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1 Introduction

In theories with only local interactions, heavy new physics effects can be described at

low energy as non-renormalisable operators involving Standard Model (SM) fields. These

operators necessarily involve interaction scales, which are often identified as the energy

at which new dynamics must take place. Examples are: the Weinberg operator, whose

scale is usually associated with the right-handed neutrino mass; the axion decay constant,

associated with the Peccei-Quinn (PQ) breaking dynamics; the scale of baryon-number

violating operators, associated with the mass of GUT particles; the Planck scale, associated

with the energy at which quantum gravity emerges. This association between interaction
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scales and the mass scale of the UV-completion is fallacious or, at least, is based on a

hidden assumption.

As discussed in detail in section 2.1, scales and masses are intrinsically different physical

quantities, carrying different units of measure. Commensurable quantities are masses and

the product of scales and couplings. Therefore, if couplings are O(1), when measured in

natural units, then the distinction between masses and scales has little consequence. In this

case, the association between the interaction scale and the energy at which new particles

must enter, although not formally correct, works in practice. The situation is very different

in presence of couplings which are small, in natural units, as the dynamics associated with

an interaction scale could occur at much smaller energies.

These considerations open the possibility that dynamics, usually associated with very

high-energy phenomena may lie much closer to, and possibly within, accessible energies.

If this were to be the case, a new puzzle arises: why would nature choose extremely small

coupling constants? Since long ago [1, 2] physicists have been reluctant to accept small (or

large) numbers without an underlying dynamical explanation, even when the smallness of a

parameter is technically natural in the sense of ’t Hooft [3]. One reason for this reluctance

is the belief that all physical quantities must eventually be calculable in a final theory with

no free parameters. It would be strange for small numbers to pop up accidentally from the

final theory without a reason that can be inferred from a low-energy perspective.

In this work we propose a general mechanism to generate small numbers out of a the-

ory with only O(1) parameters, and thus large effective interaction scales out of dynamics

occurring at much lower energies. In all of these theories the full UV completion enters at

energies exponentially smaller than suggested by a given interaction strength. The mech-

anism is fairly flexible and can produce exponentially large interaction scales for light or

massless scalars, fermions, vectors, and even gravitons. It provides an interesting theoret-

ical tool which opens new model-building avenues for axion, neutrino, flavour, weak scale,

and gravitational physics.

The underlying structure is a generalisation of the clockwork models [4, 5], which were

originally used to construct axion (or relaxion [6]) setups in which the effective axion decay

constant f is much larger than the Planck mass MP , without any explicit mass parameter

in the fundamental theory exceeding MP . In this way, one could circumvent the need for

transplanckian field excursions in models which, for different phenomenological reasons,

require f > MP .1 These constructions can be viewed as extensions of an original proposal

for subplanckian completions of natural inflation [8–11]. The name clockwork follows from

the field phase rotations with periods that get successively larger from one field to the next

(see figure 1 for a pictorial interpretation).

The general framework is the following: consider a system involving a particle P , which

remains massless because of a symmetry S. At this stage neither the nature of P or S, nor

whether the description is renormalisable or not, is crucial. We will give plenty of specific

examples in our paper, but we want to stress that the general mechanism is insensitive to

the details of the model implementation.

1For an explicit application of the clockwork theory to the relaxion proposal see [7].
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⇤ ⇤N = qN⇤

Figure 1. A schematic representation of the clockwork mechanism increasing the interaction scale

of a non-renormalisable operator.

Next, expand this simple setup to N+1 copies of the original system, and consider

them as sites of a one-dimensional lattice in theory space. The full theory possesses a

symmetry G, which contains at least the product of the individual symmetries (G ⊇ SN+1),

and describes N+1 massless particles P . Now, at a mass scale m, introduce an explicit, but

soft, breaking of the symmetry G which is local in theory space, through a mass mixing

linking near-neighbours of the N + 1 lattice sites. Thus far the construction resembles

fields in a deconstructed flat extra dimension, [12–14], however the critical difference is

that this breaking includes a parameter q 6= 1 that treats the site j+1 and the site j (with

j = 0, . . . , N−1) asymmetrically. As we are considering a 1D lattice with boundaries, we

can form only N links out of the N+1 sites. Since each link breaks the symmetry of a single

site, one symmetry group S0 survives the breaking of G; hence, one linear combination of

the original particles (called P0) remains massless.

The crucial aspect of the clockwork is that the particle P0 is not uniformly distributed in

theory space along the sites, but is exponentially localised towards one of the boundaries.

At the opposite boundary, the component of P0 is exponentially small and is given by

1/qN . It is clear that, for moderately large values of q and N one can obtain exponential

suppression of the P0 component at one boundary. If, at that boundary, we couple the

clockwork sector to the SM, we automatically obtain very small couplings of P0 to ordinary

particles, without introducing small parameters, multiple mass scales, or exponentially

large field multiplicities in the fundamental theory.

When P is a spin-0 scalar, spin-1/2 fermion, spin-1 boson, or spin-2 graviton, the cor-

responding symmetry S is a Goldstone shift symmetry, chiral symmetry, gauge symmetry,

and linearised 4D diffeomorphism invariance, respectively. Each case introduces new model

building applications. With a clockwork scalar one can construct invisible axion models

at the weak scale. A clockwork fermion can explain a very small Dirac neutrino mass or

address the hierarchical pattern of quark and lepton masses. With a clockwork gauge bo-

son one can justify the existence of tiny gauge charges, with phenomenological predictions

that differentiate from a scenario with simply a small gauge coupling. Finally, the most

exciting application is found with the clockwork graviton, which offers a novel solution to

the naturalness problem of the electroweak scale, providing a dynamical explanation for

the weakness of gravity. In this paper, we will mainly focus on the structural aspects of

the clockwork theory, leaving phenomenological issues to future work.
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Importantly, the clockwork does not only have theoretical novelty, but comes together

with experimentally testable consequences. Independently of the specific implementation

of the clockwork, the theory predicts the existence of N particles at the mass scale m,

which will be called the ‘clockwork gears’, as they are the degrees of freedom that make

the mechanism work. As we will show, the gears have universal properties and their

interactions with the SM can be predicted from the structural aspects of the clockwork

implementation.

Our exploration of the clockwork will also lead us to consider the limit N →∞ and

eventually the continuum limit, in which the 1-D lattice in field space is interpreted as a

physical spatial dimension. This limit gives rise to non-trivial theories with finite clock-

working effect. The simplest case has parameters m and q that are uniform along the extra

dimension, wherein the geometry of this 5D space is uniquely defined. From this vantage

point we build theories in a 5D clockwork space-time, which correspond to a continuum

form of the clockwork theories for scalars, fermions, vectors, and gravitons. Although the

physical interpretation of the discrete and continuum clockworks are quite different, there

is a simple correspondence between the two theories that is familiar in deconstructions:

the lattice in field space corresponds to the fifth spatial dimension; the clockwork gears

correspond to the Kaluza-Klein modes; the interaction of an external sector with the last

site of the discrete clockwork corresponds to the localisation of the external sector on a

brane at the boundary of the compactified extra dimension.

Perhaps the most intriguing aspect of the clockwork is the link with the Higgs nat-

uralness problem. The 5D interpretation elucidates how the clockwork can address this

problem and its relation to previously proposed solutions, especially to Large Extra Dimen-

sions (LED) [15] and the warped extra dimensional model of Randall-Sundrum (RS) [16].

Remarkably, the metric of the clockwork space-time is identical to a 5D metric known

as the linear dilaton model (see e.g. [17]) which approximates the dual of Little String

Theory (LST) [18, 19], after compactifying additional dimensions (for more formal aspects

see [20–25]). This may be a hint for an unexplored connection between string theory

and the continuum version of the clockwork theory, as it identifies the clockwork solution

of the hierarchy problem with the LST solution [17, 26–28], including the corresponding

phenomenological implications [17, 27, 29, 30].

This paper is organised as follows. In section 2, after discussing the difference between

masses and interaction scales, we systematically construct the low energy effective theory of

clockwork scalars, fermions, vectors and gravitons. Throughout we will sketch phenomeno-

logical applications to axion models, light neutrino mass models, models of dark photons

with millicharges, and multi-gravity theories. The latter sets the scene for an explanation

of the hierarchy between the Fermi and Planck scales. In all of these models the number of

fields is finite, and the theories are essentially simple 4D modules that may be straightfor-

wardly employed for the aforementioned applications. Following this, in section 3, we go

on to explore the continuum limit, where the number of fields is taken to infinity while the

clockworking factor remains finite. We find that in this limit the theory is best described as

a 5D theory with a specific geometry. A short summary of our results is given in section 4.

Additional material is contained in five appendices.
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2 The clockwork mechanism

2.1 On masses, scales, and couplings

The clockwork mechanism rests on the crucial difference between masses and interaction

scales. Therefore, we find it useful to start by reviewing these concepts (a related discussion

on the ~ expansion can be found in ref. [31] and related discussions on derivative and field

expansions are found in refs. [32–36]).

To appreciate the difference between masses and scales it is useful to reinstate in the

Lagrangian the appropriate powers of ~, while working in units with c = 1. This means

that time and length have identical units, while we distinguish between units of energy (E)

and length (L). We start by considering a general 4D action involving scalar (φ), fermion

(ψ), and vector gauge fields (Aµ), normalised such that all kinetic terms and commutation

relations are canonical. Moreover, we express masses in units of inverse length, so that

all mass parameters in the Lagrangian are written in terms of m̃ = m/~. In our basis,

there are no explicit factors of ~ in the classical Lagrangian in position space. With these

assumptions, the dimensionality of the quantities of interest, including gauge couplings g,

Yukawa couplings y, and scalar quartic couplings λ, are

[~] = EL , [L] = EL−3 , [φ] = [Aµ] = E1/2L−1/2 , [ψ] = E1/2L−1 , (2.1)

[∂] = [m̃] = L−1 , [g] = [y] = E−1/2L−1/2 , [λ] = E−1L−1 . (2.2)

Canonical dimensions in natural units with ~ = 1 are recovered by identifying E = L−1.

Note that [g2] = [y2] = [λ], in agreement with the usual perturbative series. It is also

important to remark that loop effects do not modify the dimensionality counting. Indeed,

one can prove that, in our basis, each loop in momentum space carries one factor of ~. So

each loop is accompanied by factors such as ~g2/(4π)2, ~y2/(4π)2, or ~λ/(4π)2, which are

all dimensionless quantities in units of L and E, and thus do not alter the dimensionality

of the quantity under consideration.

Unlike the case of natural units, our dimensional analysis shows that couplings, and not

only masses, are dimensionful quantities. Then, for our discussion, it is useful to introduce

convenient units of mass M̃ ≡ L−1 and coupling C ≡ E−1/2L−1/2.

