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1 Introduction

It has long been suggested that transport in strongly coupled systems is governed by a

‘smallest possible’ relaxation timescale τ ∼ ~/(kBT ) [1–4]. In particular, this timescale has

been experimentally detected in both the linear resistivity [5] and thermal diffusivity [6]

of strongly correlated materials. Compellingly, the essential logic behind this proposal

resonates with the huge recent progress in studying quantum chaos. In that context, one

can characterise the growth of the quantum butterfly effect [7–9] through a Lyapunov rate

λL for which a rigorous Planckian bound λL ≤ 2πkBT/~ has been formulated1 [10].

Recently it has emerged that in many theories there appear to be further connections

between transport properties and chaos [11–16]. Specifically in [11, 12] it was found that the

thermoelectric diffusion constants of many holographic theories are closely related to the

butterfly velocity, vB, which describes the speed at which chaos propagates. Subsequently

this connection has also been seen in weakly coupled Fermi-liquids [13], diffusive metals [14]

and critical Fermi-surface models [15] and its relevance for understanding the thermal

diffusivity of cuprate strange metals was discussed in [6]. However it remains unclear how

fundamental the connection between chaos and diffusion is, and in particular for what class

of theories one might expect to be able to make these observations precise.

Lately there has been an explosion in activity in studying large-N systems, such as

Sachdev-Ye-Kitaev (SYK) models or AdS2 holography, which have an approximate 0 + 1d

conformal symmetry [16–28]. For such systems, much of the infra-red physics is dominated

by the Goldstone mode associated with the fact that the ground state ‘spontaneously

breaks’ this symmetry. As such these models provide a simplified context in which one

might hope to establish sharp connections between transport properties and chaos.2

1Henceforth we set ~ = kB = 1.
2The connection between diffusion and vB in a coupled SYK model has recently been studied in [16].

We will comment on the relationship to our results in section 4.
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With this in mind, the purpose of this paper is to clarify the precise relationship

between diffusion and chaos in holographic theories that approach an AdS2 × Rd fixed

point in the infra-red. In particular we will discuss a general class of models in which

we can construct such fixed points either by introducing a finite density for the boundary

theory or through ‘Q-lattice’ fields that break translational symmetry [29–32]. For these

theories we can define a thermal diffusivity, D, via the Einstein relation

D =
κ

cρ
(1.1)

where κ is the thermal conductivity and cρ is the specific heat at fixed charge density.

Usually this form of the Einstein relation is only valid for particle-hole symmetric theories.

However, as we establish in appendix A, it can also be used to define a thermal diffusivity

when our models flow to a finite density AdS2 ×Rd.
Crucially both the diffusion constant (1.1) and the butterfly velocity vB are infra-red

quantities that can be determined from a near AdS2 horizon. In particular it has been

shown in [33, 34] that at any temperature κ is generically fixed by the black hole horizon

data. However, unlike in the majority of holographic theories studied in [11, 12], we cannot

extract cρ and vB directly from the fixed point - rather they are controlled by irrelevant

deformations to the geometry. A key result of this paper is then that precisely the same

irrelevant deformation of AdS2×Rd governs the behaviour of both cρ and vB. This allows

us to establish a simple quantitative relationship

D = E
v2
B

2πT
(1.2)

where 1/2 < E ≤ 1 is a constant that depends only on the scaling dimension of the leading

irrelevant deformation. For generic flows this mode corresponds to a universal bulk dilaton

field that parameterises the volume of the black hole horizon. In this case (1.2) holds

with a universal constant E = 1. Note that the fact E remains bounded for more general

deformations is highly non-trivial. In particular, whilst the infra-red scaling dimension of

modes depends on the UV data of the boundary theory, we find that this never significantly

changes the relationship between D and vB.

We emphasise that the relationship (1.2) is valid for a very general class of AdS2

models. In particular, it does not depend on the matter fields that we use to support our

geometry. Specifically we will establish that it is true both for translationally invariant

theories dual to electric-AdS2 geometries and also when Q-lattice fields are supporting the

extremal geometry. Indeed the relationship (1.2) holds whenever our theories flow to one

of these AdS2 ×Rd fixed points.

2 AdS2 × Rd fixed points

As we discussed in the introduction, our goal in this paper is to study the thermal dif-

fusivity (1.1) and butterfly velocity in a general class of gravitational theories that admit

AdS2 ×Rd solutions . In particular we will work with the following action

S =

∫
dd+2x

√
−g

(
R− 1

2
(∂ϕ)2 − V (ϕ)− 1

2
W (ϕ)(∂χA)2 − 1

4
Z(ϕ)F 2

)
(2.1)
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where the index A runs over the d spatial dimensions of the boundary theory. Whilst we

will use the specific action (2.1) for concreteness, much of our discussion can be straight-

forwardly generalised to more complicated models such as those with additional scalars.

Then the above action admits homogeneous solutions satisfying the ansatz

ds2
d+2 = −f(r) dt2 +

dr2

f(r)
+ h(r)dx2

A

A = a(r)dt χA = kxA ϕ = ϕ(r) (2.2)

where as usual the constant radial flux of the Maxwell field can be identified with the

charge density, ρ, of the boundary theory

ρ = Z(ϕ)hd/2a′ (2.3)

We can also see that when k 6= 0 then we have broken the translational symmetry of the

boundary theory. Indeed, in this case it is convenient to identify ϕ and χA with complex

scalar fields ΨA = ϕeiχA and hence view the above solutions as periodic ‘Q-lattices’ [29].

