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1 Introduction

Compactifications on non-geometric backgrounds have been receiving increasing attention

in superstring theory. A particularly interesting class of such backgrounds is formulated as

the fibrations of which the transition functions involve the duality transformations in string

theory [1–3]. For T-duality, for instance, one then has ‘T-folds’ [4]. Another interesting

class is the backgrounds with non-geometric fluxes that do not have naive geometrical

origins in higher dimensional theories. In some cases, these are reduced to geometric ones

by dualities, but are truly non-geometric in general [5–7].

These string vacua on non-geometric backgrounds are described by the world-sheet

conformal field theory (CFT) on the same footing as geometric ones. We should emphasize

that many of such vacua are well-defined only at particular points on the moduli space, at

which enhanced symmetries emerge and the α′-corrections become important. The world-

sheet CFT approach would provide reliable descriptions of strings even in such backgrounds.

In this respect, a simple and important class of non-geometric backgrounds is realized

as asymmetric orbifolds [8], in which the left- and the right-movers of strings propagate

on different geometries. Especially, as typical T-duality twists are identified with chiral
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reflections, simple examples of T-folds are realized as the orbifolds by the chiral reflection

combined with the shift in the base circle. These types of string vacua have been studied

based on the world-sheet CFT e.g. in [9–16].1

In this paper, we study type II string vacua defined by torus compactifications twisted

by T-duality transformations in the above sense. We carefully discuss possible consistent

actions of the chiral reflection on the Ramond sector of the world-sheet fermions, and

explicitly construct non-supersymmetric as well as supersymmetric (SUSY) vacua.2 Among

others, we present a simple realization of non-SUSY vacua with vanishing cosmological

constant at the one-loop level, at least. Namely, we construct the string vacua realizing

the bose-fermi cancellation despite the absence of any supercharges in space-time. Previous

constructions of such string vacua are found e.g. in [21–27].3 A novel feature, as well as

an advantage, in our construction is that we only have to utilize a cyclic orbifold, in which

the orbifold group is generated by a single element, and hence the construction looks

rather simpler than previous ones given in those papers. It would be notable that one can

achieve (nearly) vanishing cosmological constant without SUSY in a fairly simple way in

the framework of non-geometric string compactifications. Our construction suggests that

they would provide useful grounds also for the cosmological constant problem.

To be more precise, we first analyze in some detail the asymmetric orbifolds represent-

ing T-folds, where the partition sums from each sector in the total partition function are

combined according to the windings around the ‘base’ circle. It turns out that the consistent

action of the chiral reflections therein is not unique, from which a variety of supersymmetric

T-fold vacua can be derived. As general for asymmetric orbifolds, the moduli of the internal

(‘fiber’) tori are fixed for consistency, while a continuous radius of the base circle remains.

The supersymmetry is broken by further implementing the Scherk-Schwarz type boundary

condition for the world-sheet fermions [33, 34] along the base circle. In the case where the

chiral reflections act as Z4 transformations in a fermionic sector, the resultant world-sheet

torus partition function and hence the one-loop cosmological constant vanish: if the par-

tition sum for the left-moving fermions is non-vanishing in a winding sector, that for the

right-moving fermions vanishes, and vice versa. It is crucial here that the chiral partition

sums for the fermions depend on the winding numbers in an asymmetric way. We see that

all the ingredients in our setup, i.e., T-folds (asymmetric orbifolds, base winding), careful

treatment of the chiral reflections and the Scherk-Schwarz twist, cooperate in this mecha-

nism. Although we focus on specific examples in this paper, our construction would be more

general. It provides a systematic way to find string vacua of T-folds, and a novel mechanism

for non-supersymmetric string vacua with vanishing cosmological constant at one-loop.

This paper is organized as follows: In section 2, which is a preliminary section, we sur-

vey the building blocks (partition sums) for the modular invariant partition functions of

the asymmetric orbifolds discussed later, specifying how to achieve the modular covariance

1For the aspects of non-commutativity in non-geometric backgrounds, see e.g. [13, 17–20].
2For non-supersymmetric orbifolds in heterotic string theory, see e.g. [29–32] and references therein.
3In the papers [21–23], the authors further conjectured that the cosmological constant remains vanishing

at two and higher loops. However, a careful world-sheet analysis [28] shows that it does not actually vanish

at two loops in those models, at least pointwise on the moduli space.
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in relevant sectors. Though this part might be slightly technical, the results, especially

those for the fermionic sector presented in subsection 2.2, are important in the later dis-

cussion both on T-fold vacua and on vanishing cosmological constant. The readers may

refer only to the definitions of the building blocks, if they are interested mostly in the

physical consequences.

