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9 Chemin de Bellevue, F-74941 Annecy-le-Vieux Cedex, France

E-mail: j.m.drummond@soton.ac.uk, georgios@lapth.cnrs.fr

Abstract: We analyse the OPE contribution of gluon bound states in the double scaling

limit of the hexagonal Wilson loop in planar N = 4 super Yang-Mills theory. We provide a

systematic procedure for perturbatively resumming the contributions from single-particle

bound states of gluons and expressing the result order by order in terms of two-variable

polylogarithms. We also analyse certain contributions from two-particle gluon bound states

and find that, after analytic continuation to the 2 → 4 Mandelstam region and passing

to multi-Regge kinematics (MRK), only the single-particle gluon bound states contribute.

From this double-scaled version of MRK we are able to reconstruct the full hexagon re-

mainder function in MRK up to five loops by invoking single-valuedness of the results.

Keywords: Supersymmetric gauge theory, Wilson, ’t Hooft and Polyakov loops, Scatter-

ing Amplitudes, Extended Supersymmetry

ArXiv ePrint: 1507.08982

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP02(2016)185

mailto:j.m.drummond@soton.ac.uk
mailto:georgios@lapth.cnrs.fr
http://arxiv.org/abs/1507.08982
http://dx.doi.org/10.1007/JHEP02(2016)185


J
H
E
P
0
2
(
2
0
1
6
)
1
8
5

Contents

1 Introduction 1

2 The hexagon Wilson loop OPE 4

2.1 Preliminaries 4

2.2 The gluon contributions and the double-scaling limit 6

2.3 Resumming all single-particle gluon bound states 7

2.4 Hexagon functions in the double-scaling limit 11

3 From collinear to multi-Regge kinematics 12

3.1 The soft limit, analytic continuation and multi-Regge kinematics 12

3.2 Completion to full multi-Regge kinematics from single-valuedness 14

3.3 Comparison with BFKL and the approach of Basso, Caron-Huot and Sever 17

A Dispersion relation, measure and pentagon transitions for gluons 19

B Remarks on the two-particle gluon bound state contributions 21

B.1 Evaluation of the integrals 21

B.2 Contribution to MRK 23

C Multiple polylogarithms 24

1 Introduction

Light-like polygonal Wilson loops have been the subject of much study recently, in partic-

ular because of their relation to scattering amplitudes in the planar limit of N = 4 super

Yang-Mills theory [1–9]. The conformal symmetry of the theory and its associated Ward

identity [10] imply that the Wilson loops with four or five sides are essentially trivial, with

no interesting dependence on the configuration of the contour. From six points onwards

however there is a conformally invariant function of the loop contour which needs to be

determined. Here we will focus on the bosonic hexagonal Wilson loop, which corresponds

to the six-particle MHV amplitude under the amplitude/Wilson loop duality. The confor-

mally invariant function of the loop is known as the ‘remainder function’ in this case and

is a function of three cross-ratios.

One approach to studying the kinematical dependence of light-like Wilson loops is to

make an ansatz based on the analytic behaviour of explicit results obtained for terms in

the perturbative expansion such as [11–13]. This approach has yielded results up to four

loops at six points [14–18] and up to three loops at seven points [19]. The ansätze are

given in terms of iterated integrals over words formed from a specified set, or alphabet,
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of rational functions (known as letters). The alphabets appearing in the explicit two-loop

expressions of [13] were observed [20] to be described by the A-coordinates of a class of

cluster algebras [21, 22] associated to the Grassmannians G(4, n). Taking this observation

as an assumption, together with basic analytic information on the locations of possible

cuts of the final expressions produces a rather restrictive ansatz for the relevant functions.

Indeed, at three loops and seven points, these analytic assumptions were essentially used to

replace the dynamical information of the theory, producing a unique result for the symbol

of the heptagon remainder function [19].

A second very powerful approach to describing the Wilson loops is based on a type of

operator product expansion applied to configurations of null Wilson lines [23–27]. In this

approach the Wilson loops are given by an infinite sum over excitations of a light-like flux

tube. This sum amounts to an expansion around a collinear limit, and the excitations may

also be thought of as insertions of the fields of the theory (gluons, fermions and scalars)

on the Wilson line segments that are becoming collinear. The number of excitations or

insertions is equal to the order at which these appear in the near-collinear expansion.

The spectrum of excitations was calculated exactly in [28] using techniques based on the

integrable structure exhibited in the planar N = 4 theory. Apart from the spectrum, a set of

overlap functions, called pentagon transitions, are required to calculate the near-collinear

expansion. In [29] an all-loop formula was proposed to describe the subset of pentagon

transitions consisting of any number of gluons, including multi-particle bound states.

It is interesting therefore to understand how the near-collinear OPE expansion can be

resummed into the type of cluster polylogarithmic functions appearing in the perturbative

expansions of the null Wilson loops. As a first step towards the resummation of the OPE

series, we develop a systematic procedure for summing the contributions to the OPE of

single-particle bound states of an arbitrary number of gluons in the weak coupling expansion

of the MHV 6-point (or hexagon) remainder function. Since these states have a restricted

dependence on the helicities of the gluons, this can really be thought of as a contribution

to the ‘double scaling’ limit of the Wilson loop, where one of the three cross-ratios is

taken to zero. In the perturbative regime the double scaling limit is entirely governed by

the gluon insertions, i.e. to determine it entirely at each perturbative order one needs all

multi-particle bound states of gluons but not the contributions of fermions and scalars [29].

Building on the previous works [30, 31], our procedure relies on the technology of

nested sums [32], and in particular its nestedsums C++ library realisation [33]. Using

these algorithms we are able to show that the OPE expansion for single-particle gluon

bound states can always be resummed into two-variable polylogarithmic functions based

on a five-letter alphabet. These functions may be described as A2 polylogarithms in the

cluster algebra language [20, 34, 35] or polylogarithms on M0,5 in the language of [36]

or as a subset of the two-dimensional polylogarithms of [37]. In fact we find that only a

particular subset of these functions arises, which is consistent with the functions having

restricted branch cuts, and indeed with the idea that they are particular limits of hexagon

functions [16, 17] describing the full six-point remainder function.

Perhaps more importantly, from the knowledge of the single-particle bound state con-

tributions to the double scaling limit we can produce all but the power-suppressed terms
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of the MHV hexagon in multi-Regge kinematics corresponding to high energy gluon scat-

tering in the 2→ 4 Mandelstam region. The kinematic limit on the cross-ratios is formally

the same as the soft limit, in which the remainder function vanishes. To obtain a non-

trivial dependence in multi-Regge kinematics, it is necessary to analytically continue the

remainder function to the 2→ 4 Mandelstam region, achieved by going around a singular-

ity where one of the cross-ratios vanishes before taking the limit. In [38] it was observed

that this continuation can be carried out order by order in the OPE expansion. Using this

property we provide evidence that after analytically continuing and taking the limit, the

single-particle bound states we have summed are the only excitations with non-vanishing

contributions on a one-dimensional double scaling slice of the full two-dimensional space

parameterising multi-Regge kinematics. In other words we find that, after analytic contin-

uation, the contribution from multi-particle bound states of gluons in the double scaling

limit is always suppressed when taking the multi-Regge limit.

Under the well-justified assumption that the natural function space in these kinemat-

ics is given by the class of single-valued polylogarithms (or SVHPLs) [39], we may then

reconstruct the remainder function in the full parameter space, from its knowledge on the

line obtained from the double-scaling limit. We have carried out this procedure explicitly

up to five loops. We emphasise that in our approach the contribution of the scalars and

fermion insertions in the OPE expansion is non-vanishing, even after analytic continuation

and taking the Regge limit. Indeed one can already see this in the analysis of [38]. The

matter contributions just vanish on the line we are considering, hence we are actually re-

constructing their contribution from the gluon bound states by invoking single-valuedness.

Our logic is very much in line with the analysis of [40] who also reconstructed the

multi-Regge limit of the hexagon amplitudes in the 3 → 3 Mandelstam region from the

OPE contributions of just the single-particle gluon bound states. Indeed, starting with

the finite-coupling integral expression for the same OPE contribution that we consider

at weak coupling, and performing an additional analytic continuation in Mellin space,

the authors of [40] arrived at finite-coupling expressions for the MHV hexagon in multi-

Regge kinematics. As this second continuation is fundamentally non-perturbative, it is

quite interesting that in our approach we can trade it for single-valuedness directly at the

perturbative level.

The paper is structured as follows. We begin in section 2 by describing the OPE

expansion of the hexagon Wilson loop in the double scaling limit. Our focus is on the

contribution of the single-particle gluon bound state contributions and their resummation

order by order in perturbation theory into two-variable polylogarithms of a particular kind,

which we perform in section 2.3. We then describe in 2.4 why the class of functions so

obtained is consistent with the idea that the full hexagonal Wilson loop remainder function

is expressed in terms of hexagon functions.

