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1 Introduction

The behavior of boundary degrees of freedom under renormalization group (RG) flow rep-

resents a problem in both string theory and condensed matter physics that is not fully

understood (see [1–4] and references therein). A new approach consists of utilizing defects

to bring the RG flow from the bulk to the boundary. A defect is a one-dimensional object

in two-dimensional theories, and more generally a submanifold of positive codimension in

higher dimensional spaces. This technique was exploited in [5] within the framework of

Landau-Ginzburg models to study the boundary RG flow between the two-dimensional

orbifolds Md−2/Zd, where Md−2 are the supersymmetric minimal models. RG flow de-

fects were also constructed in [6] between consecutive Virasoro minimal models in two

dimensions.

Defects are not restricted to Landau-Ginzburg (LG) models but in these theories they

have a general description in terms of matrix factorizations which allows us to construct

examples of boundaries and defects. Also, the language of matrix factorization provides a

general operation called the tensor product of matrix factorizations which gives a recipe

to compute the fusion of any two LG defects [5, 7, 8]. The theory of defects in Landau-

Ginzburg models is versatile because it provides direct information on other theories which

are not necessarily LG models. This fact follows because Landau-Ginzburg models can be

mapped to other interesting theories via different RG flows or mirror symmetry [9, 10]. In
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this article we are particularly interested in the non-compact orbifold C/Zd. This orbifold

is not target-space supersymmetric, but it exhibits N = 2 worldsheet supersymmetry.

The study of defects has been mainly restricted to two-dimensional conformal field

theories. There, the objects of interest are called conformal defects which commute with the

difference of the holomorphic and antiholomorphic components of the energy-momentum

tensor [11]. A subset are those defects called topological which fully commute with the

energy-momentum tensor. In this case, the defect can be translated and deformed through

the worldsheet without affecting the values of the correlation functions, as long as it does

not cross an operator insertion point.

In Landau-Ginzburg models defects are topological provided that a topological twist

has been performed [8]. There are two types of twists that render N = 2 theories topologi-

cal [12], and they are called A-twist and B-twist. In the presence of boundaries or defects,

only half of the total (2, 2) supersymmetry is preserved, and just like for the topological

twist there are two ways to break half of the supersymmetry. The remaining symmetry is

called A-type or B-type depending on which supersymmetric charges are kept. The topo-

logical A(B)-twist is compatible only with A(B)-type supersymmetry if the boundaries

and defects are to be supersymmetric and topological. In this note we assume that the

Landau-Ginzburg models are already topological. In each case, there is a BRST-operator

QA or QB which characterizes the physical degrees of freedom at the boundary.

The machinery of matrix factorizations for defects can be applied to theories such as

the non-compact case C/Zd which is the archetype for string theory on

R
d−1,1 × R

10−d/G, (1.1)

where G is some discrete SO(d − 10) subgroup [13]. This important model is linked to

the Landau-Ginzburg language in two ways that are exploited in this note. First, by

introducing superspace variables the fermionic string theory on C/Zd can be viewed as the

orbifold of a LG model with zero superpotential. And second, we can also go from the

C/Zd theory to a twisted LG model using mirror symmetry as given in [10].

In this note we extend the work of [5] which describes the boundary RG flow in Landau-

Ginzburg models and supersymmetric minimal models in terms of topological defects. Our

work generalizes the results of [5] to the non-supersymmetric case of the non-compact C/Zn

theories. The orbifold C/Zd is physically relevant because it is the simplest model to study

tachyon condensation [14]; in (1.1), the tachyons are closed strings localized at the fixed

points of the orbifold group action. Techniques to study the RG flow in these models have

been considered in [10, 13].

To study the problem at hand, we consider the C/Zd orbifold theory on the upper-half

plane Σ =
{
(x0, x1) ∈ R

2 | x0 ≥ 0
}

with B-type supersymmetry. Inserting the identity

defect at x0 = y > 0, we can perturb the theory over x ≥ y. Letting the perturbations

drive the theory to the IR we obtain a setup describing the IR theory in the bulk while

near the boundary we still have the UV theory, with a defect D sitting at the interface

x0 = y. The next step is to take the RG flow to the boundary via the limit y → 0. In

terms of defect language, this limit gives the fusion of the boundary B and the defect D.
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The paper is structured as follows. In section 2 we review N = (2, 2) theories in

the presence of boundaries. The introduction of a boundary reduces the supersymmetry

and we are left with either A-type or B-type supersymmetry which are halves of the full

N = (2, 2) symmetry. We review the algebraic language of matrix factorizations suitable

fo B-type boundaries and defects and the geometrical description of wave-front trajectories

for A-type boundaries.

Section 3 contains the superspace description of C/Zd as a LG model with zero su-

perpotential. Here we have a description of boundary conditions and defects in terms of

matrix factorizations of W (X) = 0. We show that suitable defects exist such that they

divide the UV and IR theories. In the case of C/Zd we can keep track of both RG endpoints

by means of the chiral ring. By adding terms to the Lagrangian which induce the RG flow

the chiral ring is deformed as well. The resulting chiral ring at each endpoint of the flow

characterizes the theory in the UV or IR.

Lastly, in section 4 we show that LG defects can be used to work out the boundary

RG flows of these theories. We work with the mirror theories of the non-compact orbifolds

which are orbifolded LG theories with non-zero superpotentials. The B-type boundary

conditions have a dual description in terms of A-branes. We compare the action of the

special B-type defects on the B-type boundaries with the RG flow as described by the dual

A-type branes. This comparison indicates that indeed the special defects enforce the RG

flow on the boundary without a need for regularization techniques.

2 Landau-Ginzburg models with boundaries

We work in two dimensions with N = (2, 2) supersymmetry. The general supersymmetric

variation is infinitesimally

δǫ,ǭ = ǫ+Q− − ǫ−Q+ − ǭ+ Q − + ǭ− Q +, (2.1)

where the operators
{
Q+, Q +;Q−, Q −

}
are represented by the differential operators

Q± =
∂

∂θ±
+ iθ̄±∂± , Q ± = −

∂

∂θ̄±
− iθ±∂± , (2.2)

where ∂± = ∂
∂x± := 1

2

(
∂

∂x0 ± ∂
∂x1

)
. These supersymmetry generators obey the algebra

{
Q+, Q +

}
= −2i∂+ ,

{
Q−, Q −

}
= −2i∂− , (2.3)

with all other anticommutators zero.