In section 3, we begin our main analysis of type II string vacua compactified on asym-

metric orbifolds/T-folds. We first consider the supersymmetric ones. The SUSY breaking

is then discussed by further incorporating the Scherk-Schwarz twist, which leads us to the

non-SUSY vacua implementing the bose-fermi cancellation. In section 4, we analyze the

spectra of the physical states and check the unitarity, mainly focusing on the case of the

non-SUSY vacua. We also demonstrate the absence of the instability caused by the winding

tachyons, which would be typically possible for the Scherk-Schwarz compactification. We

conclude with a summary and a discussion for possible future directions in section 5.

2 Preliminaries: building blocks for asymmetric orbifolds

In this paper, we would like to study the type II string vacua constructed from asymmetric

orbifolds of the 10-dimensional flat background given by

M4 × S1 × Rbase × T 4
fiber, (2.1)

where M4 (X0,1,2,3-directions) is the 4-dimensional Minkowski space-time. Intending the

twisted compactification of the ‘base space’ Rbase (X
5-direction), we consider the orbifold-

ing defined by the twist operator T2πR⊗σ : T2πR is the translation along the base direction

by 2πR, and σ denotes an automorphism acting on the ‘fiber sector’ T 4
fiber (X

6,7,8,9), which

is specified in detail later. We especially focus on the cases where σ acts as the ‘chiral

reflection’, or the T-duality transformation,

σ : (Xi
L, X

i
R) 7−→ (Xi

L,−Xi
R), (i = 6, 7, 8, 9). (2.2)

The S1-factor (X4-direction) in (2.1) is not important in our arguments. We begin our

analysis by specifying the relevant bosonic and fermionic sectors and their chiral blocks

that compose the modular invariants for our asymmetric orbifolds.

2.1 Bosonic T 4
fiber

sector

In the bosonic sector, let us first consider the 4-dimensional torus with the SO(8)-symmetry

enhancement which we denote as T 4[SO(8)], in order that the relevant asymmetric orbifold

action (chiral reflection) is well-defined. The torus partition function of this system is

ZT 4[SO(8)](τ, τ̄) =
1

2

{∣∣∣∣
θ3
η

∣∣∣∣
8

+

∣∣∣∣
θ4
η

∣∣∣∣
8

+

∣∣∣∣
θ2
η

∣∣∣∣
8
}
. (2.3)

Another system that is compatible with our asymmetric orbifolding and of our interests

is the product of the 2-dimensional tori with the SO(4)-symmetry, T 2[SO(4)]× T 2[SO(4)],
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the partition function of which is given by

ZT 2[SO(4)]×T 2[SO(4)]](τ, τ̄) =
1

4

{∣∣∣∣
θ3
η

∣∣∣∣
4

+

∣∣∣∣
θ4
η

∣∣∣∣
4

+

∣∣∣∣
θ2
η

∣∣∣∣
4
}2

. (2.4)

It is useful to note the equivalence

T 2[SO(4)]× T 2[SO(4)] ∼= T 4[SO(8)]/Z2
∼=

[
S1[SU(2)]

]4
, (2.5)

where S1[SU(2)] expresses the circle of the self-dual radius R = 1.4 Namely, while both of

X6,7 and X8,9 are compactified on the 2-torus T 2[SO(4)] at the fermionic point with radius√
2, the following four compact bosons have the self-dual radius,

Y 1
± :=

1√
2

(
X6 ± iX7

)
, Y 2

± :=
1√
2

(
X8 ± iX9

)
. (2.6)

The equivalence (2.5) is confirmed by the simple identities (B.3).

We then consider the action of the automorphism σ for T 4[SO(8)] and T 2[SO(4)] ×
T 2[SO(4)]. Since relative phases for the left and the right movers are generally possible

in asymmetric orbifolding, in addition to the action without phases, we consider an action

with phases according to [10] for T 2[SO(4)]×T 2[SO(4)]. In total, we consider the following

three cases as models relevant to our construction of string vacua given in section 3. This

means that the moduli of T 4
fiber need be restricted to the particular points given here, while

the radius of S1
base can be freely chosen. We particularly elaborate on the derivation of the

building blocks for the case of T 4[SO(8)], and mention on other cases briefly. The explicit

forms of the relevant building blocks are summarized in appendix B. The case with phases

for T 4[SO(8)] can be similarly discussed following [10, 16], although we do not work on it

in this paper.

1. Chiral reflection in T
4[SO(8)]. We start with T 4[SO(8)]. In this case, the orbifold

action is defined by the chiral reflection (2.2) acting only on the right-moving components.