The advantage of breaking this symmetry is that it will enable us to obtain finite expressions

for all the thermoelectric response coefficients. However, it is not essential to our analysis

and by taking the limit k → 0 we can discuss translationally invariant theories.

The main reason we wish to focus on these models is then that the above action admits

a very general class of extremal black hole solutions. Specifically, the equations of motion

admit zero temperature solutions corresponding to an AdS2 ×Rd metric

f = L (r − r0)2, h = h0, ϕ = ϕ0 (2.4)

provided we satisfy the constraints

0 = −2L+
ρ2

hd0Z(ϕ0)
+
k2W (ϕ0)

h0

0 = −2V (ϕ0)− ρ2

hd0Z(ϕ0)
− dk2W (ϕ0)

h0

0 = −2V ′(ϕ0) +
Z ′(ϕ0) ρ2

hd0Z(ϕ0)2
− dk2W ′(ϕ0)

h0
(2.5)

which can be used to fix the radius of AdS2, L, and of the transverse space, h0, in terms

of our matter fields.

If we set k = 0 in these expressions then our solutions reduce to the familiar situation

of a translationally invariant AdS2 × Rd supported by an electric flux. Additionally, we

can obtain translationally invariant fixed points at k 6= 0 provided that W (ϕ0) = 0. In this

case the lattice corresponds to an irrelevant operator and hence translational symmetry is

restored in the infra-red. However by setting ρ = 0 we can also obtain neutral AdS2 ×Rd

geometries in which it is the lattice fields supporting the extremal horizon [29–32]. For a

general solution, we have both the Maxwell field and Q-lattice present and so our infra-red

fixed point has both a finite density and some non-trivial momentum relaxation.

– 3 –
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Our interest then is in the studying geometries (2.2) with a flow to one of these fixed

points in the infra-red. At a small finite temperature, the near horizon limit of such a

geometry will then be described by a small black hole

f = L ((r − r0)2 − r2
h), h = h0, ϕ = ϕ0 . (2.6)

where in this coordinate system we now have an external horizon at r = r0 + rh. For

convenience we will chose to fix our coordinates such that the extremal horizon is located

at r0 = 0. We can then read off the temperature of this black hole as

T =
f ′(rh)

4π
=
Lrh
2π

(2.7)

Thermoelectric response coefficients. The reason these Q-lattice models are so useful

for studying transport is that it is possible to obtain simple analytic expressions for the

thermoelectric response coefficients. In particular the DC electrical (σ), thermoelectric

(α) and heat (κ̄) conductivities can be expressed directly in terms of black hole horizon

data [32–37]. The leading behaviour at low temperatures can then be written in terms of

the infra-red geometry (2.6) as

σ = h
d/2−1
0 Z(ϕ0) +

4πρ2

k2W (ϕ0)s0

α =
4πρ

k2W (ϕ0)

κ̄

T
=

4πs0

k2W (ϕ0)
(2.8)

where s0 = 4πh
d/2
0 is the ground state entropy density.

As we discussed in the introduction, in order to calculate the thermal diffusivity of

these theories we wish to make use of the Einstein relation

D =
κ

cρ
(2.9)

where cρ = T (∂s/∂T )ρ is the specific heat at fixed charge density. For particle-hole sym-

metric theories, this form of the Einstein relation is very familiar. However, for a generic

finite density theory the coupling between charge and energy fluctuations results in a more

complicated set of Einstein relations and hence the ratio κ/cρ is not directly related to a

diffusion constant. Nevertheless, as we show in appendix A, we find that in the infra-red

limit there is a dramatic simplification in the Einstein relations for our AdS2×Rd theories.

As a result we establish that even in our finite density models there is a thermal diffusion

constant given by3(2.9).

Indeed, the only subtlety we need to be aware of is that at finite density the Einstein

relation is formulated in terms of the thermal conductivity at zero electrical current κ =

3We note that it was recently shown that this Einstein relation can be used to define the thermal

diffusivity at finite density for a critical Fermi surface model [15].
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κ̄−α2T/σ. Evaluating this using our expressions (2.8) tells us that at low temperatures κ

is given by

κ

T
=

4πs0Z(ϕ0)hd−1
0

ρ2 + k2W (ϕ0)Z(ϕ0)hd−1
0

(2.10)

It is worth emphasising that the behaviour of this thermal conductivity is quite distinct

from the other transport coefficients (2.8). In particular, in the translationally invariant

limit k2W (ϕ0) → 0 the expressions in (2.8) diverge and hence these conductivities can

be sensitive to irrelevant deformations. Conversely, κ remains finite in this limit due the

presence of the net charge density. This thermal conductivity is then an intrinsic property

of our infra-red theory, and is insensitive to the details of momentum relaxation.4

We can make this more explicit by clarifying the form of this thermal conductivity.

Whilst (2.10) looks rather complicated, it can be simplified using the equations that govern

our extremal geometry. Specifically, the AdS2 radius L is fixed through (2.5) in terms of

the charge density and scalar fields. Using this, we find that the thermal conductivity can

always be written as

κ

T
=

(4π)2h
d/2−1
0

2L
(2.11)

and hence is determined entirely by geometric properties of the AdS2 × Rd horizon. The

only way the charge density ρ and lattice fields k enter is encoded in their effects on this

background geometry.