In superspace, Landau-Ginzburg models are supersymmetric theories described by the

action S = SD + SF with

SD =

∫
d2xd4θK(Xi, X i), (2.4)

SF =

∫
d2xd2θ W (Xi)

∣∣
θ̄±=0

+

∫
d2xd2θ̄ W ( X i)

∣∣
θ±=0

. (2.5)
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The action is a functional of superfields Xi which are chiral, i.e. D ±Xi = 0 where D ±

is the anti-chiral half of the supersymmetric covariant derivative. These operators are

defined as

D± =
∂

∂θ±
− iθ̄±∂± , D ± = −

∂

∂θ̄±
+ iθ±∂±. (2.6)

The smooth function K is called the Kähler potential and the holomorphic function

W the superpotential. This action is explicitly invariant under supersymmetry when the

worldsheet is R
2 or an open subset of it. In this paper we are concerned with subsets

which contain boundaries which halve the amount of supersymmetry allowed. Specifically,

we will work on the upper half plane Σ = R × [0,∞). At the boundary the left and right

fermionic variables are related to each other. There are two ways to do this [9]

(A) θ+ + eiα θ̄− = 0, θ̄+ + e−iα θ− = 0,

(B) θ+ − eiβ θ− = 0, θ̄+ − e−iβ θ̄− = 0.
(2.7)

In theories with A-boundary or B-boundary the following supercharges are conserved,

respectively:

(A) Q A := Q + + eiαQ−, QA := Q+ + e−iα Q −,

(B) Q B := Q + + eiβ Q −, QB := Q+ + e−iβ Q−.
(2.8)

We say a theory has A-type supersymmetry when it has conserved charges (QA, Q A)

and A-boundary; and B-type supersymmetry for (QB, Q B) and B-boundary. In this

paper we restrict to the case β = 0 and α = 0 without loss of generality. The cases

with general phases follow from the results below by using the U(1)V R-symmetry which

maps the fermionic variables as θ± → e−iαθ±, θ± → e−iαθ±, and the superpotential as

W → e−2iαW . In the present case, the B-type variation is given by

δB = ǫQB − ǭ Q B, (2.9)

which is a special case of the full (2, 2) variation where we take ǫ+ = −ǫ− =: ǫ and ǭ+ =

−ǭ− =: ǭ. The B-type generators obey the relations
{
QB, Q B

}
= −2i(∂+ + ∂−) , Q2

B =

Q
2
B = 0. The general A-type variation is given by

δA = ǫQ̄A − ǭQA, (2.10)

Observe that the full (2, 2) variation preserves A-type boundary conditions if instead we

take ǫ+ = ǭ− =: ǫ and ǭ+ = ǫ− =: ǭ.

The BRST operator Q = QI , where I = A for A-type, and I = B for B-type, is used

to define the physical operators of the theory as those operators which are Q-closed.

2.1 B-type defects

In this section we specialize to B-type supersymmetry and review the use of matrix fac-

torizations to describe B-supersymmetric boundary conditions and interfaces. Under the

B-supersymmetry variation in equation (2.9) the action varies as δBS = δBSD + δBSF .
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As noted in [15], boundary terms may be added to cancel δBSD at the boundary ∂Σ (see

also [16, 17] for a general description of topological B-type D-branes in LG models). The

variation of the F -term gives [9]

δBSF = 2iǫ

∫

∂Σ
dtdθ W (X)

∣∣
θ̄=0

− 2iǫ

∫

∂Σ
dtdθ̄ W ( X )

∣∣
θ=0

, (2.11)

which is in general non-zero. To recover supersymmetry new boundary superfields are

introduced on ∂Σ [18]. These boundary superfields, which we denote by {Πi}i=1,...,r, are

fermionic and not chiral:

D Πi = Ei(X∂) 6= 0, (2.12)

where D is the B-type covariant derivative and X∂ denotes the boundary superfield

associated to the bulk superfield X. The components of Π are fermionic πi and scalar

auxiliary fields li. The boundary superfields Πi carry the following action

S∂Σ =

∫
dtd2θ Π iΠi + i

∫

∂Σ
dtdθ JiΠi

∣∣
θ̄=0

− i

∫

∂Σ
dtdθ̄ J̄i Π i

∣∣
θ=0

, (2.13)

for some functions J := J (X∂). A more general form for the boundary coupling of B-

type topological Landau-Ginzburg models is discussed in [19] but we do not use it here.

The modified Landau-Ginzburg action in the topological twisted case is invariant under

infinitesimal B-type supersymmetry variations iff JiEi = W as functions of X∂ . The

additional functional S∂Σ provides a boundary contribution Q∂ to the BRST charge Q

that has the following form

Q∂ =
∑

i

Jiπi + Eiπ̄i. (2.14)

From the equation above, we see that different choices of the potentials Ji and Ei

determine the Q-cohomology of the boundary fields. Choosing a representation for the

Clifford algebra of the boundary fermions {πi, π̄i}i=1,...,r, we have [8]

Q∂ =

(
0 p1
p0 0

)
, (2.15)

where the pi are 2r × 2r-matrices with polynomial entries in the chiral fields satisfying

p1p0 = p0p1 = W12r×2r since Q2
∂ = W . Thus the problem of characterizing the boundary

spectra has been reduced to factorizing the superpotential over maps of arbitrary rank.

In general, given a polynomial W ∈ S := C[Xj ], and two S-modules P0, P1, a matrix

factorization of W is an ordered pair (p0, p1), where pi : Pi → Pi+1 mod 2, such that

pipi+1 = W1i+1. One denotes matrix factorizations in the following way [8]

P =

(
P0

p0
⇄
p1

P1

)
, p0p1 = W1P1 , p1p0 = W1P0 . (2.16)

The rank of matrix factorization P is the rank of the maps pi.