We simply assume σ acts as the identity operator on any states in the left-mover, and also

that σ2 acts as the identity over the Hilbert space of the untwisted sector of the orbifolds

of our interest.5 We note that the action of σ2 on the twisted sectors should be determined

so that it preserves the modular invariance of the total system, and does not necessarily

coincide with the identity. This is a characteristic feature of asymmetric orbifolds. See for

example [35].

Let us evaluate the building blocks in this sector of the torus partition function. These

are schematically written as

F
T 4[SO(8)]
(a,b) (τ, τ̄) := Trσa-twisted sector

[
σb qL0− c

24 q̄L̃0− c
24

]
. (2.7)

4Throughout this paper, we use the α′ = 1 convention.
5This assumption is not necessarily obvious. Actually, if we fermionize the string coordinates along

T 4[SO(8)], we can also realize more general situations as in our discussion given in subsection 2.2. We do

not study these cases for simplicity in this paper.
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Here, we allow a, b to be any integers despite a periodicity, which is at most of order 4

as seen below, since we later identify them as the winding numbers along the base circle

S1
base. We can most easily determine the building blocks F

T 4[SO(8)]
(a,b) by requiring the modular

covariance,

F
T 4[SO(8)]
(a,b) (τ, τ̄)|S = F

T 4[SO(8)]
(b,−a) (τ, τ̄),

F
T 4[SO(8)]
(a,b) (τ, τ̄)|T = F

T 4[SO(8)]
(a,a+b) (τ, τ̄), (2.8)

together with the trace over the untwisted sector,

F
T 4[SO(8)]
(0,b) (τ, τ̄) =

(
θ3θ4
η2

)2

· 1
2

{(
θ3
η

)4

+

(
θ4
η

)4
}
, (∀b ∈ 2Z+ 1). (2.9)

Then, the desired building blocks are found to be

F
T 4[SO(8)]
(a,b) (τ, τ̄) =





(−1)
a
2

(
θ3θ4
η2

)2
· 1
2

{(
θ3
η

)4
+
(
θ4
η

)4
}

(a ∈ 2Z, b ∈ 2Z+ 1),

(−1)
b
2

(
θ2θ3
η2

)2
· 1
2

{(
θ3
η

)4
+
(
θ2
η

)4
}

(a ∈ 2Z+ 1, b ∈ 2Z),

e−
iπ
2
ab
(
θ4θ2
η2

)2
· 1
2

{(
θ4
η

)4
−
(
θ2
η

)4
}

(a ∈ 2Z+ 1, b ∈ 2Z+ 1),

1
2

{∣∣∣ θ3η
∣∣∣
8
+
∣∣∣ θ4η

∣∣∣
8
+
∣∣∣ θ2η

∣∣∣
8
}

(a ∈ 2Z, b ∈ 2Z).

(2.10)

One can confirm that they indeed satisfy the modular covariance relations (2.8).

2. Chiral reflection in T
2[SO(4)] × T

2[SO(4)]. In the first case of T 2[SO(4)] ×
T 2[SO(4)] or the Z2-orbifold of T 4[SO(8)], we may consider the same orbifold action σ as

given in case 1, Namely, it acts as the identity on the left-mover, and assumes σ2 = 1 in

the untwisted sector. The modular covariant building blocks of the torus partition function

are just determined in the same way as above. We present them in (B.2) in appendix B.

3. Chiral reflection in T
2[SO(4)]× T

2[SO(4)] with a phase factor. In the second

case of T 2[SO(4)]×T 2[SO(4)], we include the phase factors for the Fock vacua when defining

σ, while the action of the chiral reflection (2.2) is kept unchanged. To be more specific,

recalling the equivalence (2.5), let us introduce 4 copies of the SU(2)-current algebra of

level 1 whose third components are identified as

J3, (i) = i∂Y 1
+, i∂Y 1

−, i∂Y 2
+, i∂Y 2

−, (i = 1, . . . , 4), (2.11)

where Y ’s are the compact bosons in (2.6). With these currents, σ is now explicitly defined

according to [10] by

σ :=
4∏

i=1

[
eiπJ

3, (i)
L,0 ⊗ eiπJ

1, (i)
R,0

]
. (2.12)

We then obtain the building blocks according to the same procedure: the blocks for the

(0, b)-sectors with ∀b ∈ 2Z + 1 are computed first, and then those for other sectors are

– 5 –
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obtained by requiring the modular covariance. It turns out that these are eventually equal

to the building blocks of the symmetric Z2-orbifold defined by

(Xi
L, X

i
R) 7−→ (−Xi

L,−Xi
R), (∀i = 6, 7, 8, 9). (2.13)

Of course, this fact is not surprising since (2.12) is equivalent to the symmetric one

4∏

i=1

[
eiπJ

1, (i)
L,0 ⊗ eiπJ

1, (i)
R,0

]
, (2.14)

by an automorphism of SU(2)⊗4, as was pointed out in [11]. We exhibit the building blocks

in this case in (B.4).

