
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2.2.2 Collinear scattering equations

Next, we will analyze the scattering equations (1.3) in collinear kinematics (2.8). Following

the strategy of the double soft limit in [25], we perform a change of variables for the positions

of the punctures corresponding to the two collinear momenta p1 and p2, i.e.

σ1 = ρ− ξ

2
, σ2 = ρ+

ξ

2
. (2.15)

Now we solve for ξ by rewriting the measure as

dµn = dµn−2 dΩ

dΩ = dσ1 dσ2 δ(f1) δ(f2) = 2 dρ dξ δ(f+) δ(f−) ,
(2.16)

with

f+ = (f1 + f2) , f− = (f1 − f2)− (c2 − s2)(f1 + f2) . (2.17)

The choice of this peculiar linear combination for f− will be commented upon at the end

of this section. Note that dΩ is never affected by the “prime” operation defined in (2.2).

The scattering equations now take the form

fa =

n∑
b=3
b 6=a

2 pa · pb
σa − σb

+
2 pa · p1

σa − ρ+ ξ
2

+
2 pa · p2

σa − ρ− ξ
2

, a 6= 1, 2

f1 − f2 =
n∑
b=3

(
2 pb · p1

ρ− ξ
2 − σb

− 2 pb · p2

ρ+ ξ
2 − σb

)
− 4

p1 · p2

ξ

f1 + f2 =
n∑
b=3

(
2 pb · p1

ρ− ξ
2 − σb

+
2 pb · p2

ρ+ ξ
2 − σb

)
.

(2.18)

An interesting way of seeing the relation between the collinear kinematics p1||p2 of the two

particles and the coincidence of σ1 and σ2 was already argued in [42]. If we assume a linear

vanishing of ξ in the ε→ 0 limit (2.21), the scattering equations (2.18) factorize at leading

order in ε → 0 into a set of (n − 1)-particle scattering equations for each of the (n − 1)

momenta {p, p3, . . . , pn}

0 = fa

∣∣∣
ε→0

=

n∑
b=3
b 6=a

2 pa · pb
σa − σb

+
2 pa · p
σa − ρ

+O(ε) ,

0 = f1 + f2

∣∣∣
ε→0

=

n∑
b=3

2 p · pb
ρ− σb

+O(ε) ,

(2.19)

along with

0 = f1 − f2

∣∣∣
ε→0

= −4

ε

p1 · p2

ξ1

(
1 +O(ε)

)
⇒ p1 · p2 = 0 . (2.20)

Hence, we see that coinciding σ1 and σ2 implies collinearity of the corresponding particle

momenta. The question then arises whether the opposite is also true, i.e. whether collinear-

ity implies confluency of σ1 and σ2. To clarify this, we performed a numerical analysis using

– 7 –
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the polynomial form of the scattering equations [42]. Dialing various kinematical config-

urations with two collinear momenta for n = 5, 6, 7 and 8 particles we have consistently

found two different classes of solutions in all cases tested, namely there are 2(n − 4)! de-

generate solutions with vanishing ξ = σ21, accompanied by (n− 5)(n− 4)! non-degenerate

solutions with finite ξ. In fact, the above-mentioned numerics also support a vanishing of ξ

linear in ε and not with a higher power. We also observe that the non-degenerate solutions

only contribute to the limiting amplitudes at the sub-sub-leading order in the ε-expansion.

Hence for all our analysis in this work where we only focus up to the sub-leading order we

can exclusively consider the degenerate solutions captured by the ansatz

ξ = ε ξ1 + ε2 ξ2 +O(ε3) . (2.21)

We insert this ansatz into the scattering equations obtaining

fa = f̄a + ε

[
−(c2 − s2)

ξ1

2
P2,a

]
+O(ε2) , a 6= 1, 2

f+ = f̄p + ε

[
(c2 − s2)

ξ1

2
P2

]
+O(ε2)

f− = ε

[
2c2s2ξ1P2 − 2csQ1 −

4 (p · r)
ξ1

]
+ ε2

[
4 (p · r) ξ2

ξ2
1

− 2(c2 − s2)R1 + 2c2s2ξ2P2 + ξ1(c2 − s2)csQ2

]
+O(ε3) ,

(2.22)

where we have introduced the modified scattering equations for n− 1 particles as,4

f̄a =
n∑
b=0
b 6=a

2 pa · pb
σa − σb

, f̄p =
n∑
b=3

2 p · pb
ρ− σb

, 3 ≤ a ≤ n+ 2 , (2.23)

along with the short-hand notations,

Pi,a =
2 p · pa

(ρ− σa)i
, Pi =

n∑
b=3

2 p · pb
(ρ− σb)i

, Ri =

n∑
b=3

2 r · pb
(ρ− σb)i

Ri,a =
2 r · pa

(ρ− σb)i
, Qi =

n∑
b=3

2 q · pb
(ρ− σb)i

, Qi,a =
2 q · pa

(ρ− σb)i
, i ≥ 1 ,

(2.24)

for compactness. Note that P1 = f̄p = O(ε) by virtue of the scattering-equation corre-

sponding to the particle with momentum p. Also we now see why it is advantageous to

consider the specific linear combination f− in (2.17) as it is O(ε).

2.2.3 The degenerate collinear solutions

In order to find the degenerate solutions of ξ to the scattering equations in the collinear

limit (2.22) we perform the ξ integral by localizing the δ-function δ(f−). This amounts to

4For f̄a the sum starts from 0 which indicates the momentum of the effective collinear particle p0 = p

and the full sum runs over the set of momenta{p, p3, p4, . . . , pn}.

– 8 –
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solving the equations f− = 0 in (2.22) perturbatively in ε. At the leading order in O(ε)

we have

− 2 (p · r)− csQ1ξ1 + c2s2ξ2
1P2 = 0 , (2.25)

with solutions

ξ1 = ξ±1 = x1 ±
√
x2 ,

x1 =
Q1

2csP2
, x2 =

Q2
1 + 8(p · r)P2

4(c2s2)P2
2

.
(2.26)

Moving on to the next order at O(ε2), it can be easily established that

ξ2

ξ2
1

=
c2 − s2

2

2R1 − cs ξ1Q2

2 p · r + c2s2 ξ2
1 P2

. (2.27)

Note the vanishing of the sub-leading solution ξ2 in the c = s case.

2.3 Collinear expansion of the CHY formula

Inserting the transformations for the collinear σ’s (2.15), the measure (2.16) and the

collinear kinematics (2.8) into the CHY formula (2.1) one obtains

An = 2

∫
dµn−2 dρ dξ δ(f+) δ(f−) In = 2

∑
ξ1

∫
dµn−2 dρ δ(f+)J In , (2.28)

where we performed the ξ integral by using

δ(f−) =
∑
ξ±

δ(ξ − ξ±)∣∣∣∂f−∂ξ ∣∣∣ξ=ξ± =
∑
ξ±

δ(ξ − ξ±)J , (2.29)

such that J is the Jacobian for the transformation ξ → f− and the sum runs over the two

solutions (2.25) for ξ. In order to complete our analysis we need the expansion of all the

different components that make up the CHY formula.

Jacobian. We write the expansion of the Jacobian in (2.29) as

J = J0 + εJ1 +O(ε2) , (2.30)

with

J0 =
1

2

ξ2
1

2(p · r) + c2s2P2 ξ2
1

,

J1 = J 2
0

(
8(p · r) ξ2

ξ3
1

− cs(c2 − s2)Q2

)
.

(2.31)

Note that, using this notation, we can also write (2.27) as,

ξ2 = (c2 − s2)J0 (2R1 − cs ξ1Q2) . (2.32)

– 9 –
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Measure. The measure in (2.28) can be expressed as,

dµn−2 dρ δ(f+) = dµ
(0)
n−1 + ε dµ

(1)
n−1 +O(ε2) , (2.33)

with

dµ
(0)
n−1 = dµn−2 dρ δ(f̄p) , (2.34)

dµ
(1)
n−1 = (c2 − s2) d′σn−2 dρ

ξ1

2

(
P2 δ

′(f̄p)∆
′(0)
n−2 − δ(f̄p)

n∑′

a=3

P2,aδ
′(f̄a) ∆

′(0)
n−3,a

)
, (2.35)

where

δ′(x) =
∂ δ(x)

∂ x
, ∆

′(0)
n−3,a =

n∏
i=3
i 6=a

δ(f̄a) ,

n∑′

a=3

= (σij σjk σki)
n∑
a=3

a 6=i,j,k

. (2.36)

The definition of the primed sum is due to (2.2).