Aside from boundary conditions, matrix factorizations also describe defects. A defect

is a one-dimensional interface that separates two Landau-Ginzburg models, or generally
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any two field theories. Here we take the defect to be at x1 = y, parallel to the x0-axis.

Let the region x1 > y contain a LG model with superpotential W1(Xi), and the region

y > x1 > 0 contain a LG model with superpotential W2(Yi).

Similar arguments as for the B-type boundary conditions shows that the degrees of

freedom on the defect can be described by a matrix factorization of W = W1(Xi)−W2(Yi)

over C[Xi, Yi]-modules. This is consistent with folding trick which says that such a defect

is equivalent to the boundary condition of the tensored theory LG1 ⊗ LG 2, where the

bar means interchanging holomorphic and antiholomorphic variables [8]. The fusion of a

defect and a boundary, or a defect and another defect is obtained by the tensor product of

matrix factorizations. Let P be the matrix factorization for a defect D at x1 = y, and Q

for a boundary condition B at x1 = 0, given respectively by

P (X|Y ) =

(
P0

p0
⇄
p1

P1

)
, p0p1 = (W1(X)−W2(Y ))1P1 , p1p0 = (W1(X)−W2(Y ))1P0 ,

(2.17)

and

Q(Y ) =

(
Q0

q0
⇄
q1

Q1

)
, q0q1 = W2(Y )1Q1 , q1q0 = W2(Y )1Q0 . (2.18)

Then a new boundary condition is obtained from their fusion, denoted

B′ = D ∗B, (2.19)

by taking y → 0. The resulting boundary is then given by the tensor product of matrix

factorizations Q′ = P ⊗Q with

Q′ =

(
Q′

0 =
(
P0 ⊗C[Y ] Q0

)
⊕
(
P1 ⊗C[Y ] Q1

) q′0
⇄

q′1

(
P1 ⊗C[Y ] Q0

)
⊕
(
P0 ⊗C[Y ] Q1

)
= Q′

1

)
,

(2.20)

where,

q′0 =

(
p0 ⊗ 1Q0 1P1 ⊗ q1
−1P0 ⊗ q0 p1 ⊗ 1Q1

)
, q′1 =

(
p1 ⊗ 1Q0 −1P0 ⊗ q1
1P1 ⊗ q0 p0 ⊗ 1Q1

)
. (2.21)

The tensor product above will give a result which is of infinite rank as a C[X]-module.

If the two initial defects are of finite rank, the infinity in the rank of the tensor product

comes from trivial matrix factorizations which can be “peeled off” to obtain a reduced

rank matrix factorization. To obtain the reduced rank matrix factorization resulting from

equation (2.20) more directly, one associates to each matrix factorization P a 2-periodic

C[X]/W -resolution of the space coker p1, the cokernel of the p1 map. Then the problem

of computing Q′, the matrix factorization corresponding to the tensor product of P and

Q, is translated into finding coker q′1 in its reduced form. As noted in [8], at the level of

C[X]/W -modules both coker q′1 and the space

V = coker(p1 ⊗ 1Q0 , 1P0 ⊗ q1), (2.22)

have resolutions which are identical up to the last two steps. Therefore if we can find the

reduced form of V , we can identify the 2-periodic resolution corresponding to the matrix

factorization Q′. It turns out that it is simpler to work out the reduced form of V since its

components are the known maps of the original two matrix factorizations.

– 6 –
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2.2 A-branes and wave-front trajectories

Similar to the previous section, we now specialize to A-type supersymmetry. The language

of matrix factorizations lends itself naturally to be the B-type D-branes in Landau-Ginzburg

models. This is not the case for D-branes preserving A-type supersymmetry. Below we

give a geometric characterization of A-type D-branes, called A-branes for short.

We consider a general N = (2, 2)-supersymmetric sigma model in two dimensions with

superpotential W defined on Σ = R × [0,∞), and with an n-dimensional target space M

which we assume to be a Kähler manifold. Let γ ⊂ M contain the embedding of ∂Σ, that

is φ : ∂Σ →֒ γ where φ denotes the lowest components of the superfields. Then, a D-brane

wrapped on γ preserves A-supersymmetry iff γ is Lagrangian submanifold ofM with respect

to the Kähler form, and W (γ) ⊂ C is a straight line parallel to the real axis, and invariant

under the gradient flow of ReW [9]. A submanifold N of a symplectic manifold (M,ω) is

called Lagrangian if the symplectic form ω vanishes on N , and dimN = 1/2 dimM .

An example of A-branes are those D-branes wrapped on the submanifold defined by

the action of the gradient of ReW on a nondegenerate critical point of the superpotential

W . This case is discussed in [9] and we will review it below, but first we introduce some

terminology from complex variables. A non-constant holomorphic function f has a critical

point at z0 if f ′(z0) = 0. The order of the critical point is the order of zero of f ′ at z0.

The value of f(z0) is called the critical value.

For definiteness, let X∗ be a critical point of W of order n = 1, and let fX(t) = f(t,X)

be the global flow generated by grad[ReW ]. In general a global flow is a continuous map

f : [0, 1) ×M → M which satisfies f(0, X) = X, f(t, f(s,X)) = f(t + s,X). Here we are

interested in a flow that satisfies

f ′
X(t) = grad[ReW ]fX(t), (2.23)

where grad[ReW ] = gIJ∂J(ReW )∂J , and we evaluate this vector field at the point fX(t) ∈

M .

Defining the“wave-front trajectory” submanifold

γX∗
:=

{
X ∈ M

∣∣ lim
t→−∞

fX(t) = X∗

}
, (2.24)

then the claim is D-branes wrapped on γX∗
are A-branes. This means checking that γX∗

is Lagrangian submanifold whose image in the W -plane is parallel to the real axis.

grad[ReW ](ImW ) = gIJ∂J(W + W )∂I(W − W )

= gij̄∂j̄ W ∂iW − gj̄i∂iW∂j̄ W

= |∂W |2 − |∂W |2

= 0.

(2.25)

Therefore ImW is constant along grad[ReW ] and thus W (γX∗
) is a ray starting at the

critical value w∗ := W (X∗) and parallel to the real axis. The name “wave-front trajectory”

for γX∗
follows from the constant value of ImW .