2.2 Fermionic sector

We next consider the fermionic sector. The orbifold action should act on the world-sheet

fermions as

σ : (ψi
L, ψ

i
R) 7−→ (ψi

L,−ψi
R), (i = 6, 7, 8, 9), (2.15)

to preserve the world-sheet superconformal symmetry. (2.15) uniquely determines the

action on the Hilbert space of the NS-sector. However, it is not on the R-sector, and as is

discussed in the next section, we obtain different string vacua according to its choice. The

fermionic part is thus crucial in our analysis. In the following, we include the fermions ψi

(i = 2, 3, 4, 5) in other transverse part from M4 × S1 × S1
base, on which σ acts trivially. If

retaining the Poincare symmetry in 4 dimensions, we then have two possibilities, which

can be understood from the point of view of bosonization as follows:

(i) Z2 action on the untwisted R-sector. In this case, we bosonize ψi
R (i = 2, . . . , 9) as

ψ2
R ± iψ3

R ≡
√
2e±iH0,R , ψ4

R ± iψ5
R ≡

√
2e±iH1,R ,

ψ6
R ± iψ7

R ≡
√
2e±iH2,R , ψ8

R ± iψ9
R ≡

√
2e±iH3,R , (2.16)

and define the spin fields for SO(8) as

Sǫ0,ǫ1ǫ2ǫ3,R ≡ e
i
2

∑3
i=0 ǫiHi,R , (ǫi = ±1). (2.17)

Then, (2.15) translates into

σ : (H0,R, H1,R, H2,R, H3,R) 7−→ (H0,R, H1,R, H2,R + π,H3,R + π), (2.18)

and thus, we find σ2 = 1 for all the states in the NS and R-sectors in the untwisted sector.

This type of twisting preserves half of the space-time SUSY. In fact, the Ramond vacua

that are generated by the spin fields (2.17) survive the σ-projection when ǫ2 + ǫ3 = 0.

– 6 –
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(ii) Z4 action on the untwisted R-sector. In this case, we bosonize ψi
R (i = 2, . . . , 9) as

H ′
0,R ≡ H0,R, ψ4

R ± iψ6
R ≡

√
2e±iH′

1,R ,

ψ5
R ± iψ7

R ≡
√
2e±iH′

2,R , H ′
3,R ≡ H3,R, (2.19)

and define the spin fields for SO(8) as

S′
ǫ0,ǫ1ǫ2ǫ3,R ≡ e

i
2

∑3
i=0 ǫiH

′

i,R , (ǫi = ±1). (2.20)

This time, (2.15) translates into

σ : (H ′
0,R, H

′
1,R, H

′
2,R, H

′
3,R) 7−→ (H ′

0,R,−H ′
1,R,−H ′

2,R, H
′
3,R + π). (2.21)

Then, σ2 = −1 for the R-sector, while σ2 = 1 still holds for the NS sector. In other words,

we have found in this second case that

σ2 = (−1)FR , (2.22)

where FR denotes the ‘space-time fermion number’ (mod 2) from the right-mover. The

operator (−1)FR acts as the sign flip on all the states belonging to the right-moving R-sector.

As long as the M4 part or ψ2,3 are kept intact, other possibilities essentially reduce to

one of these two. The chiral blocks of the right-moving fermions in the eight-dimensional

transverse part are then determined in the same way as in the bosonic T 4 sector: we first

evaluate the trace over the untwisted sector with the insertion of σb, and next require the

modular covariance.

For case (i), we then have the desired chiral blocks f(a,b)(τ) with

f(a,b)(τ) =





(−1)
a
2

{(
θ3
η

)2 (
θ4
η

)2
−
(
θ4
η

)2 (
θ3
η

)2
+ 0

}
(a ∈ 2Z, b ∈ 2Z+ 1),

(−1)
b
2

{(
θ3
η

)2 (
θ2
η

)2
+ 0−

(
θ2
η

)2 (
θ3
η

)2
}

(a ∈ 2Z+ 1, b ∈ 2Z),

−e
iπ
2
ab

{
0 +

(
θ2
η

)2 (
θ4
η

)2
−
(
θ4
η

)2 (
θ2
η

)2
}

(a ∈ 2Z+ 1, b ∈ 2Z+ 1),
(
θ3
η

)4
−
(
θ4
η

)4
−
(
θ2
η

)4
(a ∈ 2Z, b ∈ 2Z).

(2.23)

Each term from the left to the right corresponds to the NS, ÑS, and R sector, respectively,

where the ‘ÑS’ denotes the NS-sector with (−1)f inserted (f is the world-sheet fermion

number). These trivially vanish as expected from the space-time SUSY.