Parke-Taylor factor. Here we easily obtain,

Cn =
1

ε
C(0)
n + C(1)

n +O(ε) ,

C(0)
n = − 1

ξ1
Cn−1 , C(1)

n = Cn−1

(
ξ2

ξ2
1

+
1

2
Sn,ρ,3

)
,

Cn−1 =
1

σ34 . . . σnρ σρ3
, Si,j,k =

σik
σij σjk

=
1

σij
+

1

σjk
.

(2.37)

The matrix Ψn. We write the matrix (2.3) with more emphasis on the entries which

are sensitive to the collinear limit as

Ψn =



0 A12 A1b −Ch111 −C
h2
21 −C

hd
d1

A21 0 A2b −Ch112 −C
h2
22 −C

hd
d2

Aa1 Aa2 Aab −Ch11a −C
h2
2a −C

hd
da

Ch111 Ch112 Ch11b 0 B
h1|h2
12 B

h1|hd
1d

Ch221 Ch222 Ch22b B
h2|h1
21 0 B

h2|hd
2d

Chcc1 Chcc2 Chccb B
hc|h1
c1 B

hc|h2
c2 B

hc|hd
cd


. (2.38)

We now expand out all entries by using the definitions from section 2.2 and list them below

(modulo higher orders in ε):

1. A-matrix:

A1b = c2Apb + ε

(
ξ1

2
c2A

(2)
pb − c sQb

)
, A2b = s2Apb − ε

(
ξ1

2
s2A

(2)
pb − c sQb

)
,

A12 = −ε2 p · r
ξ1

+ ε2 2 p · r ξ2

ξ2
1

. (2.39)
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2. B-matrix:

B
h1|hb
1b = B

h1|hb
pb + ε

ξ1

2
B
h1|hb,(2)
pb , B

h2|hb
2b = B

h2|hb
pb − ε ξ1

2
B
h2|hb,(2)
pb ,

B
h1|h2
12 =

0 h1 = h2

2
ε ξ1
− 2 ξ2

ξ21
h1 6= h2

.
(2.40)

3. C-matrix:

Chbb1 = c2Chbbp − ε
(
ξ1

2
c2C

hb,(2)
bp + csChbbq

)
, Chbb2 = s2Chbbp − ε

(
ξ1

2
s2C

hb,(2)
bp − csChbbq

)
,

Ch11b = Ch1pb + ε

(
ξ1

2
C
h1,(2)
pb − s

c
Eh1b

)
, Ch22b = Ch2pb + ε

(
−ξ1

2
C
h2,(2)
pb +

c

s
Eh2b

)
,

Ch112 =
s

c

2 ε̃h1p,r · p
ξ1

− ε s

c

2 ε̃h1p,r · p
ξ1

ξ2

ξ1
, Ch221 =

c

s

2 ε̃h2p,r · p
ξ1

− ε c

s

2 ε̃h2p,r · p
ξ1

ξ2

ξ1
,

Ch111 = Ch1pp −
s

c

2 ε̃h1p,r · p
ξ1

+ ε

(
ξ1

2
Ch1,(2)
pp +

s

c

2 ε̃h1p,r · p
ξ1

ξ2

ξ1
+

s

c
Eh1

)
,

Ch222 = Ch2pp −
c

s

2 ε̃h2p,r · p
ξ1

+ ε

(
−ξ1

2
Ch2,(2)
pp +

c

s

2 ε̃h2p,r · p
ξ1

ξ2

ξ1
− c

s
Eh2

)
,

Chaaa = Chaaa + ε (c2 − s2)
ξ1

2
Cha,(2)
ap . (2.41)

In the above we defined the short hand notations

Chbbq =
2 εhbb · q
σb − ρ

, A
(i)
pb =

2 p · pb
(ρ− σb)i

, B
hp|hb,(i)
pb =

2 ε
hp
p · εhbb

(ρ− σb)i
,

C
hb,(i)
bp =

2 εhbb · p
(σb − ρ)i

, C
hp,(i)
pb =

2 ε
hp
p · pb

(ρ− σb)i
, C

hp,(i)
pp = −

n∑
b=3

2 ε
hp
p · pb

(ρ− σb)i
,

Ehrb =
2 ε̃hrp,r · pb
σρb

, Ehr =

n∑
b=3

Ehrb .

(2.42)

The Pfaffian Pf ′ Ψn. Now we will study the expansion of the Pfaffian building block

for two different cases, i.e. whether the collinear bosons have equal or opposite helicity.

The Pfaffian of Ψn is computed via the recursive formula

Pf Ψn = (−1)n+1
2n∑
j=1
j 6=i

(−1)i+j+1+θ(j−i) Ψij Pf Ψi,j
n , (2.43)

where we introduced an appropriate sign for future convenience. Note that, here, we

postpone the prime operation according to (2.5) on the above definitions of the Pffafian, to

after the first expansion and hence the sum runs over all 2n terms. We expand along row

j, Θ(j− i) is the Heaviside function, Ψi,j is the matrix element at position (i, j) and Ψi,j
n is

the matrix Ψn with both deleted rows and columns i, j. By definition the Pfaffian of a 0×0
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matrix is set to one. It is possible to add a multiple of a row and its corresponding column

to another row and corresponding column without changing the value of the Pfaffian. The

derivative of the Pfaffian may be written as

∂

∂ε
Pf Ψn = (−1)n+1

2n−1∑
i=1

2n∑
j=i

(−1)i+j+1∂Ψi,j

∂ε
Pf Ψi,j

n . (2.44)

Finally note that any operation performed on the Pfaffian always acts on both, rows

and columns.

1. Equal helicity case. This case is characterized by h1 = h2 = h and since we use

the same reference vector for all polarizations we have B
h1|h2
12 = 0. In anticipation of

the sub-leading order, we perform the following manipulations:

(a) Add row/column 1 to 2.

(b) Subtract c2 times the new second row/column from the first row/column.

Doing so, we end up with

Ψn =



0 A12 ε Ã1b −s2Ch11 + c2Ch12 c2Ch22 − s2Ch21 −ε C̃
hd
d1

A21 0 Ã2b −Ch12 − Ch11 −Ch22 − Ch21 −C̃hdd2

ε Ãa1 Ãa2 Aab −Ch1a −Ch2a −Chdda
s2Ch11 − c2Ch12 C

h
12 + Ch11 Ch1b 0 0 B

h|hd
1d

s2Ch21 − c2Ch22 Ch22 + Ch21 Ch2b 0 0 B
h|hd
2d

ε C̃hcc1 C̃hcc2 Chccb B
hc|h
c1 B

hc|h
c2 B

hc|hd
cd


,

(2.45)

with

Ã1b = ξ1s
2c22A

(2)
pb − csQb +O(ε) ,

Ã2b = Apb + ε (c2 − s2)
ξ1

2
A

(2)
pb +O(ε2) ,

C̃hdd1 = ξ1s
2c2C

hd,(2)
dp + csChddq +O(ε) ,

C̃hdd2 = Chddp − ε (c2 − s2)
ξ1

2
C
hd,(2)
dp +O(ε2) .

(2.46)

Note that A12 is also of O(ε). We expand the Pfaffian(doing the prime operation

according to (2.5)) along the first row/column and write

Pf ′Ψn = Pf ′(0) Ψn + ε Pf ′(1) Ψn +O(ε2) . (2.47)

Immediately we see that the only contribution to the leading order is

Pf ′(0) Ψn = −(s2Ch11 − c2Ch12) Pf ′(Ψ1,n+1
n )− (c2Ch22 − s2Ch21) Pf ′(Ψ1,n+2

n )

= − (Chpp − Ch12 − Ch21) Pf ′(Ψn−1)

= −

(
Chpp −

2 ε̃hp,r · p
c s ξ1

)
Pf ′Ψn−1 ,

(2.48)
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since all other contributions in the Pfaffian expansion are proportional to ε due to our

manipulation of the matrix Ψn. Furthermore, Ψn with deleted first row/column will

have the two equal rows/columns (n+ 1) and (n+ 2) in the collinear limit wherefore

deleting rows/columns (1) and (n+ 1) will produce the same Pfaffian as the matrix

with deleted rows/columns (1) and (n + 2). This was used in the second equality

and we call the resulting matrix Ψn−1 since it is the matrix associated with the

(n− 1) particle amplitude where the first particle has momentum pµ and position ρ

on CP1, i.e.

Ψn−1 =


0 Apb −Chpp −C

hd
dp

Aap Aab −Chpa −C
hd
da

Chpp C
h
pb 0 B

h|hd
pd

Chccp Chccb B
hc|h
cp B

hc|hd
cd

 . (2.49)

The sub-leading structure Pf ′Ψ
(1)
n is rather involved and given in the appendix.