– 7 –
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Now we need to show that γX∗
is middle dimensional. Recall that if z0 is a critical

point of f : C → C of order m − 1, then there exists a change of coordinates near z0 and

f(z0) such that f has the form f(ξ) = ξm + f(z0). There is an analogous statement for

several complex variables (Complex Morse Lemma) that allows us to map a neighborhood

of X∗ to that of 0 ∈ C
n,

W = w∗ +
n∑

i=1

z2i + o(z3i ). (2.26)

Suppose that this change of variables leaves us with a flat metric, ds2 =
∑

i |dzi|
2. Then

if we write zi(t) for the components of the map fX(t), the flow equation (2.23), in a region

sufficiently close to 0 ∈ C
n (so that we can ignore the higher order terms in W ), becomes

z′i(t) = z̄i(t), (2.27)

or, breaking into real and imaginary parts, zi = xi + iyi,

x′i(t) = xi(t), y′i(t) = −yi(t), ⇒ xi(t) = Xie
t, yi(t) = Yie

−t, (2.28)

where Xi and Yi are simply the coordinates of the point X. The submanifold γ0 is then

determined by those points X which satisfy fX(t) → 0 as t → −∞. Looking at our solu-

tions (2.28), these are simply the points with Yi = 0, Xi arbitrary. In particular, near 0

(i.e. in a small neighborhood of X∗), γX∗
is an n-dimensional real submanifold.

Generally we won’t be lucky enough that the metric is flat. However, restricting to

a sufficiently small neighborhood of 0, we can assume that the metric is constant and

hermitian. Since any positive-definite hermitian matrix can be connected to the identity

matrix by a continuous path in the space of positive-definite hermitian matrices, one can

show that the matrix M b
a appearing in the flow equation (now written in real components)

x′a(t) = M b
a xb(t), (2.29)

will always have n positive and n negative eigenvalues, and hence γ0 remains middle-

dimensional.

We are left to show that the induced symplectic form vanishes on γX∗
. Defining

v := grad[ReW ] one can compute the Lie derivative result Lvω = 0 (true whenever v

is the gradient of a holomorphic plus an antiholomorhic function), which means that ω

is invariant along the gradient of ReW . Now we can use this fact to show that for all

X ∈ γX∗
ωX(v1, v2) = 0; where v1, v2 ∈ TXγX∗

, the tangent space to γX∗
at X. Indeed,

since ω is invariant along the flow f(t,X) = ft(X) generated by the vector field v, it

follows that (f∗
t ω)X := f∗

t (ωf(t,X)) equals ωX for all X and t. Therefore, ωX(v1, v2) =

f∗
t (ωfX(t))(v1, v2) = ωfX(t)(ft∗v1, ft∗v2). For any function g on M and any X ∈ γX∗

,

lim
t→−∞

(g ◦ ft)(X) = g(X∗), (2.30)

so g◦ft becomes a constant function along γX∗
. It then follows that ft∗v → 0 for v ∈ TXγX∗.

Hence ωX(v1, v2) = 0 since it is independent of the parameter t. Thus γX∗
is a

Langrangian submanifold of (M,ω). To summarize, we have shown that D-branes wrapped

on γX∗
as defined in equation (2.24) are A-branes which are mapped toW (X∗)+R

≥0, where

X∗ is a critical point of W .

– 8 –
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2.3 A-branes in Landau-Ginzburg models

We use the wave-front trajectory example for LG models with polynomial superpotentials.

We first consider the case W = Xk+2 with k a non-negative integer. Then W has only one

critical point X∗ = 0. As noted above we know that γ0 (defined in (2.24)) is the preimage

of the set [0,∞) ⊂ C. Explicitly, A-branes wrap the submanifold

γ0 =

{
r exp

(
2πni

k + 2

)
: r ∈ [0,∞) , n ∈ {0, . . . , k + 1}

}
⊂ C. (2.31)

Using submanifolds of C which asymptote to γ0, we can also describe the A-branes of

LG theories with more general superpotentials of the type

Wλ(X) = Xk+2 +
k−1∑

j=0

λjX
j+2. (2.32)

We have observed that a constant term does not contribute to the fermionic integral of the

Lagrangian so it can be shifted away. A linear term does not introduce any new branch

points. So we have the freedom to gauge it away and thus always translating one of the

critical points to the origin.

In the most general case, λj 6= 0 for all j, andWλ has k+1 non-degenerate critical points

which are isolated. In this case we have k + 1 possible Lagrangian submanifolds to wrap

the A-branes, corresponding to each of the critical points. We assume that Imwi 6= Imwj

for i 6= j, where wj := Wλ(X∗j) are the critical values. This assumption eliminates the pos-

sibility of having overlapping images in the W -plane of the submanifolds γi corresponding

to the X∗j critical points.

The A-branes of the deformed theory are curves asymptoting to Ln1 ∪ Ln2 , n1 6= n2,

where Lnj
⊂ γ0 are slices corresponding to each value of ni ∈ {0, . . . , k + 1}. This claim

follows by noting that for large X, Wλ approaches the undeformed W since the leading

term Xk+2 in Wλ dominates. So W−1
λ is close to W−1 in this regime. Now, let X∗j be one

of the critical points of the deformed potential. By assumption it is of order one so locally

near X∗j and its image, Wλ is biholomorphically equivalent to a quadratic map. Thus the

preimage of wj + R
≥0 near wj is two wavefront trajectories starting at X∗j . As noted,

these curves approach some Ln1 and Ln2 . The curves intersect at the branch points only

(consider Wλ as a branched cover) which means n1 6= n2. For non-generic values of the λj ,

the branch points can be degenerate. Then the A-brane associated with one of these points,

say X∗, will asymptote Ln1 ∪· · ·∪Lno(X∗)+1
, where o(X∗) is the order the critical point X∗.