We note that in the fermionic sectors the modular covariance means:6

fa,b(τ)|S = f(b,−a)(τ), f(a,b)(τ)|T = −e−2πi 1
6 f(a,a+b)(τ), (2.24)

with the phase for the T-transformation. Since the total blocks for the transverse fermions

consist of f(a,b)(τ) and the left-moving part,

J (τ) ≡
(
θ3
η

)4

−
(
θ4
η

)4

−
(
θ2
η

)4

, (2.25)

6Since f(a,b)(τ) vanish, (2.24) may appear to be subtle. Hence, we present a more rigid interpretation

of modular covariance in appendix B.
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eq. (2.24) indeed assures the proper modular covariance:

[
J (τ)f(a,b)(τ)

]∣∣∣
S
= J (τ)f(b,−a)(τ),

[
J (τ)f(a,b)(τ)

]∣∣∣
T
= J (τ)f(a,a+b)(τ). (2.26)

We next consider the chiral blocks for case (ii), which we denote by f(a,b)(τ). In this

case, the treatment of the R-sector needs a little more care. First, from (2.21) we find that

f(0,b)(τ) = f(0,b)(τ), (∀b ∈ 2Z+ 1), (2.27)

which are vanishing. On the other hand, the blocks for the sectors of a, b ∈ 2Z are non-

trivially modified due to (2.22). Again it is easy to evaluate the trace over the (0, b)-sector,

and by requiring the modular covariance (in the sense of (2.24) or (B.8)), we finally obtain

f(a,b)(τ) = f(a,b)(τ), (a ∈ 2Z+ 1 or b ∈ 2Z+ 1), (2.28)

and

f(a,b)(τ) =





(
θ3
η

)4
−
(
θ4
η

)4
−
(
θ2
η

)4
(a ∈ 4Z, b ∈ 4Z),

(
θ3
η

)4
−
(
θ4
η

)4
+
(
θ2
η

)4
(a ∈ 4Z, b ∈ 4Z+ 2),

(
θ3
η

)4
+
(
θ4
η

)4
−
(
θ2
η

)4
(a ∈ 4Z+ 2, b ∈ 4Z),

−
{(

θ3
η

)4
+
(
θ4
η

)4
+
(
θ2
η

)4
}

(a ∈ 4Z+ 2, b ∈ 4Z+ 2).

(2.29)

In contrast to f(a,b), these f(a,b) are in general non-vanishing, which signals the SUSY

breaking in the right-moving sector. This completes our construction of the chiral building

blocks. These are used in the following sections.

3 String vacua on T-folds

Now we construct type II string vacua by combining the building blocks derived in the

previous section. They are interpretable as describing the compactification on T-folds.

First, to describe the ‘base sector’ for S1
base, we introduce the following notation,

ZR,(w,m)(τ, τ̄) :=
R√

τ2|η(τ)|2
e
−πR2

τ2
|wτ+m|2

, (w,m ∈ Z), (3.1)

where R is the radius of the compactification and the integers w, m are identified as the

spatial and temporal winding numbers. In terms of these, we find7

Trbase

[
(T2πR)m qL0− c

24 qL̃0− c
24

]
= ZR,(0,m)(τ, τ̄), (3.2)

7Here we adopt the conventional normalization of the trace for the CFT for Rbase,

Trbase

[

q
L0−

c

24 qL̃0−
c

24

]

=
R

√
τ2 |η|2

.

This means that we start with S1
NR for the base CFT with an arbitrary integer N , and regard the insertion

of the shift operators (T2πR)
m as implementing the ZN -orbifolding.
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and the torus partition function of a free compact boson with radius R reads

ZR(τ, τ̄) =
∑

w,m∈Z
ZR,(w,m)(τ, τ̄). (3.3)

To calculate the total partition function, we proceed as follows: first, we evaluate

Z(0,m)(τ, τ̄) ≡ Trw=0 sector

[
(T2πR ⊗ σ)m qL0− c

24 qL̃0− c
24

]

= ZR,(0,m)(τ, τ̄) Truntwisted

[
σm qL0− c

24 qL̃0− c
24

]
. (3.4)

Second, we extend (3.4) to the partition function of the general winding sector Z(w,m)(τ, τ̄)

by requiring the modular covariance. It is straightforward to perform this, given the

relevant building blocks in the previous section. These two steps are also in parallel with

the previous section. Finally, we obtain the total partition function by summing over the

winding numbers w,m ∈ Z along the base circle as

Z(τ, τ̄) =
∑

w,m∈Z
Z(w,m)(τ, τ̄). (3.5)

3.1 Supersymmetric vacua

In this way, we can construct string vacua, depending on the combination of the bosonic

T 4 sector (1-3) in section 2.1 and the transverse fermionic sector (i, ii) in section 2.2. All

these are supersymmetric.