3 Diffusion and the butterfly velocity

We now have everything we need to address our main question of interest, which is to

establish the relationship (1.2) between this thermal diffusivity and the butterfly velocity.

However, unlike the majority of holographic theories studied previously [11, 12], it is not

possible to extract these quantities solely from the fixed point (2.6).

For the case of the diffusion constant, it is simple to see why we have a problem. Indeed,

whilst the thermal conductivity (2.11) can be determined from AdS2 × Rd we cannot yet

calculate the specific heat because the entropy density s0 = 4πh
d/2
0 is a constant.

Crucially, an analogous pathology appears if one attempts to calculate the butterfly

velocity directly in our AdS2 × Rd solutions (2.6). To see why, we can recall that for

theories dual to classical gravity, the chaos parameters can be extracted by studying the

construction of a shock wave geometry on the black hole horizon [7–9]. For a general

metric of the form (2.2) one finds that chaos is described by a maximal Lyapunov exponent

λL = 2πT and a butterfly velocity [11, 38]

v2
B =

4πT

dh′(rh)
(3.1)

which is ill-defined when h = h0 is a constant.

4The fact that κ can be insensitive to momentum relaxation at finite density has been emphasised in [39].
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In order to evaluate these quantities, we therefore need to consider adding irrelevant

deformations to (2.6) which describe the flow of our geometry towards the infra-red fixed

point. In appendix B we will explicitly construct domain wall expansions that interpolate

between our AdS2×Rd solutions and the UV. Whilst the full details of these solutions are

rather complicated, all that we need to calculate cρ and vB are the leading corrections to

h(r) in the near-extremal limit.

For generic domain wall solutions these will simply take the form

h(r) = h0 + c0
h(ρ)r + . . . (3.2)

where c0
h(ρ) is a constant that is fixed by the UV data of the domain wall solution. From

the point of view of our infra-red fixed point, this expansion (3.2) corresponds to turning

on a source c0
h for a universal dilaton operator with scaling dimension ∆ = 2. Additionally

there is a second irrelevant mode corresponding to perturbations of the scalar field ϕ.

However, provided that this scalar mode has an IR scaling dimension ∆ϕ > 3/2, then we

find that (3.2) will give the leading behaviour in h(r) in the low temperature limit.

In this generic situation it is then a straightforward matter to calculate both the

specific heat and the butterfly velocity from this expansion. Indeed, the key point is that

it is precisely this same deformation that determines both the diffusion constant and vB.

As such we will be able to obtain a simple relationship between them.

Firstly, we can look at the butterfly velocity. From our metric (3.2) we can deduce

that we now have a finite butterfly velocity given by

v2
B =

4πT

dc0
h

(3.3)

It is interesting to note that this scaling is not what one would naively have expected in a

locally critical theory (i.e. v ∼ T ) [11, 38]. This reflects the fact that we needed to turn on

a dangerously irrelevant deformation to define vB. The butterfly velocity therefore shows

an enhanced scaling vB ∼
√
T at low temperatures.

Likewise, it is also easy for us to now determine the diffusion constant. Evaluating (3.2)

on the horizon allows us to compute that the entropy density is given by

s = 4πh(rh)d/2 = 4πh
d/2
0 +

4π2d

L
h
d/2−1
0 c0

h(ρ)T + . . . (3.4)

and hence deduce that we have a linear specific heat cρ ∼ T with coefficient(
∂s

∂T

)
ρ

=
4π2d

L
h
d/2−1
0 c0

h (3.5)

Together with our expression for the thermal conductivity (2.11) we can use this in the

Einstein relation to deduce that the diffusion constant is given by

D =
2

dc0
h

=
v2
B

2πT
(3.6)

As such we precisely have a relationship of the form (1.2) with a universal coefficient E = 1.

In particular, it is now clear that this relationship is independent of both the charge density

– 6 –
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ρ and the lattice sources k. Indeed, provided (3.2) captures the leading infra-red behaviour

in h(r) then we obtain this same result for any of our AdS2 ×Rd fixed points.

As we suggested above, a more complicated analysis is required in the special case

that the scalar mode has dimension 1 < ∆ϕ < 3/2. In such a scenario, the gravitational

back-reaction of this mode becomes important in the infra-red and hence modifies the

form of h(r). In appendix B we present a detailed treatment of this situation. We now find

modified scalings in the diffusion constant D ∼ T 3−2∆ϕ and butterfly velocity vB ∼ T 2−∆ϕ .

Nevertheless, these quantities continue to obey a simple relationship of the form (1.2), but

now with a different constant of proportionality E that is fixed by the scaling dimension

∆ϕ. Whilst we are not able to obtain a closed form expression for E, it is simple to establish

that it always lies in the range 1/2 < E ≤ 1.

4 Discussion

In this paper we have calculated both the thermal diffusivity (1.1) and the butterfly velocity

for a general family of holographic models that flow to AdS2 × Rd fixed points in the

infra-red. We found that both of these quantities were determined by the same irrelevant

deformation of AdS2 and hence established the simple relationship (1.2) between them. In

particular, when this deformation corresponded to the ∆ = 2 mode that parameterises the

horizon volume we always found D = v2
B/(2πT ).

It is interesting to compare what we have seen with previous results in the literature.