Following the work of [5] we can depict the A-brane description above for the Landau-

Ginzburg models by compactifying the X-plane to the disk D. The resulting graph

contains the critical points X∗i in the interior of the disk; cyclically ordered preimages{
B1, . . . , Bk+2

}
of ∞ ∈ W -plane on the boundary of the disk ∂D; and (o(X∗i) + 1)-many

segments γai connecting the point X∗i to that many of the Ba. We define Γi := ∪aγ
a
i and

Γ := ∪iΓi. We call the graph formed by Γ and the boundary ∂D the schematic representa-

tion of the superpotential. The two graphs below are examples of schematic representations

for A-branes in LG models with superpotentials W = X4 and W = X4 + λX3.
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X∗ B1

B2

B3

B4

W = X4

X∗2 X∗1 B1

B2

B3

B4

W = X4 + λX3

A graphical representation Γ has the following properties [5]: all the preimages of

a critical value ω ∈ C are connected on Γ; Γ \ ∂D is connected and simply connected;

∀i 6= j,Γi ∩ Γj contains at most one point; and it is non-empty only if it contains an

element of the fiber f−1(∞); Γi ∩ Γj ∩ Γk = ∅.

3 Describing RG flows in C/Zd orbifolds using defects

In this section we describe a new way of dealing with the C/Zd orbifold in terms of defects.

The language of matrix factorizations can be utilized to describe the RG flow between the

C/Zd orbifolds. This can be done directly by considering the Lagrangian of the model as

equivalent to that of a LG model with superpotential W = 0. So any defects between

C/Zm and C/Zn become a problem of factorizing the zero polynomial.

Since we are working with B-type supersymmetry we need to use a perturbation which

preserves this type. Such a perturbation for a N = (2, 2) theory is done using twisted

chiral fields Ψ in theory with the integrals

∆S =

∫

Σ
d2xdx̄−dθ+ Ψ

∣∣
θ̄+=θ−=0

. (3.1)

But the N = (2, 2) supersymmetry dictates that the parameters of the superpotential and

twisted superpotential remain decoupled under the RG flow [20]. This fact means that

the structure of the twisted chiral sectors is independent of the specific superpotential.

Especially in our case whether there is one or not. Therefore the spectrum of the twisted

chiral sectors between C/Zd and the Zd-orbifolded LG with W = Xd are equivalent, and

their B-type preserving perturbations can be mapped to each other. With this observation

we set out to check that the sort of defects presented in [5] describing the RG flow defects

coming from such perturbations over a subset of Σ, can be extended to the non-compact

orbifolds and the RG flows between them.
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3.1 C/Zd as an LG/Zd with W = 0

Superstring theory on the space C/Zd can be described by a chiral superfield

Φ = φ(y±) + θαψα(y
±) + θ+θ−F (y±), (3.2)

where y± = x± − iθ±θ̄∓. The action takes the form

S =

∫
d2xd4θ Φ Φ+ 0, (3.3)

where we included the zero to emphasize that we have a LG model with superpotential

W = 0 in the D-term. In this way we can construct defects between different C/Zd orbifolds

and describe them in terms of matrix factorizations. Indeed, we check that when two C/Zd

theories are related by an RG flow, we can juxtapose them with a corresponding defect

which maps the boundary conditions accordingly.

Matrix factorizations of the zero polynomial work in exactly the same way as the case

for any other polynomial. As an example of this we consider the fusion of a defect between

two orbifolded theories; the upper one with superpotential W1(X) = Xd and the lower one

with W2(Y ) the zero superpotential but orbifold group Zd′ . The simplest such defect is

given by

Dm,n,N (X|Y ) =

(
D1 = C[X,Y ][m,−n]

XN

⇄

Xd−N

C[X,Y ][m−N,−n] = D0

)
, (3.4)

where [·, ·] is the Zd × Zd′ grading. We see that d1d0 = Xd − 0 = W1(X)−W2(Y ). In the

lower theory, the boundary conditions corresponding to rank-1 matrix factorizations are a

direct sum of the irreducible matrix factorizations of the form

QL,M (Y ) =

(
Q1 = C[Y ][L+M ]

Y M

⇄
0

C[Y ][L] = Q0

)
, (3.5)

where L ∈ Zd labels the irreducible representations.

If the defect Dm,n,N sits at x1 = y and we take y → 0 the fusion of the defect and

the boundary condition is given by tensor product of both matrix factorizations. This is

obtained by looking at coker f = D0 ⊗ Q0/ im f where f = (d1 ⊗ 1Q0 , 1D0 ⊗ q1) [7]. We

denote the C[X,Y ]-generators of D0 and Q0 by eD0
m,n and eQ0

L , respectively. Then as a

C[X]-module, coker f is generated over ei := Y ieD0
m,n ⊗ eQ0

L modulo

XNei = 0 , ei+M = 0, ∀i ≥ 0. (3.6)

The second condition means that V has rank M . Note that ei has Zd × Zd′-degree [m −

N,L − n + i], but under fusion we are left with a Zd theory so we have to extract the

Zd′-invariant subset V Zd′ ⊂ V . This means the i is fixed to i = n − L, which means we

are left with one generator with Zd-degree m − N restricted to XN = 0. Otherwise if

n− L 6∈ [0,M − 1] then Dm,n,N ∗orb Q
L,M = 0. In summary,

Dm,n,N ∗orb Q
L,M =

{
Qm,N , if n− L ≤ M − 1,

0, otherwise.
(3.7)
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Another example of useful defects given by matrix factorizations of W = 0 are those

enforcing the action of the symmetry group. Similar to those in [5] they are given by the

Zd × Zd- equivariant matrix factorization Tm = (Tm
1 , Tm

0 ; t1, 0) with

Tm
1 = C[X,Y ]

{
e1m,k

}
(m,k)∈Zd×Zd

, deg e1m,k = [m+ k + 1,−k], (3.8)

Tm
0 = C[X,Y ]

{
e0m,k

}
(m,k)∈Zd×Zd

, deg e0m,k = [m+ k,−k]. (3.9)

The factorizing map is given by

t1 =
d−1∑

k=0

(
Xe0m,k ⊗ e1

∗
m,k − Y e0m,k+1 ⊗ e1

∗
m,k

)
, (3.10)

where e∗ is the basis dual to e.

One obtains the fusion rules

Tm ∗orb T
n = Tm+n, (3.11)

and

Tm ∗orb Q
M,N = QM+n,N , (3.12)

whereD1∗orbD2 means extracting the part ofD1∗D2 which is invariant under the symmetry

group of the theory between both defects D1 and D2. The sums are performed modulo d.