As the first example, we consider T 4[SO(8)] in the background (2.1). Choosing case

(i) for the fermionic sector, we obtain the torus partition function as

Z(τ, τ̄) =
1

4
Ztr
M4×S1(τ, τ̄)

∑

w,m∈Z
ZR,(w,m)(τ, τ̄)F

T 4[SO(8)]
(w,m) (τ, τ̄)J (τ) f(w,m)(τ), (3.6)

where Ztr
M4×S1(τ, τ̄) denotes the bosonic partition function for the transverse part of M4×

S1-sector. J (τ) is the contribution from the left-moving free fermions defined in (2.25),

and the overall factor 1/4 is due to the chiral GSO projections. This is manifestly modular

invariant by construction and defines a superstring vacuum, which preserves 3/4 of the

space-time SUSY, that is, 16 supercharges from the left-mover and 8 supercharges from

the right-mover.

For case (ii), we replace f(w,m)(τ) in (3.6) with f(w,m)(τ) given in (2.28), (2.29), and

obtain the torus partition function

Z(τ, τ̄) =
1

4
Ztr
M4×S1(τ, τ̄)

∑

w,m∈Z
ZR,(w,m)(τ, τ̄)F

T 4[SO(8)]
(w,m) (τ, τ̄)J (τ) f(w,m)(τ). (3.7)

This time, we are left with the 1/2 space-time SUSY that originates only from the left-

mover.8

It is straightforward to construct the string vacua in other four cases based on

T 2[SO(4)]×T 2[SO(4)]: one has only to replace the bosonic building blocks F
T 4[SO(8)]
(w,m) (τ, τ̄)

in the above with (B.2) or (B.4) without any changes in other sectors.

8See the discussions given in section 3.2 for the counting of unbroken supercharges in more detail.
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base (X5) T 4 (X6,7,8,9) left-moving fermions right-moving fermions

g4n T2π(4n)R 1 1 1

g4n+1 T2π(4n+1)R σ (−1)FL σ

g4n+2 T2π(4n+2)R 1 1 (−1)FR

g4n+3 T2π(4n+3)R σ (−1)FL (−1)FRσ

Table 1. Action of the twist operators gn.

3.2 Non-SUSY string vacua with vanishing cosmological constant

An interesting modification of the half SUSY vacuum represented by (3.7) is to replace the

base circle along the X5-direction with the Scherk-Schwarz one [33, 34]. This means that

we implement the orbifolding of the background (2.1) by the twist operator9

g := T2πR ⊗ (−1)FL ⊗ σ, (3.8)

where (−1)FL acts as the sign flip on any states of the left-moving Ramond sector. Again

σ denotes the chiral reflection for the T 4-sector and is assumed to satisfy σ2 = (−1)FR as

for (3.7). The action of the twist operators gn is summarized in table 1.

This modification leads to the following torus partition function,

Z(τ, τ̄) =
1

4
Ztr
M4×S1(τ, τ̄)

∑

w,m∈Z
ZR,(w,m)(τ, τ̄)F

T 4[SO(8)]
(w,m) (τ, τ̄) f(2w,2m)(τ) f(w,m)(τ). (3.9)

Here, the chiral blocks for left-moving fermions have been replaced with f(2w,2m)(τ) as

in (3.7) due to the extra twisting (−1)FL . One can confirm that this partition function

vanishes for each winding sector, similarly to usual supersymmetric string vacua. Indeed,

f(w,m)(τ) = 0 for ∀w ∈ 2Z + 1 or ∀m ∈ 2Z + 1, while f(2w,2m)(τ) = 0 for ∀w,m ∈ 2Z.

Then, we see a bose-fermi cancellation at each mass level of the string spectrum, after

making the Poisson resummation with respect to the temporal winding m in a standard

fashion. We will observe this aspect explicitly in section 4. Thus, the vacuum energy or

the cosmological constant in space-time vanishes at the one-loop level.

A remarkable fact here is that the space-time SUSY is nonetheless completely broken:

• For w = 0, only the supercharges commuting with the orbifold projection
1
4

∑
n∈Z4

gn|fermion would be preserved. However, since the relevant projection in-

cludes both (−1)FL and (−1)FR , all the supercharges in the unorbifolded theory

cannot commute with it. This implies that all the supercharges from this sector are

projected out.