In section 3.1 we describe the procedure we use to analytically continue the results of

the resummation to the double scaling limit of the 2→ 4 Mandelstam region and then take

the limit to (double scaled) multi-Regge kinematics. Having obtained a particular limit of

the result in multi-Regge kinematics we then describe in section 3.2 how we can complete

our expressions to restore the full kinematical dependence in multi-Regge kinematics by
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Figure 1. Decomposition of the light-like hexagonal Wilson loop in to a top pentagon, bottom

pentagon and intermediate square. The collinear limit is indicated by the arrows, and each term in

the expansion around it may be mapped to an excitation of an integrable colour-electric flux tube,

sourced by the two sides of W� adjacent to the ones becoming collinear.

demanding that the result is single-valued. The analysis of this section is also supplemented

by appendix B, where several two-particle bound states are computed and shown not to

contribute to MRK.

Attached to the arXiv submission for this paper are files containing our results for

the resummation of the single-particle gluon bound states up to five loops, particular

contributions from two-particle gluon bound states contributing to the double scaling limit

and the new results at N3LLA and N4LLA for the completion of the five-loop remainder

function in multi-Regge kinematics.

2 The hexagon Wilson loop OPE

2.1 Preliminaries

An operator product expansion (OPE) for light-like Wilson loops was introduced in [23]

and refined in many papers [24–27, 29, 41–45]. It describes the near-collinear regime of

a particular ratio of light-like Wilson loops, denoted by W. Here we will focus on the

hexagonal Wilson loop where the ratio takes the following form,

W =
WW�

WtopWbot
. (2.1)

Here W is the hexagonal Wilson loop, while Wtop and Wbot correspond to the pentagonal

Wilson loops and W� to the square Wilson loop indicated in figure 1.

The ratio W is finite and conformally invariant and is hence a function of the three

available conformal cross-ratios,

u1 =
x246x

2
13

x236x
2
14

, u2 =
x215x

2
24

x214x
2
25

, u3 =
x226x

2
35

x225x
2
36

. (2.2)
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The OPE describes the ratio W in an expansion around the limit where the two

adjacent edges x56 and x61, of the hexagon become collinear so that x215 vanishes. The

limit is most conveniently parameterised by the variables {τ, φ, σ} which are related to the

conformal cross-ratios as follows

u1 =
1

2

e2σ+τ sechτ

1 + e2σ + 2 eσ−τ cosφ+ e−2τ
,

u2 =
1

2
e−τ sechτ ,

u3 =
1

1 + e2σ + 2 eσ−τ cosφ+ e−2τ
.

(2.3)

The limit τ → ∞ corresponds to the collinear limit. The quantity W becomes 1 in the

τ → ∞ limit, up to exponentially suppressed corrections. The Wilson loop OPE gives a

prediction for the form of the exponentially suppressed corrections, namely at l ≥ 1 loops

W(l) =

∞∑
m=1

e−mτ
[m/2]∑
p=0

cos[(m− 2p)φ]

l−1∑
n=0

τnf (l)m,p,n(σ) . (2.4)

Here [x] denotes the integer part of x.

The basic idea behind the OPE is to express the bottom part of the Wilson loop as a

coherent sum of excitations of the GKP string. These excitations then propagate to the top

part of the Wilson loop where they are absorbed. Both the spectrum of excitations [28],

which controls the propagation of states, and overlap functions [25], describing their pro-

duction and absorption, can be studied at finite ’t Hooft coupling using integrability.

The OPE expansion then has the following schematic form

W =
∑
ψ

P (0|ψ)P (ψ|0)e−Eψτ+ipψσ+imψφ . (2.5)

It is a sum over intermediate states ψ, weighted by the overlap functions for production

and absorption (called ‘pentagon transitions’) P and a factor due the propagation from

bottom to top involving the GKP energy (or ‘twist’) Eψ, momentum pψ and helicity mψ.

For the purposes of this paper all the relevant quantities are available in the literature and

we will describe them in greater detail in the following subsections.

The ratio W is very simply related to the remainder function R6 via

R6 = logW − logWBDS , (2.6)

with

logWBDS =
Γcusp

4

{
Li2 (u2)− Li2 (1− u1)− Li2 (1− u3) + log2 (1− u2)

− log (u1) log (u3)− log (u1/u3) log (1− u2) +
π2

6

}
, (2.7)

and where the overall coefficient Γcusp in the latter formula is the cusp anomalous dimen-

sion, whose expansion in the coupling

g2 ≡ λ

(4π)2
=
a

2
(2.8)
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is as follows,

Γcusp =

∞∑
l=1

g2lΓlcusp = 4g2 − 4π2

3
g4 +

44π4

45
g6 − 4

(
73π6

315
+ 8ζ23

)
g8

+ 8

(
8π2ζ23

3
+ 80ζ5ζ3 +

1774π8

14175

)
g10 +O

(
g12
)
.

(2.9)

In the next section we will describe the ‘double-scaling’ limit of W (and hence the re-

mainder function R6) which allows us to consider contributions to the sum over states (2.5)

coming from gluons only.

2.2 The gluon contributions and the double-scaling limit

Apart from the collinear limit we described in the previous section, another kinematical

limit which will be relevant for our discussion is the so-called [24, 29]

‘double scaling limit’: τ, iφ→∞ ,−τ + iφ fixed . (2.10)

At the level of the OPE expansion (2.4) it amounts to the subset of contributions with

p = 0 and cosmφ → eimφ, which are evidently the only ones surviving the limit. And as

far as the cross-ratios are concerned, from (2.3) and (2.10) we deduce that

u2 → 0 u1 → ũ1 =
1

1 + e−2σ + e−σ−τ+iφ
u3 → ũ3 =

1

1 + e2σ + eσ−τ+iφ
, (2.11)

namely the double scaling limit describes a two-dimensional subspace of the kinematics

with vanishing u2, but general values for the remaining cross ratios.

From the point of view of the OPE, this limit is interesting because a restricted set of

relatively simpler flux tube excitations contribute to it. In particular, these are the gluon

excitations with positive helicity, given that all fundamental scalar, fermion and gluon

excitations have helicity (the charge conjugate to φ in (2.5)) 0,±1/2 and ±1, all of them

have twist 1 at weak coupling, and bound states are formed between gluons with the same

helicity, with their charges being just the sum of the charges of their constituents. It is

important to note that the twists receive corrections at each order in the coupling while the

helicities do not. It is therefore important that, in restricting to the gluon contributions

only, we are first expanding perturbatively in the ’t Hooft coupling g2 before taking the

double scaling limit. That is, in the limit in question1

R6 → R̃6 = logWg+ − log W̃BDS , (2.12)

where W̃BDS is obtained from (2.7) after substituting (2.11), and the all-plus gluon con-

tribution is a sum over an arbitrary number of effective particles N , each of which may

consist of any number of bound gluons ai, i = 1, . . . , N [29] ,

Wg+ =
∞∑
N=0

∞∑
a1=1

a1∑
a2=1

· · ·
aN−1∑
aN=1

∏
k 6=0

1

nk!

∫
du1 . . . duN

(2π)N
µ̂a1(u1) . . . µ̂aN (uN )∏
i 6=j

Pai|aj (ui|uj)
. (2.13)

1Note that although WBDS has an unphysical branch cut at u2 = 1, as can be seen from (2.7), this is

not visible in the double scaling limit, since u2 → 0.
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In the above formula nk counts the number of bound states made up from ai = k gluons,

µ̂a(u) ≡ µa(u)e−Ea(u)τ+ipa(u)σ+iaφ , (2.14)

and the energy Ea, momentum pa, and measure µa of the a-th gluon bound state, as well

as its pentagon transition to the b-th bound state Pa|b, are reviewed in appendix A.

As a final remark, notice that the weak coupling expansions (A.14)–(A.17) of all the

different ingredients of (2.13)–(2.14), imply that the N -particle all-plus gluon state starts

contributing at order O(g2N
2
). Namely one need only consider the states with N = 1 up

to three loops, and N ≤ 2 up to 8 loops.

2.3 Resumming all single-particle gluon bound states

In this section, we will present a systematic procedure for perturbatively resumming the

contribution of all single-particle gluon bound states to the hexagon Wilson loop/scattering

amplitude, namely the N = 1 term in (2.13), which we may rewrite as

W1 ≡
∞∑
l=1

g2lW(l)
1 ≡

∞∑
a=1

∫
du

2π
µa(u)e−Ea(u)τ+ipa(u)σ+iaφ . (2.15)

This procedure is an extension of the method developed in [30, 31] for the evaluation of

the individual a = 1 and a = 2 terms above. After describing its details, we will apply it

in order to obtain explicit expressions up to l = 5 loops, and also deduce the relevant class

of functions describing this contribution to arbitrary loop order. The reader interested in

the final result may jump directly to the discussion around eqs. (2.29)–(2.30) and (2.32).

We start by expanding the integrand in (2.15) with respect to g, following a well-known

procedure that we review towards the end of appendix A. This reveals that up to u- and

a-independent factors (e.g. e−τ or powers of τ and σ) which we can factor out, all terms

are of the general form

∑
a=1

(−e−τ+iφ)a
∫
du

2π

e2iuσΓ(a2 +iu)Γ(a2−iu)
∏
i ψ

(mi)(1+ a
2±iu)

∏
j ψ

(m′j)(a2±iu)

Γ(a)(u+ ia
2 )r(u− ia

2 )r′
, (2.16)

for different powers of the denominators r, r′ and different products/powers and orders

mi,m
′
j of the polygamma functions ψ, see eq. (A.13) for their definition.