Let us now add to the Lagrangian an effective operator of canonical dimension d of

the general form
1

Λd−4
∂nD ΦnB ψnF . (2.3)

Here nD is the number of derivatives, nB the number of boson fields (Φ = φ, Aµ), and nF
the number of fermion fields, with nD + nB + 3

2nF = d. The dimensionful quantity Λ that

defines the strength of the effective interaction will be called scale. Its dimensionality is

[Λ] =
M̃

C
n−2
d−4

, (2.4)

where n = nB + nF is the total number of fields involved in the operator. This result

can be immediately understood by recalling that each field carries an inverse power of C

([φ] = [Aµ] = M̃C−1, [ψ] = M̃3/2C−1) and the Lagrangian dimensionality is [L] = M̃4C−2.
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Since the exponent of C in eq. (2.4) is strictly positive, scales and masses are measured

in different units and are not commensurable quantities. A scale is the ratio between a

mass and a certain power of couplings. Equation (2.4) dictates the minimum number of

couplings required to define the corresponding scale. If the operator is generated at the

loop level in the fundamental theory, the number of couplings entering the scale Λ can be

larger than what eq. (2.4) prescribes. However, as previously discussed, these couplings

are always accompanied by an appropriate power of ~ and do not alter the conclusion from

dimensional analysis: masses and scales are incommensurable.

Not only have masses and scales different dimensionality, but also carry different phys-

ical meanings. A mass is associated with Em = m̃~, the energy at which new degrees of

freedom appear. A scale is associated with EΛ = Λ~
2d−n−6
2(d−4) , the energy at which the theory

becomes strongly coupled, if no new degrees of freedom intervene to modify the effective

description. Therefore, a scale carries information on the strength of the interaction, but

gives no information about the energy scale of new dynamics. The latter is given by the

product of a scale times couplings, i.e. by mass.

To make the discussion more concrete, let us consider some examples of the relation

between mass, scale, and coupling in familiar theories. The first example is the four-fermion

interaction in the Fermi theory. Equation (2.4) with n = 4 and d = 6 gives

[Λ] = [G
−1/2
F ] =

[MW ]

[g]
. (2.5)

So MW is a mass and G
−1/2
F a scale. This is consistent with the notion that the new degrees

of freedom in the electroweak theory occur at E ∼MW and not at E ∼ G−1/2
F . The latter

is the energy scale at which perturbative unitarity would break down, in the absence of

the weak gauge bosons. Note also that, since G
−1/2
F ∼ v, the Higgs vacuum expectation

value has the meaning of a scale, and not of a mass. Indeed, in the Higgs mechanism,

physical masses are always given by the product of v times a coupling constant. This

result has a more general validity, which goes beyond the Higgs mechanism. From eq. (2.1)

we see that the vacuum expectation value of a scalar field has always the dimension of

a scale [〈φ〉] = M̃/C. For instance, the axion decay constant fa that defines the axion

interactions in the low-energy effective Lagrangian is a scale and not a mass. Therefore, we

cannot necessarily expect that the new physics associated with PQ breaking must occur

at E ∼ fa, as will be confirmed by the clockwork.

Another example is the Weinberg operator ``HH/Λν generating neutrino masses in

the SM. In this case n = 4 and d = 5, and eq. (2.4) gives

[Λν ] =
[MR]

[λ2
ν ]

, (2.6)

where MR is the right-handed neutrino mass and λν is the Yukawa coupling that par-

ticipates in the see-saw mechanism. Since the physical neutrino mass is mν = v2/Λν =

λ2
νv

2/MR, we immediately see that the powers of couplings correctly match to give mν

the dimension of mass. Thus the UV-completion of the Weinberg operator may enter at

energies far below Λν .

– 6 –
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Finally, let us consider the graviton coupling in linearised general relativity. With

n = 3 and d = 5, eq. (2.4) gives

[MP ] =
[Ms]

[gs]
, (2.7)

where we can interpret Ms and gs as the string mass and string coupling, respectively.

From this perspective it is evident that MP is a scale and not a mass. Therefore, without

any specific assumptions on the underlying couplings, we cannot conclude that the new

degrees of freedom of quantum gravity must appear in the proximity of MP .

These examples demonstrate that there is no technical obstruction, at least in field

theory, to have extremely high energy interaction scales generated from a UV-completion

which appears at much more pedestrian energies. We will now see that the clockwork

provides a concrete example where this separation of masses and interaction scales occurs

without the introduction of any exponentially large or small parameters at the fundamen-

tal level.

2.2 Clockwork scalar

The simplest way to implement the clockwork mechanism is with scalar fields [4, 5]. The

implementations in [4, 5] involve renormalisable scalar field theories, however we will focus

only on the low energy effective theory, which may have different UV-completions. Let us

consider a theory with a global symmetry G = U(1)N+1 spontaneously broken at the scale

f . Below f , the effective degrees of freedom are N+1 Goldstone bosons πj , conveniently

described in terms of the fields

Uj(x) = eiπj(x)/f j = 0, . . . , N (2.8)

which transform by a phase under the corresponding Abelian factor U(1)j . For simplicity,

we assume that the spontaneous breaking of all Abelian factors contained in G occurs at

the same scale f .

We also explicitly, but softly, break G by means of N dimension-two parameters m2
j

(with j = 0, . . . , N−1), which can be regarded as the background values of N spurion

fields with charge

Qi[m
2
j ] = δij − q δi j+1 (2.9)

under the Abelian factor U(1)i. We take q > 1 and assume that the explicit breaking is

small with respect to the scale of spontaneous breaking, i.e. m2
j � f2. The smallness of

m2
j/f

2 is technically natural because m2
j/f

2 → 0 enhances the symmetry of the theory.

The hypothesis of a scale separation between m2
j and f2 is the element that allows us

to construct a low-energy effective theory of the pseudo-Goldstones πj from symmetry

considerations alone, without committing to any specific UV completion at the scale f .

The unbroken U(1) corresponds to the generator

Q =

N∑

j=0

Qj
qj

, (2.10)

– 7 –
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where Qj are the generators of the Abelian factors in G. Indeed, all of the parameters

m2
j are neutral under the generator Q, since eq. (2.9) implies that Q[m2

j ] = 0 for any j.

To simplify expressions, henceforth we take a single scale for the explicit breaking, i.e.

m2
j ≡ m2. The generalisation to non-universal values of f and m2 for the different U(1)

factors is straightforward, and the physical content of the theory does not change, as long

as we consider small deformations of the universal case.

The low-energy description of the Goldstone boson and the N pseudo-Goldstones is

captured by an effective Lagrangian (formally G-invariant, once we treat m2
j as spurions

charged under G), which can be expanded in derivatives and powers of m2. The two leading

terms are2

L = −f
2

2

N∑

j=0

∂µU
†
j ∂

µUj +
m2f2

2

N−1∑

j=0

(
U †j U

q
j+1 + h.c.

)
. (2.11)

With no loss of generality the parameter m2 can be chosen real (actually, even non-universal

m2
j can all be made real simultaneously by an appropriate G transformation).

In terms of the fields πj , eq. (2.11) becomes

L = −1

2

N∑

j=0

∂µπj∂
µπj − V (π) (2.12)

V (π) =
m2

2

N−1∑

j=0

(πj − q πj+1)2 +O(π4) =
1

2

N∑

i,j=0

πiM
2
π ij πj +O(π4) . (2.13)

The mass matrix M2
π is given by

M2
π = m2




1 −q 0 · · · 0

−q 1 + q2 −q · · · 0

0 −q 1 + q2 · · · 0
...

...
...

. . .
...

1 + q2 −q
0 0 0 · · · −q q2




. (2.14)

The matrix M2
π becomes diagonal in the field basis aj (j = 0, . . . , N), related to the πj by

a real (N+1)×(N+1) orthogonal matrix O

π = O a , OTM2O = diag (m2
a0 , . . . ,m

2
aN

) (2.15)

where the eigenvalues are given by

m2
a0 = 0 , m2

ak
= λkm

2 , k = 1, . . . , N (2.16)

λk ≡ q2 + 1− 2q cos
kπ

N+1
, (2.17)

2Throughout the paper we use positive signature for the metric in flat space, η = (−,+,+,+).
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and the elements of the rotation matrix are

Oj0 =
N0

qj
, Ojk = Nk

[
q sin

jkπ

N+1
− sin

(j + 1)kπ

N+1

]
,

j = 0, . . . , N ; k = 1, . . . , N (2.18)

N0 ≡
√

q2 − 1

q2 − q−2N
, Nk ≡

√
2

(N+1)λk
. (2.19)

Equation (2.16) shows that the physical spectrum contains a massless Goldstone (a0)

and N massive pseudo-Goldstone states (ak), which are the “gears” that make the clock-

work mechanism work. The masses of the clockwork gears fill a band that ranges from

ma1 ≈ (q − 1)m to maN ≈ ma1 + ∆m, with ∆m/ma1 = 2/(q − 1). The mass splitting

δmk = mak+1
− mak between two successive states within the band ∆m is, in the large

N limit,
δmk

mak

≈ qπ

Nλk
sin

kπ

N+1
, k = 1, . . . , N−1 (2.20)

Although the exact expression in eq. (2.16) is valid only for universal f and m2, non-

universal deformations still preserve the structure of the clockwork gears: N states within

a mass band ∆m/ma = O(1) with splittings between successive states δm/ma = O(1/N).

The crucial point of the clockwork lies in the expression of Oj0 in eq. (2.18). Oj0
measures the component of the massless Goldstone boson contained in πj . Since Oj0 ∝ q−j ,
the Goldstone component at each successive site is q times smaller than for the previous

site. This means that, for sufficiently large N , the Goldstone interaction can be very

efficiently secluded away from the last site. If a theory is coupled to the clockwork sector

only through its N -th site, the decay constant of the Goldstone interactions will appear

exponentially enhanced with respect to the actual scale of spontaneous symmetry breaking.

To illustrate the mechanism, consider the case in which the N -th site πN is coupled to

the topological term of a gauge theory

L =
πN

16π2f
GµνG̃

µν . (2.21)

Once we express πN in terms of mass eigenstates, using πN =
∑N

j=0ONj aj , the effective

interaction in eq. (2.21) becomes

L =
1

16π2
GµνG̃

µν

(
a0

f0
−

N∑

k=1

(−)k
ak
fk

)
(2.22)

f0 ≡
fqN

N0
, fk ≡

f

Nk q sin kπ
N+1

. (2.23)

The first term in eq. (2.22) exhibits the clockwork mechanism. The coupling of the

Goldstone (a0) to gauge bosons is determined by the effective scale f0, which is expo-

nentially enhanced with respect to the scale f at which the symmetry-breaking dynamics

takes place (f0/f ∼ qN ). From eq. (2.22) we see that the clockwork gears inherit cou-

plings to gauge bosons as well. However, their decay constants grow only mildly with N

(fk/f ∼ N3/2/k) and are modulated by the index k.

– 9 –
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This mechanism allows for the construction of axion models in which the PQ-breaking

dynamics can occur at or below scales as low as the weak scale, and yet the axion is nearly

invisible. Model-building aspects, collider phenomenology, and cosmology of theories with

weak-scale near-invisible axions are so rich and interesting that they will be presented in

a separate publication. Related previous investigations of weak-scale axions with the large

axion decay constant arising from clockworking, including some intriguing cosmological

signatures, may be found in [37–39].