Specifically, in [12] one of us studied diffusion in certain neutral black hole geometries with

broken translational symmetry. We found that when momentum relaxation was a strong

effect then the diffusion constant D = κ/cρ and butterfly velocity of these theories were

related. In particular for a specific linear axion model we obtained (1.2) with a coefficient

E = 1. With the benefit of hindsight, we can now understand that the reason we found this

result was because in this limit the geometry sourced by the axion fields had a flow (3.2)

towards an AdS2 ×R2 fixed point.

However we have shown in this paper that this connection between diffusion and chaos

holds for far more general AdS2 × Rd geometries. In particular we found that the rela-

tionship (1.2) also applies to the diffusion constant of our finite density models. As such,

it is not necessary to consider theories with strong momentum relaxation to obtain (1.2).

Indeed we have seen that this result also applies to translationally invariant electric-AdS2

and for irrelevant Q-lattices that flow to such a fixed point.5

Whilst we have focused on the thermal diffusivity, one can also define a charge diffu-

sion constant for these models via the Einstein relation Dc = σ/χ where χ is the charge

susceptibility (see appendix A). However, since the electrical conductivity (2.8) diverges

in the translationally invariant limit then Dc is sensitive to the strength of momentum

relaxation. Moreover, in our AdS2 theories the susceptibility χ is not an infra-red quantity

5In clean systems it is possible to identify an ‘incoherent’ diffusion constant that is insensitive to momen-

tum relaxation [42]. It would be interesting to understand the connection between this diffusion constant

and the butterfly velocity more generally.
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but rather depends on the full details of the geometry [40, 41]. As such one would not

expect Dc to display a sharp connection to chaos in these general AdS2 solutions.6

Finally, we note that the connection between diffusion and chaos has recently been

studied in the context of a coupled Sachev-Ye-Kitaev model in [16]. Whilst their model did

not have a global charge, they were able to calculate both the diffusion constant D = κ/cρ
and the butterfly velocity. Since these SYK models do not contain any operators with

∆ < 3/2, we can compare their results with our findings when the leading deformation

of AdS2 × Rd is the dilaton [25]. Interestingly, both the diffusion constant D ∼ T 0 and

the butterfly velocity vB ∼
√
T of this SYK model show exactly the same scalings that

we found for such flows. Moreover the relationship between them is also given by the

formula (1.2), with precisely the same coefficient E = 1.

Note added: whilst this work was in preparation we were made aware of [45] which also

studies diffusion in AdS2 geometries.
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A Einstein relations near AdS2

In this appendix we wish to justify that in our finite density AdS2 geometries there is always

a ‘thermal’ diffusion constant given by the Einstein relation D = κ/cρ. In particular, we

emphasise that for generic finite density systems then this simple form of the Einstein

relation is certainly not valid. Rather, fluctuations in the charge δρ and energy δε densities

are described by a pair of coupled diffusion equations(
∂tδρ

∂tδε

)
= D

(
∇2δρ

∇2δε

)
These diffusion equations can be decoupled in terms of eigenmodes of D, which describe

two linear combinations of the charge and energy densities that diffuse independently.7 The

diffusion constants of these modes are then simply the corresponding eigenvalues D1, D2.

The Einstein relations then relate these diffusion constants to the thermoelectric response

coefficients σ, α, κ. For a generic finite density theory these take the form [4]

D1D2 =
σ

χ

κ

cρ

D1 +D2 =
σ

χ
+
κ

cρ
+
Tσ

cρ
(ξ/χ− α/σ)2 (A.1)

6In [12] we found that the charge diffusion constant of the neutral axion model also obeyed a simple

relationship with the butterfly velocity Dc = v2B/(πT ). However as we have remarked above we do not

expect Dc to show a sharp connection to chaos in more general AdS2 geometries.
7An exception is provided by translationally invariant theories, for which there is just a single ‘incoherent’

diffusion mode [42].
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where we have defined the thermodynamic susceptibilities

χ =

(
∂ρ

∂µ

)
T

ξ =

(
∂s

∂µ

)
T

cρ = T

(
∂s

∂T

)
ρ

(A.2)

For our holographic theories, there are well known expressions for the response coefficients

and susceptibilities and so (A.1) provides the most direct way to calculate the diffusion

constants. However, since we would like to study D1 and D2 in general AdS2 × Rd ge-

ometries, we need to understand which of these quantities can be determined by infrared

physics. As we discussed in the main text, the thermoelectric conductivities can be tied to

the black hole horizon data, and hence at low temperatures are indeed determined by the

AdS2 horizon (2.8).

The question of whether the susceptibilities are determined by infra-red physics is

more subtle. In particular, in order to evaluate the thermodynamic derivatives χ and

ξ we would require knowledge of the chemical potential and hence the full details of the

geometry [40, 41]. Whilst for some theories it is possible to argue that these susceptibilities

are dominated by the infra-red region [11], this is not the case for our AdS2 models.

More promising however is the behaviour of the specific heat. As we discussed in

section 3, whilst this is not determined by the the extremal geometry it is an infra-red

quantity that can be extracted from the irrelevant deformations of AdS2. Similarly, whilst

neither χ nor ξ themselves are infra-red quantities, their ratio ξ/χ = (∂s/∂ρ)T is indeed

related to the black hole thermodynamics. At low temperatures we can therefore extract

it from the horizon of the extremal black hole.

Interestingly, for all our AdS2 models we find that this quantity satisfies a constraint

that relates it to the thermoelectric conductivities σ and α. Extracting this ratio by varying

the second of equation in (2.5) with respect to ρ we find that at low temperatures we have(
∂s

∂ρ

)
=
α

σ
+O(T β) (A.3)

with β > 0 determined by the irrelevant deformations of the fixed point.