2. Opposite helicity case. In the situation that the collinear gluons have opposite

helicity, e.g. 1+ , 2−, the matrix (2.45) will not have the feature of containing two

equal rows/columns in the limit ε → 0. Even worse, it seems like the matrix is now

carrying a divergence in the B12 = 1
ε ξ1

component. We attack both issues by denoting

the matrix after doing the usual manipulation pattern as

Ψn =



0 A12 ε Ã1b −s2C+
11 + c2C+

12 c2C−22 − s2C−21 −ε C̃
hd
d1

A21 0 Ã2b −C+
12 − C

+
11 −C−22 − C

−
21 −C̃hdd2

ε Ãa1 Ãa2 Aab −C+
1a −C+

2a −Chdda
s2C+

11 − c2C+
12 C

+
12 + C+

11 C+
1b 0 B

+|−
12 B

+|hd
1d

s2C−21 − c2C−22 C−22 + C−21 C−2b B
−|+
21 0 B

−|hd
2d

ε C̃hcc1 C̃hcc2 Chccb B
hc|+
c1 B

hc|−
c2 B

hc|hd
cd


.

(2.50)

The crucial insight now is to perform two more matrix manipulations, i.e.

(a) Add ε c s ε̃−p,r · p times the (n+ 1)’st row/column to the first row/column,

(b) Add ε c s ε̃+
p,r · p times the (n+ 2)’nd row/column to the first row/column,

while using the identities

q · pi = (ε̃+
p,r · p) (ε−p · pi) + (ε̃−p,r · p) (ε+p · pi) , εhii · q = (ε̃hip,r · p) (εhii · ε

h̄i
p ) , (2.51)

which follow from direct computations using the Spinor-Helicity representation of the

momenta and polarizations.5 In the above h̄i is of the opposite helicity to hi. Hence

5Note that all our results, though explicitly calculated in four dimensions using spinor-helicity represen-

tations of momenta and polarization vectors, can be lifted to arbitrary dimensions. The results are expected

to be qualitatively similar but they would have a non-trivial form due to the polarization vector dependent

building blocks of the Pfaffian, which simplify considerably in four dimensions. It will be interesting to

study if the final result can be expressed in a compact form.
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we observe (using the short hand notations from (2.24))

Q1,i = (ε̃+
p,r · p)C−pi + (ε̃−p,r · p)C+

pi , Q1 = − (ε̃+
p,r · p)C−pp − (ε̃−p,r · p)C+

pp ,

C+
iq = (ε̃+

p,r · p)B
+|−
ip , C−iq = (ε̃−p,r · p)B

−|+
ip ,

(2.52)

which can be checked explicitly. If we also use (2.25) to express A12 in terms of P2

and Q, we end up with a first row of the form (modulo higher order terms in ε)(
0, −ε ξ1 c2 s2 P2, εξ1c

2s2A
(2)
pb , −s2C+

11, c2C−22, −εξ1c
2s2C

+,(2)
bp

)
. (2.53)

Again we write

Pf ′Ψn = Pf ′(0) Ψn + ε Pf ′(1) Ψn +O(ε2) , (2.54)

where now all terms contribute, since we have a 1
ε term in the matrix, i.e.

Pf ′Ψ(0)
n = −

[
s2
(
C+
pp − C+

12

)
Pf ′Ψ(1,n+1)

n + c2
(
C−pp − C−21

)
Pf ′Ψ(1,n+2)

n

]
+ G

= −

[
s2

(
C+
pp −

s

c

2 ε̃+
p,r · p
ξ1

)
Pf ′Ψ−n−1 + c2

(
C−pp −

c

s

2 ε̃−p,r · p
ξ1

)
Pf ′Ψ+

n−1

]
+ G .

(2.55)

Here we defined Ψ−n−1 = Ψ
(1,n+1)
n , Ψ+

n−1 = Ψ
(1,n+2)
n , since those are the matrices for

a (n − 1) particle scattering where the first particle either has positive or negative

helicity respectively. The object G contains all other terms of the expansion along

the first row that, in the equal helicity case, have been of O(ε) but are now O(1) due

to the singular behavior of B12 which we extracted from the Pfaffian by expanding

along row (n+ 1) (w.r.t. the Pfaffian with undeleted rows/columns). The important

observation is that G is independent of ξ1 due to B12 ∝ 1
ξ1

. Again, the sub-leading

order of the Pfaffian is given in the appendix.

2.4 Key sum-over-solutions identities

In order to evaluate the leading and sub-leading behavior of any amplitude it is necessary

to sum over the two solutions of ξ. Any building block will contribute with a certain

power of ξ1 or ξ2 either in the numerator or the denominator but since ξ2 and J1 can

be both expressed through ξ1 and J0, the calculations will always narrow down to the

computation of

∑
ξ±1

J N0
ξM1

=
(
(x1 +

√
x2)N−M + (−1)N (x1 −

√
x2)N−M

) 1

(2
√
x2h1)N

. (2.56)

This equality follows from

J0

∣∣∣
ξ±1

=
1

2

1

2 s2 c2 P2︸ ︷︷ ︸
h1

+ (−csQ1)︸ ︷︷ ︸
h2

1
ξ±1

=
ξ±1

h1 ξ
±
1 + h2

= ±
(x1 ±

√
x2)

2
√
x2h1

, (2.57)
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where we used (2.25) (for the readers convenience x1 = Q1
2csP2

, x2 =
Q2

1+8(p·r)P2

4(c2s2)P2
2

) and

h1 x1 + h2 = 0. Using this identity we note the key sum-over-solutions identities

∑
ξ1

J0 ξ
2
1 =
Q2

1 + 2 (p · r)P2

4 c4 s4 P3
2

,
∑
ξ1

J0 ξ1 =
Q1

2 c3 s3 P2
,

∑
ξ1

J0 =
1

2 c2 s2P2
,

∑
ξ1

J0

ξ1
= 0 ,

∑
ξ1

J0

ξ2
1

=
1

4 p · r
,

∑
ξ1

J0

ξ3
1

= − c sQ1

8 (p · r)2
,

∑
ξ1

J0

ξ4
1

=
c2 s2

(
Q2

1 + 2 (p · r)P2

)
16 (p · r)3

,
∑
ξ1

J 2
0

ξ1
=

Q1

4 c3 s3DP2
,

∑
ξ1

J 2
0

ξ2
1

=
1

2 c2 s2D
,

∑
ξ1

J 2
0

ξ3
1

= − Q1

8 c s p · r D
,

∑
ξ1

J 3
0

ξ4
1

=
1

16 c2 s2 p · r D
,

∑
ξ1

J 3
0

ξ5
1

= − Q1

32 c s (p · r)2D
,

(2.58)

where we defined D := Q2
1 + 8 p · rP2. Immediately more identities follow, i.e.

∑
ξ1

J0ξ2

ξ2
1

=
(c2 − s2)

4 cs s2D

(
4R1 −

Q1Q2

P2

)
,

∑
ξ1

J0ξ2

ξ3
1

= −c2 − s2

2 c sD

(
Q2 +

Q1R1

2 p · r

)
,

∑
ξ1

J 2
0 ξ2

ξ4
1

=
(c2 − s2)R1

8 c2 s2 p · r D
,

∑
ξ1

J 2
0 ξ2

ξ5
1

= − c2 − s2

16 c s p · r D

(
R1Q1

p · r
+Q2

)
.

(2.59)

3 Leading order collinear limit

Now we are ready to compute the leading collinear structure for several theories. We write

the expansion of the amplitude as,

A1||2
n = A(0)

n + εA(1)
n +O(ε2) , (3.1)

and will now study collinear gluons, gravitons and scalars correspondingly.

3.1 Collinear gluons

We expect to find the known universal behavior in terms of the helicity-dependent split

function,6 i.e.

A(0)
n (1h1 , 2h2 , . . .) =

∑
h=±

Splittree
−h (c; 1h1 , 2h2)An−1(ph, . . .) +O(ε0) , (3.2)

6See [43] and citations therein.
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with

Splittree
+ (c; 1+, 2+) = 0 , Splittree

+ (c; 1+, 2−) = −1

ε

s3

c 〈pr〉
,

Splittree
− (c; 1+, 2+) =

1

ε

1

c s 〈pr〉
, Splittree

− (c; 1+, 2−) =
1

ε

c3

s [pr]
.