9If following the notion of the original Scherk-Schwarz compactification, it would be better to introduce

g
′ := T2πR ⊗ (−1)F

S

⊗ σ ≡ T2πR ⊗ (−1)FL ⊗
[

σ(−1)FR

]

,

instead of (3.8), where FS ≡ FL+FR is the space-time fermion number. However, the argument given here

is almost unchanged even in that case, and especially, we end up with the same torus partition function (3.9).
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• For w 6= 0, if we had a supercharge, we would observe a bose-fermi cancellation be-

tween two sectors with winding numbers w′ and w′+w for ∀w′ ∈ Z, which would imply

Z
(NS,NS)
w′ (τ, τ̄) + Z

(R,R)
w′ (τ, τ̄) = −

{
Z

(NS,R)
w′+w (τ, τ̄) + Z

(R,NS)
w′+w (τ, τ̄)

}
. (3.10)

However, we explicitly confirm, as expected, in section 4.2 that such relations

never hold for the partition function (3.9) due to the factor ZR,(w,m)(τ, τ̄) from the

base circle.

Here, it would be worthwhile to emphasize a crucial role of the shift operator T2πR|base
in the above argument. Obviously, one has a vanishing partition function even without

ZR,(w,m)(τ, τ̄):

Z̃(τ, τ̄) =
1

4 · 4Z
tr
M4×S1×S1(τ, τ̄)

∑

a,b∈Z4

F
T 4[SO(8)]
(a,b) (τ, τ̄) f(2a,2b)(τ) f(a,b)(τ). (3.11)

For the untwisted sector with a = 0, all the supercharges are projected out in the same

way as above. However, new Ramond vacua can appear from the a 6= 0 sectors in this

case,10 and the space-time SUSY revives eventually. The inclusion of T2πR|base was a very

simple way to exclude such a possibility, since supercharges cannot carry winding charges

generically, as pointed out above. This is also in accord with an intuition that in the

twisted sectors masses are lifted up by the winding charges.

3.3 Asymmetric/generalized orbifolds and T-folds

We have explicitly constructed the non-geometric superstring vacua/partition func-

tions, (3.6), (3.7), (3.9) for the asymmetric orbifolds associated with the chiral reflection.

In this subsection, we would like to comment on the relation to the construction of T-

folds in [10, 16]. In these works, the T-duality twists are accompanied by extra phases,

so that the full operator product expansion (OPE), not only the chiral one, respects the

invariance under the twist: supposed that two vertex operators including both the left and

right movers are invariant, their OPE yields invariant operators. This is in accord with the

ordinary principle of orbifolding by symmetries. The construction of (B.4) includes such

phases and the resultant models represent the T-folds in this sense. Asymmetric orbifold-

ing, however, generally respects the chiral OPE only, and belongs to a different class.

Here, we recall that, from the CFT point of view, T-duality is in general an isomor-

phism between different Hilbert spaces, which keeps the form of the Hamiltonian invariant.

At the self-dual point, it acts within a single Hilbert space, but is not yet an ordinary

symmetry, since the transformation to the dual fields is non-local. Thus, it may not be

obvious if the OPE should fully respect the invariance under the T-duality twists. Indeed,

in the case of the critical Ising model, the OPE of the order and disorder fields, which are

non-local to each other, reads

σ(z, z̄)µ(0, 0) ∼ |z|−1/4
[
ωz1/2ψ(0) + ω̄z̄1/2ψ̄(0)

]
, (3.12)

10In fact, the orbifolding by (−1)FL (or (−1)FR) acts as the ‘chirality flip’ of the Ramond sector, which

transfers the type IIA (IIB) vacua to the type IIB (IIA) ones similarly to T-duality. See e.g. [36].
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where ψ, ψ̄ are the free fermions, ω = 1√
2
e

iπ
4 and ω̄ is its complex conjugate. Un-

der the Kramers-Wannier duality (T-duality), these fields are mapped as (σ, µ, ψ, ψ̄) →
(µ, σ, ψ,−ψ̄). One then finds that the OPE of two invariant fields (σ+µ)(z, z̄)(σ+µ)(0, 0)

yields non-invariant fields, since the diagonal part σσ + µµ yields invariant ones.

In addition, we note that sensible CFTs may be obtained from the twists by trans-

formations which are not the full symmetries. We refer to such CFTs as “generalized

orbifold” CFTs, according to [37–39] where such CFTs are studied in the context of the

topological conformal interfaces [40–43]. An application to non-geometric backgrounds has

been discussed in [15]. Even though the twists are not necessarily by the full symmetries,

the transformations may need to commute with the Hamiltonian, since the position of the

twist operators matters otherwise. In this terminology, general asymmetric orbifold models

and hence ours based on the twists without the extra phases belong to this class. In any

case, our resultant models are consistent in that they are modular invariant and, as shown

in the next section, have sensible spectra.