From (2.16), we can immediately infer that at any loop order the poles of the integrand

are located at u = ±i(a/2 + k), k = 0, 1, 2, . . .. After we restrict to σ > 0, we can close the

contour of integration on the u > 0 plane, and trade the integral for a sum over residues by

virtue of Cauchy’s residue theorem. With the help of the recurrence and reflection relations

of the gamma function,

Γ(z + 1) = zΓ(z) , Γ(1− z)Γ(z) =
π

sin (πz)
, (2.17)
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as well as analogous equations for polygamma functions arising upon differentiation

of (2.17), we arrive to sums over residues which always have the form2

∞∑
a=1

(−e−τ+iφ)a
∞∑
k=1

(−e−σ)a+2k(−1)k
Γ(a+ k)

Γ(a)Γ(k + 1)

∏
i ψ

(ni)(a+ k)
∏
j ψ

(n′j)(k + 1)

(a+ k)sks′
. (2.18)

The next step is to reexpress the polygamma functions in terms of S- or Z-sums [32] via,3

ψ(k + 1) ≡ ψ(0)(k + 1) = −γE + S(k; 1; 1) ,

ψ(m−1)(k + 1) = (−1)m(m− 1)![ζm − S(k;m; 1)] ,
(2.19)

where

S(n;m1, . . . ,mj ;x1, . . . , xj) =
∑

n≥i1≥i2≥...≥ij≥1

xi11
im1
1

. . .
x
ij
j

i
mj
j

, (2.20)

Z(n;m1, . . . ,mj ;x1, . . . , xj) =
∑

n≥i1>i2>...>ij>0

xi11
im1
1

. . .
x
ij
j

i
mj
j

, (2.21)

and replace the products of S- or Z-sums with the same outer summation index with linear

combinations thereof, simply by nesting the independent summation ranges of each term

in the product.4 For example,(
n∑

i1=1

1

im1
1

)(
n∑

i2=1

1

im2
2

)
=

(
n∑

i1=1

i1∑
i2=1

+

n∑
i2=1

i2∑
i1=1

−
n∑

i1=i2=1

)
1

im1
1 im2

2

=

(
n∑

i1=1

i1−1∑
i2=1

+

n∑
i2=1

i2−1∑
i1=1

+

n∑
i1=i2=1

)
1

im1
1 im2

2

,

(2.22)

where the first line yields S-sums, and the second line Z-sums.

For reasons that will become apparent very shortly, we will choose to replace ψ(m)(k)

by S- and ψ(m)(a + k) by Z-sums respectively. After shifting the summation variable

a→ j = a+k, partial fractioning in k and expanding, (2.18) splits into terms that look like

∞∑
j=1

(−e−τ+iφ−σ)j

jn1
Z(j − 1;n2, . . . ; 1, . . . , 1)

j−1∑
k=1

(
j − 1

k

)
(eτ−iφ−σ)k

kn
′
1

S(k;n′2, . . . ; 1, . . . , 1) ,

(2.23)

where we have combined the gamma functions of (2.18) into a binomial coefficient.

Quite remarkably, the sum in k can be done for any collection of ni, with the help of

algorithm C of [32]. Let us give a simple example where n′1 = 1 and the S-sum is absent,

2The k = 0 residue is treated separately, as it is the only case where the denominators have poles, and

yields simple sums which may be evaluated exactly as in [30].
3In particular, S(k;m; 1) = Z(k;m; 1) are the generalised harmonic numbers, ζm the Riemann zeta

function, and γE = −ψ(1) ' 0.577 the Euler-Mascheroni constant.
4This is nothing but the quasi-shuffle algebra property of these objects.
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so as to convey the basic idea of the algorithm, which is to appropriately manipulate the

expression so that the sum in k can be done by means of the binomial theorem,

n∑
k=1

(
n

k

)
xk = (1 + x)n . (2.24)

For the example in question, this entails getting rid of the denominator, roughly speaking

by rewriting the summand as the integral of its derivative with respect to x,

n∑
k=1

(
n

k

)
xk

k
=

n∑
k=1

(
n

k

)∫ x

0

dx′

x′
x′k =

∫ x

0

dx′

x′
[
(1 + x′)n − 1

]
. (2.25)

By changing the integration variable to y = 1 +x, the integrand becomes equal to the sum

of the first n terms of a geometric series, so that

n∑
k=1

(
n

k

)
xk

k
=

∫ 1+x

1
dy

1− yn

1− y
=

n∑
k=1

y

k

∣∣∣1+x
1

=

n∑
k=1

(1 + x)k − 1

k
= S(n; 1; 1+x)−S(n; 1; 1) ,

where in the last line we used the definition (2.20). By recursively going through the exact

same steps, we may similarly obtain

n∑
k=1

(
n

k

)
xk

km
=

∫ x

0

dxm
xm

∫ xm

0

dxm−1
xm−1

. . .

∫ x2

0

dx1
x1

xk1 =

n∑
i1≥...≥im≥1

1

i1
· · · 1

im−1

(1 + x)im − 1

im

= S(n; 1, . . . , 1; 1 . . . 1, 1 + x)− S(n; 1, . . . , 1; 1 . . . 1, 1) . (2.26)

In practice, the simplest way do any sum in k as in eq. (2.23), is to exploit an

already existing C++ implementation of the algorithm, as part of the nestedsums li-

brary [33] within the GiNaC symbolic computation framework [46].5 The relevant command

is transcendental sum type C, and we have built an interface that calls it directly from

Mathematica, which we use for the remaining manipulations. Combining it also with the

Ssum to Zsum command, the evaluation returns Z-sums with outer summation index j−1.

Then, after employing quasi-shuffle algebra relations generalising (2.22) in order to

eliminate the resulting products of Z-sums in favour of their linear combinations, we may

immediately evaluate the remaining sum in j in (2.23), in terms of multiple polylogarithms,

Lim1,...,mj (x1, . . . , xj) =

∞∑
i=1

xi1
im1

Z(i− 1;m2, . . . ,mj ;x2, . . . , xj) , (2.27)

see appendix C for more details on their definition and properties.

The final result is most conveniently expressed in terms of the variables

x = −e−τ+iφ−σ = −1− ũ1 − ũ3
ũ1

, y = 1 + eτ−iφ−σ =
1− ũ1

1− ũ1 − ũ3
, (2.28)

5Alternatively, the XSummer package [47] for the FORM symbolic manipulation system [48] offers exactly

the same functionality.
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and for example at one loop we have (we denote Hm1,...,mj (x) ≡ Lim1,...,mj (x, 1, . . . , 1) the

subclass of harmonic polylogarithms [49]),

W(1)
1 = −Li1,1(x, y) + 2σH1(x) +H2(x) , (2.29)

and at two loops,

W(2)
1 = τ {σ [−4Li1,1(x, y)− 4H2(x)] + 4Li1,1,1(x, y, 1)− 4H3(x)}+ 4σ2H1,1(x)

+ σ

(
−4H1,1,1(x)− 4Li1,1,1(x, y, 1) +

1

3
(−2)π2H1(x)− 4H3(x)

)
(2.30)

+
1

3
π2H1,1(x)− 2H1,3(x)− 2H2,2(x)− 2H3,1(x)− 2H1,1,2(x)− 2H1,2,1(x)

− 2H2,1,1(x) + 2Li1,3(x, y) + 2Li2,2(x, y) + 2Li3,1(x, y) + 2Li1,1,2(x, 1, y)− 6H4(x)

+ 2Li1,2,1(x, 1, y) + 2Li2,1,1(x, 1, y) + 2Li1,1,1,1(x, 1, 1, y) + 4Li1,1,1,1(x, y, 1, 1) .

As we mentioned at the beginning of this section, we have computedW(l)
1 up to l = 5 loops,

and the remaining results may be found in the accompanying file allboundstates.m so as

to avoid clutter.

We stress that the procedure we have described can be applied in principle at any loop

order, and in fact we can make a precise statement about the particular class of multiple

polylogarithms in which W(l)
1 lies: from (2.23) it is evident that the leftmost argument of

the MPLs (2.27) will always be x. Furthermore, by inspecting the steps of algorithm C

in [32], we observe that it can only generate Z-sums with arguments y, 1/y and 1, such that

y and 1/y always appear in alternating order with y leftmost, if one removes all arguments

equal to 1. Combining these two requirements, we infer that only MPLs of the form

Lim1,m2,...(x, 1, . . . , 1, y, 1, . . . , 1, 1/y, 1, . . . , 1, y, . . .) (2.31)

can appear in our results.

The basis of MPLs (2.31) we have obtained may be expressed more transparently in

terms of G-functions, whose definitions we review in appendix C. More specifically, the

equivalent Li- and G-function representations of MPLs are related by (C.6), and it also

proves advantageous to rescale all resulting G-functions so that the rightmost argument

becomes x as in (2.28), by virtue of the identity (C.7).