(3.3)

Same helicities (h1 = h2 = +). Inserting the leading contributions of all building

blocks from the previous section to (2.28) yields

A(0)
n = − 2

∑
ξ1

∫
dµ

(0)
n−1

−J0

ε ξ1
Cn−1

(
C+
pp −

2 ε̃+
p,r · p
s c ξ1

)
Pf ′Ψn−1

= −
2 ε̃+

p,r · p
ε s c 2 p · r

∫
dµ

(0)
n−1 Cn−1 Pf ′(Ψn−1) =

√
2

ε c s 〈p r〉
An−1

=
√

2 Splittree
− An−1 ,

(3.4)

which, up to a factor of
√

2, is the known collinear behavior. Here the sum-identity∑
ξ1
J0
ξ1

= 0 of the last section was used. It is easy to see that this statement is also

true for h1 = h2 = −.

Opposite helicities (h1 = + , h2 = −). Due to
∑

ξ1
J0
ξ1

= 0, the object G drops out

of the calculation and we are left with

A(0)
n+2(1+, 2−, . . .) =

√
2 Splittree

− An−1(P+, . . .) +
√

2 Splittree
+ An−1(P−, . . .) , (3.5)

which again, up to a factor of
√

2, reproduces the right behavior. In both cases above, the

universal structure is independent of the helicities or the type of the non-collinear particles

participating in the scattering process.

3.2 Collinear gravitons

From our previous analysis and the form of the gravity integrand in An =
∫
dµn Igravity

n (2.6)

it is evident that, since gravitons appear without any Parke-Taylor structure in the CHY

formalism, no singular behavior would be present. The collinear expansion is finite and

can be easily computed. For the case of pure gravity and identical helicities we have

A(0)
n (1hh, 2hh, · · · ) = 2

∑
ξ1

∫
dµ

(0)
n−1 J0

(
Cpp −

2 ε̃hp,r · p
c s ξ1

)2

Pf ′Ψn−1 Pf ′Ψn−1 , (3.6)

with the result

A(0)
n =

2 (ε̃hp,r · p)2

c2 s2 p · r
An−1(P hh, · · · ) +

1

c2 s2

∫
dµ

(0)
n−1

C2
pp

P2
Pf ′Ψn−1 Pf ′Ψn−1 , (3.7)

which is a mixture of a factorized part, that agrees with known results [44, 45], and a

previously unknown non-factorized integral kernel part. This structure is independent of

the type of all other particles in the scattering process as long as two gravitons are going
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collinear, i.e. it is universal. We can, for example, look at the scattering of m gravitons

and k gluons, represented through

An =

∫
dµn Ck Pf Ψm Pf ′Ψn , (3.8)

which in the collinear graviton limit will have the form

A(0)
n = 2

∑
ξ1

∫
dµ

(0)
n−1 J0 Ck

(
Cpp −

2 ε̃hp,r · p
c s ξ1

)2

Pf Ψm−1 Pf ′Ψn−1 , (3.9)

and hence

A(0)
n =

2 (ε̃hp,r · p)2

c2 s2 p · r
An−1 +

1

c2 s2

∫
dµ

(0)
n−1 Ck

C2
pp

P2
Pf ′Ψm−1 Pf ′Ψn−1 . (3.10)

Adding scalars will not change this behavior either.

3.3 Collinear scalars

Inserting the collinear expansion of the building blocks in (2.6) we arrive at

An =

∫
dµn Iscalar

n |coll = 2
∑
ξ1

∫
dµ

(0)
n−1J0

1

ε2 ξ2
1

C2
n−1 . (3.11)

The leading order is easily computed to be

A(0)
n =

1

ε2 2 p · r
An−1 , (3.12)

which is an expected result one can obtain from Feynman graph calculations, i.e. it is the

factorization into a 3-vertex and a propagator with the n− 1 point amplitude. Again, the

exchange of particle types of any other particles except the collinear scalars is not changing

this behavior.

4 Universal structure in the sub-leading collinear limit

We now compute the sub-leading order for the case of collinear gluons and scalars. Other

bosonic theories do not have any singular behavior. For gluons, we will only consider the

equal helicity case since the mixed helicity case is a tedious, yet straightforward general-

ization of the results presented here.

4.1 Gluons with equal helicity

The sub-leading order of the amplitude is formally given by the following terms

A(1)
n = 2

∑
ξ1

∫
d′σn−2 dρ

[
∆
′(0)
n−1C

(1)
n J0 Pf ′(0) Ψn + ∆

′(0)
n−1C

(0)
n J1 Pf ′(0) Ψn

+ ∆
′(0)
n−1C

(0)
n J0 Pf ′(1) Ψn + ∆

′(1)
n−1C

(0)
n J0 Pf ′(0) Ψn

]
,

(4.1)
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where we expanded out all building blocks to the next-to-leading order. The computation

of the four terms is rather involved and is relocated to the appendix. The result is

A(1)
n = −

∫
dµ

(0)
n−1

(
Chpp

2 s2 c2 P2
Sn,ρ,3 +

c2 − s2

2 c2 s2 P2
Ch,(2)
pp

)
Cn−1 Pf ′Ψn−1

− c2 − s2

2 c2 s2

∫
dµ

(0)
n−1

Chpp
P2

Cn−1
∂

∂ρ

(
Pf ′Ψn−1∆

′(0)
n−1

)
.

(4.2)

Using partial integration, we find

A(1)
n = −

∫
dµ

(0)
n−1

(
Chpp

2 s2 c2 P2
Sn,ρ,3 +

c2 − s2

c2 s2 P2

(
Ch,(2)
pp −

ChppP3

P2

)

− c2 − s2

2 c2 s2

Chpp
P2

(
Sn,ρ,3 −

2

σρ3

))
Cn−1 Pf ′Ψn−1

− c2 − s2

2 c2 s2

∫
d′σn−2 dρ

∂

∂ρ

(
Chpp
P2

Cn−1 Pf ′Ψn−1∆
′(0)
n−1

)
,

(4.3)

which may be rewritten directly as

A(1)
n = −

∫
dµ

(0)
n−1

(
Chpp
P2

(
1

c2

1

σnρ
+

1

s2

1

σρ3

)
+

c2−s2

c2 s2 P2

(
Ch,(2)
pp −

ChppP3

P2

))
Cn−1 Pf ′Ψn−1

− c2−s2

2 c2 s2

∫
d′σn−2 dρ

∂

∂ρ

(
Chpp
P2

Cn−1 Pf ′Ψn−1∆
′(0)
n−1

)
. (4.4)

The last term is a total derivative w.r.t. ρ and can be dropped. Furthermore, we define

the collinear gluon kernel by

Kgluon
coll (εhp , {pi}, {σi}) = −

(
Chpp
P2

(
1

c2

1

σnρ
+

1

s2

1

σρ3

)
+

c2−s2

c2 s2 P2

(
Ch,(2)
pp −CppP3

P2

))
, (4.5)

s.t. we can write the final result compactly as

A(1)
n =

∫
dµ

(0)
n−1K

gluon
coll (εhp , {pi}, {σi}) I

Yang-Mills
n−1 . (4.6)

We may also ask the question whether this expression is universal, i.e. invariant under the

exchange of all other particle types except the collinear gluons and their direct neighbors.

The answer is yes, which we shall proof in the appendix. Therefore Kgluon
coll (εhp , {pi}, {σi}) is

a universal object reflecting a factorization at the level of CHY integrands. Furthermore,

note that we can express the kernel in a way s.t. it contains CHY building blocks, i.e.

Kgluon
coll ({pi}, {σi}) =

1

c2

(
1

2P2
εh̄p

∂

∂pn
+

1

2 Pf Ψp

∂

∂ρ

1

P2

)
(Pf Ψp)

2

− 1

s2

(
1

2P2
εh̄p

∂

∂p3
+

1

2 Pf Ψp

∂

∂ρ

1

P2

)
(Pf Ψp)

2 ,

(4.7)
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where we defined h̄ to be the opposite helicity to h and Ψp =

(
0 −Cpp
Cpp 0

)
, i.e. the matrix

for the data of one particle with momentum p and helicity h at position ρ. Note that the

derivatives in this expression are not acting on IYang-Mills
n−1 .

Although (4.6) is a compact expression, we have been unable to find any factorized structure

on the integrated amplitudes level from this result. The reason is mainly the appearance

of P2 in the denominator. Even in the case c2 = s2, i.e.

A(1)
n = −2

∫
dµ

(0)
n−1

Cpp
P2

Sn,ρ,3 Cn−1 Pf ′Ψn−1 , (4.8)

no factorization can be extracted. Note that the reason for non-factorizability is of the

same type as already seen in the gravity result (3.7).