2.3 Clockwork fermion

Fermions may be kept massless due to a chiral symmetry, thus a fermion realisation of the

clockwork involves a single chiral symmetry that is shared amongst a number of fields in

the underlying model, such that the one remaining chiral symmetry pushes the massless

fermion exponentially to one end of the clockwork. To this end, let us introduce N+1 chiral

fermions ψRj (j = 0, . . . , N) together with N fermions ψL i (i = 0, . . . , N − 1) of opposite

chirality. Of course, the role of left and right chiralities can be reversed. The global chiral

symmetry is broken by N mass parameters mi that pair up the fields in N massive Dirac

fermions, leaving a single massless chiral component. The chiral symmetry is also broken

by N parameters (mq)i which can be regarded as the background values of spurion fields.

It is useful to classify these parameters in terms of their charges under the global chiral

symmetry. Let us call U(1)Rj and U(1)L i the Abelian factors under which ψRj and ψL i
have charge 1, respectively. Then mj have charges (1,−1) under U(1)L j × U(1)Rj , and

(mq)j have charges (1,−1) under U(1)L j × U(1)Rj+1. One abelian factor of the chiral

symmetry in the ψR sector is left unbroken by both m and mq.

The Lagrangian for the fermion fields is

L = LKin −m
N−1∑

j=0

(
ψ̄L jψRj − q ψ̄L jψRj+1 + h.c.

)
≡ LKin −

(
ψ̄LMψψR + h.c.

)
(2.24)

where LKin denotes the kinetic term for all fermions. As in the scalar case, we take for

simplicity universal values for m and q. While m can be chosen real with a chiral rotation

of the fermions, the parameters q are in general complex, but we will treat them as real,

also for simplicity. Generalisations are straightforward.

The N × (N+1) mass matrix Mψ is

Mψ = m




1 −q 0 · · · 0

0 1 −q · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

−q 0

0 0 0 · · · 1 −q




. (2.25)

The emergence of the clockwork mechanism is immediately clear, once we realise that

M †ψMψ is identical to M2
π in eq. (2.14).
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The mass eigenstates ΨL and ΨR are given by

ψL = ULΨL , ψR = URΨR (2.26)

UR = O , UL jk =

√
2

N + 1
sin

jkπ

N + 1
j, k = 1, . . . , N (2.27)

where the (N+1)× (N+1) matrix O is defined in eq. (2.18).

The spectrum consists of N Dirac ‘fermion gears’ with masses

mΨk = m
√
λk k = 1, . . . , N (2.28)

where λk are defined in eq. (2.17). The surviving chiral symmetry keeps one state massless,

given by

ΨR 0 = N0

N∑

j=0

ψRj
qj

. (2.29)

As expected, the massless state has an overlap with ψRN , which is suppressed by a clock-

working factor qN .

The fermion clockwork has phenomenological applications to neutrino and flavour

physics. The lightness of neutrinos is usually attributed to the see-saw mechanism, because

having very small neutrino Yukawa couplings is viewed as a contrived possibility. How-

ever, the clockwork could give an explanation for a hierarchically small neutrino Yukawa.3

Suppose that the theory preserves lepton number and that the Higgs (H) and left-handed

lepton doublet (LL) have a Yukawa coupling with the last site of a fermonic clockwork

L = −λHL̄LψRN + h.c. (2.30)

The right-handed neutrino is identified with the light state (ΨR 0) left by the clockwork.

Its effective Yukawa interaction is

L = −λ0HL̄LΨR 0 + h.c. λ0 = λN0q
−N (2.31)

A realistic neutrino mass can be obtained for N ≈ 25 and q ≈ 3, even if the original Yukawa

coupling λ is of order unity.

Having a Dirac, rather then Majorana, neutrino mass would have significant impact on

phenomenology predicting, in particular, that neutrinoless double β-decay must be entirely

absent. Moreover the mass scale of the fermion gears could be accessible to experimental

searches. Other phenomenological considerations could be made for the usual Yukawa

couplings, assuming that the clockwork mechanism is responsible for the observed pattern

of hierarchies.

2.4 Clockwork photon

A clockwork photon can be obtained by clockworking a gauge symmetry. Take N+1 U(1)

gauge groups with equal gauge coupling g, and N complex scalars φj (j = 0, . . . , N−1)

3Essentially, this would look like a discrete clockwork version of the higher-dimensional models of e.g. [40].
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each with charge (1,−q) under the gauge groups U(1)j ×U(1)j+1. Give all of these scalars

a negative mass-squared, which triggers vacuum expectation values which we assume to be

at the same scale f . The Lagrangian is

L = −
N∑

j=0

1

4
F jµνF

j µν −
N−1∑

j=0

[
|Dµφj |2 + λ(|φj |2 − f2/2)2

]
(2.32)

Dµφj ≡
[
∂µ + ig

(
Ajµ − qAj+1

µ

)]
φj (2.33)

The pattern of spontaneous symmetry breaking is U(1)N+1 → U(1). Below the scale f ,

working in unitary gauge, we find the effective Lagrangian for the gauge fields

L = −
N∑

j=0

1

4
F jµνF

j µν +

N−1∑

j=0

g2f2

2
(Ajµ − qAj+1

µ )2 . (2.34)

The mass matrix is exactly of the clockwork form, with the heavy gauge bosons playing

the role of the photon gear and one photon remaining massless.

The clockwork photon can have interesting phenomenological applications. If matter

is charged only under the Abelian factor corresponding to the last site, the clockworking

will generate exponentially small couplings to the massless photon. This can lead to visible

particles with so-called millicharges, even though there are no small numbers in the theory.

Furthermore, heavy photon gears could be accessible to collider searches.

2.5 Clockwork graviton

We conclude this section by turning our attention to the case of spin-2 gravitons.

Let us imagine N+1 copies of general relativity, with N+1 associated massless gravitons.

In the linear approximation we can describe each graviton through an expansion of the

metric around flat space-time, gµνj = ηµνj + 2hµνj /M2
j . The clockworking which breaks

N + 1 copies of diffeomorphism invariance to a single diffeomorphism invariance may be

seen at the linear level through near-neighbour Pauli-Fierz terms for massive gravitons4

L = −m
2

2

N−1∑

j=0

([
hµνj − qh

µν
j+1

]2
−
[
ηµν(hµνj − qh

µν
j+1)

]2
)

. (2.35)

Limiting our considerations to the linear approximation, we see that the mass terms

in eq. (2.35) are invariant under the gauge symmetry

hµνj → hµνj +
1

qj
(∂µAν + ∂νAµ) , (2.36)

where Aµ(x) is a space-time vector. This gauge symmetry enforces the masslessness of the

clockwork graviton and is respected by the clockwork structure of the mass terms. The

mass matrix is again of the clockwork form, with the heavy gravitons as the gears and

4Mass terms such as this typically arise in deconstructions of gravity [41].
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one remaining massless graviton. The massless graviton is described by the same linear

combination of the original gauge eigenstates as for the scalar clockwork.

Suppose that the SM sector, with energy-momentum tensor Tµν , is coupled only to the

last site of the clockwork, with a corresponding ‘Planck-like’ scale MN . Then the coupling

to the true massless graviton will be5

− 1

MN
hµνN Tµν → −

1

MP
h̃µν0 Tµν MP =

qN MN

N0
. (2.37)

We have found that the effective Planck scale MP , which measures the strength of gravity

in the low-energy sector of the theory, is exponentially larger than the fundamental gravity

scale MN , being enhanced by a factor qN . This offers the possibility of a clockwork solution

to the hierarchy problem in which all new physics, including the completion of quantum

gravity, may lie close to the weak scale, in full analogy with the solutions offered by LED

or RS extra dimensions.

To understand how the clockwork can solve the hierarchy problem, we will explore

an overarching framework which sheds new light on the clockwork. This is obtained by

considering the limit in which the number of fields goes to infinity, N →∞, and the fields

span a physical, albeit compactified, spatial dimension.6

3 A clockwork dimension

3.1 The limit N → ∞ and the approach to the continuum

To develop a geometric picture of the clockwork mechanism, it is useful to consider the

case in which the discrete version of the clockwork arises as a deconstruction of an extra

dimension. Let us begin by defining an extra spatial coordinate y with −πR ≤ y ≤ πR,

where R is the radius of the compactified dimension, orbifolded such that y is identified

with −y. We write the 5D metric in a reasonably general form

ds2 = X(|y|)dx2 + Y (|y|)dy2 , dx2 = −dt2 + d~x2 . (3.1)

The action for a real massless scalar in this space is7

S = 2

∫ πR

0
dy

∫
d4x
√−g

(
−1

2
gMN ∂Mφ∂Nφ

)

= −
∫ πR

0
dy

∫
d4xX2Y 1/2

[
(∂µφ)2

X
+

(∂yφ)2

Y

]

= −
∫ πR

0
dy

∫
d4x

[
(∂µφ)2 +

X2

Y 1/2

(
∂y

φ

X1/2Y 1/4

)2
]
, (3.2)

5Throughout the paper MP refers to the reduced Planck scale, equal to 2.4 × 1018 GeV.
6As discrete multi-gravity theories are plagued by theoretical subtleties we will focus on the continuum

realisation of clockwork gravity; however it would be interesting to explore further the discrete theory

sketched above.
7Throughout the paper we use a shorthand notation to indicate contraction of indices in flat space,

(∂µφ)2 ≡ ηµν ∂µφ∂νφ with η = (−,+,+,+).
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where M,N are 5D space-time indices and in the last line a y-dependent field redefinition

was made to realise canonical 4D kinetic terms.

We now discretise the extra dimension by choosing yj = ja (with j = 0, . . . , N) where a

is the lattice spacing, such that Na = πR. We also use the shorthand notation F (ja) = Fj
for F = X,Y, φ. After a trivial field rescaling, eq. (3.2) becomes

S = − 1

2

∫
d4x




N∑

j=0

(∂µφj)
2 +

N−1∑

j=0

m2
j (φj − qjφj+1)2


 (3.3)

m2
j ≡

N2Xj

π2R2 Yj
, qj ≡

X
1/2
j Y

1/4
j

X
1/2
j+1Y

1/4
j+1

. (3.4)

For the mass parameter m2
j to remain constant along the deconstruction, as in the

clockwork, we must have Yj ∝ Xj .
8 Furthermore, the only solution for q to remain y-

independent and for qN to give a finite but non-trivial clockworking in the limit of an

infinite number of sites is9

Xj ∝ Yj ∝ e−
4kπRj
3N , (3.5)

such that

qN = ekπR . (3.6)

The parameter k, which will be called the ‘clockwork spring’, measures the effectiveness of

the clockwork mechanism. When the clockwork is not operating (as in the case of a flat

metric with X = Y = 1), then k = 0.