In this manner, we finally arrive at the following important conclusion: apart from

explicit factors of σ = −1
2 log(x(1− y)) and τ ∼ −1

2 log u2 (in the double scaling limit), the

OPE contribution of all single-particle bound states W(l)
1 is expressed in terms of

G(a1, . . . , an;x) , ai ∈ {0, 1, 1/y} with an 6= 0 , and aj 6= 1/y if a1 = . . . = aj−1 = 0 ,

(2.32)

at any loop order l. This basis of MPLs has dimension 3n−1 at weight n,6 and in fact it turns

out to be part of the two-dimensional harmonic polylogarithms (2dHPL) of Gehrmann and

6We have a total of 2 · 3n−1 G-functions with an 6= 0, minus 1 +
∑n
k=3 2 · 3k−3 = 3n−1 of them with

a1 = . . . = aj−1 = 0 and aj = 1/y.
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Remiddi, which were first introduced in the computation of four-point functions of three

on-shell and one off-shell leg at two loops [37].

In the next section, we will explore whether these results are consistent with the fun-

damental assumption of the hexagon amplitude bootstrap [14–18] for the class of functions

describing six-particle scattering in general kinematics.

Calculating the contribution of multi-particle bound states to the double scaling limit

is considerably harder than computing the single-particle bound state contributions. We

will leave the resummation over such states to future work. However we can say something

about the OPE expansion of certain contributions and this is presented in appendix B.

2.4 Hexagon functions in the double-scaling limit

An important finding of the previous section, is that a particular OPE contribution (2.15) to

the hexagon remainder function R6(u1, u2, u3) (2.6) is always expressed in the basis (2.32)

at any order in the weak coupling expansion. More specifically, this contribution is the only

one that survives in the double scaling limit (2.11) up to 3 loops, and is supplemented by

the N = 2 particle gluonic contributions up to 8 loops, as we noted at the end of section 2.1.

In the bootstrap approach of [14, 16, 17] the starting assumption is that the hexagon

remainder function is described in terms of a particular set of polylogarithmic functions

(‘hexagon functions’). Starting from such an ansatz, certain information from the Wilson

loop OPE was used in order to arrive at the results. Specifically in [14], the fact that

the leading discontinuity is annihilated by a certain Casimir operator was used. This fact,

along with other assumptions as described in [14], was sufficient to determine the three-loop

6-point MHV remainder symbol up to two free coefficients. In [16, 17], further information

about the power suppressed corrections in the near-collinear limit was used to fully fix the

three-loop and four-loop remainder functions, including beyond-the symbol ambiguities.

Here however our logic is different. Instead we are taking the form of the Wilson loop

OPE as our starting point, and find a particular class of polylogarithms for the double

scaling limit as described in (2.32). Here we would like to explain here why our results

are indeed consistent with the double scaling limit u2 → 0 of hexagon functions and hence

with the starting assumption of the bootstrap approach.

First of all we note that hexagon functions are just a special subset of all iterated

integrals based on the nine-letter alphabet {ui, 1−ui, yi} for i = 1, 2, 3 described in [14]. In

other words they are a subset of polylogarithms onM0,6, the moduli space of six points on

a Riemann sphere. It is simple to see that in the double scaling limit u2 → 0 these reduce to

iterated integrals on the five-letter alphabet {u1, u3, 1−u1, 1−u3, 1−u1−u3}, or in terms

of the variables x and y defined above, on the alphabet {x, y, 1 − x, 1 − y, 1 − xy}. Thus

the double scaling limit will give polylogarithms on M0,5. A basis for such polylogarithms

is given in terms of products of iterated integrals of the form G(my; y)G(mx;x) where the

weight vector my is made of elements drawn from the set {0, 1} and the weight vector mx

is drawn from the set
{

0, 1, 1y
}

. Here we have chosen a specific contour of integration over

integrable words in the five letters such that one performs the integration along the y-axis

first and then in the x-direction. We could of course have chosen to do it the other way

round, yielding a basis with x and y exchanged.
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Hexagon functions, as defined in [16], are a special subset of polylogarithms obeying

restrictions on their branch cuts, namely that the locations of the branch points in the

Euclidean region occur only at the boundary ui = 0 or ui =∞. At the level of the symbols

of hexagon functions this is reflected in the fact that the initial entries are only the ui and

not any of the other nine letters. When taking the double scaling limit, the allowed branch

point locations take the form

u1 → ũ1 =
1

1− xy
, u3 → ũ3 =

x(1− y)

1− xy
. (2.33)

In other words there should be no branch cuts around y = 0 or x = 1 at all and the branch

cuts around y = 1 must match those around x = 0.

To make the branch cuts around x = 0 explicit we may use the shuffle relations to

extract any trailing zeros from the weight vectors of the G-functions with argument x. In

other words we reexpress the G-functions with argument x as linear combinations of G-

functions which have no trailing zeros in their weight vectors and explicit factors of log x.

We may then replace the explicit logarithms of x with logarithms of the product x(1− y)

at the cost of redefining the G-functions with argument y for each element of the basis.

However once we have done so we are no longer allowed any further branch cuts at y = 0

or at y = 1. Thus we must have no further factors of the form G(my; y) at all.

Thus we find that a basis compatible with the constraints on the branch points at

y = 0, 1 is given by all products of the form

logp(x(1− y))G(mx;x) , (2.34)

where there are no trailing zeros in the weight vector mx.

Of course finding a function in the above basis does not necessarily satisfy the remaining

constraint, namely that there should be no branch point at x = 1. Only special linear

combinations of functions in the above basis will also satisfy this additional constraint. We

have checked that the combinations appearing in the results derived above do indeed obey

the property of having no branch points at x = 1.

Finally let us mention that, as described in (2.32), we never have a weight vector in

the G-functions which begins with a string of zeros (of any length) followed by a 1
y . We

have verified, by analysing the known four-loop remainder function [17], that this property

holds also for the full R
(4)
6 in the double scaling limit. In other words it holds not only

for the single-particle gluon bound state contributions but also for the two-particle ones.

This property appears to be an additional constraint on the form of the remainder in the

double scaling limit which, at least in the case of the single particle states, we can observe

as coming from the structure of the OPE.

3 From collinear to multi-Regge kinematics

3.1 The soft limit, analytic continuation and multi-Regge kinematics

Having obtained expressions for the single-particle gluon bound state contribution to the

double scaling kinematics we may now ask about relevant physical limits of our expres-

sions. Since our aim will be to obtain the six-particle scattering amplitude in multi-Regge
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kinematics we will briefly review the relevant kinematic limits. We recall that the soft limit

and the multi-Regge limit are formally identical in that we send one cross-ratio (u3 say) to

one and the other two (u1 and u2) to zero so that the ratios

u1
1− u3

=
1

(1 + w)(1 + w∗)
,

u2
1− u3

=
ww∗

(1 + w)(1 + w∗)
, (3.1)

are fixed. In the formulas above we have introduced the variables w and w∗ which

parametrise the possible remaining dependence in the limit. In the soft limit we expect

the remainder function to simply vanish. However, after we analytically continue the am-

plitude to the 2→ 4 Mandelstam region (obtained by continuing around the singularity at

u3 = 0 via u3 → u3e
−2πi), the above limit is non-trivial and we expect a series of divergent

logarithms whose coefficients are functions of the remaining variables w and w∗,

R
(l)
6 −→ (2πi)

l−1∑
r=0

logr(1− u3)
[
g(l)r (w,w∗) + (2πi)h(l)r (w,w∗)

]
. (3.2)

The limit (3.2) has been studied in many papers (see for example [51–65]).

In our preceding discussion from section 2 we were considering the double-scaling limit

where one of the cross-ratios, u2 was taken to zero. This means that starting from the dou-

ble scaling limit we actually only have access to multi-Regge kinematics in the regime where

w∗ → 0 with w fixed (or, switching the helicities of the gluon bound states, to the regime

w → 0 with w∗ fixed). We refer to this regime as double-scaled multi-Regge kinematics.

We may relate the variables w and w∗ to the variables σ, τ and φ via,

w = reiφ , w∗ = re−iφ , r = e−τ−σ . (3.3)

Note also that the variable x introduced to parametrise the double scaling limit is related

to w via x = −w and that therefore w∗ = −xe−2iφ and hence terms power suppressed in

the double scaling limit correspond to terms power suppressed in w∗.

Now let us turn to the properties of the expressions we have obtained in the various

physical limits discussed above. An obvious property, manifest from the form of the OPE

expansion is that all W(l) vanish in the strict collinear limit τ →∞. Likewise, the expres-

sions we have obtained vanish in the soft limit x→ 0 with y fixed. All of the G-functions

of argument x are power suppressed as x → 0 and there is one such G in each term of

our results.

The other soft limit y → −∞ with x fixed is related by the symmetry u1 ↔ u3 to the

first. Our expressions also vanish in this limit. To see this however requires taking the

limit y → −∞ on each of the G-functions appearing in our expressions. It is instructive to

do this explicitly as we will need to perform exactly the same operation when taking the

Regge limit.

In order to carry out the limit y → −∞ on our expressions it is first useful to express

them in such a way that no G-functions are divergent in the limit. To arrange this we use

the shuffle relations to unshuffle any zeros or 1
y appearing at the end of the weight vector

so that each G-function either has a weight vector ending in a one or there are no ones on
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the weight vector at all. In the latter case we may rescale the argument by y so that these

G-functions have weight vectors with entries 0 and 1 and argument xy (i.e. they are HPLs

of argument xy). For example we write

G

(
1, 0,

1

y
;x

)
= −G(1;xy)G(0, 1;x) +G(1;x)G(0, 1;xy) +G

(
1

y
, 0, 1;x

)
. (3.4)

The limit y → −∞ may now be taken straightforwardly using e.g. the HPL mathematica

package [66] to give the limits of the G-functions with arguments xy as y → −∞. In this

way we find that all our resummed single-particle bound state contributions to the double

scaling limit vanish in the soft limit y → −∞.