We close the discussions of the sub-leading collinear gluon limit with two important

observations: firstly, from the form of our final result (4.5) and (4.6) it is manifest that the

subleading-collinear gluon amplitude A(1)
n for the case of identical helicities of the collinear

legs, is bi-linear in the effective polarization vector εhp . This is not at all obvious from the

outset. Secondly, making a gauge transformation on this effective ‘fused’ leg p, i.e. acting

with p · ∂εhp , of A(1)
n , yields an (n− 1)-point gluon amplitude,

p · ∂
∂εhp
A(1)
n =

c2 − s2

c2 s2
AYang-Mills
n−1 (p, 3, . . . , n) . (4.9)

We have checked this identity independently with the help of explicit four and five point

gluon amplitudes expressed via momenta and polarizations presented in [46]. It remains to

be seen how this intriguingly simple relation may be used to understand the sub-collinear

structure. This relation arises from (4.5) and (4.6) as

p · ∂εhpC
h
pp = P1 ∼ 0 , p · ∂εhpC

h,(2)
pp = P2 , p · ∂εhpI

Yang-Mills
n−1 = 0 , (4.10)

where the first expression vanishes on the support of the scattering equations.

4.2 Scalars

The following terms are contributing to the sub-leading order of the collinear limit of scalars

in (2.6)

A(1)
n =2

∑
ξ1

∫
dµ

(0)
n−1 J1

1

ξ2
1

C2
n−1︸ ︷︷ ︸

t1

+dµ
(0)
n−1 J0 2C(1)

n Cn−1
−1

ξ1︸ ︷︷ ︸
t2

+d′σn−1
J0

ξ2
1

C2
n−1 ∆

′(1)
n−1 . (4.11)

The last term vanishes due to ∆
′(1)
n−1 ∝ ξ1 and therefore the sum over solutions,

∑
ξ1
J0
ξ1

= 0

kills this term. The other terms are computed to be

t1 = −c2 − s2

c sD

(
R1Q1

2 p · r
+Q2

)
C2
n−1 dµ

(0)
n−1 ,

t2 =
c2 − s2

c sD

(
R1Q1

2 p · r
+Q2

)
C2
n−1 dµ

(0)
n−1 .

(4.12)
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Summing up both terms, we see a remarkable cancellation leading to

A(1)
n = 0 , (4.13)

which is a universal theorem, i.e. independent of the exchange of external particle types,

which we shall proof in the appendix. We can express the result via a collinear scalar kernel

and write

Kscalars
coll ({pi}, {σi}) = 0 . (4.14)

We conclude that there is no sub-leading O(1
ε ) contribution to the collinear scalar scatte-

ring.

5 More universal structure from soft limits

In the previous section we derived the universal factorized structure of the CHY integrand

for gluons in YM. Now we will show that one can also find a factorized universal structure

in (4.4) but this can only be reached by taking an additional soft limit on top of the

collinear momentum p. Such limits would in fact be a special kinematic configuration of

the double soft limits and hence invariably relates the n-particle amplitude to an (n− 2)-

particle amplitude. Soft limits are very well studied in the CHY formalism [16] and the

calculation is straightforward. Taking p → δ p in the sub-leading result (4.4) with δ → 0

yields the following expansion

A(1)
n =

1

2π i

∫
dµn−2

∮
dρ

δfp

(
Chpp
δP2

(
1

c2

1

σnρ
+

1

s2

1

σρ3

)

+
c2 − s2

c2 s2 δP2

(
Ch,(2)
pp −

ChppP3

P2

))
Sn,ρ,3 Cn−2C

h
pp Pf ′(Ψn−2) .

(5.1)

In order to study this limit we have to integrate out the ρ variable. No pole at infinity

is present and therefore we progress in the standard fashion by deforming the contour to

include all poles except the one at fp = 0, i.e. the only possible poles are at ρ → σk , k ∈
{3, . . . , n}. It is also quickly seen that there are no poles for k ∈ {4, . . . , n−1} and therefore

we only need to focus on k = 3 and k = n. Moreover the factor

C(2)
pp −

CppP3

P2
, (5.2)

always vanishes when ρ approaches any σk. Hence the only relevant term in the soft limit is

C2
pp

fp P2

(
1

c2

1

σnρ
+

1

s2

1

σρ3

)
Sn,ρ,3 , (5.3)

since neither Pf ′(Ψn−2) nor Cn−2 have any ρ dependence left. The first contribution comes

from ρ→ σ3. In this limit the factor (5.3) approaches

1

s2

1

σρ3

(
εp · p3

p · p3

)2

, (5.4)
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and similarly in the limit ρ→ σn

1

c2

1

σρn

(
εp · pn
p · pn

)2

. (5.5)

Therefore we only get contributions from single poles and we can easily perform the contour

integral, obtaining

A(1),p→δp
n =

1

δ2

[
1

c2

(
εp · pn
p · pn

)2

+
1

s2

(
εp · p3

p · p3

)2
]
An−2(3, . . . , n) , (5.6)

where the superscript of the amplitude indicates the order in which the limits have been

performed. We see a universal factorization of the n point amplitude to an universal factor

and a (n− 2)-point amplitude in the sub-leading collinear and soft limit.

6 Recovering the Stieberger-Taylor identities

Stieberger Taylor identities connect sub-leading adjacent collinear gluon limits of pure

YM amplitudes with Einstein-Yang-Mills (EYM) amplitudes [36]. In full generality those

relations are rather involved and we will refrain from writing them down here. For n = 5

the they read

s5pA(1)(1h, 2h, 3, 4, 5)− s4pA(1)(1h, 2h, 3, 5, 4) =
1

c2
A(P hh, 3, 4, 5) , (6.1)

where on the l.h.s. we have the sub-leading collinear limit of gluon amplitudes with mo-

menta p1 and p2 collinear weighted by the Mandelstam invariants sij = 2 pi · pj and on the

r.h.s. we have an EYM amplitude where the collinear gluons are replaced by one graviton.

We will refer to such linear combinations as “Stieberger-Taylor (ST) sums” and denote

them by
∑

ST . Considering our result (4.4), we notice that the only objects affected by

any particle permutation are the Parke-Taylor factor and 1
σnρ

+ 1
σρ3

. All other objects are

either sums over all particles which remain invariant under permutations, or the Pfaffian

in which a particle permutation is equivalent to the interchange of four rows and columns

leaving the Pfaffian untouched. In the ST sum additionally 1
σρ3

is invariant since leg 3 is

never permuted. Hence, if we know how Cn−1 and 1
σnρ

Cn−1 behave in the ST sum we can

deduce the behavior of the amplitude itself. It turns out that while the ST sum exclusively

hits Cn−1, a zero is produced due to either momentum conservation or the production of

a P1 which is the scattering equation f̄p = 0. We can see this explicitly in the five point

case, i.e.

s5p
1

σρ 3 σ34 σ45 σ5ρ
− s4p

1

σρ 3 σ35 σ54 σ4ρ
= s5p

(
1

σ5ρ
+

1

σρ3

)
C3 + s4p

(
1

σ4ρ
+

1

σρ3

)
C3

=
1

σρ3
(s5p + s4p + s3p) C3 = 0 , (6.2)

where we used the scattering eq. f̄p = 0 in the third step and C3 = 1
σ34 σ45 σ53

. This behavior

was checked up to n = 7 and we therefore conjecture∑
ST

Cn−1 = 0 , (6.3)
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which is yet to be proven for the general case. The situation changes if we take the ST

sum of 1
σnρ

Cn−1, i.e.

s5p
1

σ5ρ

1

σρ 3 σ34 σ45 σ5ρ
− s4p

1

σ4ρ

1

σρ 3 σ35 σ54 σ4ρ
=

s5p
1

σ5ρ

(
1

σ5ρ
+

1

σρ3

)
C3 + s4p

1

σ4ρ

(
1

σ4ρ
+

1

σρ3

)
C3 =[

s5p

σ2
ρ5

+
s4p

σ2
ρ4

+
1

σρ3

(
s5p

σ5ρ
+
s4p

σ4ρ

)]
C3 = P2 C3 ,

(6.4)

where we used f̄p = 0 in the last step. This behavior was also confirmed up to n = 7 and

we again conjecture that∑
ST

Kgluon
coll ({pi}, {σi})Cn−1 =

1

P2

∑
ST

1

σnρ
Cn−1 = Cn−2 . (6.5)

Putting all information together we arrive at the statement∑
ST

A(1)
n (1h, 2h, 3, . . . , n) = − 1

c2

∫
dµn−1Cpp Cn−2 Pf ′Ψn−1 =

1

c2
An−1(P hh, 3, . . . , n) ,

(6.6)

which are the ST relations and where the last equality follows from direct construction

according to (2.7).