For our purposes, the key consequence of this observation is that it will allow us to

dramatically simplify the Einstein relations. In particular, we can consider the scaling of

the various terms in the Einstein relations at low temperatures. Firstly let us assume that

there is some non-trivial momentum relaxation at the fixed point (i.e k2W (ϕ0) 6= 0). In

that case the thermoelectric conductivities in (2.8) scale as σ ∼ α ∼ κ/T ∼ T 0. Then the

various terms in (A.1) are given by

σ

χ
∼ T 0 κ

cρ
∼ T 1−γ Tσ

cρ
(ξ/χ− α/σ)2 ∼ T 1−γ+2β (A.4)

where cρ ∼ T γ . For the allowed parameter regime 0 < γ ≤ 1 and β > 0 we therefore

see that the cross terms in (A.1) are always subleading to σ/χ and κ/cρ. As such in the

infra-red limit we find that there are two eigenvalues given by

D1 =
σ

χ
D2 =

κ

cρ
. (A.5)

– 9 –
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Similarly we can consider theories where the Q-lattice is an irrelevant deformation and

we flow to a translationally invariant AdS2 fixed point where k2W (ϕ0) = 0. In this case

σ and α will diverge at low temperatures and are set by the dimension ∆k > 1 of the

irrelevant lattice σ ∼ α ∼ T 2−2∆k . In contrast the thermal conductivity is finite at the

fixed point and scales as κ/T ∼ T 0. We therefore now have scalings

σ

χ
∼ T 2−2∆k

κ

cρ
∼ T 1−γ Tσ

cρ
(ξ/χ− α/σ)2 ∼ T 3−2∆k−γ+2β (A.6)

For ∆k > 1, 0 < γ ≤ 1 and β > 0 these scalings again imply the diffusion constants take

the form (A.5).

Whilst we defer a more detailed investigation of diffusion in these models to future

work,8 for now we can simply observe that in all these models the eigenvalues take the

form of separate ‘charge’ Dc = D1 and ‘thermal’ D = D2 diffusivities. Note that whilst

we have shown that the diffusion constants are given by (A.5) in any of our models, we

cannot determine the charge diffusivity (which depends on χ) solely from knowledge of the

infra-red geometry. Conversely the specific heat, and hence thermal diffusivity, is precisely

determined by infra-red physics. As such it is possible to explicitly calculate D = κ/cρ for

our general AdS2 geometries, which is our main goal in this paper.

B AdS2 × Rd domain wall solutions

In this appendix we wish to explain in detail how one can construct domain wall solutions

that interpolate between the AdS2 × Rd fixed points we introduced in section 2 and the

UV. As we discussed in the main text, including these irrelevant deformations is necessary

in order to extract both the specific heat and the butterfly velocity. For concreteness we

will present this construction for the case where there are two spatial dimensions in the

boundary theory (d = 2), although our analysis also goes through in other dimensions.

Our action is therefore

S =

∫
d4x
√
−g

(
R− 1

2
(∂ϕ)2 − V (ϕ)− 1

2
W (ϕ) ((∂χ1)2 + (∂χ2)2)− 1

4
Z(ϕ)F 2

)
and we are looking for solutions of the form

ds2
4 = −f(r) dt2 +

dr2

f(r)
+ h(r)(dx2 + dy2)

A = a(r)dt χ1 = kx χ2 = ky ϕ = ϕ(r) (B.1)

The equations of motions are then

h−1
(
hfϕ′

)′ − k2h−1W ′(ϕ)− V ′(ϕ) +
1

2
Z ′(ϕ) a′2 = 0

2hh′f ′ + 2k2hW + h2
(
2V − fϕ′2

)
+ fh′2 + h2 Z a′2 = 0

f ′′ − k2h−1W − Za′2 +
1

2
fϕ′2 − 1

2
fh−2h′2 = 0(
hZ a′

)′
= 0 . (B.2)

8It would interesting to study diffusion in a hydrodynamic approach to these lattice models [43, 44].
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where we can integrate the Maxwell equation to give

a′ =
1

Zh
ρ (B.3)

with ρ the field theory charge density.

Then these equations admit an AdS2 ×R2 solution

f = L (r − r0)2 h = h0, ϕ = ϕ0 . (B.4)

provided the constraints

2L =
ρ2

h2
0Z(ϕ0)

+
k2W (ϕ0)

h0

0 = −2V (ϕ0)− ρ2

h2
0Z(ϕ0)

− 2k2W (ϕ0)

h0

0 = −2V ′(ϕ0) +
Z ′(ϕ0) ρ2

h2
0Z(ϕ0)2

− 2k2W ′(ϕ0)

h0
(B.5)

are satisfied. At a finite temperature we have

f0 = L ((r − r0)2 − r2
h) h = h0, ϕ = ϕ0 . (B.6)

and as in the main text we will pick our coordinates so that r0 = 0 to this order and hence

we have 2πT = Lrh.

We now want to consider adding irrelevant modes that will connect this solution back

to the UV. The aim is to develop an expansion whose T = 0 limit will asymptote to the

near horizon expansion of the domain wall solution connecting (B.4) and AdS4. To achieve

this, we can consider perturbing our black hole solution as

ϕ = ϕ0 + δϕ1 + . . .

f = f0 + δf1 + . . .

h = h0 + δh1 + . . .