The very same limit is required to analyse the multi-Regge limit of the double scaling

limit of W. However to obtain a non-vanishing contribution we must first analytically

continue to the Mandelstam region by passing round the branch but starting at u3 = 0.

This is easily achieved since all of the cuts at u3 = 0 are manifest in the form of our result

since they appear as explicit logarithms of x(1− y) = u3/u1. We simply need to continue

these so that log x(1− y)→ log x(1− y)− 2πi. In so doing we obtain the result for W in

the Mandelstam region in the double scaling limit.

Having analytically continued our results we may then go to multi-Regge kinematics

by taking exactly the same soft limit as above, namely y → −∞ with x fixed. This time

of course we obtain a non-vanishing result, dependent on x = −w. Finally, we express our

results in a way that will be convenient for us to complete our expression in double scaled

multi-Regge kinematics to the full multi-Regge kinematics. In order to do this we note

that in the double scaling limit we have

τ = −1

2
log u2 = −1

2
log(1− u3)−

1

2
log(ww∗) +

1

2
log(1 + w) , (3.5)

and

σ = −τ − 1

2
log(ww∗) =

1

2
log(1− u3)−

1

2
log(1 + w) . (3.6)

We may use these relations to rewrite all contributions in terms of the variables w,w∗ and

(1 − u3) which parametrise multi-Regge kinematics. In fact we also rewrite log(ww∗) =

log(−w) + log(−w∗) and neglect the divergent logarithm log(−w∗). This is because these

divergent logarithms are tied to the finite parts by the completion to single-valued poly-

logarithms that we describe in the next section.

The above discussion has focussed on the contribution of the single-particle gluon

bound states to double-scaled multi-Regge kinematics. We have also analysed certain

contributions from two-particle bound states, as described in appendix B. We find that after

analytic continuation and taking the limit these contributions are all power suppressed.

Hence, based on this preliminary analysis it seems that the single-particle states give the

only non-vanishing contribution to double-scaled multi-Regge kinematics.

3.2 Completion to full multi-Regge kinematics from single-valuedness

Here we would like to explain why deriving the result in multi-Regge kinematics from the

double scaling limit is sufficient to reconstruct the full result in multi-Regge kinematics.
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We know that in the multi-Regge limit of the remainder function in the 2 → 4 Mandelstam

region we will obtain an expansion in powers of the divergent logarithm which we make

take to be log(1− u3),7

R
(l)
6 −→ (2πi)

l−1∑
r=0

logr(1− u3)
[
g(l)r (w,w∗) + (2πi)h(l)r (w,w∗)

]
. (3.7)

The coefficients of the divergent logarithms are separated into an imaginary part g
(l)
r and

a real part h
(l)
r . For each l and r both g

(l)
r and h

(l)
r are single-valued polylogarithms

(or SVHPLs) [39].

The expressions we have obtained from the analytic continuation of the double-scaling

limit allow us to obtain the limit of each g
(l)
r and h

(l)
r as w∗ → 0 with w held fixed.8 We

also discard any divergent logarithms of the form logw∗ as we take this limit, keeping only

the finite term. From this data we may reconstruct the full dependence of all contributions

to the real and imaginary parts in multi-Regge kinematics by invoking single-valuedness of

the result.

In order to explain this point we briefly recall the construction of single-valued polylog-

arithms given in [67]. We begin with Knizhnik-Zamolodchikov equation in a single complex

variable z,
d

dz
L(z) =

(
e0
z

+
e1

1− z

)
L(z) . (3.8)

Here e0 and e1 are two free non-commuting generators. We take the solution L0 of (3.8)

normalised so that as z → 0 we have L0(z) ∼ Lan
0 (z)ze0 where Lan

0 (z) is analytic around

z = 0 and Lan
0 (0) = 1. The solution can be represented as a sum over all words in e0 and

e1 with coefficients which are harmonic polylogarithms (i.e. regularised iterated integrals

over d log z and d log(1− z) away from z = 0),

L0(z) =
∑
m

mHm(z). (3.9)

Here the sum is over all words m in e0 and e1.

A second solution of the same equation may be taken to be

L1(z) = L0(1− z)|e0→−e1, e1→−e0 . (3.10)

It is normalised so that L1(z) ∼ Lan
1 (z)(1 − z)−e1 as z → 1 with Lan

1 (z) analytic at z = 1

and Lan
1 (1) = 1.

The two solutions are related by parallel transport via a constant series Φ (the Drinfeld

associator),

L0(z) = L1(z)Φ . (3.11)

Here Φ is a series in e0 and e1 with coefficients which are (shuffle-regularised) multiple zeta

values,

Φ =
∑
m

mζqq (m) . (3.12)

7Note that in this section we have changed the expansion parameter g2 → a = 2g2 to reflect most

commonly adopted conventions in the subject.
8We may treat w and w∗ as independent complex variables to perform this limit.
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Explicitly expanded as a series in e0 and e1 we have

Φ = 1 + [e0, e1]ζ2 + ([e0, [e0, e1]]− [e1, [e0, e1])ζ3 + . . . (3.13)

We may now consider the analytic continuation of the solution around the singular

points at z = 0 and z = 1. Under an analytic continuation around z = 0 (via z → ze2πi),

the monodromy of the solution L0 is explicit, given the asymptotics as z → 0,

M0L0(z) = L0(z)e2πie0 . (3.14)

The monodromy of L0 around z = 1 may be obtained by transporting to z = 1, where the

monodromy of L1 is explicit, and then back again,

M1L0(z) = L0(z)Φ−1e−2πie1Φ . (3.15)

Now, to construct single-valued polylogarithms in a complex variable z, we consider a sec-

ond ‘primed’ alphabet e′0 and e′1 and form the following series in all four letters e0, e1, e
′
0e
′
1,

L(z, z̄) = L0(z)L̃′0(z̄) . (3.16)

The second factor is built on the primed alphabet while the symbol ‘∼’ means that the

words in e′0 and e′1 are reversed with respect to the ones in e0 and e1 appearing in L0(z).

Now the series L(z, z̄) will be single-valued if it has no monodromy around z = 0 or

z = 1. The monodromy around z = 0 is given by

M0L(z, z̄) = L0(z)e2πie0e−2πie
′
0L̃′0(z̄) . (3.17)

The series will be unchanged if

e′0 = e0 . (3.18)

Similarly the monodromy around z = 1 is given by

M1L(z, z̄) = L0(z)Φ−1e−2πie1ΦΦ̃′e2πie
′
1(Φ̃′)−1L̃′0(z̄) , (3.19)

where Φ′ is built on the letters e′0 and e′1. The series is unchanged if

Φ−1e−2πie1ΦΦ̃′e2πie
′
1(Φ̃′)−1 = 1 , (3.20)

which, together with (3.18), defines the e′0, e
′
1 alphabet in terms of e0 and e1. The individual

coefficients of words in e0 and e1 in the series L(z, z̄) are then necessarily single-valued

polylogarithms Lm(z, z̄),

L(z, z̄) =
∑
m

mLm(z, z̄). (3.21)

In other words, at a given weight, there are exactly as many single-valued poylogarithms

in z and z̄ as there are harmonic polylogarithms in a single variable z built on d log z and

d log(1− z).

Given the asymptotics of L0 defined above, the limit of each Lm(z, z̄) as z̄ → 0 (now

treating z and z̄ as independent complex variables), is a series in divergent logarithms log z̄
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Figure 2. Log-linear plot of the imaginary part of the 5-loop hexagon remainder function in multi-

Regge kinematics at (Next-to)3-Leading Logarithmic approximation, g
(5)
1 , on the line w = w?.

with the coefficient of the finite term being simply Hm(z). In other words there is a unique

completion of a given harmonic polylogarithm Hm(z) to a single-valued polylogarithm

Lm(z, z̄) such that the finite term in the limit z̄ → 0 is Hm(z). This fact was already

noticed and found to be very useful in [68] in reconstructing the full form of the three-

loop ‘Easy’ integral appearing in the correlation function of four stress-tensor multiplets in

N = 4 super Yang-Mills theory.

Thus from the above discussion it is clear that to complete our expressions given in

terms of HPLs with argument (−w) into single-valued expressions with the correct limit,

we simply replace each instance of H with L. In this way we obtain the full expressions

for g
(l)
r and h

(l)
r dependent on w and w∗. We have verified that our results up to five

loops reproduce the known expressions derived in [17, 39]. In addition we have obtained

the remaining five-loop terms g
(5)
1 and g

(5)
0 . We also obtain h

(5)
0 but the real parts may be

simply related to the imaginary ones so this does not constitute independent data. We give

plots of the new data g
(5)
1 and g

(5)
0 along the diagonal line w = w∗ in figure 2 and figure 3.