7 Collinear limit for effective field theories in CHY

In this section we want to compute the leading collinear contribution in the adjacent case

for effective field theories that can be constructed in the CHY formalism by methods

explained in [38]. Here we probe the leading collinear structure and also comment on the

intriguing insight in [47] regarding extension of certain EFT’s under single soft limit. The

latter idea essentially means a factorization of an n-point CHY amplitude into a sum of

lower point CHY amplitudes but living in a theory with extra interactions with additional

matter, typically scalars, than those one has started out with and hence the nomenclature

‘extension’. In order to progress we need to explain further the building blocks and their

collinear behavior. We perform the computation for the NLSM model, the Yang-Mills-

Scalar theory and the Einstein-Maxwell-Scalar theory. Collinear amplitudes in other EFT’s

and even sub-leading effects can be computed as a straightforward generalization but we

refrain from discussing them here.

7.1 More building blocks

For the further analysis we need to introduce two more building blocks. On the one hand

we have the unprimed Pfaffian of a n× n matrix Xn with components

Xi,j =

 1
σij

i 6= j

0 i = j
, (7.1)

and on the other hand we have the primed Pfaffian of the submatrix An of Ψn. Now we

study the adjacent collinear behavior of both building blocks as we did before in section 2.3.
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The Pfaffian Pf Xn. We begin by noting the collinear expansion of the relevant entries

of Xn, i.e.

X12 = − 1

ε ξ1
+
ξ2

ξ2
1

+O(ε) ,

X1b =
1

σρb
+ ε

ξ1

2

1

σ2
ρb

+O(ε2) ,

X2b =
1

σρb
− ε ξ1

2

1

σ2
ρb

+O(ε2) .

(7.2)

We note a divergent behavior in X12 and therefore the Pfaffian will expand up to leading

order as

Pf Xn = −(−1)n+1

ε ξ1
Pf X 1,2

n +O(1) , (7.3)

where we expanded along the first line.

The Pfaffian Pf ′An. We perform the same manipulation scheme as we did in the

h1 = h2 = h case for the matrix Ψn. The first two lines of the matrix An are given

in (2.46). We expand the Pfaffian along the first line and obtain

Pf ′An = (−1)n+1 ε

[
n∑
i=3

(−1)i
(
ξ1 c2 s2A

(2)
pi − c sQi

)
Pf ′A1,i

n −
2 p · r
ξ1

Pf ′A12
n

]
+O(ε2) .

(7.4)

7.2 Non-linear sigma model

The scattering amplitudes of this model follow from the CHY integrand

In = Cn
(
Pf ′An

)2
. (7.5)

We immediately note that the leading order is of O(ε) in the adjacent collinear limit. More

precisely, we can insert the building blocks and write

A(0)
n = −ε 2

∑
ξ1

∫
dµn−1

J0

ξ1
Cn−1

[
n∑

i,j=3

(−1)i+j
(
ξ2

1 c4 s4A
(2)
pi A

(2)
pj − 2 c3 s3 ξ1Q1,iA

(2)
pj

+ c2 s2Q1,iQ1,j

)
Pf ′A1,i

n Pf ′A1,j
n + 4

(p · r)2

ξ2
1

(
Pf ′A1,2

n

)2
(7.6)

− 4(p · r)
n∑
i=3

(−1)i
(

c2 s2A
(2)
pi −

c sQi
ξ1

)
Pf ′A1,i

n Pf ′A1,2
n

]
,

resulting in

A(0)
n =− ε 2

∫
dµn−1 Cn−1

[
n∑

i,j=3

(−1)i+j

(
c sQ1A

(2)
pi A

(2)
pj

2P2
2

−
c sQ1,iA

(2)
pj

P2

)
Pf ′A1,i

n Pf ′A1,j
n

+

n∑
i=3

(−1)i c sQ1,i Pf ′A1,i
n Pf ′A1,2

n −
c sQ1

2

(
Pf ′A1,2

n

)2]
. (7.7)
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7.3 Yang-Mills-scalar

The integrand is given by

In = Cn Pf Xn Pf ′An , (7.8)

yielding the collinear behavior

A(0)
n = − c s

2 ε (p · r)

∫
dµn−1 Pf ′X 1,2

n Cn−1

[
n∑
i=3

(−1)iQ1,i Pf ′A1,i
n −Q1 Pf ′A1,2

n

]
, (7.9)

which apart from scalars and gluons, is the only other theory studied here with a singular

collinear limit.

7.4 Einstein-Maxwell-scalar

The integrand is

In =
(
Pf Xn Pf ′An

)2
, (7.10)

resulting in the collinear limit

A(0)
n =

c2 s2

2

∫
dµn−1

(
Pf ′X 1,2

n

)2 [ n∑
i,j=3

(−1)i+j

(
2A

(2)
pi A

(2)
pj

P2
+
Q1,iQ1,j

(p · r)

)
Pf ′A1,i

n Pf ′A1,j
n

− 2Q1

(p · r)

n∑
i=3

(−1)iQ1,i Pf ′A1,i
n Pf ′A1,2

n +
Q1 + 2(p · r)P2

(p · r)
(
Pf ′A1,2

n

)2]
. (7.11)

In all three previous cases we studied in (7.7), (7.9), (7.11), namely NLSM, YMS and

EMS the leading collinear behavior is not in a form from which the extension of the theory

is manifestly evident and it needs more detailed study to have a conclusive statement

regarding this.

8 Conclusions and outlook

In this work we initiated the study of collinear limits in massless bosonic quantum field

theories beyond the leading order. We realized the CHY formalism is the most appropriate

for this purpose. Using the solutions of scattering equations in the collinear kinematics we

constructed the perturbative expansion of the CHY integrand building blocks relevant for

various field theories. The above expansion allowed us to reproduce all known results for

the leading order collinear limit as well as present explicit structures of both the sub-leading

collinear limit in pure gauge theories and in φ3 scalar theories where the latter case in fact

has a universal vanishing behavior (4.13). In particular we carried out a rigorous analysis

for the case of adjacent collinear gluons in YM theory. We found that even though the full

amplitude does not have a factorized form of a sub-leading splitting function times a lower

point amplitude, nevertheless there is a universal factorization at the integrand level of the

CHY formula at the sub-leading order. In fact, it is possible to write the CHY integrand

of the sub-leading collinear YM amplitude in terms of a lower point YM integrand and a

collinear kernel building block (4.6) which is invariant under the exchange of all external

particles except the collinear ones and their neighbors and hence results in its universality.
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It is imperative to note that absence of a non-factorized sub-leading splitting function

at the integrated amplitude level, is due to the presence of a factor P2 in the denominator

of the collinear kernel (4.5). This feature is ubiquitous at the sub-leading collinear limit

of other theories too and for some special cases even at the leading order. As an example,

we also considered the leading collinear behavior of gravitons (3.7): apart from the usual

non-singular factorized term, there is also a well-known non-factorized part which can

again be attributed to the presence of the same P2 term in the denominator of the CHY

integrand similar to the sub-leading term in YM theory. Nevertheless, in a remarkable

way the above mentioned non-factorized sub-leading collinear amplitude in YM combines

through a specific linear combination proposed by Stieberger and Taylor to give amplitudes

with one graviton and remaining gluons in EYM theory (6.6). Hence we have been able to

directly establish these amplitude relations in field theory which were elusive otherwise.

In summary, we developed a proper treatment of collinear limits in the CHY frame-

work for all integrand building blocks and hence theories that can be represented by CHY

formulas. Treating collinear limits in CHY turns out to be elegant and controlled compared

to Feynman graph analysis. It is straightforward to consider even higher order collinear

limits or study other EFT’s aside from those that we presented here. The collinear limit

of the amplitudes in the EFT’s studied here, namely for NLSM, YMS and EMS, could

not conclusively throw a light on the extension of theories as was seen in single soft limit

study of amplitudes in certain EFT’s [47]. An important question still needs better under-

standing though for these purposes, namely the proper treatment of the non-degenerate

solutions to ξ with an analytic proof that they never contribute to the sub-leading order

which we could only see numerically.

There are few open directions in which one could use the framework for studying

collinear effects via CHY formulas. Collinear and soft properties of scattering amplitudes

are very important for studying signals in collider experiments. In such a scenario the soft

and collinear effects of an amplitude are often bundled in the so called antenna function [48],

which is again a complicated object. Now that CHY stands out as the right framework to

deal with both soft and collinear effects it will be interesting to have a deeper understanding

of antenna functions using CHY. There has also been great progress in understanding

scattering amplitudes in N = 4 super Yang-Mills theory starting from a near collinear

kinematic regime and reconstructing the whole amplitude at any value of coupling [49].