Hence the defects Tm form a representation of the symmetry group.

More importantly, we note that by also setting p0 = 0 in the special defects introduced

in [5] we obtain defects which act as the interface between orbifolds sitting at opposite

endpoints of the RG flow. The special defects are Zd′×Zd - equivariant matrix factorizations

P (m,n), with labels m ∈ Zd and n = (n0, . . . , nd′−1) with ni ∈ N0 such that
∑

i ni = d. The

C[X,Y ]-modules P1 and P0 and their Zd′ × Zd-grading are given by,

P1 = C[X,Y ]d
′




[1,−m]

[2,−m− n1]

[3,−m− n1 − n2]
...

[d′,−m−
∑d′−1

i=1 ni]




, P0 = C[X,Y ]d
′




[0,−m]

[1,−m− n1]

[2,−m− n1 − n2]
...

[d′ − 1,−m−
∑d′−1

i=1 ni]




.

(3.13)

The factorizing maps are

pm,n
1 = Y 1d′ − Ξn(X) , pm,n

0 = 0, (3.14)

where (Ξn(X))a,b := δ
(d′)
a,b+1X

na .

As computed in [5] the general rule for fusion of a special defect P (m,n) and a Zd-

irreducible boundary condition Q(M,N) is

P (m,n) ∗Q(M,N) =
⊕

aZd′ : i(a)<min(N,na)

Q(a,k(a)), (3.15)

where i(a) =
{
n−M +

∑a
j=0 nj

}
d
.
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One can check that special defects send the boundary condition Q(M,1) to another such

boundary condition with N = 1, Q(M ′,1).

Let P (m,n) be a special defect and Q(M,N=1) an irreducible B-type boundary condition.

Then their fusion is

P (m,n) ∗Q(M,N=1) =

{
0, M /∈ L(m,n)

Q(a,1), M = m+
∑a

i=1 ni

(3.16)

where L(m,n) := m+ {n0, n0 + n1, . . . , n0 + n1 + · · ·nd′−1}.

3.2 Comparison with RG flow in the C/Zd theories

We can compare the result for the fusion of the defects Pm,n with boundary conditions

QM,N of the LG model with zero superpotential with the RG flow between the C/Zd

orbifolds. For this purpose we describe the RG flow in these models by looking at their

chiral rings.

Upon bosonizing the fermionic fields of the superstring theory, one can construct the

chiral operators given in [13]

Xj = σj/n exp[i(j/n)(H − H )] , j = 1, . . . , n− 1, (3.17)

where σj/n is the bosonic twist operator. These operators are the bosonic components of

the respective chiral fields which we will also denote by Xj . The higher chiral fields are

powers of X := X1. The chiral ring of this theory is generated by X and

Y :=
1

V2
ψψ =

1

V2
exp[i(H − H )], (3.18)

modulo

Xd = Y. (3.19)

Deformations of equation (3.3) by the following F-term preserve supersymmetry since

the Xj fields are chiral,

δL =
n−1∑

j=1

λj

∫
d2θ Xj . (3.20)

The deformed theory has a chiral ring with the same fields as before but with relation in

equation (3.19) altered to

Xd +
d−1∑

j=1

gj(λ)X
j = Y, (3.21)

where gj(λ) are polynomials in the couplings [13]. A deformation such as in equation (3.20)

induces a RG flow in the theory. By considering the case where gi = 0 for i ≤ d′ − 1, the

IR and UV limits of the ring condition above are Xd = Y and gd′X
d′ = Y respectively.

These two are the conditions defining C/Zd and C/Zd′ , respectively.

We note that for every RG flow C/Zd −→ C/Zd′ there exists a matrix factorization

P (m,n) of W = 0 representing a defect D between C/Zd and C/Zd′ . Given two such bulk
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theories, we can juxtapose them via a defect P (m,n) by choosing m ∈ Zd and non-negative

integers {n0, n1, . . . , nd′−1} subject to n0 + · · ·nd′−1 = d. The solution is a non-unique

defect but that reflects the action of the overall Zd′ ×Zd symmetry. In the next section we

will have a better description of how the boundary degrees of freedom are mapped from

one theory to the other under fusion with RG flow defects.

As an example, consider the Z5 orbifold. In this case the chiral ring of the deformed

theory is defined modulo X5+
∑4

j=1 gj(λ)X
j = Y . If we set g1 = g2 = 0, then the RG flow

goes between C/Z5 in the UV limit (since the theory’s chiral ring has the relation X5 = Y )

and C/Z3 (since in the IR limit the defining relation is X3 = Y ). Then the defect P (3,n)

with n = (2, 2, 1) can sit at the interface between the theories C/Z5 and C/Z3 such that

B-type supersymmetry is preserved across the interface.

4 RG flows using mirror models

A second strategy is to study the orbifold RG flow in terms of the mirror of C/Zd [10].

Using mirror symmetry we obtain the diagram below. In the following m stands for mirror

symmetry and |B for the B-type defects; LGm denotes the LG model with W = Xm; and

L̃Gm the twisted LG with W = X̃m.

LGm/Zm

∣∣
B−−−−→ LGn/Zny∼=

y∼=

C/Zm
m

−−−−→ L̃Gm L̃Gn
m

−−−−→ C/Znym

ym

LGm
RG

−−−−→ LGn

(4.1)

In the diagram above, the mirror mapping from C/Zn to a twisted LG with non-

vanishing potential comes from a mirror correspondence between a gauged linear sigma

model (GLSM) and a more general LG theory. As detailed in [10, 21], one considers a

GLSM whose geometry is described by

− d|X0|
2 +

n∑

i=1

ki|Xi|
2 = t, (4.2)

where the fields (X0, Xi) come with U(1) charges (−d, ki), and t is the complexified Fayet-

Iliopoulos (FI) parameter. Such GLSM is mirror to a LG theory with superpotential

W̃ =
n∑

i=1

Zd
i + et/d

n∏

j=1

Z
kj
j , (4.3)

where the variables Zi are twisted chiral fields, and the superpotential is taken modulo

(Zd)
n−1. The IR fixed point of the GLSM is obtained with the limit t → −∞. This limit

breaks the U(1) symmetry to Zd and the geometry obtained is that of Cn/Zd. In this note

we consider the n = 1 case, i.e. C/Zd. On the mirror side, the t → −∞ limit gives us the LG

with W̃ = Zd. Thus we see that the RG flow between the non-compact orbifolds can be de-

scribed in terms of matrix factorizations of true LG orbifolds with non-zero superpotentials.
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4.1 RG flow defects using mirror models

The idea is that via mirror symmetry we can represent the C/Zd orbifold as a twisted LG

model with superpotential W = X̃d. We denote this theory by L̃Gd in the above diagram.