Therefore, in the large-N limit of the discrete version, the clockwork parameters m2

and q must scale as

m2 =
N2

π2R2
, q = e

kπR
N . (3.7)

We can view eq. (3.7) as the Renormalisation Group (RG) trajectory of the clockwork

parameters m2 and q, as we coarse grain the extra dimension by changing N for a fixed

compactification radius R or, equivalently, by changing the lattice spacing a. By defining

the RG scale µ ≡ 1/a = N/πR and the β-functions as βX = dX/d lnµ, we find

βm2 = 2m2 , βq = −q ln q . (3.8)

It may seem from eq. (3.7) that the RG flow has an uninteresting behaviour in the UV,

since both m2 and q have trivial UV attractors, m2 →∞ and q → 1 as N →∞. Instead,

the UV limit of the discrete clockwork leads to a non-trivial theory. This can be seen by

inspecting the mass spectrum as the clockwork parameters evolve according to their RG

trajectory. Replacing eq. (3.7) in eq. (2.16) and taking the large-N limit, we find that the

excitations are

m2
0 = 0 , m2

n = k2 +
n2

R2
+O(1/N) n = 1, . . . , N (3.9)

8Of course, as in the discrete models, it is not really important that the mass parameter is constant, but

rather that it is at a similar scale along the lattice. For simplicity we study only the constant case, but a

generalisation to other cases would be interesting.
9We are grateful to Riccardo Rattazzi for suggesting to us the use of this metric.
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The gears have a characteristic spectrum, with evenly distributed energy levels and a mass-

squared splitting equal to the inverse radius-squared. However, the spectrum is shifted by

a mass gap equal to the clockwork spring k. The band ∆m, which was finite at finite N ,

now extends to infinity as we take N →∞.

3.2 The continuum clockwork

We now have the ingredients to study the clockwork from a 5D point of view. By extrap-

olating eq. (3.5) to the continuum, we find that the metric of the clockwork space is

ds2 = e
4k|y|

3 (dx2 + dy2) . (3.10)

Note that we have flipped the sign of k. As discussed in appendix C, descriptions with

positive or negative k are equivalent and correspond to a change of coordinates. Our

present choice is made to conform with phenomenological conventions in which the visible

sector is located at y = 0, rather than y = πR. As we will discuss in section 3.5, the metric

in eq. (3.10) is the same as the one found in linear dilaton duals of LST [17].

To allow for an easy interpolation between flat, warped, and clockwork spaces we

rewrite the metric as

ds2 = e
4k|y|

3 (dx2 + e−4`k|y|dy2) . (3.11)

Flat space corresponds to k = 0. For warped space, ` = 1/3 and k = (3/2)k̂ where k̂

is the inverse AdS radius. We recover the conformally flat clockwork metric of eq. (3.10)

using ` = 0.

The 5D action of a real massless scalar field in the geometry described by eq. (3.11) is

S = −1

2

∫
d4x

∫ πR

−πR
dy
[
e2(1−`)k|y|(∂µφ)2 + e2(1+`)k|y|(∂yφ)2

]
. (3.12)

We expand the 5D field as

φ(x, y) =

∞∑

n=0

φ̃n(x)ψn(y)√
πR

, (3.13)

where φ̃n(x) satisfy the 4D free equation of motion ∂2
µφ̃n(x) = m2

nφ̃n(x), while the equation

of motion for ψn(y) is
[
∂2
y − (1 + `)2k2 + e−4`k|y|m2

n

]
e(1+`)k|y|ψn(|y|) = 0 . (3.14)

For ` = 1/3, this is the usual equation for the KK modes in RS giving the mass eigenvalues

mn = 2kxn/3 = xnk̂, where xn are the zeros of the Bessel function J1.

Let us focus on the clockwork (l = 0). In this case eq. (3.14) becomes
[
∂2
y − k2 +m2

n

]
ek|y| ψn(y) = 0 . (3.15)

Setting Neumann boundary conditions ∂yψ = 0 at y = 0 and |y| = πR and normalising

the modes ψ such that φ̃ have canonical kinetic terms in 4D, we find

ψ0(y) =

√
kπR

e2kπR − 1
(3.16)

ψn(y) =
n

mnR
e−k|y|

(
kR

n
sin

n|y|
R

+ cos
ny

R

)
, n ∈ N (3.17)
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with mass

m2
0 = 0 , m2

n = k2 +
n2

R2
. (3.18)

In the continuum, the gears play the role of the Kaluza-Klein (KK) excitations and

their mass spectrum coincides with the result obtained in the large-N limit of the discrete

clockwork, see eq. (3.9). From eq. (3.12) we see that, taking into account the integration

measure, the density of the n-th KK mode is given by dP = e2k|y| ψ2
n(y) d(y/πR). Thus,

the solutions in eqs. (3.16)–(3.17) show that the zero mode has a probability density ex-

ponentially localised at y = πR, while the excited modes have oscillating densities along

the extra dimension. This is completely analogous to the case of the discrete clockwork,

as exhibited by eq. (2.18), once we recall that in the continuum case we have inverted the

role of y = 0 with y = πR for phenomenological reasons.

The working of the continuum clockwork can be understood by considering an axion

model where a 5D complex scalar spontaneously breaks a global U(1) symmetry. On a

brane living at y = 0 one can add a gauge group and matter fermions, together with a

local interaction to the bulk scalar. At low energies the effective theory for the axion φ is

described by the action

S =

∫
d4x

∫ πR

−πR
dy

[
−e2k|y| (∂Mφ)2

2
+ δ(y)

(
− 1

4g2
GµνG

µν +

√
πR

16π2f
φGµνG̃

µν

)]
,

(3.19)

where we have included the covariant δ-function, δ(y)/
√
g55, and 4D Levi-Civita sym-

bol, εµνρσ/
√
−g(4D), and all index contractions are performed with a flat metric, as the

clockwork factors have been explicitly extracted. The theory described by eq. (3.19) is

exactly the analogue of eq. (2.21) for the discrete case, with the coupling to the last

site of the discrete clockwork replaced by the coupling to a brane at the origin of the

clockwork dimension.

After expanding φ(x, y) as in eq. (3.13) and integrating over the extra dimension,

eq. (3.19) becomes

S =

∫
d4x

(
−1

2

∑

n

[
(∂µφ̃n)2 +m2

nφ̃
2
n

]
− 1

4g2
GµνG

µν +
1

16π2
GµνG̃

µν
∞∑

n=0

φ̃n
fn

)
, (3.20)

where fn = f/ψn(0). Using eqs. (3.16)–(3.17), we obtain

f0

f
≈ ekπR√

kπR
,

fn
f

=

√
1 +

k2R2

n2
, n = 1, 2, . . . (3.21)

The decay constant for the zero mode is exponentially amplified with respect to the original

f , just as in the discrete case, with qN replaced by its counterpart in the continuum ekπR.

On the other hand, the decay constants for the n-th excited gear remains roughly equal to f .

This demonstrates the continuum limit of the clockwork mechanism. Let us now

investigate how such a 5D set up can arise self-consistently.
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3.3 A clockwork geometry

As discussed in ref. [30], the simplest setup that generates the desired metric is given by a

dilaton field in 5D space-time. Let us define the theory in terms of the 5D gravity action

in the Jordan frame

S =

∫
d4x dy

√−g M
3
5

2
eS
(
R+ gMN∂MS ∂NS + 4k2

)
, (3.22)

where S is the dimensionless dilaton field and k2 characterises the (negative) vacuum

energy in the bulk. The reason for our normalisation of the vacuum energy term will be

clear soon. It should be kept in mind that this k2 term breaks a symmetry under which S

is shifted by a constant (S → S + c) and the metric is rescaled by a constant Weyl factor

(gMN → e−2c/3 gMN ).

We compactify the fifth dimension on an S1/Z2 orbifold with extra fields localised on

its fixed points y0 = 0 and yπ = πR. Calling Λ0 and Λπ the corresponding vacuum energies,

we add to the action the brane terms

S =

∫
d4x dy

√−g eS
[
− δ(y − y0)√

g55
Λ0 −

δ(y − yπ)√
g55

Λπ

]
. (3.23)

It is convenient to work in the Einstein frame, where the gravity kinetic term is canon-

ical. This is achieved through the metric transformation

gMN → e−
2S
3 gMN (3.24)

which turns the total action into

S =

∫
d4x dy

√−g
{
M3

5

2

(
R− 1

3
gMN∂MS ∂NS + e−

2S
3 4k2

)

− e−
S
3

√
g55

[δ(y − y0)Λ0 + δ(y − yπ)Λπ]

}
. (3.25)

Note that the canonically normalised dilaton field is M
3/2
5 S/

√
3. In the Einstein frame it

is apparent how the bulk action has a shift symmetry in S in the limit k → 0. This is

important because, for phenomenological reasons, we are also interested in the case k �
M5. The shift symmetry ensures that this condition is technically natural and protected

against quantum corrections.

We solve the equations of motion for the theory assuming that the metric is consis-

tent with Poincaré invariance in 4D and we fix the parametrisation invariance of the fifth

coordinate by going to a conformally flat basis10

ds2 = e2σ(y)
(
ηµνdx

µdxν + dy2
)
. (3.26)

10For a treatment of the bulk geometry with a dilaton see also [42].
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With this choice, the coupled system of differential equations for the 55 and µν components

of the Einstein equations together with the equation of motion for S is (see appendix A

for a derivation) 



36σ′2 − S′2 = 12 k2 e2(σ−S3 ) − 6∆

9(σ′′ − σ′2) + S′2 = 0

S′′ + 3σ′S′ = 4 k2 e2(σ−S
3

) −∆

(3.27)

where primes denote derivatives with respect to the fifth coordinate y and the boundary

term ∆ is

∆ =
e(σ−

S
3 )

M3
5

[δ(y − y0)Λ0 + δ(y − yπ)Λπ] . (3.28)

Using the technique of ref. [43], one can show that the most general solution of the

system (3.27), consistent with the four junction conditions on the derivatives of σ and S

dictated by ∆ and with the orbifold symmetry y → −y, is

σ =
2k|y|

3
e

(
σ0−S03

)
+ σ0 , S = 2k|y| e

(
σ0−S03

)
+ S0 , (3.29)

under the special conditions

− Λ0 = Λπ = 4kM3
5 . (3.30)

The two integration constants σ0 and S0 have no physical consequence. Without loss of

generality, we can choose σ0 = S0 = 0, so that the solution is simply

3σ = S = 2k|y| . (3.31)

We recognise that this solution indeed corresponds to the metric in eq. (3.10), derived

from an extrapolation to the continuum of the discrete clockwork. In this context, the

clockwork spring k is interpreted as a measure of the bulk Jordan-frame vacuum energy of

the compactified space in which the dilaton and gravity live.

Recalling from eq. (3.24) that the relation between the Jordan and Einsten frame

metrics is g
(J)
MN = e−2S/3g

(E)
MN , the ansatz in eq. (3.26) corresponds to

g
(J)
MN = e2(σ−S3 )ηMN . (3.32)

Therefore, on the solution of eq. (3.31), space-time is flat in the Jordan frame and its

intrinsic curvature vanishes. However, in this frame, the effective Planck mass is expo-

nentially decreasing as we move along the fifth dimension towards y → 0, signalling that

gravity becomes prematurely strongly interacting near the y = 0 brane. On the contrary,

the Planck mass is constant in the Einstein frame, but the curvature grows exponentially

as y → 0 (see eq. (A.8) in appendix A), revealing the onset of strongly-interacting gravity.