At linearised order the equations of motion (B.2) imply that these modes obey

(f0 δϕ
′
1)′ − L∆ϕ (∆ϕ − 1) δϕ1 +

(
k2h−2

0 W ′(ϕ0)− ρ2 Z ′(ϕ0)

h3
0Z

2(ϕ0)

)
δh1 = 0 (B.7)(

δh1

r

)′
= 0 (B.8)

δf ′′1 + h−2
0

(
ρ2Z ′(ϕ0)

Z2(ϕ0)
− k2h0W

′(ϕ0)

)
δϕ1 + h−3

0

(
2Lh2

0 +
ρ2

Z(ϕ0)

)
δh1 = 0 . (B.9)

where we have defined

L∆ϕ(∆ϕ − 1) = k2h−1
0 W ′′(ϕ0) + V ′′(ϕ0)− ρ2Z ′′(ϕ0)

2h2
0Z

2(ϕ0)
+
ρ2Z ′2(ϕ0)

h2
0Z

3(ϕ0)
, (B.10)
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and as will shortly become clear ∆ϕ corresponds to the AdS2 dimension of an irrelevant

operator in the boundary theory. Note that whilst ∆ϕ is a natural quantity from the point

of view of infra-red fixed point, it is clear from (B.10) that it is sensitive to the full UV

data of boundary theory.

The most general regular solution of the above system of equations is then

δh1 = ch(rh, ρ) r

δϕ1 = c1(rh, ρ)P∆ϕ−1

(
r

rh

)
+

1

Lh3
0 (∆ϕ − 2) (∆ϕ + 1)

(
k2h0W

′(ϕ0)− ρ2Z ′(ϕ0)

Z(ϕ0)2

)
ch(rh, ρ) r

δU1 = −
r2
h

h2
0

(
ρ2Z ′(ϕ0)

Z2(ϕ0)
− k2h0W

′(ϕ0)

)
c1(rh, ρ)

∫ r
rh

1
dz1

∫ z1

1
dz2 P∆ϕ−1(z2)

− ch(rh, ρ)

6h3
0

2Lh2
0 +

ρ2

Z(ϕ0)
−

(
k2h0W

′(ϕ0)− ρ2Z′(ϕ0)
Z(ϕ0)2

)2

Lh2
0 (∆ϕ − 2) (∆ϕ + 1)

 (r + 2 rh) (r − rh)2 .

(B.11)

where Pn(x) is the Legendre function. The above solution is completely determined up

to the two constants of integration ch(rh, ρ) and c1(rh, ρ). Additionally there is a third

constant corresponding to a shift in the position of the extremal horizon r0. We have

chosen to set this constant is zero by a redefinition r → r − r0.

Now in order for the solution to approach smoothly the near horizon expansion of a

domain wall in the T → 0 limit we must require that these constants behave as

ch(rh, ρ)→ c0
h(ρ), c1(rh, ρ)→ c0

1(ρ) r
∆ϕ−1
h . (B.12)

as rh → 0. We therefore deduce that the leading corrections to the extremal black hole are

given by

δh1 → c0
h(ρ) r

δϕ1 → c0
1(ρ)

21−∆ϕΓ(2∆ϕ − 1)

Γ(∆ϕ)2
r∆ϕ−1

+
1

Lh3
0 (∆ϕ − 2) (∆ϕ + 1)

(
k2h0W

′(ϕ0)− ρ2Z ′(ϕ0)

Z(ϕ0)2

)
c0
h(ρ) r

δU1 → −
c0
h(ρ)

6h3
0

2Lh2
0 +

ρ2

Z(ϕ0)
−

(
k2h0W

′(ϕ0)− ρ2Z′(ϕ0)
Z(ϕ0)2

)2

Lh2
0 (∆ϕ − 2) (∆ϕ + 1)

 r3

− c0
1(ρ)

h2
0

(
ρ2Z ′(ϕ0)

Z2(ϕ0)
− k2h0W

′(ϕ0)

)
2∆ϕ−1Γ(∆ϕ − 1

2)
√
π Γ(∆ϕ + 2)

r∆ϕ+1 (B.13)

From (B.13) we can recognise that we have an irrelevant mode of dimension ∆ϕ and a

universal mode of dimension ∆ = 2. The above solution corresponds to turning on sources
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c0
h(ρ) and c0

1(ρ) for these modes. For a given solution these parameters, along with position

r0 of the extremal horizon, will be fixed at T = 0 by the UV data of the domain wall.

To see how this works explicitly, it is instructive to consider the parameter counting

involved in the construction of the domain wall. If we assume our UV theory is described

by an AdS4 fixed point of unit radius, then we can can expand our functions near the

boundary as

U = r2 − cs
r

+ · · ·

h = l2h r
2 + · · ·

a = µ− ρ

l2h r
+ · · ·

ϕ =
ϕs

r3−∆UV
+

ϕv
r∆UV

+ · · · ,

where we have chosen to only show the terms where free constants of integration appear.

Note that there is additional constant of integration cr which simply shifts the coordinate

r → r + cr and is the part of diffeomorphisms our coordinate choice in (B.1) does not fix.