This theory is equivalent to the model LGd/Zd, the orbifold of a non-twisted LG model

with superpotential W = Xd by Zd. So we can use defects between these LG orbifolds to

study the RG flow between the original C/Zd orbifolds.

As in the previous section we are again in the Landau-Ginzburg model so we can use

the RG flows defects P (m,n). The factorizing maps are as in equation (3.14) but with p0
non-zero:

pm,n
1 = Y 1d′ − Ξn(X) , pm,n

0 =
d′−1∏

i=1

(Y 1d′ − ηiΞn(X)), (4.4)

where η is an elementary d′th root of unity. And similarly, the irreducible matrix factoriza-

tions corresponding to these boundary conditions are of the same form as in equation (3.5),

QL,M (Y ) =

(
Q1 = C[Y ][L+M ]

XM

⇄

Xd′−M

C[Y ][L] = Q0

)
. (4.5)

We review the graphical version introduced in [5] to depict the fusion of P (m,n) with the

boundary conditions Q(L,M). To the set Q(M,1) :=
{
Q(M,1) : 0 ≤ M ≤ d− 1

}
the following

graph is assigned: a disk divided into d equal sections by segments from the origin to

the boundary. One segment is decorated to start labeling the sections Si from i = 0 to

s = d− 1. Below is such a graph for d = 4:

S0S1

S2 S3

W = X4

Using the graphical description described above, the special defects P (m,n) are repre-

sented by the operators

O(m,n) := T−a(m,n)SLc(m,n), (4.6)

where L(m,n) is defined below (3.16) and a(m,n) := | {0, . . . ,m} ∩ L(m,n)|. The operator

S{s1,...,sk} deletes the sectors Ssj by merging the segments which bound them. The operator

Tk acts as the Zd-symmetry by shifting M → M + k in Q(M,1). So just like P (m,n), the

operator O(m,n) annihilates the sectors associated to boundary conditions whose label M

does not belong in L(m,n). Then it relabels the remaining sectors by setting the Sm to S0.

The above pictorial representation generalizes to boundary conditions Q(M,N) with

N > 1 as well. In this case, Q(M,N) corresponds to the union SM ∪ SM+1 ∪ · · · ∪ SM+N−1.
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We want to show that the operators in the definition (4.6) still represent the action of

special defects on the boundary conditions in this N > 1 case.

Represent Q(M,N) by S(M,N) := SM ∪ · · · ∪ SM+N−1 and assume that SLc
(m,n)

shrinks

S(M,N) to nothing. Then {M,M + 1, . . . ,M +N − 1} ⊂ Lc
(m,n). Thus, M + k 6= m +∑a

i=1 ni ∀a ∈ Zd′ , N − 1 ≥ k ≥ 0. This means, k 6= m − M +
∑a

i=1 ni = i(a), N −

1 ≥ k ≥ 0. Therefore, i(a) > N − 1 which means i(a) ≥ N . By equation (3.15), one

has P (m,n) ∗ Q(M,N) = 0. Here P (m,n) is the defect with the set (m,n) a solution to

Lc
(m,n) = {M, . . . ,M +N − 1}; and Q(M,N) such that M = min {M, . . . ,M +N − 1}, and

N = | {M, . . . ,M +N − 1} |.

Now if SLc
(m,n)

does not delete the full union S(M,N), then

{M, . . . ,M +N − 1} ∩ Lc
(m,n) = {0, . . . , N − 1} ∩m−M

+ {n0, n0 + n1, . . . , n0 + n1 + · · ·+ nd′−1}

= {0, . . . , N − 1} ∩ J

= {i1, . . . , il} 6= ∅,

(4.7)

where J := {i(a) | a ∈ Zd′}. Hence, there exists a ∈ Zd′ such that i(a) < N and by

equation (3.15) the corresponding fusion P (m,n)∗Q(M,N) is not zero. As previously discussed

this fusion is then P (m,n) ∗Q(M,N) = Q(a1,k(a1) where a1 minimizes i(a) and

k(a) = min

{
j > 0 |

j∑

l=1

na+l ≤ N

}
. (4.8)

Since we have restricted to the case ni ≥ 1 ∀i, k(a1) = l is the number of sections of S(M,N)

not annihilated by S{··· }. Thus, P
(m,n) ∗Q(M,N) = Q(a1,l). One notes that a1 is the number

of Q(M ′,1) with M ′ ∈ {m, . . . ,M} not annihilated by P . Hence, the operators O represent

the P action on all B-type boundary conditions [5].

4.2 Comparison with RG flow

The RG flows between the C/Zd orbifolds can be studied in terms of the mirror picture

as well. As we previously mentioned, mirror symmetry relates these orbifolds and the

twisted Landau-Ginzburg model with twisted superpotential W̃ = X̃d. These twisted

model can be related via mirror symmetry to a Landau-Ginzburg model with superpotential

W = Xd. Therefore we can frame the RG flow of interest C/Zd −→ C/Zd′ as the RG flow

LGd −→ LGd′ in the presence of A-supersymmetry.