3.3 Comparison with BFKL and the approach of Basso, Caron-Huot and

Sever

From the reconstructed expressions derived in the previous section one can compare to the

BFKL formula for the amplitude in multi-Regge kinematics,

eR6+iπδ = cosπωab +
ia

2

∞∑
n=−∞

(−1)n
( w
w∗

)n
2

∫ ∞
−∞

dν

ν2 + n2/4
|w|2iνΦreg(ν, n)

× exp

[
−ω(ν, n)

(
πi+ log(1− u3) +

1

2
log

|w|2

|1 + w|4

)]
.

(3.22)
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Figure 3. Imaginary part g
(5)
0 of the 5-loop hexagon remainder function in multi-Regge kinematics

at (Next-to)4-Leading Logarithmic approximation on the line w = w?.

The formula expresses the amplitude in multi-Regge kinematics as a Fourier-Mellin trans-

form of a factorised expression involving the BFKL eigenvalue ω(ν, n) and impact factor

Φreg(ν, n) which encode all the kinematical dependence of the amplitude. The other quan-

tities in the above formula are given by

ωab =
1

8
Γcusp log(ww∗) , δ =

1

8
Γcusp log

ww∗

(1 + w)2(1 + w∗)2
. (3.23)

In principle, from our reconstructed expressions, we can then find Φreg(ν, n) and ω(ν, n)

so that they are consistent with the perturbative expansion of the amplitude in multi-Regge

kinematics that we reconstructed from the double-scaling limit after analytic continuation.

However, since an all-order form for these quantities was obtained in [40] following a dif-

ferent (though similar) logic, we can simply compare our expressions for the amplitude in

multi-Regge kinematics with those obtained from their formula. Doing so we find perfect

agreement up to five loops.9

Notice that the reconstruction argument of this section essentially amounts to the

claim that the full BFKL expression can be reconstructed just from knowing the residue

at the first pole on the positive ν axis, assuming that the perturbative expression is given

in terms of single-valued polylogarithms in w and w∗. Certainly, under this assumption,

the simplest way to evaluate any given expression perturbatively is simply to calculate the

integral above around the first pole and resum the result as a single-variable function of

w. Then one may complete this boundary information to a single-valued polylogarithm as

described above.

It is very interesting that both here and in [40] the crucial ingredients were the single-

particle bound states of gluons appearing in the OPE expansion. We stress that the other

9Note that in the weak coupling expansions derived in [40], one needs to take care that νBCS = 2ν.
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states do contribute in multi-Regge kinematics. It is just that we are able to ignore the

contributions from the fermions and scalars from the beginning by going to the double

scaling limit and then, by extension of our observations, assume that the multi-particle

gluon bound states drop out when going to double-scaled multi-Regge kinematics. The

contributions of the missing states can then all be reconstructed by appealing to single-

valuedness. Note that the issue of identifying the n = 0 term in the sum (3.22) does not

arise in our approach; it follows along with all the others when completing the double-scaled

MRK expressions to the full MRK ones. If we were able to fully justify the fact that the

multi-particle gluon bound states drop out from double-scaled MRK we would have proven

that the full expression can be reconstructed from the single-particle gluon bound states

alone. As the authors of [40] stress, very similar assumptions have to be made also in their

approach. It would be very interesting indeed if some combination of the two arguments

could be used to fully prove the BFKL formula for the hexagon in MRK.
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A Dispersion relation, measure and pentagon transitions for gluons

Here we review the building blocks of the Wilson loop OPE, coming from all gluonic

excitations of the corresponding flux tube [29], in slightly adjusted notation. Although

these formulas hold at finite coupling, they are particularly suited for the weak coupling

expansion, as we will comment below, and display to leading order at the end of this section.

The energy and the momentum of the a-th gluon bound state, a ∈ Z∗ with a > 0

corresponding to positive and a < 0 to negative helicity gluons, are given by

Ea(u) = |a|+ 4g [Q ·M · κ(a, u)]1 , pa(u) = 2u− 4g [Q ·M · κ̃(a, u)]1 , (A.1)

where Q is a matrix with elements Qij = δij(−1)i+1i, M is related to another matrix K,

M ≡ (1 +K)−1 =
∞∑
n=0

(−K)n , Kij = 2j(−1)j(i+1)

∞∫
0

dt

t

Ji(2gt)Jj(2gt)

et − 1
, (A.2)
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Ji is the i-th Bessel function of the first kind, and κ, κ̃ are vectors with elements

κj(a, u) ≡
∞∫
0

dt

t

Jj(2gt)(J0(2gt)− cos(ut)
[
et/2
](−1)j−|a|+1

)

et − 1
,

κ̃j(a, u) ≡
∞∫
0

dt

t
(−1)j+1Jj(2gt) sin(ut)

[
et/2
](−1)(j+1)−|a|+1

et − 1
.

(A.3)

The subscripts in (A.1) denote that we are only taking the first component of the vector

inside the brackets. Moving on, the measure of the a-th gluon bound state, and its pentagon

transition to a b-th bound state are given by

µa(u) = Fa(u) ef
(a,a)
3 (u,u)−f (a,a)4 (u,u) , (A.4)

Pa|b(u|v) = Fa,b(u, v) eif
(a,b)
2 (u,v)−if (a,b)1 (u,v)+f

(a,b)
4 (u,v)−f (a,b)3 (u,v) , (A.5)

where the f
(a,b)
i functions are expressed in terms of the previous quantities (A.2)–(A.3),

f
(a,b)
1 (u, v) = 2 κ̃(a, u) ·Q ·M · κ(b, v) , f

(a,b)
2 (u, v) = 2κ(a, u) ·Q ·M · κ̃(b, v) ,

f
(a,b)
3 (u, v) = 2 κ̃(a, u) ·Q ·M · κ̃(b, v) , f

(a,b)
4 (u, v) = 2κ(a, u) ·Q ·M · κ(b, v) ,

(A.6)

and in addition

Fa(u)=
g2(−1)aΓ(1+ a

2 +iu)Γ(1+ a
2−iu)e

∫∞
0

dt(J0(2gt)−1)

t(et−1)
(2e−at/2 cos(ut)−J0(2gt)−1)

Γ(a)(x[+a]x[−a] − g2)
√

((x[+a])2 − g2)((x[−a])2 − g2)
, (A.7)

Fa,b(u, v) =
√

(x[+a]y[−b] − g2)(x[−a]y[+b] − g2)(x[+a]y[+b] − g2)(x[−a]y[−b] − g2)× (A.8)

×
(−1)bΓ(a−b2 +iu−iv)Γ(a+b2 −iu+iv)e

∫∞
0

dt(J0(2gt)−1)

t(et−1)
(J0(2gt)+1−e−at/2−iut−e−bt/2+ivt)

g2Γ(1 + a
2 + iu)Γ(1 + b

2 − iv)Γ(1 + a−b
2 − iu+ iv)

,

Fa,−b(u, v)=
e
∫∞
0

dt(J0(2gt)−1)

t(et−1)
(J0(2gt)+1−e−at/2−iut−e−bt/2+ivt)√

(1− g2

x[+a]y[−b]
)(1− g2

x[−a]y[+b]
)(1− g2

x[+a]y[+b]
)(1− g2

x[−a]y[−b]
)
×

×
Γ(1 + a+b

2 + iu− iv)

Γ(1 + a
2 + iu)Γ(1 + b

2 − iv)
,

(A.9)

where for the last three formulas we have resticted a, b > 0, and under the same restriction

the remaining cases may be obtained by F−a(u) = Fa(u), F−a,−b(u, v) = Fa,b(u, v) and

F−a,b(u, v) = Fa,−b(u, v). Finally,

x[±a] = x(u± ia/2) , y[±b] = x(v ± ib/2) , x(u) =
1

2

(
u+

√
u2 − (2g)2

)
. (A.10)

Although the vectors (A.3) and matrices (A.3) are infinite-dimensional, and hence the

matrix products (A.1) and (A.6) should really be thought of as infinite-dimensional sums

at finite coupling, it is possible to show that at weak coupling Kij starts at order O(gi+j).

– 20 –



J
H
E
P
0
2
(
2
0
1
6
)
1
8
5

Thus if we wish to obtain the weak coupling expansion up to order O(g2l), we may simply

truncate all summations up to their first i, j = 1, 2 . . . , 2l − 1 terms.

In order to see this, and also perform the expansion in practice, one starts with the

Taylor series of the Bessel functions,

Ji(z) =
∞∑
n=0

(−1)n

k!Γ(i+ n+ 1)

(z
2

)i+2n
, (A.11)

and then computes integrals in t by means of∫ ∞
0

dt

(
tme−zt

1− e−t
− e−t

t
δm,0

)
= (−1)m+1ψ(m)(z) , m ≥ 0 , (A.12)

where ψ(m)(z) is the polygamma function,

ψ(m)(z) =
dm+1

dzm+1
log Γ(z) . (A.13)

For example, the leading order expressions for all necessary ingredients of the Wilson loop

OPE that we obtain in this manner, are for a, b > 0

Ea(u) = a+ 2g2[ψ(1 +
a

2
+ iu) + ψ(1 +

a

2
− iu)− 2ψ(1)] +O(g4) , (A.14)

pa(u) = 2u+ 2ig2(ψ(
a

2
+ iu)− ψ(

a

2
− iu)) +O(g4) , (A.15)

µa(u) = (−1)ag2
Γ(a2 + iu)Γ(a2 − iu)

Γ(a)(u+ ia
2 )(u− ia

2 )
+O(g4) , (A.16)

Pa|b(u|v) =
(−1)b(a2 − iu)( b2 + iv)Γ(a−b2 + iu− iv)Γ(a+b2 − iu+ iv)

g2Γ(a2 + iu)Γ( b2 − iv)Γ(1 + a−b
2 − iu+ iv)

+O(g0) . (A.17)

More details about the weak coupling expansion may be found in appendix E of [26], as

well as appendix A.2 of [29]).