As noted in ref. [30], an appealing aspect of the theory defined by eq. (3.22) is that a

mechanism for radius stabilisation is already built in and does not require any additional

field, unlike the RS case in which radius stabilisation is achieved at the expense of at least

one new scalar field, as in the Goldberger-Wise solution [44]. Indeed, let us suppose that
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interactions localised on the brane at y = πR generate a potential for S, which fix the field

value on the brane. This corresponds to an additional boundary condition S(πR) = Sπ,

where Sπ is a number naturally expected to be of order one. Imposing this boundary

condition on the solution in eq. (3.31) determines the value of R such that

kπR =
Sπ
2
. (3.33)

An efficient clockworking factor can be easily obtained for values of Sπ that are moderately

large, but not incompatible with natural expectations.

Having the same field — the dilaton — responsible for both generating the non-trivial

metric and stabilising the size of the compactified dimension is certainly an attractive

feature of the theory. In the RS case, the geometry is determined by the vacuum terms,

while an additional scalar field determines the brane separation. The counting of the

required degrees of freedom is the same in both theories. We also remark that, while the

clockwork has a radius stabilisation mechanism already built in, it is nonetheless compatible

with solutions à la Goldberger-Wise, if a boundary condition on S(πR) is not imposed. An

example is given in appendix D.

3.4 A solution to the hierarchy problem

On the background of the clockwork metric, the graviton fluctuations around 4D Minkowski

space, in the transverse-traceless gauge and weak-field limit, are described by the action

(see appendix B for a derivation)

S = −1

2

∫
d4x

∫ πR

−πR
dy e2k|y|

[
(∂λhµν)(∂λhµν) + (∂yhµν)(∂yh

µν)

]
. (3.34)

This is the same form of action as for the scalar in eq. (3.12). Thus, decomposing the

graviton mass eigenstates as

hµν(x, y) =

∞∑

n=0

h̃
(n)
µν (x)ψn(y)√

πR
, (3.35)

it is easy to see that the functions ψn and the mass eigenvalues mn are given by eqs. (3.16)–

(3.18), i.e. by the same solutions as in the scalar case.

Suppose that the SM sector with Lagrangian density LSM(x) is localised on a 4D brane

at y = 0. Taking into account that the modes h̃
(n)
µν have canonical kinetic terms in 4D, we

can write the gravitational interaction as

L = −
hµν(x, 0)T SM

µν (x)

M
3/2
5

= −
∞∑

n=0

h̃
(n)
µν (x)T SM

µν (x)

Λn
(3.36)

T SM
µν = −2

∂LSM

∂gµν
+ gµνLSM

∣∣∣∣
gµν=ηµν

, Λn ≡
√
πRM

3/2
5

ψn(0)
. (3.37)

It is now useful to derive the effective 4D Planck mass MP , defined as the constant in

front of the Einstein-Hilbert action (see appendix A),

M2
P = 2M3

5

∫ πR

0
dy e2ky =

M3
5

k

(
e2kπR − 1

)
. (3.38)
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It is apparent how the clockwork can produce an effective 4D Planck mass exponentially

larger than the fundamental 5D mass M5.

Rewriting eq. (3.37) with the help of eq. (3.38) and the expressions of ψn in eqs. (3.16)–

(3.17), we find that the effective scales of gravitational interaction are

Λ0 = MP , Λn =

√
M3

5 πR

(
1 +

k2R2

n2

)
. (3.39)

Equation (3.39) is the expression of the clockwork. It shows that the strength of the

gravitational interaction of the massless graviton is determined exactly by the conventional

Planck mass MP . Instead, the interaction scale of the massive graviton gears is roughly

given by Λn ≈M3/2
5 /k1/2, which is smaller than MP by a clockworking factor ekπR.

It is important to remark that Λn measures the interaction of the graviton gears, but

does not correspond to the scale at which perturbation theory ceases to be valid. Indeed,

the clockwork theory becomes strongly interacting at a scale much lower than Λn. This

can be understood with the following argument.

Let us parametrise the production cross section of a single graviton gear as σn =

c/(πΛ2
n). Here c is a coefficient that depends on the production process under consideration,

but does not depend on any of the clockwork parameters, as long as the energy involved

E is much larger than mn. When mn becomes of the order of E or larger, then c quickly

drops to zero. This means that, for a given energy E, one can produce only modes with

n <∼ Nmax, where Nmax = R(E2 − k2)1/2. The total cross section inclusive of all allowed

channels is

σ =

Nmax∑

n=0

σn ≈
cE

π2M3
5

, (3.40)

where we have taken E � k. The condition of perturbative unitarity σ <∼ π/E2 implies

E <∼ (π/c1/3)M5. This shows that M5 is the scale at which the theory becomes strongly

interacting and quantum gravity effects take over. The same conclusion could have been

reached by considering scattering processes in 5D, as M5 is evidently the effective scale of

gravitational interactions.

We can also learn about the onset of strong dynamics with the following line of rea-

soning. When the decay width of the graviton gears (Γn) is of the order of the mass (mn),

we lose the notion of a particle excitation and perturbation theory breaks down. Since

Γn ≈ Nchm
3
n/(16πΛ2

n), where Nch is the effective number of decay channels, a calculable

perturbative regime requires a certain amount of separation between the gear mass and

interaction scale, i.e. mn < Λn. At small n, this constraint implies k < M5.

A final consideration arises from the fact that a sensible derivative expansion of the

gravitational action is only possible whenever the curvature does not exceed the 5D Planck

mass. This is a non-trivial constraint for the clockwork space, since its curvature is not

constant. From the expression of the clockwork curvature, see eq. (A.8), we find that the

upper bound |R| < M2
5 implies k < M5, which is the same condition for perturbativity we

have just derived above. This means that, in the regime in which the graviton gears are

weakly interacting, the curvature condition is automatically satisfied.
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The results presented in this section illustrate how the clockwork can solve the Higgs

naturalness problem. Since M5 is the cutoff scale of the theory, where quantum gravity

takes over, the Higgs mass is naturally expected to be of the order of the fundamental scale

M5. Then the naturalness problem is solved by assuming that M5 lies around the weak

scale, while the 4D Planck mass is clockworked away to much larger values. In order to

achieve this, the product kR need only be moderately large. From eq. (3.38) we obtain

kR = 10 +
1

2π
ln

(
k

TeV

)
− 3

2π
ln

(
M5

10 TeV

)
. (3.41)

Since the effects of quantum gravity have not shown up at the LHC some degree of tuning

is required to have mh < M5. However this is similar to the tuning required in other

symmetry-based solutions to the hierarchy problem.

In conclusion, clockwork gravity in the continuum offers a solution to the Higgs nat-

uralness problem, concluding this speculation from the discrete perspective of section 2.5.

The hierarchy GN/GF is explained by taking a theory which must be UV-completed near

the weak scale and clockworking the interaction scale of the massless graviton to MP . As

in the scalar clockwork, the masses of the new resonances are not around MP , since this

very large interaction scale is just a mirage constructed from a weak-scale quantity and an

exponentially small number. As we will see, this is in fact the same solution as proposed

in [17, 28] from the perspective of Little String Theory.

3.5 UV perspective

In string theory the 4D Planck mass can be related to the string coupling gs, the string

scale Ms, and the volume of the six extra dimensions V6 as

M2
P =

M8
s V6

g2
s

. (3.42)

If Ms ∼ V
−1/6

6 ∼TeV then a large 4D Planck mass arises in the limit of vanishingly

small string coupling, gs ∼ 10−15(Ms/TeV)(M6
s V6)1/2. This limit corresponds to a class

of scenarios known as Little String Theory (LST) [20–25]. It was realised some time ago

that in these theories the hierarchy problem may be resolved by bringing the string and

compactification scales all the way down to the weak scale, and translating the puzzling

ratioGN/GF to a question of the smallness of the string coupling [17, 26–28]. This approach

is reminiscent of the considerations made in section 1, where it was argued that the UV-

completion of gravity could lie far below the 4D Planck mass if a coupling is very small.

Using the AdS/CFT correspondence [45], it has been argued that LST is described

holographically by asymptotically linear dilaton backgrounds [18, 19]. This has allowed

the construction of calculable setups which address the hierarchy problem [17, 28]. In a

similar fashion, these considerations bring us to the linear dilaton background of eq. (3.31),

which sources the clockwork metric and was derived from the continuum limit of the low

energy description of the clockwork mechanism. Thus a connection between the clockwork

mechanism and LST is established.
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In retrospect, the connection between the two theories is not surprising. In the clock-

work mechanism an apparently large interaction scale fN is generated from a smaller scale

f through the introduction of a naturally small factor q−N (in other words fN ≈ f/q−N ).

In LST an exponentially large Planck scale MP is generated from TeV-size masses (Ms,

V
−1/6

6 ) through the introduction of a small coupling gs, as demonstrated in eq. (3.42). Thus

the two made use of the same ingredients from the outset. Furthermore, this suggests that

the discrete clockwork gravity model of section 2.5 is a deconstruction of the holographic

dual of LST. It should be kept in mind that this is not a deconstruction of LST itself, as the

deconstruction of LST will be supersymmetric and conformal. The explicit deconstruction

of the full 6D N = (1, 1) LST has been provided in [46].

Studies of LST also shed light on the possibility of a 4D field theory dual of the 5D

clockwork theory. Stacks of NS5-branes give rise to 6D LSTs which are strongly coupled,

non-local, and do not admit a Lagrangian description [18, 27]. Since the holographic

dual of these theories is a linear dilaton background in higher dimensions, this would

conversely suggest that a 4D theory that gives rise to a spectrum of 4D particles with

the characteristic clockwork spectrum and interactions may correspond to a theory with

very unusual properties, from a field theoretical point of view. It is worth noting that the

continuum clockwork theory is not AdS5, thus it is not clear if a 4D dual theory exists.

Finally we stress that LST was recognised not only to offer a rationale for the hierarchy

problem, but also as a source of potentially rich weak-scale phenomenology [17, 27, 29, 30],

due to its peculiar particle spectrum. The phenomenological studies were made possible

through the dual linear dilaton theory description and, as the setup is the same, these stud-

ies also apply to the continuum clockwork theory. We will return to the phenomenological

consequences of the clockwork in a forthcoming publication.

3.6 Relation to other theories

The relationship between the clockwork gravity theory and LED or RS can also shed some

light on the nature of the solution to the hierarchy problem.