The RG flows in the Landau-Ginzburg models are encoded in the behavior of the

deformed superpotential Wλ of the respective model. That is, we consider perturbations

Wλ0 = Xd + λ0X
d′ , d′ < d, (4.9)

of W = Xd. The RG flow affects the superpotential by scaling it

Wλ0 → Λ−1Wλ0 . (4.10)
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Upon a field redefinition, X → ΛX, we obtain

Λ−1Wλ0 = Xd + λ0Λ
d′−d

d Xd′ =: Wλ(X), (4.11)

where λ(Λ) := λ0Λ
d′−d

d is the running parameter:

lim
Λ→∞

λ = 0 (UV) , lim
Λ→0

λ = ∞ (IR). (4.12)

So at either end of the flow we end up with a homogeneous potential. We assume that the

imaginary parts of the critical values of Wλ stay different ∀ λ.

Since we are interested in Landau-Ginzburg models on the half-plane with a non-zero

boundary, we refer to the language of A-branes discussed in section 2.3. The RG flow has

a description in terms of the A-branes and the respective deformations [8, 9] under non-

zero λ in equation (4.11). Each A-brane formed by segments from X∗i to the boundary

points Ba and Bb is denoted by BaX∗iBb. As the deformed superpotential flows into

the IR, the critical points X∗i, i > 0, flow to infinity, while the critical point X∗1 = 0

associated with the homogeneous superpotential remains. The A-branes associated with

the points X∗i then decouple from the theory since the respective Lagrangian submanifolds

γX∗i
disappear. Therefore the IR A-branes are labeled by the equivalent classes ([Bi], [Bj ])

of the relationship Bk ∼ Bl when connected on Γ \Γ1. A generic A-brane in the UV might

be composed of segments which are part of Γ1 and Γi in the deformed potential (λ 6= 0).

In this case the A-brane decays into the sum of an A-brane which decouples in the IR and

an A-brane which flows to an IR A-brane.

To illustrate, let us consider the example we discussed in section 2.3 with W = X4

and the deformation Wλ = X4 + λX3. W = X4 corresponds to the C/Z4 orbifold. The

deformed Wλ has critical points X∗1 = 0 of order n = 2, and X∗2 = −3λ of order n = 1. We

see that we flow to the IR X∗2 → ∂D so the A-brane B3X∗2B2 decouples. So the endpoint

of the flow is the C/Z3 orbifold. As an example of the decay of the UV A-branes when

λ 6= 0, consider B3X∗B1. As we turn on λ this A-brane decays to B3X∗2B2 +B2X∗1B1.

One can map the A-brane diagrams to the disk diagrams representing the B-type

boundary conditions [8]; and hence there is a correspondence between the flow of the A-

brane deformations and the action of the special defects on the disk diagrams of B-type

boundary conditions. As noted above, in the IR only those preimages of ∞ which are not

connected on Γ \ Γ1 survive. These are precisely the points in the set

L = {a ∈ Zd|Ba ≁ Ba+1} . (4.13)

In terms of the graphical disk operations for the B-type defects, this is equivalent to starting

with disk partitioned into Si sectors representing the QM,N B-type boundary conditions;

and acting on this disk with the SLc operator with L as in equation (4.13).

5 Summary and outlook

In this note we have presented an example of topological defects which implement the

action of the RG flow between C/Zn theories. The language we have employed to describe
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the RG flow defects is the natural description for such objects in the frame of Landau-

Ginzburg models and their orbifolds. As we reviewed in section 2.1, this description involves

factorizing the superpotentials of the given theories over different polynomial rings.

Here we have showed that the language of matrix factorizations for boundaries and de-

fects carries over to the case of a zero superpotential. The matrix factorizations we used in

this case were obtained by setting p0 = 0 in those given in [5]. This is a very natural choice

since it relates matrix factorizations in the C/Zd models to another method of characteriz-

ing D-branes. Indeed, a common description of D-branes in geometric spaces (when there is

no superpotential) is via chain complexes of vector bundles, with a differential d built from

the BRST operator Q [22]. On the other hand, out of the matrix factorizations associated

with the D-branes in the Landau-Ginzburg models one obtains 2-periodic twisted complexes

by taking the differentials to be the factorizing maps p1 and p0. Therefore with p0 = 0,

W → 0 produces an ordinary complex which coincides with above description for the D-

branes. It would be interesting to make this connection precise in a more general context.1

We have put forward two different ways of checking that the defects we posit in this

note indeed enforce the RG flow between the non-compact orbifolds. One method uses

the chiral rings of the theories at hand, and their deformations. The other method is

a geometrical description of A-branes which are the equivalent representation of B-type

boundary conditions in the mirror theory. Both methods keep track of the RG flow and

show that the endpoints are C/Zn orbifolds. The defects P (m,n) of subsection 3.1 are shown

to be appropriate interfaces between any two such orbifolds.

By studying the fusion rules we showed that we can use these defects to tackle the

question of the boundary RG flow when the theory has a nontrivial worldsheet boundary.

In this note we provided evidence that the defects P (m,n) successfully map the boundary

conditions associated with the IR theory C/Zn, to those of the UV theory C/Z′
n, n

′ < n.

We established such correspondence by working with the mirror theory of the non-compact

orbifolds. In this picture, we can compare the action of the RG flow defects on the B-type

D-branes with the action of the RG flow on the dual A-type D-branes, i.e., A-branes. In

comparing with the work of [5], we have shown that the RG flows between the C/Zd models

follow a similar pattern to that of the LG orbifolds with a superpotential turned on.

Although we checked that RG flow defects properly describe the bulk-induced bound-

ary RG flow by going to the mirror description in subsection 4.2, a similar comparison can

be done between the result of the fusion rules and the flow of the deformed relation of the

chiral ring given in equation (3.21). This can be done by considering the quotient relation

of the chiral ring in equation (3.21) as a branched covering of the complex plane. Such

a description would provide an equivalent geometrical formalism to that of the deformed

A-branes, so that an analysis could be done along the lines of the one done in subsection 4.2

for the A-branes.

A different approach to building conformal defects in these non-compact orbifolds is

via the unfolding procedure described in [23]. In this method one constructs the boundary

states corresponding to D-branes in the target space C/Zn × C/Zn′ . These states can be

1We thank Ilka Brunner for emphasizing this connection to us.
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mapped to defects between the theories C/Zn and C/Zn′ via the inverse process of the

“folding trick”. An interesting question would be to find an equivalent description of the

RG flow defects presented here in terms of the unfolding prescription.
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