B Remarks on the two-particle gluon bound state contributions

Although we leave the resummation of all two-particle gluon bound states as an exciting

open question for future work, in this appendix we shall employ the technology we have

developed so far in order to compute the contribution of several such states in the collinear

limit (part B.1). The main motivation here is to examine whether these states survive

when we transition from collinear to multi-Regge kinematics, and complement the analysis

of section 3 (part B.2). We gather evidence up to 5 loops that this is not the case, thus

allowing us to reconstruct the hexagon remainder function in the latter kinematics from

the single-particle gluon bound states, resummed in subsection 2.3.

B.1 Evaluation of the integrals

The two-particle gluon bound state OPE contribution corresponds to keeping only the

N = 2 term in eq. (2.13), which we may rewrite as

W2 =

∞∑
a=1

a∑
b=1

W2[a,b]

1 + δab
, W2[a,b] ≡

∫ +∞

−∞

∫ +∞

−∞

dudv

(2π)2
µ̂a(u)µ̂b(v)

Pa|b(u|v)Pb|a(v|u)
, (B.1)
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with a, b the number of gluons contained in each of the two bound states (also equal to

their twist and helicity), δab a Kronecker delta function, and all ingredients of the OPE

integral on the right-hand side contained in appendix A. With the help of (A.14)–(A.17),

at 4 loops the integral becomes

W(4)
2[a,b] =

∫
dudv

(2π)2
Γ
(
a
2 − iu

)2
Γ
(
a
2 + iu

)2
Γ
(
b
2 − iv

)2
Γ
(
b
2 + iv

)2
Γ(a)Γ(b)Γ

(
a
2 + b

2 + iu− iv
)

Γ
(
a
2 + b

2 − iu+ iv
)×

×
(−1)a−b

[
a−b
2 − i(u− v)

] [
a−b
2 + i(u− v)

]
(u− ia

2 )2(u+ ia
2 )2(v − ib

2 )2(v + ib
2 )2

e−(a+b)(τ+iφ)+2iσ(u+v) ,

(B.2)

where we have replaced four of the gamma functions coming from (A.17) with the help of

the identity

Γ
(
1 + a−b

2 − iu+ iv
)

Γ
(
1 + b−a

2 − iv + iu
)

Γ
(
a−b
2 + iu− iv

)
Γ
(
b−a
2 + iv − iu

) = (−1)a−b
[
a−b

2
− i(u−v)

] [
a−b

2
+ i(u−v)

]
,

(B.3)

which may be derived from (2.17). For specific values of a, b, and depending on whether

a/2, b/2 and (a + b)/2 are integer or half-integer, we may similarly replace the remaining

gamma functions by virtue of

Γ(n+ x)Γ(n− x) =

n−1∏
m=1

(m+ x)(m− x)
πx

sin(πx)
,

Γ(
1

2
+ n+ x)Γ(

1

2
+ n− x) =

n−1∏
m=0

(
1

2
+m+ x)(

1

2
+m− x)

1

cos(πx)
,

(B.4)

for n integer. Finally, we may factorise all u− and v−dependence coming from the trigono-

metric/hyperbolic functions, e.g.

sinh(πu− πv) = sinh(πu) cosh(πv)− cosh(πu) sinh(πv) . (B.5)

From these considerations, it is clear that the only inseparable dependence on u − v
will come from the products in (B.4) appearing in the denominator of (B.1). Given that

at higher loops the integrand (B.1) is dressed by sums of products of polygamma functions

with arguments 1+ a
2±u,

a
2±u, 1+ b

2±v and b
2±v, this statement holds true independently

of the loop order.

As was first observed in [31], for the case a = b = 1 these (u− v)-dependent terms in

the denominator cancel out, and thereforeW(l)
2[1,1] always reduces to a sum of two factorised

1-fold integrals, which may be evaluated along the lines of [30]. Here, we find that exactly

the same phenomenon occurs also for a = 2 and b = 1.

Although for a + b ≥ 4 we start dealing with genuine 2-fold integrals, these can still

be done by summing over residues, at least at 4 loops. The main subtlety is that we need

to treat separately not only the poles at u = ia/2 and v = ib/2, but also the ones where

u− v = i

(
−a+ b

2
+ 1

)
, i

(
−a+ b

2
+ 2

)
, . . . , i

(
a+ b

2
− 1

)
, u− v 6= ±i a− b

2
. (B.6)
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These special poles will lead to simple sums, whereas the remaining ones give rise to double

sums, which may be brought to a form similar to the one we encountered in 2.3. Sparing

the reader the rest of the details, all in all we arrive at expressions for W(l)
2[1,1] and W(l)

2[2,1]

up to l = 5 loops, as well W(4)
2[3,1] and W(4)

2[2,2], which are included in the accompanying file

boundstatesN2.m.

Before moving on to examine the contribution of these states in MRK, let us end this

section by noting a peculiar property of the two twist-4 contributions: each one separately

gives rise to polylogarithms with symbol letters S, 1+S2 but also 1−S2, namely HPLs with

both positive and negative weights. At first this may seem to contradict the expectation

discussed in section 2.4, that perturbatively R6, and hence also W, are described by a

particular 9-letter alphabet, since the latter only reduces to the letters S and 1 + S2 in

the collinear limit. Quite remarkably however, in their sum W(4)
2[3,1] +W(4)

2[2,2]/2, also taking

into account the symmetry factor in B.1, all terms containing the letter 1− S2 cancel out,

and consistency is restored. This perhaps suggests that it is only the combination of states

with the same charges and particle number N that has a physical significance in the OPE.

B.2 Contribution to MRK

In section 3.1, we reviewed the analytic continuation which is necessary for obtaining a

nontrivial result in MRK, and specialised its form in a regime where it overlaps with the

double scaling limit, where our resummed single-particle gluon contribution lives. For

the individual two-particle gluon bound states that we computed in the previous part

of this appendix, we will need a similar specialisation to a region overlapping with the

collinear limit. This was first considered in [69], based on the initial Wilson loop OPE

approach [23]. Following the refinement of the latter approach, this procedure has been

revisited and extended in [38], which we now briefly review.

In the latter reference, the usual analytic continuation in the cross-ratios was translated

to τ, σ, φ variables (2.3) parameterising the near-collinear limit expansion. In more detail,

if we denote S = eσ and T = e−τ , a particular path

C : (eiχS, T, eiχ cosφ+ iS−1(T + T−1) sinχ), χ ∈ [0, π], (B.7)

was proposed, connecting the initial point (S, T, cosφ) in the Euclidean sheet for χ = 0, to

the same point (−S, T,− cosφ) in the 2→ 4 Mandelstam sheet for χ = π.

In [38] it was also observed that at two loops, the analytic continuation for S > 1 and

the collinear limit expansion commute. In other words, first analytically continuing R
(l)
6

and then expanding the near collinear limit yields the same result as first expanding, and

then analytically continuing term by term. This behaviour was then conjectured to hold

to all loops, and in fact it can be proven for all polylogarithms on M0,6. In other words if

one assumes that R
(l)
6 is described by hexagon functions, then the commuting of the two

procedures follows.

Taking the aforementioned property as granted, it is then easy to obtain the collinear

limit expansion of the analytically continued R
(l)
6 . For all (sums of) positive helicity gluon

states with given particle number and twist a that we have considered (as discussed in the
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last paragraph of section B.1), we find that their kinematical dependence is always a linear

combination of terms of the form

(log T )m
(
eiφT

S

)a
S2k(logS)jHm1,...,mr

(
−1/S2

)
, k = 0, 1 . . . a , mi > 0 . (B.8)

For the rational part in eiφ and S, clearly the value at the endpoint of the analytic continu-

ation does not depend on the path, so that we can simply set eiφ → −eiφ, S → −S, and in

fact all extra minus signs always cancel out. The HPLs with positive weights also remain

unchanged, since they only have branch cuts for their argument between 1 and infinity,

and the path (B.7) never crosses them for S > 0. Therefore analytically continuing our

expressions amounts to the almost trivial replacement

logS → logS + iπ , or σ → σ + iπ . (B.9)

The final step is to pass from the analytically continued collinear to multi-Regge kinematics.

As was first noticed in [16], and can be readily verified from (2.3) and (3.1), in the variables

we’re currently using MRK corresponds to T → 0, S → 0 with r = T/S fixed. The ratio

r has already appeared in (3.3), and it is in fact via this procedure that the relation with

the w,w∗ variables of the MRK appearing on the left-hand side of the latter formula can

be established.

We thus arrive at the following connection between the two kinematics regions: starting

with the analytically continued collinear limit expansion (around T = 0), expanding addi-

tionally around S = 0 and replacing T = rS lands us on the multi-Regge limit expansion

(around S = 0), where we are additionally expanding around r = 0. It is specifically the

non-power suppressed O(S0) term that has principally been the focus of BFKL analysis,

and also of our paper here.