In total, there are therefore six constants of integration in the UV which precisely

matches the order of the system of first three equations in (B.2) and equation (B.3). In the

UV we can fix three of these constants: a choice of gauge cr = 0, the length scale lh and also

the non-normalisable mode ϕs of the scalar. This leaves us with three unfixed constants

of integration in the UV. We therefore have precisely enough freedom to construct a

unique solution matching onto our expansion (B.13) by using e.g. a double sided shooting

method. The remaining constants of integration cs, ϕv and µ, and the infra-red expansion

parameters r0, c0
h(ρ) and c0

1(ρ), will then be fixed at T = 0 by the form of this solution.

Now that we have explained how to construct these solutions, we can proceed to extract

the butterfly velocity and specific heat from these irrelevant modes. Indeed, whilst the form

of the solution (B.11) looks complicated, all that we need are the corrections δh. These are

governed by the universal ∆ = 2 mode and take the form δh = c0
h(ρ)r that we presented

in the main text. In particular at this order in our expansion there is an entropy density

s = 4πh0 + 4πc0
h(ρ)rh + . . . (B.14)

which gives a linear specific heat cρ ∼ T . The thermal conductivity reads

κ

T
=

(4π)2

2L
(B.15)

from which we calculate the diffusion constant D = κ/cρ

D =
1

c0
h

(B.16)

Likewise we can extract the butterfly velocity (3.1) from h′(rh) as

v2
B =

2πT

c0
h

(B.17)
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and so we have the relationship

D =
v2
B

2πT
. (B.18)

The result (B.18) therefore always holds when these linearised modes in the domain

wall expansion capture the leading order behaviour at low temperatures. To see when this

is the case, we can examine the T = 0 expansion of the functions f, g, ϕ. For a general

domain wall solution, these can be expanded in a power series of the form9

f = r2
∑

n1,n2≥0

Bf
n1,n2

(c0
h(ρ))n1 (c0

1(ρ))n2 rn1+(∆ϕ−1)n2

h =
∑

n1,n2≥0

Bh
n1,n2

(c0
h(ρ))n1 (c0

1(ρ))n2 rn1+(∆ϕ−1)n2

ϕ =
∑

n1,n2≥0

Bϕ
n1,n2

(c0
h(ρ))n1 (c0

1(ρ))n2 rn1+(∆ϕ−1)n2 . (B.19)

where so far we have just been keeping the first terms in this expansion. That is at zeroth

order we just had the IR geometry itself

Bf
0,0 = L2, Bh

0,0 = h0, Bϕ
0,0 = ϕ0 (B.20)

whilst the coefficients for n1 = 0 and n2 = 1 or vice versa can be read off precisely from

from the linearised analysis we have just performed (B.13). The higher order terms will

then be fixed by solving the equations of motion order by order in our expansion.

At finite temperature, we will instead find that the solution near the AdS2 region takes

the form

f = r2

(
1−

r2
h

r2

) ∑
n1,n2≥0

Bf
n1,n2

(c0
h(ρ))n1 (c0

1(ρ))n2 r
n1+(∆ϕ−1)n2

h Fn1,n2(r/rh)

h =
∑

n1,n2≥0

Bh
n1,n2

(c0
h(ρ))n1 (c0

1(ρ))n2 r
n1+(∆ϕ−1)n2

h Hn1,n2(r/rh)

ϕ =
∑

n1,n2≥0

Bϕ
n1,n2

(c0
h(ρ))n1 (c0

1(ρ))n2 r
n1+(∆ϕ−1)n2

h Φn1,n2(r/rh) . (B.21)

The three dimensionless functions Fn1,n2 , Hn1,n2 and Φn1,n2 admit an analytic expansion

as r/rh → 1 while all of them approach the power law Hn1,n2(y) → yn1+(∆ϕ−1)n2 as

y → ∞. Moreover, holding the temperature 2πT = Lrh fixed, demands that we impose

Fn1,n2(1) = 0 for n1 6= 0 and n2 6= 0. In the next section we will explicitly construct H0,2.

The key question we are interested then is the low temperature behaviour in the

function h(r). Whilst the finite temperature solution is quite complicated, the leading

terms in cρ and vB will arise from the modes that dominate h(r) at T = 0. It is simple to

check from the above expansion that provided ∆ϕ > 3/2 then the leading deformation is

precisely given by the linearised ∆ = 2 mode (n1 = 1 and n2 = 0) that we have studied

9Note that in the case where ∆ϕ = n + 1 or when ∆ϕ = 1
n

+ 1, for n positive integer, there will be

additional non-linear logarithmic terms of the radial coordinate r that won’t affect our argument.

– 14 –



J
H
E
P
0
2
(
2
0
1
7
)
0
1
3

so far. As such in this regime our linearised analysis is exact in the infra-red limit and

hence (B.18) will always hold at low temperatures. However, we can also see that when

∆ϕ < 3/2 then the term with n1 = 0 and n2 = 2 will instead dominate in the low T

expansion. This term arises from the gravitational back reaction of the scalar field on

the metric. In the next section we will analyse the effects of this back reaction at finite

temperature, and hence study how the diffusion constant and butterfly velocity are modified

when this mode dominates in the infra-red.