This is the OPE approach and it will be interesting to incorporate the ideas of OPE

approach into the CHY results for collinear YM.7 Moreover, there has been recent progress

in formulating loop amplitudes using CHY formulas (e.g. [50–53]) and it will be a natural

extension to study soft and collinear limits at the loop level. Finally, we have studied only

a few EFTs under the collinear limit and it would definitely be a very important direction

to further understand the space of EFTs using soft and collinear limits.
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A Sub-leading order calculation

A.1 Gluons in pure Yang-Mills

We divide the calculation into four terms, i.e.

A(1)
n = 2

∑
ξ1

∫
d′σn−2 dρ

[
∆

(0)
n−1C

(1)
n J0 Pf ′(0) Ψn︸ ︷︷ ︸

T1

+ ∆
(0)
n−1C

(0)
n J1 Pf ′(0) Ψn︸ ︷︷ ︸

T2

+ ∆
(0)
n−1C

(0)
n J0 Pf ′(1) Ψn︸ ︷︷ ︸

T3

+ ∆
(1)
n−1C

(0)
n J0 Pf ′(0) Ψn︸ ︷︷ ︸

T4

]
.

(A.1)

The first two terms are easily obtained by using the sum-over-solution relations (2.58)

and (2.59). We will give the relevant structure of the terms which can be adjusted to

whether one works in the equal helicity case or the mixed helicity case.

T1: Parke-Taylor contribution. The relevant term to compute is

∑
ξ1

J0

(
ξ2

ξ2
1

+
1

2
Sn,ρ,3

) (
a · Chppp − b ·

2 ε̃
hp
p,r · p
ξ1

)
, (A.2)

where the factors a and b can be adjusted depending on the helicity situation of the collinear

gluons, i.e. whether one uses (2.48) or (2.55) for Pf ′(0) Ψn. For h1 = h2 = h we have a = 1

and b = 1
s c and for h1 6= h2 this term appears twice with either a = s2 and b = s3

c or

a = c2 and b = c3

s . We evaluate this term to be

a · (cs − s2)C
hp
pp

4 c2 s2D

(
4R1 −

Q1Q2

P2

)
+ b · (c2 − s2) ε̃

hp
p,r · p

c sD

(
Q2 +

Q1R1

2 p · r

)
+ a · Sn,ρ,3C

hp
pp

4 c2 s2 P2
.

(A.3)

T2: Jacobian contribution. The relevant term is

∑
ξ1

−1

ξ1
J 2

0

(
8(p · r) ξ2

ξ3
1

− cs(c2 − s2)Q2

) (
a · Chppp − b ·

2 ε̃
hp
p,r · p
ξ1

)
, (A.4)

which can be evaluated to be

−a · (c2 − s2)C
hp
pp

4 c2 s2D

(
4R1 −

Q1Q2

P2

)
− b · (c2 − s2) ε̃

hp
p,r · p

c sD

(
2Q2 +

Q1R1

p · r

)
. (A.5)
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T3: Pfaffian contribution. Here we consider the sub-leading expansion of Pf ′Ψn for

an arbitrary helicity configuration of the collinear gluons after we performed any of the

presented manipulation schemes, from either the equal helicity case or the mixed helicity

case, and expanded along the first line. Then

Pf ′(1) Ψn =− ∂

∂ε
(x · s2Ch111 − y · c

2Ch112 )
∣∣∣
ε=0

Pf ′Ψ(1,n+1)
n

− ∂

∂ε
(x · c2Ch222 − y · s

2Ch221 )
∣∣∣
ε=0

Pf ′Ψ(1,n+2)
n

− (x · s2Ch111 − y · c
2Ch112 )

∂

∂ε
Pf ′Ψ(1,n+1)

n

∣∣∣
ε=0

− (x · c2Ch222 − y · s
2Ch221 )

∂

∂ε
Pf ′Ψ(1,n+2)

n

∣∣∣
ε=0

,

(A.6)

where we introduced the two numbers x, y in order to quickly switch the manipulation

scheme, i.e. x = y = 1 for h1 = h2 = h and x = 1, y = 0 for h1 6= h2. These are the only

relevant terms of any sub-leading Pfaffian expansion of both (2.45) and (2.50) due to the

equality of the lines (n+ 1) and (n+ 2) in the h1 = h2 = h case or due to neglecting any

contribution from ∂
∂ ε G (the reason is an involvement of higher orders in the ε expansion,

i.e. ξ = ε ξ1 + ε2 ξ2 + ε3 ξ3 +O(ε4), which is beyond the scope of the current discussion) in

the mixed helicity case. Let us define the (2n− 2) × (2n− 2) matrices Ψ
(1,n+1)
n := Ψ̃ and

Ψ
(1,n+2)
n := Ψ̂ for the sake of a compact notation.

The contribution to the sub-leading order of the first two terms in (A.6) are quickly

evaluated to be∑
ξ1

−J0

ξ1

∂

∂ε
(x · s2Ch111 − y · c

2Ch112 )
∣∣∣
ε=0

= −

(
x · s2 C

h1,(2)
pp

4 c2s2 P2
− (x · s2 + y · c2)

s

c
ε̃h1p,r · p

(c2 − s2)

s cD

(
Q2 +

Q1R1

2 p · r

)) (A.7)

∑
ξ1

−J0

ξ1

∂

∂ε
(x · c2Ch222 − y · s

2Ch221 )
∣∣∣
ε=0

=

=

(
x · c2 C

h1,(2)
pp

4 c2s2 P2
+ (x · c2 + y · s2)

c

s
ε̃h2p,r · p

(c2 − s2)

s cD

(
Q2 +

Q1R1

2 p · r

))
.

(A.8)

For the last two terms we directly apply (2.44)

∂

∂ε
Pf ′ Ψ̃ =

2n−2∑
i=2

(−1)i
∂ Ψ̃1,i

∂ ε
Pf ′ Ψ̃1,i

︸ ︷︷ ︸
Terms with ε dependence in first row

+
n−1∑
i=2

(−1)n+i+1 ∂ Ψ̃i,n

∂ ε
Pf ′ Ψ̃i,n

︸ ︷︷ ︸
Terms with ε dependence in n′th column

+

2n−2∑
i=n+1

(−1)n+i+1 ∂ Ψ̃n,i

∂ ε
Pf ′ Ψ̃n,i

︸ ︷︷ ︸
Terms with ε dependence in n′th row

+

2n−2∑
i=n+1

(−1)n
∂ Ψ̃n−i+3,i

∂ ε
Pf ′ Ψ̃n−i+3,i

︸ ︷︷ ︸
Terms with ε dependence in the diagonal of C

not including C11

.

(A.9)

– 27 –



J
H
E
P
0
2
(
2
0
1
7
)
0
3
8

The same formula holds true for Ψ̂. We identify

Ψ̃1,i =


Ã2,i+1 i ≤ n− 1

−C̃h2i−n+2,2 i ≥ n+ 1

−Ch222 − C
h2
21 i = n

, Ψ̂1,i =


Ã2,i+1 i ≤ n− 1

−C̃h1i−n+2,1 i ≥ n+ 1

−Ch111 − C
h1
12 i = n

,

Ψ̃i,n = −Ch22,i+1 , Ψ̃n,i = B
h2|hi−n+2

2,i−n+2 , Ψ̃n−i+3,i = −Chi−n+2

i−n+2,i−n+2 ,

Ψ̂i,n = −Ch11,i+1 , Ψ̂n,i = B
h1|hi−n+2

1,i−n+2 , Ψ̂n−i+3,i = −Chi−n+2

i−n+2,i−n+2 .