Let us first compare the discrete clockwork with deconstructions of LED, corresponding

to Xj = Yj = 1 in eq. (3.1), and to RS, which correspond to Xj = exp(−2k̂πRj/N), Yj = 1,

where k̂ is the inverse AdS radius.11 Using eq. (3.4), we find that the parameters m2
j and

qj that characterise the deconstruction are

m2
j qj

LED
N2

π2R2
1

RS
N2

π2R2
e−

2k̂πRj
N e

k̂πR
N

CW
N2

π2R2
e
kπR
N

(3.43)

For the LED case, the mass terms are site-independent, but there is no clockworking, as

qj = 1. For RS models, the mass terms are warped along the extra dimension, thus they

11For related studies of deconstructions of AdS and the corresponding general phenomenology of the

Higgs sector, fermions, and vector bosons, see [47–49].
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are site-dependent and do not all enter at the same scale. However, the mixing term qj ,

and hence the zero mode, is analogous to the clockwork. This suggests that the clockwork

metric is rather unique. It realises site-independent mass terms which all enter at the same

mass scale, as in LED, but with warping of bulk zero mode interactions, as in RS models.

These differences are also found in the continuum version of the theories. The masses

of the KK modes, their interaction scale, and the relationship with the 4D Planck mass in

the three 5D theories are given by

m2
n Λ2

n M2
P

LED
n2

R2

M2
P

2
M3

5 2πR

RS ≈ [(n+ 1
4)πk̂]2 ≈ M3

5

k̂

M3
5

k̂
(e2k̂πR − 1)

CK k2 +
n2

R2
M3

5πR
(

1 + k2R2

n2

) M3
5

k
(e2kπR − 1)

(3.44)

In LED, the ratio between the Planck and weak scale is explained by a large volume

factor (V �M−1
5 , where the extra dimensional ‘volume’ is V = 2πR). The KK modes have

MP -suppressed interactions12 and are uniformly distributed in mass. The large volume

implies very small KK mass splittings, δmn = 2πM3
5 /M

2
P .

In RS, one generally assumes M5 ∼ k̂. Then the hierarchy is explained not by the

volume but by the geometry, with a warping factor such that MP ∼ M5e
k̂πR. The KK

modes have TeV-scale interactions and masses characterised by k̂, with an approximately

uniform distribution such that δmn/mn = O(1) (for instance, (m2−m1)/m1 = 0.84). The

RS expressions for mn and Λn in eq. (3.44) are valid only in the limit of large warping

(ek̂πR � 1). Using instead expressions valid in the limit of small k̂, one can show that

RS coincides with LED when k̂ → 0. Thus, RS can be viewed as a deformation of LED

controlled by the parameter k̂. This result was used in ref. [50] to construct an RS theory

with small AdS curvature (k̂ � M5). In the UV the theory is identical to 5D LED,

while the small warping creates a mass gap in the IR. In this way, astrophysical bounds

on light KK emission are avoided, while the collider phenomenology of 5D LED (often

unjustly neglected by experimental analyses) is viable. Modified KK spectra have also

been considered in the context of hyperbolic geometries, such as [51].

The clockwork can be viewed as an alternative deformation of 5D LED. In the limit

k → 0, the clockwork expressions in eq. (3.44) coincide with those of LED. However, for

finite k, there are important differences. The mass spectrum has a mass gap, followed by

a dense distribution of states such that, for moderate values of n,

δmn

mn
≈ n+ 1

2

k2R2
. (3.45)

12The factor of 1/2 in Λ2
n for LED comes because we are restricting the summation over KK modes to

positive values of n. The KK modes with negative n are identified with their −n counterpart and the fields

are finally rescaled to make the kinetic terms canonical.
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RS CW

LED

ds2 = e2k̂|y|dx2 + dy2

ds2 = dx2 + dy2

ds2 = e
4k|y|

3 (dx2 + dy2)

k ! 0k̂ ! 0

Figure 2. A schematic view on how LED can be recovered as special limits of RS and the clockwork

(CW). There is no simple one-parameter deformation to move between RW and CW.

Using eq. (3.41), we see that for m1 in the TeV range, the mass splitting is in the tens of

GeV and, depending on the energy resolution and smearing, at collider experiments the

resonances can be individually identified or appear as a continuum.

As pictorially illustrated in figure 2, both RS and the clockwork can be interpreted as

deformations of LED, and the latter is recovered in the limit in which k̂ or k vanish. On the

other hand, there is no simple one-parameter deformation from RS to the clockwork. This

can also be understood at the level of fundamental theory, since turning the clockwork into

RS cannot be done by modifying a parameter, but by suppressing a degree of freedom (the

dilaton). Nonetheless, there are superficial, but important, similarities between the two

theories, as evident for instance from the two corresponding expressions of MP in eq. (3.44).

However, these similarities hide a fundamental difference between the parameters k̂ and

k. In RS, k̂ and M5 are naturally of the same order. As shown in appendix C, both

parameters are rescaled in the same way as we change coordinates from the 0-frame to the

π-frame, k̂′ = ek̂πRk̂ and M ′5 = ek̂πRM5. Having k̂ � M5 in RS is possible, but it looks

like a tuning. On the other hand, in the clockwork, the parameter k is protected by a

dilaton shift symmetry. This difference shows up when we transform from the 0-frame to

the π-frame because, as shown in appendix C, k′ = k and M ′5 = e2kπR/3M5. From this

perspective, it is evident that having k ∼M5 in the clockwork is possible, but it looks like

a coincidence. Since the two parameters are logically distinct, the natural expectation is

that k is smaller than M5 (for k > M5, the theory is not under control, as explained in

section 3.4). Therefore, the onset of the gears could naturally appear at masses far below

the cutoff M5, unlike the case of RS.

The clockwork with k < M5 reveals novel features, which are present in neither LED

nor RS. For a fixed clockworking factor, the expression of the 4D Planck mass in eq. (3.44)

is MP ∼M3/2
5 (2πR)1/2ekπR. So the hierarchy is explained by a combination of volume and

geometry, in an intermediate situation between LED and RS. The clockworking factor can

then be smaller than its warping analogue, as it is assisted by a volume factor. The KK

interaction scale is also rather special in the clockwork. First of all, it is mode-dependent,

decreasing with n and saturating at large n. Second, it is larger than the 5D gravity scale

by a factor (M5/k)1/2, which can be considerable for small k.
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0

1

2

3

4

5

6

�m ⇠ 2m

m1 ⇠ (q � 1)m

Discrete Continuum
Clockwork Clockwork

r
k2 +

n2

R2

Figure 3. The mass spectrum of the discrete (left) and continuum (right) clockwork.

4 Conclusions

The clockwork is a highly efficient mechanism for generating exponentially suppressed

interactions within a microscopic theory containing only O(1) parameters, in natural units,

and a finite number of fields. As a result, one can generate exponentially large interaction

scales, even though no new physics appears at this high energy scale. For this reason the

clockwork has been used in models of inflation or relaxation to motivate apparent super-

Planckian field excursions. However, given that there are numerous clues for apparent

new high interaction scales, such as the PQ scale, the neutrino see-saw scale, and even the

Planck scale itself, it is interesting to investigate whether these interaction scales could in

fact be a mirage, spawned by some form of clockwork mechanism. The implication would

be that all of the responsible new physics and the UV-completion are actually at much

lower energies, possibly close to the TeV region.

In this work we have generalised the low energy structure of the scalar clockwork mech-

anism to fermions, vector bosons, and gravitons. These models have obvious applications

for the QCD axion, neutrino masses, flavour, dark sectors with millicharges, and multi-

gravity theories. In all these cases, exponentially large interaction scales can occur with

all of the new physics at, or even below, the weak scale. In every case the clockwork gives

rise to a smoking gun spectrum of states, the clockwork ‘gears’, shown in figure 3. The

peculiar spectrum of gears exhibits a mass gap, followed by a band of resonances whose

couplings to the SM are not suppressed, thus they could be discovered at colliders.

As the clockwork mechanism can apply to a variety of fields, it is natural to search for an

overarching clockwork framework. To this end we studied the continuum limit N →∞ in

which the clockworking factor qN remains exponentially large, but finite. A setup with site-

independent mass parameters was studied. We expect that the results would not change

qualitatively if different masses of comparable size were considered, although it may be

interesting to generalise our findings to alternative lattices and corresponding geometries.

We found that the continuum clockwork corresponds to a 5D theory which has previ-

ously been studied in the context of linear dilaton duals to Little String Theory [26–28, 30].
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This reveals a resolution of the hierarchy problem which has some features in common with

LED and RS, but is conceptually distinct from these extra dimensional theories. In par-

ticular, as shown in figure 3, the spectrum of resonances differs from either LED or RS

models, with a mass gap controlled by one parameter, followed by a series of excitations

controlled by a separate parameter. This leads to a distinctive collider phenomenology

where, depending on experimental resolution, the band of new resonances may show up

as individual particles or as a fat continuum contribution, as was considered in [29] for

the linear dilaton theory. The collider phenomenology of both the discrete and continuum

versions of the clockwork will be presented in forthcoming work.
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A Useful formulæ for 5D gravity

For the ease of the reader we collect some general formulæ that are useful for projecting

5D gravity into 4D. Let us consider a general metric of the form

ds2 = gMN dx
MdxN = ĝµν(x, z) dxµdxν + dz2 . (A.1)

The 5D gravitational action is

S =

∫
d5x
√−g M

3
5

2
R5(g) = (A.2)

=

∫
d4x dz

√
−ĝ M

3
5

2

[
R4(ĝ) +

(ĝµν∂z ĝµν)2

4
+

(∂z ĝ
µν)(∂z ĝµν)

4

− 1√−ĝ ∂z
(√
−ĝĝµν∂z ĝµν

)]
,

where R5(g) and R4(ĝ) are the 5D and 4D Ricci scalar. The last term in eq. (A.2) is a

total derivative, thus to determine the graviton properties we may discard it. However, we

have included it above as it enables a quick determination of the Ricci scalar, since the

term in the square brackets is the effective 5D Ricci scalar.

Let us now focus on metrics defined by

ds2 = e2σ̂(z)g̃µν(x) dxµdxν + dz2 = e2σ(y)
[
g̃µν(x) dxµdxν + dy2

]
(A.3)

The second form is obtained after a change of variables such that dz/dy = eσ and σ(y) =

σ̂(z) when z is expressed in terms of y or vice versa. This implies

σ̂′ = σ′ e−σ , σ̂′′ = (σ′′ − σ′2) e−2σ , (A.4)
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where the primes denote derivatives with respect to the corresponding variable (z for σ̂

and y for σ).