Backreaction of ∆ϕ < 3/2 modes. As we have just seen, when the dimension of the

scalar is in the range 1 < ∆ϕ < 3/2 then the back-reaction of this mode will dominate

the behaviour of δh in the infra-red limit. In order to study this back reaction we need to

carry out our domain wall expansion to second order. Doing this, we find that the at this

order the correction δh2 is given by

δh2 = c
(2)
h (rh, ρ) r +

r

rh

h0∆ϕ(c1(rh, ρ))2

4

∫ r/rh

1
dy G∆ϕ (y) (B.22)

where the function G∆ϕ(y) is defined as

G∆ϕ(y) =
1

y2

1

y2 − 1

(
(y2 + ∆ϕ − 1)P∆ϕ−1(y)2 − 2y∆ϕP∆ϕ−1(y)P∆ϕ(y) + ∆ϕP∆ϕ(y)2

)
Again we need to fix the temperature dependence of c

(2)
h (rh, ρ) so that (B.22) gives a

regular solution in the limit rh → 0 (whilst holding r fixed). There are two qualitatively

different cases to consider, based on whether or not the integral in (B.22) converges in the

limit r/rh →∞. In particular, as y →∞ the asymptotic form of the integrand is given by

G(y) ≈ −
22∆ϕ−4(∆ϕ − 1)Γ2(∆ϕ − 1

2)

π Γ2(∆ϕ)
y2(∆ϕ−2) +O(y2(∆ϕ−3)) . (B.23)

and hence for ∆ϕ > 3/2 the integral will diverge. In this case, we therefore have the leading

behaviour

δh2 = c
(2)
h (rh, ρ) r − h0∆ϕ(c0

1(ρ))2

4

22∆ϕ−4(∆ϕ − 1)Γ2(∆ϕ − 1
2)

π Γ2(∆ϕ)
r2(∆ϕ−1) + . . . (B.24)

and so see that the integral in (B.22) results in a regular correction to the metric. We

therefore need only require that c
(2)
h (rh, ρ) remains finite as rh → 0, and hence can reabsorb

this term into our first order constant ch(rh, ρ). In the low temperature limit, we can

explicitly see that the back-reaction from the scalars will be sub-leading to this term and

hence the relationship (B.18) remains unchanged.

However, things are different when ∆ϕ < 3/2. In this case the integral in (B.22) now

converges and we can set ∫ ∞
1

dy G∆ϕ(y) = −C∆ϕ . (B.25)
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where C∆ϕ is a constant that depends only on the scaling dimension ∆ϕ. In the limit

rh → 0 the metric will therefore look like

δh2 = c
(2)
h (rh, ρ) r −

h0∆ϕC∆ϕ(c0
1(ρ))2

4
r

2∆ϕ−3
h r , (B.26)

and hence the integral in (B.22) has given rise to a singular term. In order to have a smooth

limit, it is therefore necessary to demand that this cancels against a singular piece10 in c
(2)
h

c
(2)
h (rh, ρ) =

h0∆ϕC∆ϕ(c0
1(ρ))2

4
r

2∆ϕ−3
h . (B.27)

and so as rh → 0 the second order metric is now given by

δh2 =
h0∆ϕC∆ϕ(c0

1(ρ))2

4
r

2∆ϕ−3
h r +

h0∆ϕ(c0
1(ρ))2

4
r

2∆ϕ−3
h r

∫ r/rh

1
dy G∆ϕ (y) (B.28)

The key point is that since we have ∆ϕ < 3/2 this piece will dominate over the first

order term (B.13) as rh → 0. As a result, both the behaviour of the diffusion constant and

the butterfly velocity will be modified by the presence of such operators in the theory. In

particular, the entropy density s = 4πh(rh) is now given by

s = 4πh0 + πh0∆ϕC∆ϕ(c0
1(ρ))2r

2∆ϕ−2
h + . . . (B.29)

from which we see that the specific heat scales with a power cρ ∼ T 2∆ϕ−2 that depends on

the dimension of this irrelevant deformation.

Similarly the diffusion constant D = κ/cρ has a temperature dependence D ∼ T 3−2∆ϕ

and is given by

D =
2

h0∆ϕC∆ϕ(∆ϕ − 1)(c0
1(ρ))2

r
3−2∆ϕ

h (B.30)

Finally we can again extract the butterfly velocity (3.1) from11 h′(rh)

v2
B =

8πT

h0∆ϕ(C∆ϕ + 1−∆ϕ)(c0
1(ρ))2

r
3−2∆ϕ

h (B.31)

which implies the scaling vB ∼ T 2−∆ϕ .

From (B.30) and (B.31) we see that the diffusion constant and butterfly velocity are

now related by

D =
(C∆ϕ + 1−∆ϕ)

2C∆ϕ(∆ϕ − 1)

v2
B

2πT
(B.32)

which again is insensitive to the details of the infra-red fixed point or the matter supporting

the geometry. Whilst we do not have a closed form expression for C∆ϕ it is a simple matter

10Note that in additional to this singular piece we are also allowed to have a regular term in c
(2)
h (rh, ρ).

However as before this can simply be reabsorbed into ch(rh, ρ) by a redefinition.
11Here we have used that G(1) = 1 − ∆ϕ.
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to check numerically that the constant of proportionality, E, in (B.32) lies in the range

1/2 < E ≤ 1.

In particular upon taking the limit ∆ϕ → 3/2 the constant C∆ϕ diverges and we

recover (B.18). In contrast as ∆ϕ → 1 then we have the expected scalings of a locally

critical theory D ∼ T and vB ∼ T and find that the constant of proportionality E → 1/2.

The existence of such bounds has highly non-trivial consequences, since we have seen that

the IR dimension ∆ϕ can easily be changed by tuning the UV data of the boundary theory.

We therefore see that whilst this can dramatically effect the values of D and vB, they will

always be related by (1.2) with an order one coefficient.
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