(A.10)

The rest of the calculation is straightforward. Taking into account the ξ1 dependence of

C
(0)
n and J0, we compute

−
∑
ξ1

−J0

ξ1
(x · s2Ch111 − y · c

2Ch112 )
∂

∂ε
Pf ′Ψ(1,n+1)

n

∣∣∣
ε=0

=

x · s2Ch1pp
4 cs s2 P2

{ n−1∑
i=2

(−1)i (c2 − s2)A
(2)
p,i+1 Pf ′ Ψ̃1,i

+
2n−2∑
i=n+1

(−1)i (c2 − s2)C
hi−n+2,(2)
i−n+2,p Pf ′ Ψ̃1,i + (−1)nCh2,(2)

pp Pf ′ Ψ̃1,n

+
2n−2∑
i=n+1

(−1)n+iB
h2|hi−n+2,(2)
p,i−n+2 Pf ′ Ψ̃n,i −

n−1∑
i=2

(−1)n+iC
h2,(2)
p,i+1 Pf ′ Ψ̃n,i

−
2n−2∑
i=n+1

(−1)n (c2 − s2)C
hi−n+2,(2)
i−n+2,p Pf ′ Ψ̃n−i+3,i

}
+ (−1)n+1 2 (x · s2 + y · c2) ε̃h1p,r · pEh2 Pf ′ Ψ̃1,n

(A.11)

and

−
∑
ξ1

−J0

ξ1
(x · c2Ch222 − y · s

2Ch221 )
∂

∂ε
Pf ′Ψ(1,n+2)

n

∣∣∣
ε=0

=

x · c2Ch2pp
4 cs s2 P2

{ n−1∑
i=2

(−1)i (c2 − s2)A
(2)
p,i+1 Pf ′ Ψ̂1,i

+

2n−2∑
i=n+1

(−1)i (c2 − s2)C
hi−n+2,(2)
i−n+2,p Pf ′ Ψ̂1,i − (−1)nCh1,(2)

pp Pf ′ Ψ̂1,n

−
2n−2∑
i=n+1

(−1)n+iB
h1|hi−n+2,(2)
p,i−n+2 Pf ′ Ψ̂n,i +

n−1∑
i=2

(−1)n+iC
h1,(2)
p,i+1 Pf ′ Ψ̂n,i

−
2n−2∑
i=n+1

(−1)n (c2 − s2)C
hi−n+2,(2)
i−n+2,p Pf ′ Ψ̂n−i+3,i

}
− (−1)n+1 2 (x · s2 + y · c2) ε̃h2p,r · pEh1 Pf ′ Ψ̃1,n .

(A.12)
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We can compare both terms with

∂

∂ ρ
Pf ′±Ψn−1 =

n−1∑
i=2

(−1)i+1A
(2)
p,i+1 Pf ′±Ψ1,i

n−1

+

2n−2∑
i=n+1

(−1)i+1C
hi−n+2,(2)
i−n+2,p Pf ′±Ψ1,i

n−1 + (−1)nC±,(2)
pp Pf ′±Ψ1,n

n−1

+

2n−2∑
i=n+1

(−1)n+iB
±|hi−n+2,(2)
p,i−n+2 Pf ′±Ψn,i

n−1 +

n−1∑
i=2

(−1)n+i+1C
±,(2)
p,i+1 Pf ′±Ψn,i

n−1

+

2n−2∑
i=n+1

(−1)nC
hi−n+2,(2)
i−n+2,p Pf ′±Ψn−i+3,i

n−1 ,

(A.13)

to see that summing (A.11) and (A.12) in the case of h1 = h2 = h (x = y = 1) yields

−
∑
ξ1

−J0

ξ1
(s2Ch11 − c2Ch12)

∂

∂ε
Pf ′Ψ(1,n+1)

n

∣∣∣
ε=0

−
∑
ξ1

−J0

ξ1
(c2Ch22 − c2Ch21)

∂

∂ε
Pf ′Ψ(1,n+2)

n

∣∣∣
ε=0

= −
(c2 − s2)Chpp

4 c2 s2 P2

∂

∂ ρ
Pf ′±Ψn−1 .

(A.14)

T4: δ-functions contribution. The relevant term is∑
ξ1

−J0

ξ1
dµ

(1)
n−1

(
a · Chppp − b ·

2 ε̃
hp
p,r · p
ξ1

)
= d′σn−1

a · (c2 − s2)C
hp
pp

4 c2 s2 P2

∂

∂ ρ
∆′n−1 , (A.15)

which can be quickly seen by direct computation. Now we can sum all contributions while

regarding the proper multiplicative factors and quickly arrive at (4.2) in the h1 = h2 = h

case. The case for h1 6= h2 can also be studied by putting in the proper values of a, b, x, y

but the result will not have the feature (A.14).

A.2 Gluons → gravitons or scalars

In the next two sections are heavily based on [41]. We focus on the EYM integrand given

in (2.7) with k gravitons and n−k gluons with collinear gluons 1, 2 and particles 3, n being

gluons s.t. the structure (2.37) is not changed. The sub-leading order of the amplitude is

computed via

A(1)
n = 2

∑
ξ1

∫
d′σn−2 dρ

[
∆

(0)
n−1C

(1)
n−kJ0 Pf(0) Ψk Pf ′(0) Ψn︸ ︷︷ ︸

T1

+ ∆
(0)
n−1C

(0)
n−kJ1 Pf(0) Ψk Pf ′(0) Ψn︸ ︷︷ ︸

T2

+ ∆
(0)
n−1C

(0)
n−kJ0 Pf(0) Ψk Pf ′(1) Ψn︸ ︷︷ ︸

T3

+ ∆
(1)
n−1C

(0)
n−kJ0 Pf(0) Ψk Pf ′(0) Ψn︸ ︷︷ ︸

T4

+ ∆
(0)
n−1C

(0)
n−kJ0 Pf(1) Ψk Pf ′(0) Ψn︸ ︷︷ ︸

T5

]
.

(A.16)
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We claim that this yields (4.4) for h1 = h2 = h with the replacements Cn−1 → Cn−k−1 and

Pf ′Ψn−1 → Pf Ψk Pf ′Ψn−1. In order to prove this claim we only need to show that the

last term can be written in terms of a ρ derivative acting on the graviton Pfaffian. This is

easy to see, since the only place that the graviton Pfaffian has any ε dependence are the

diagonal entries of the C matrix which is the last term in (A.9) but this time also including

Cn−k+1,n−k+1, i.e. the first diagonal element in C. Repeating the same computation as in

the previous section for h1 = h2 = h, we see that

Pf(1) Ψk = (c2 − s2)
ξ1

2

2k∑
i=k+1

C
hn−i+2,(2)
n−i+2,p Pf Ψk−i+2,i

k . (A.17)

If we now compute T5, then we indeed get

−
∑
ξ1

−J0

ξ1
Pf(0) Ψk Pf ′(0) Ψn = −

(c2 − s2)Chpp
4 c2 s2 P2

Pf ′Ψn−1
∂

∂ρ
Pf Ψk . (A.18)

Hence T5 only contributes to the last term in (4.4) and the kernel (4.5) is unaffected by the

exchange of gluons to gravitons as long as the collinear particles and their neighbors are

gluons. Changing gluons into scalars also cannot have any effect on the structure of (4.4)

since the only thing that will happen is that the size of the matrix Ψn will change into

Ψn−k for k scalars and that some parts of Cn will now be squared but those parts have no

ε dependence since particles 1, 2, 3, n are fixed to be gluons. Therefore (4.4) is true up to

an adjustment of Cn−1 and Pf ′Ψn−1 → Pf ′Ψn−k−1. Thus is kernel (4.5) is again invariant,

which proves universality.

A.3 Scalars → gravitons or gluons

We can quickly show that (4.13) is also independent of the exchange of all external particles

except the collinear scalars and their neighbors. The reason is that if we start exchanging

the particle types we start adjusting the size of the Parke-Taylor structure in (4.11), which

is not affecting the established structure, and adding Pfaffians of matrices Ψk for k gluons

or gravitons. The Pfaffian structure will yield more terms to the sub-leading structure but

those terms will vanish due to
∑

ξ1
J0
ξ1

= 0 since (C
(0)
n−k)

2 ∝ 1
ξ21

and Pf(1) Ψk ∝ ξ1 as we

have shown in (A.17). Hence no corrections to the sub-leading order is present and the

kernel (4.14) is invariant and universality is manifest.

B Non-adjacent collinear gluons of equal helicity

Let us take pi||pj for some non-adjacent i and j. We repeat all steps that we did in the

adjacent case (i.e. replace 1 → i and 2 → j) but with the additional, follow up, matrix

manipulation:

• Subtract (n+ j)’th row/column from (n+ i)’th row/column.
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Then the Pfaffian expands along the i’th row as (up to leading order)

Pf ′(Ψn) = (−1)i+i

(
−Chpp +

2 ε̃hp,r · p
cs ξ1

)
Pf ′(Ψn−1) . (B.1)

Since there is no divergence in the non-adjacent case (i.e. there is no divergence coming

from the Parke-Taylor factor) the amplitude expands as

An =
∑
ξ1

2

∫
dµn−1 J0

(
Chpp −

2 ε̃p,r · p
cs ξ1

)
Si−1,ρ,i+1 Sj−1,ρ,j+1 Cn−2 Pf ′(Ψn−1) +O(ε) ,

(B.2)

which results in

An =
1

c2 s2

∫
dµn−1

Chpp
P2

Si−1,ρ,i+1 Sj−1,ρ,j+1 Cn−2 Pf ′(Ψn−1) . (B.3)

The indices of the factors Sk,l,m refer to the position of i and j before the collinear limit

and Cn−2 does not contain any ρ label. We can also check that this result reproduces the

known ST relations [36]. Nevertheless, although universal, no factorization at amplitude

level can be extracted.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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