From now on, in the rest of this appendix, we will set the intrinsic 4D metric to be

flat, taking g̃µν = ηµν . Then, the 5D Ricci scalar becomes

R5 = −4(2σ̂′′ + 5σ̂′2) = −4(2σ′′ + 3σ′2)e−2σ . (A.5)

We are especially interested in the cases of the clockwork (CK) and warped (RS)

spaces, in which the functions σ(y) and σ̂(z), defined in the “upper part” of the orbifold

with y0 ≤ y ≤ yπ and z0 ≤ z ≤ zπ (with the “lower part” obtained by orbifold symmetry),

are given by

σCW(y) =
2

3
ky , y0 = 0 , yπ = πR ,

σ̂CW(z) = ln
z

z0
, z0 =

3

2k
, zπ = z0e

2
3
kπR , (A.6)

σ̂RS(z) = k̂z , z0 = 0 , zπ = πR ,

σRS(y) = − ln(1− k̂y) , y0 = 0 , yπ =
1− ek̂πR

k̂
. (A.7)

Thus, we find the curvature of the clockwork and AdS5 spaces

CW ⇒ RCW = −16

3
k2e−4ky/3 = −16

3

(
kz0

z

)2

, (A.8)

RS ⇒ RRS = −20 k̂2 . (A.9)

These expressions show that the clockwork space has the geometry of a cone with a sin-

gularity at z = 0 (y = −∞). The compactification of the extra dimension selects a slice

of the conical space in which the singularity is avoided.13 For RS, we recognise the AdS5

space with constant curvature.

The Einstein equation is GMN = TMN/M
3
5 , where the Einstein tensor in the two

coordinate choices is given by

GMN = RMN −
1

2
gMNR

= 3(σ̂′′ + 2σ̂′2)e2σ̂(ηMN − δM5δN5) + 6σ̂′2δM5δN5

= 3(σ′′ + σ′2)(ηMN − δM5δN5) + 6σ′2δM5δN5 . (A.10)

The energy-momentum tensor for a canonically-normalised real scalar field Φ is

TMN = ∂MΦ ∂NΦ− gMN

(
1

2
gPQ ∂PΦ ∂QΦ + V

)

= −
[

(∂zΦ)2

2
+ V

]
e2σ̂(ηMN − δM5δN5) +

[
(∂zΦ)2

2
− V

]
δM5δN5

= −
[

(∂yΦ)2

2
+ e2σV

]
(ηMN − δM5δN5) +

[
(∂yΦ)2

2
− e2σV

]
δM5δN5 , (A.11)

13Such conical singularities may arise in string compactifications (see e.g. [52, 53]).
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where V (Φ) is the scalar potential for the field Φ. In the last two lines we have written

the energy momentum tensor for the metrics in eq. (A.3), under the assumption that the

background value of Φ is independent of the 4D coordinates.

The equation of motion of the scalar Φ is

1√−g∂M
√−g gMN∂NΦ =

dV

dΦ
, (A.12)

which, for the two choices of coordinates, becomes

(
∂2
z + 4σ̂′∂z

)
Φ =

dV

dΦ
, (A.13)

(
∂2
y + 3σ′∂y

)
Φ = e2σ dV

dΦ
. (A.14)

We can also derive the relationship between the 5D and 4D Planck masses.

From eq. (A.2) we extract the value of MP as the coefficient in front of the 4D

Einstein-Hilbert action

M2
P = 2M3

5

∫ zπ

z0

dz e2σ̂ = 2M3
5

∫ yπ

y0

dy e3σ , (A.15)

where z0,π and y0,π are the coordinates of the orbifold fixed points in the two frames. For

RS and the clockwork, using eqs. (A.6)–(A.7) we find

CW ⇒ M2
P =

M3
5

k

(
e2kπR − 1

)
, (A.16)

RS ⇒ M2
P =

M3
5

k̂

(
e2k̂πR − 1

)
. (A.17)

The two expressions are identical, once we identify k with k̂.

B Graviton action

Let us start with the 5D gravity action

S =

∫
d5x
√−g

(
M3

5

2
R5 + LM

)
, (B.1)

where LM is the matter Lagrangian in the bulk. We will consider the y coordinates defined

in the second metric of eq. (A.3) where g̃µν can be thought of as containing fluctuations

about 4D Minkowski space. We discard the total derivative term in eq. (A.2) and expand

the metric as

g̃µν = ηµν +
2

M
3/2
5

hµν , g̃µν = ηµν − 2

M
3/2
5

hµν +
4

M3
5

hµλhνλ +O(h3) . (B.2)

By choosing the ‘transverse-traceless’ gauge ∂µh
µν = 0, ηµνh

µν = 0, to lowest order in h,

the action becomes

S =

∫
d4x dy e3σ

[
− 1

2
(∂λhµν)(∂λhµν)− 1

2
(∂yhµν)(∂yh

µν) (B.3)

−6σ′hµν∂yh
µν −

(
6σ′2 +

e2σ

M3
5

LM
)
hµνh

µν

]
,
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where the last term arises from the expansion of
√−g. Through integration by parts the

last two terms may be rearranged to give

S =

∫
d4x dy e3σ

[
− 1

2
(∂λhµν)(∂λhµν)− 1

2
(∂yhµν)(∂yh

µν) (B.4)

+

(
3(σ′′ + σ′2)− e2σ

M3
5

LM
)
hµνh

µν

]
.

If we assume that the bulk matter configuration does not depend on 4D coordinates, than

the energy momentum-tensor that sources the metric is Tµν = gµνLM . Using eq. (A.10),

the 4D components of the Einstein equation Gµν = Tµν/M
3
5 give

3(σ′′ + σ′2) =
e2σ

M3
5

LM . (B.5)

Thus, on the classical background values of σ and the scalar fields contained in LM , the

second line in eq. (B.4) vanishes and we are left only with the first line, which is the result

used in eq. (3.34).

C Two equivalent frames for the clockwork

The discrete clockwork Lagrangian, in all its versions (scalar, fermion, vector, and gravi-

ton), has a discrete parametrisation invariance under which the parameters transform as

q → q′ = 1/q, m → m′ = qm, and the site j is exchanged with the site j′ = N − j. This

means that any clockwork theory with a given q > 1 is physically equivalent to a theory

with 0 < q < 1, once the mass parameter is appropriately transformed and the role of

the two end sites is reversed. We will call “N -frame” the representation with q > 1 and

“0-frame” the representation of the same theory with q < 1.

In our study, we have adopted the N -frame, in which the zero-mode component is

exponentially suppressed at the site N , as shown by eq. (2.18)

Oj0 =
1

qj

[
1 +O

(
1

q2

)]
⇒ O00 ≈ 1 , ON0 ≈ q−N � 1 (N -frame , q > 1) . (C.1)

In the equivalent “0-frame”, the parameter q is smaller than one and the zero mode is

exponentially suppressed at the site 0. Indeed, from eq. (2.18) in the limit of small q,

we find

Oj0 = qN−j
[
1 +O

(
q2
)]
⇒ O00 ≈ qN � 1 , ON0 ≈ 1 (0-frame , q < 1) . (C.2)

While in the N -frame the clockwork mechanism operates when the external sector is cou-

pled at the site N , in the 0-frame the coupling must occur at the site 0. However, the

two frames are physically equivalent and the choice is purely a matter of convention or of

phenomenological convenience.

The same discrete parametrisation invariance found in the discrete clockwork also

appears in the continuum clockwork. For convenience, let us consider only the “upper
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part” of the orbifold parametrised by 0 < y < πR, while the “lower part” (−πR < y < 0)

can be easily recovered by orbifold symmetry (i.e. by requiring invariance under y → −y).

The parametrisation invariance in the continuum is k → k′ = −k and y → y′ = πR−y. We

call “0-frame” the case in which the metric in eq. (3.10) has k > 0 and “π-frame” the case

with k < 0. In this paper we have adopted the 0-frame in which, according to eq. (3.16),

the zero-mode wavefunction and its probability density are

ψ0(y) =

√
kπR

e2kπR − 1
⇒ dP

dy
≈ k e2k(y−πR) (0-frame , k > 0) . (C.3)

In the “π-frame” we find

ψ0(y) =

√
|k|πR

1− e−2|k|πR ⇒ dP

dy
≈ |k| e−2|k|y (π-frame , k < 0) . (C.4)

In the two (physically equivalent) frames, the role of the two branes is switched. In the

0-frame, the clockwork mechanism operates when we couple the external sector at y = 0,

where the zero mode is exponentially suppressed. In the π-frame, the external sector must

be localised on the brane at y = πR. The exponential suppression of the effective coupling

is the same in the two frames.

Let us now consider the full 5D construction with the metric consistently induced by

the dynamics. For an instructive comparison, let us first consider the case of RS which, in

the 0-frame, is described by the action

S(k̂, R,M5,m, y0,π) = 2

∫ πR

0
dy

∫
d4x
√−g

[
M3

5

2
(R+ 12k̂2)

+
δ(y − y0)√

g55

(
L(Φ,m) + 6M3

5 k̂
)
− δ(y − yπ)√

g55
6M3

5 k̂

]
. (C.5)

Here y0 = 0 and yπ = πR are the brane locations, L is the localised matter Lagrangian

involving a set of fields Φ and mass parameters m.

To obtain the equivalent action in the π-frame, we perform the change of coordinates

y

R
= π − y′

R′
, with

R

R′
= w , w = ek̂πR , (C.6)

under which the line elements becomes

ds2 = e2k̂y dx2 + dy2 = w2
(
e−2k̂′y′ dx2 + dy′2

)
, k̂′ = w k̂ . (C.7)

Note that k̂′ has been defined such that k̂′R′ = k̂R, and therefore the warping factor w is

the same in both frames. This change of coordinates implies the transformations

gMN → w2 g′MN ,
√−g dy → w5

√
−g′ dy′ , R(g)→ w−2R′(g′) ,

δ(y − y0,π)√
g55

dy → w−1
δ(y′ − y′π,0)√

g′55

dy′ , (C.8)
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where gMN is the usual RS metric in the 0-frame, g′MN is its inverse involving primed quan-

tities (i.e. g′ is obtained from g with the replacement k̂y → −k̂′y′), and y′0 = 0, y′π = πR′.

We can compensate the rescaling of the metric by defining the rescaled fields Φ′ (where

Φ = φ, ψ, Aµ for scalar, fermion, or gauge fields) and rescaled mass parameters m′

φ′ = wφ , ψ′ = w3/2 ψ , A′µ = Aµ , m′ = wm , (C.9)

such that

L(Φ,m) = w−4 L(Φ′,m′) . (C.10)

Finally, with the definition

M ′5 = wM5 (C.11)

we obtain that the relation between the actions in the 0 and π-frames is

S(k̂, R,M5,m, y0,π) = S(−k̂′, R′,M ′5,m′, y′π,0) . (C.12)

This shows the equivalence of the 0-frame action and the π-frame action obtained by

multiplying all mass parameters by a warping factor w, inverting the metric (k̂ → −k̂′),
and reversing the role of the two branes (y0,π → y′π,0). In the 0-frame, the SM is coupled

at y0, the mass parameters are of the order of the weak scale and the 4D Planck mass is

M2
P ≈ (M3

5 /k̂)w2. In the π-frame, the SM is coupled at y′π, the mass parameters are of

the order of the UV scale and the 4D Planck mass is M2
P ≈ M ′35/k̂

′. In either case, the

warping factor w is given by the ratio of the Planck to weak scale.