For that reason, we will take the strict S → 0 limit of our expressions (up to large

logarithms), under which we see that, very interestingly, all but the k = 0 part of all

terms (B.8) already drops out. Further examining the k = 0 term for W(l)
2[1,1], W

(l)
2[2,1]

up to l = 5, and also W(4)
2[3,1] +W(4)

2[2,2]/2, we see that it vanishes in all cases. We deem

this as very compelling evidence that 2-particle gluon bound states do not contribute in

MRK in general, since this behaviour remain unchanged across loop orders, and also for

qualitatively quite different types of integrals.

C Multiple polylogarithms

In this appendix we review the definitions and several properties of multiple polylogarithms

(MPLs), which will be useful throughout the main text. More detailed expositions may be

found for example in [70–72].

Multiple polylogarithms may be defined as nested sums10

Lim1,...,mk(x1, . . . , xk) ≡
∞∑

i1>i2>...>ik>0

xi11
im1
· · ·

xikk
imkk

, (C.1)

10Note that a different convention with the order of the summation indices reversed, i.e. ik > . . . > i1,

also exists in the literature.
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in the region

|x1x2 . . . xj | ≤ 1 ∀j = 1, . . . k , with (m1, x1) 6= (1, 1) , (C.2)

so that the above series converges. Comparing (C.1) with the definition of Z-sums (2.21),

it is evident that MPLs are special cases of the latter with the outer summation index

set to infinity, Lim1,...,mj (x1, . . . , xj) = Z(∞;m1, . . . ,mj ;x1, . . . , xj). Thus similarly to the

discussion of Z-sums around eq. (2.22), rearranging the summation ranges of a product of

MPLs gives rise to quasi-shuffle relations equating the product to a linear combination of

MPLs. For example,

Lim1(x1)Lim2(x2) = Lim1,m2(x1, x2) + Lim2,m1(x2, x1) + Lim1+m2(x1x2) . (C.3)

The nested sum definition (C.1) is more suited for the evaluation of Mellin-Bernes

type integrals by residues, as we did in section 2. However there also exists an alternative,

global definition of MPLs in terms of (regularised) iterated integrals, as

G(a1, . . . , an; z) ≡


1
n! logn z if a1 = . . . = an = 0

∫ z
0

dt1
t1−a1G(a2, . . . , an; t1) , G(; z) = 1 , otherwise.

(C.4)

Unfolding the generic case of the second line for ak 6= 0, we may equivalently write it as

G(a1, . . . , an; z) =

∫ z

0

dt1
t1 − a1

∫ t1

0

dt2
t2 − a2

· · ·
∫ tn−1

0

dtn
tn − an

. (C.5)

~a ≡ (a1, . . . , an) is usually denoted as the singularity vector, and its length n as the weight

or transcendentality of the MPL.

Although seemingly different, the sum and integral definitions are equivalent in the

region (C.2), and in particular

Lim1,...,mk(x1, . . . , xk) = (−1)kG

(
0, . . . , 0︸ ︷︷ ︸
m1−1

,
1

x1
, 0, . . . , 0︸ ︷︷ ︸

m2−1

,
1

x1x2
, . . . , 0 . . . , 0︸ ︷︷ ︸

mk−1

,
1

x1 . . . xk
; 1

)
.

(C.6)

A useful identity which follows immediately from (C.5), is that for ak 6= 0 G-functions are

invariant under an arbitrary rescaling x ∈ C∗ of all the arguments, namely

G(a1, . . . , ak; z) = G(xa1, . . . , xak;xz) . (C.7)

Finally, the integral definition of MPLs reveals the existence of further shuffle algebra

relations between products of G-functions with the same rightmost argument, such as

G(a; z)G(b; z) =

∫ z

0

dt1
t1 − a

∫ z

0

dt2
t2 − b

=

∫ ∫
0≤t2≤t1≤z

dt1
t1 − a

dt2
t2 − b

+

∫ ∫
0≤t1≤t2≤z

dt1
t1 − a

dt2
t2 − b

= G(a, b; z) +G(b, a; z).

(C.8)
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More generally,

G(~a; z)G(~b; z) =
∑

~c∈~aqq~b

G(~c; z) (C.9)

where the shuffle product ~aqq~b is defined as the set of all permutations of the elements of

~a∪~b, that preserve the ordering among the elements ai ∈ ~a, and among the elements bi ∈ ~b.
Interesting special cases of MPLs include the harmonic polylogarithms [49], for singu-

larity vector entries ai ∈ {0,±1}, and the two-dimensional harmonic polylogarithms [37],

for ai ∈ {0, 1,−w, 1− w}, a subset of which we have encountered in this paper.11
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[66] D. Mâıtre, HPL, a mathematica implementation of the harmonic polylogarithms, Comput.

Phys. Commun. 174 (2006) 222 [hep-ph/0507152] [INSPIRE].

– 29 –

http://dx.doi.org/10.1142/S0217751X00000367
http://dx.doi.org/10.1142/S0217751X00000367
http://arxiv.org/abs/hep-ph/9905237
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9905237
http://dx.doi.org/10.1103/PhysRevD.80.045002
http://arxiv.org/abs/0802.2065
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.2065
http://dx.doi.org/10.1140/epjc/s10052-009-1218-5
http://arxiv.org/abs/0807.0894
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.0894
http://dx.doi.org/10.1103/PhysRevD.83.045020
http://arxiv.org/abs/1008.1016
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.1016
http://dx.doi.org/10.1103/PhysRevD.83.125001
http://arxiv.org/abs/1011.2673
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.2673
http://dx.doi.org/10.1016/j.physletb.2011.09.061
http://arxiv.org/abs/1012.3178
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3178
http://dx.doi.org/10.1016/j.physletb.2011.11.048
http://arxiv.org/abs/1111.0782
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.0782
http://dx.doi.org/10.1103/PhysRevD.85.085019
http://arxiv.org/abs/1112.6365
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.6365
http://dx.doi.org/10.1007/JHEP01(2013)068
http://arxiv.org/abs/1205.0186
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.0186
http://dx.doi.org/10.1007/JHEP11(2012)145
http://arxiv.org/abs/1207.4204
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.4204
http://arxiv.org/abs/1311.1512
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.1512
http://dx.doi.org/10.1103/PhysRevD.86.065026
http://dx.doi.org/10.1103/PhysRevD.86.065026
http://arxiv.org/abs/1112.6366
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.6366
http://dx.doi.org/10.1007/JHEP10(2014)067
http://arxiv.org/abs/1405.3658
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.3658
http://dx.doi.org/10.1103/PhysRevD.89.065002
http://arxiv.org/abs/1311.2061
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.2061
http://dx.doi.org/10.1103/PhysRevD.91.045005
http://arxiv.org/abs/1411.2294
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.2294
http://dx.doi.org/10.1007/JHEP07(2015)098
http://arxiv.org/abs/1411.2594
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.2594
http://dx.doi.org/10.1016/j.cpc.2005.10.008
http://dx.doi.org/10.1016/j.cpc.2005.10.008
http://arxiv.org/abs/hep-ph/0507152
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0507152


J
H
E
P
0
2
(
2
0
1
6
)
1
8
5

[67] F.C.S. Brown, Polylogarithmes multiples uniformes en une variable, Compt. Rendus Math.

338 (2004) 527.

[68] J. Drummond, C. Duhr, B. Eden, P. Heslop, J. Pennington and V.A. Smirnov, Leading

singularities and off-shell conformal integrals, JHEP 08 (2013) 133 [arXiv:1303.6909]

[INSPIRE].

[69] J. Bartels, L.N. Lipatov and A. Prygarin, Collinear and Regge behavior of 2→ 4 MHV

amplitude in N = 4 super Yang-Mills theory, arXiv:1104.4709 [INSPIRE].

[70] S. Weinzierl, Introduction to Feynman Integrals, arXiv:1005.1855 [INSPIRE].

[71] C. Duhr, Mathematical aspects of scattering amplitudes, arXiv:1411.7538 [INSPIRE].

[72] E. Panzer, Feynman integrals and hyperlogarithms, arXiv:1506.07243 [INSPIRE].

– 30 –

http://dx.doi.org/10.1016/j.crma.2004.02.001
http://dx.doi.org/10.1016/j.crma.2004.02.001
http://dx.doi.org/10.1007/JHEP08(2013)133
http://arxiv.org/abs/1303.6909
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.6909
http://arxiv.org/abs/1104.4709
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.4709
http://arxiv.org/abs/1005.1855
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.1855
http://arxiv.org/abs/1411.7538
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.7538
http://arxiv.org/abs/1506.07243
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.07243

	Introduction
	The hexagon Wilson loop OPE
	Preliminaries
	The gluon contributions and the double-scaling limit
	Resumming all single-particle gluon bound states
	Hexagon functions in the double-scaling limit

	From collinear to multi-Regge kinematics
	The soft limit, analytic continuation and multi-Regge kinematics
	Completion to full multi-Regge kinematics from single-valuedness
	Comparison with BFKL and the approach of Basso, Caron-Huot and Sever

	Dispersion relation, measure and pentagon transitions for gluons
	Remarks on the two-particle gluon bound state contributions
	Evaluation of the integrals
	Contribution to MRK

	Multiple polylogarithms