Let us now consider the case of the clockwork, whose action in the 0-frame is

S(k,R,M5,m, y0,π) = 2

∫ πR

0
dy

∫
d4x
√−g

[
M3

5

2

(
R− 1

3
gMN∂MS ∂NS + e−

2S
3 4k2

)

+
δ(y − y0)√

g55

(
L(Φ,m) + 4e−

S
3M3

5k
)
− δ(y − yπ)√

g55
4e−

S
3M3

5k

]
.

(C.13)

Note that we have introduced the SM Lagrangian L in the Einstein frame with no direct

coupling to S. In the 0-frame, different choices of coupling L in the Einstein or Jordan

frames, with or without S couplings, are all equivalent since S(y0) = 0. However, the

choice matters when we compare the effects on the two branes. Our choice ensures that

SM couplings do not depend on the dilaton background.

We can now obtain the equivalent π-frame description with the change of coordinates

y = πR− y′ (C.14)

such that the line element becomes

ds2 = e
4
3
ky(dx2 + dy2) = w

4
3 e−

4
3
ky′(dx2 + dy′

2
) , w = ekπR . (C.15)

This implies the transformation

gMN → w
4
3 g′MN , (C.16)
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where, as before, g′ is the inverse of g in the new coordinates (i.e. obtained with the

replacement ky → −ky′). With the redefinition

S′ = S − lnw2 , M ′5 = w
2
3 M5 (C.17)

and the field and mass rescaling

φ′ = w
2
3 φ , ψ′ = wψ , A′µ = Aµ , m′ = w

2
3 m, (C.18)

such that

L(Φ,m) = w−
8
3 L(Φ′,m′) , (C.19)

we find that the transformed action is related to the original one by

S(k,R,M5,m, y0,π) = S(−k,R,M ′5,m′, yπ,0) . (C.20)

This equation shows the equivalence of the actions in the 0 and π-frames.

For the clockwork, the π-frame is obtained by inverting the metric (k → −k), reversing

the role of the branes (y0,π → yπ,0), rescaling the 5D Planck mass M5 and the Higgs mass m

by a factor w
2
3 , but leaving |k| and R invariant. This last feature is an important difference

with respect to RS. In RS, M5, m, k̂, and 1/R are all rescaled equally as we change frame,

so they are all expected to be of the order of the cutoff scale. On the other hand, in the

clockwork, the parameters k and R do not rescale and thus the masses of the clockwork

gears are typically not correlated with the cutoff scale M5. This is because k is protected

by a shift symmetry of S in the bulk and can be naturally smaller than M5.

The 4D Planck mass is given by M2
P ≈M ′

3
5/k = (M3

5 /k)w2, so the clockworking factor

w corresponds to the ratio between Planck and weak masses, just as in RS. However, unlike

RS, the 5D Planck mass is rescaled only by the factor w
2
3 .

D Goldberger-Wise radius stabilisation

As discussed in section 3.3, an attractive feature of clockwork gravity induced by a dilaton

in a 5D space with an extra dimension compactified on a S1/Z2 orbifold is that the radius

R of the extra dimension can be naturally stabilised at values kR = O(1) with boundary

conditions for the dilaton on the branes alone. We want to show here that the stabilisation

mechanism proposed by Goldberger and Wise [44] for warped geometry can also work for

the clockwork geometry, although it is less economical in terms of field content than dilaton

boundary conditions.

In order to generate a non-trivial potential for the radion mode R, let us introduce

a real 5D scalar field ϕ with mass mϕ and add to the Jordan-frame action in eq. (3.22)

the term

S = −1

2

∫
d5x
√−g eS

(
gMN ∂Mϕ∂Nϕ+m2

ϕ ϕ
2
)
. (D.1)

We are assuming that the mass mϕ is sufficiently small, so that the field ϕ does not

modify the underlying metric nor the dilaton profile. On this static background, and after
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performing the transformation in eq. (3.24) to go to the Einstein frame, the action for

ϕ becomes

S = −1

2

∫
d4x dy e2k|y| [(∂µϕ)2 + (∂yϕ)2 +m2

ϕ ϕ
2
]
. (D.2)

For configurations that do not depend on 4D space-time coordinates, the equation of

motion of ϕ is (
e−2k|y| ∂y e

2k|y| ∂y −m2
φ

)
ϕ = 0 . (D.3)

The most general solution is

ϕ(y) = A+ e
(ν−1)k|y| +A− e

−(ν+1)k|y| , ν ≡
√

1 + ε , ε ≡
m2
ϕ

k2
. (D.4)

The integration constants A± are fixed by the Dirichlet boundary conditions on the branes

ϕ(0) = ϕ0 and ϕ(πR) = ϕπ, which give

A± =
ϕπe

(1±ν)kπR − ϕ0

e±2νkπR − 1
. (D.5)

In a complete dynamical model, the values of ϕ0,π are expected to come from interactions

localised on the branes, but their origin is not essential for our discussion.

The radion potential V (R) is obtained by integrating eq. (D.2) over the extra dimension

V (R) =

∫ πR

0
dy e2ky

[
(∂yϕ)2 +m2

ϕ ϕ
2
]

= k
[
A2

+(ν − 1)
(
e2νkπR − 1

)
+A2

−(ν + 1)
(

1− e−2νkπR
)]

. (D.6)

Since we are interested in the limit of small mϕ, we can expand the result in powers of ε,

taking however εkπR ∼ O(1). At leading order, we obtain

V (R) = 2k
(
ϕπe

− εkπR
2 − ϕ0

)2
. (D.7)

Since this potential is never negative, its minimum is reached when the term in brackets

vanishes. This corresponds to the value at which the compactification radius is stabilised,

kR =
2

πε
ln
ϕπ
ϕ0

. (D.8)

For parameters of order unity and a moderately small ε, we naturally obtain values of

kR that can explain the hierarchy between the weak and gravity scales. For instance, for

ϕπ/ϕ0 = e and ε = 0.06, we find kR = 10, in agreement with eq. (3.41).

E Deconstructing the clockwork dimension

In our study we started from the discrete clockwork and used the N→∞ limit to motivate

the metric of the continuum clockwork. Here we want to conclude our itinerary by taking

the reverse path to show how the deconstruction of the clockwork dimension leads to the

same low energy theory as the discrete models discussed in section 2.
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The cases of the scalar and vector clockworks are relatively simple, thus we will treat

them together. The action of a scalar and vector field in the 5D clockwork space is

S = −1

2

∫
d4x

∫ πR

πR
dy

[
e2k|y| (∂Mφ)2 +

1

2
e

2
3
k|y| F 2

MN

]
. (E.1)

For convenience, in this appendix we will let the fifth coordinate vary in the interval

0 < y < πR and absorb the extra factor of 2 in the action with a field redefinition. After

decomposing the 5D indices and with a convenient field rescaling, we find

S = −1

2

∫
d4x

∫ πR

0
dy

[
(∂µφ)2 +

1

2
F 2
µν + e2ky(∂y e

−kyφ)2 + e
2
3
ky(∂y e

− 1
3
kyAµ)2

]
. (E.2)

Here we have also assumed Dirichlet boundary conditions for the 5D component of the

gauge field, such that it does not propagate. Now let us discretise the fifth dimension, such

that y = ja and πR = Na,

S = −1

2

∫
d4x

{
N∑

j=0

[
(∂µφj)

2 +
1

2
F 2
j µν

]
(E.3)

+
1

a2

N−1∑

j=0

[(
φj − e−kaφj+1

)2
+
(
Aµ j − e−

1
3
kaAµ j+1

)2
]}

.

Flipping the sign of k to go to the π-frame, we conclude that the deconstruction realises

the scalar and vector discrete clockwork models with

mφ =
N

πR
, qφ = e

kπR
N and mA =

N

πR
, qA = e

kπR
3N . (E.4)

Let us now consider fermions. The action of a massless fermion in the 5D clockwork

space-time is

S = −
∫
d4x

∫ πR

πR
dy e

8
3
ky i

2

(
ψγM

↔
∂Mψ

)
, (E.5)

where ψ is a 4-component spinor in 5D, γM = (γµ, iγ5), and
↔
∂ =

→
∂ −

←
∂ with derivatives

acting only inside the parenthesis. The spin connection can be dropped from the action as,

although it is non-zero, its contributions for a metric of this form cancel (see e.g. [54–56]

for related discussions). Decomposing the 5D indices and projecting the spinor in its left

and right components using the 4D chiral projector, we obtain

S =

∫
d4x

∫ πR

πR
dy e

8
3
ky

[
−iψγµ∂µψ +

1

2

(
ψL ∂yψR − ∂yψL ψR + h.c.

)]
. (E.6)

When discretised, this action leads to a doubling of the zero modes, in a similar

manner as the fermion doubling problem in lattice gauge theories. Following [57] we cure

this problem by adding a Wilson term

SW = −
∫
d4x

∫ πR

πR
dy e

8
3
ky ηa

2
∂yψ ∂yψ = −

∫
d4x

∫ πR

πR
dy e

8
3
ky ηa

2

(
∂yψL ∂yψR + h.c.

)
.

(E.7)
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This operator is higher dimensional, and thus vanishes in the continuum. It is introduced

in order to remove one of the hopping directions, which would otherwise give rise to the

usual fermion doubling problem.

We can now rescale the field ψ → e−
4
3
kyψ and discretise the theory to obtain

S + SW =

∫
d4x

N∑

j=0

−i
(
ψLjγ

µ∂µψLj + ψRjγ
µ∂µψRj

)
(E.8)

+
1

2a

N−1∑

j=0

[
(1 + η)e−

4
3
kaψLjψRj+1 − (1− η)e−

4
3
kaψLj+1ψRj

−η(1 + e−
8
3
ka)ψLjψRj + h.c.

]

Here we have eliminated some η-dependent terms of the form ψNψN and ψ0ψ0 with ap-

propriate counterterms localised at the boundaries.

As desired, with the particular choice of η = ±1 the Wilson operator allows for one of

the hopping directions to be removed, addressing the fermion doubling problem. Taking

η = 1 we recover the discrete clockwork Lagrangian in eq. (2.24) in the π-frame with

mψ =
N

πR
, qψ = e

4kπR
3N , (E.9)

up to corrections subleading in 1/N .

Finally, let us consider the clockwork gravitons. (For deconstructions of gravity in

general scenarios see [41, 58] and for RS see [59].) Discretisation of the fifth dimension in

the action in eq. (3.34) leads to a graviton action

S = −1

2

∫
d4x

[
N∑

j=0

e2kja(∂λhµνj )2 +
1

a2

N−1∑

j=0

e2kja(hµνj − h
µν
j+1)2

]

= −1

2

∫
d4x

[
N∑

j=0

(∂λhµνj )2 +
1

a2

N−1∑

j=0

(hµνj − e−kah
µν
j+1)2

]
, (E.10)

where in the last term we rescaled the fields for canonical kinetic terms. By comparing with

eq. (2.35) we see that this is precisely the clockwork Pauli-Fierz mass term in transverse-

traceless gauge, corresponding to

mg =
N

πR
, qg = e

kπR
N . (E.11)

Thus clockwork gravity is realised as a deconstruction of gravity in the clockwork met-

ric background.
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