Taking these into account, we expect that the world-sheet CFTs for T-folds are gener-

ally given by the asymmetric/generalized orbifold CFTs, and that our asymmetric orbifolds

without, as well as with, the extra phases also represent T-folds, as we have assumed so

far (see also [1–3, 7, 9, 13, 14]). It would be an interesting issue if all these non-geometric

models have the corresponding supergravity description as low-energy effective theory of

T-folds. As is discussed shortly, the difference of the spectra due to the phases typically

appear in the massive sector. However, the massless spectra can also differ, for example,

at special points of the moduli, and thus supergravity may distinguish them.

Regarding the interpretation as T-folds, we also note that the chiral reflections both

for T 4[SO(8)] and T 2[SO(4)]×T 2[SO(4)] are indeed realized as self-dual O(4, 4,Z) transfor-

mations which leave background geometries invariant. The elements of O(4, 4,Z) act as Z2

transformations in the untwisted bosonic sector as expected, whereas they do not generally

in other sectors, for example, in the fermionic sectors (see also [10, 35]). This, however, is

not a contradiction: that means that such sectors are in different representations.

4 Analysis on spectra

4.1 Massless spectra in the untwisted sectors

To clarify the physical content of the non-SUSY vacuum with the bose-fermi cancella-

tion (3.9), let us examine the massless spectrum in the untwisted sector (w = 0) that

survives in the low energy physics. The massless states from the twisted sectors (w 6= 0)

can appear only at the special radius R (see subsection 4.3).

We first note the fact that all the right-moving Ramond vacua are projected out by

the orbifold action g; recall σ2 = (−1)FR for the world-sheet fermions. Therefore, the

candidates of the bosonic and fermionic massless states only reside in the (NS,NS) and

(R,NS)-sectors, respectively. It is thus enough to search the (NS,NS) and (R,NS) massless

states invariant under the action of (−1)FL ⊗σ within the Hilbert space of the unorbifolded

theory. In this way, one can easily write down the massless spectrum. We exhibit it in
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spin structure left right 4D fields

(NS, NS) ψµ
−1/2|0〉 ⊗ ψ̃ν

−1/2|0〉 graviton, 8 vectors,

(µ = 2, . . . , 9) (ν = 2, . . . , 5) 14 (pseudo) scalars

(R, NS) |ǫ0, ǫ1, ǫ2, ǫ3〉 ⊗ ψ̃ν
−1/2|0〉 16 Weyl fermions

(ν = 6, . . . , 9)

Table 2. Massless spectrum of the non-SUSY vacuum (3.9).

spin structure left right 4D fields

(NS, NS) ψµ
−1/2|0〉 ⊗ ψ̃ν

−1/2|0〉 graviton, 8 vectors,

(µ = 2, . . . , 9) (ν = 2, . . . , 5) 14 (pseudo) scalars

(R, R) |ǫ0, ǫ1, ǫ2, ǫ3〉 ⊗ |ǫ̃0, ǫ̃1, ǫ̃2, ǫ̃3〉 8 vectors,

(ǫ̃2 + ǫ̃3 = 0) 16 (pseudo) scalars

(R, NS) |ǫ0, ǫ1, ǫ2, ǫ3〉 ⊗ ψ̃ν
−1/2|0〉 8 gravitini,

(ν = 2, . . . , 5) 8 Weyl fermions

(NS, R) ψµ
−1/2|0〉 ⊗ |ǫ̃0, ǫ̃1, ǫ̃2, ǫ̃3〉 4 gravitini,

(µ = 2, . . . , 9) (ǫ̃2 + ǫ̃3 = 0) 12 Weyl fermions

Table 3. Massless spectrum of the SUSY vacuum (3.6).

spin structure left right 4D fields

(NS, NS) ψµ
−1/2|0〉 ⊗ ψ̃µ

−1/2|0〉 graviton, 8 vectors,

(µ = 2, . . . , 9) (µ = 2, . . . , 5) 14 (pseudo) scalars

(R, NS) |ǫ0, ǫ1, ǫ2, ǫ3〉 ⊗ ψ̃µ
−1/2|0〉 8 gravitini,

(µ = 2, . . . , 5) 8 Weyl fermions

Table 4. Massless spectrum of the SUSY vacuum (3.7).

table 2.11 Since our background includes the S1-factor (X4-direction) that is kept intact

under the orbifolding, it is evident by considering T-duality that the type IIA and type

IIB vacua lead us to the same massless spectra in 4 dimensions. Thus, we do not specify

here which we are working on.

It is evident from table 2 that we have the same number of the massless bosonic and

fermionic degrees of freedom. Nevertheless, there are no 4-dimensional gravitini, reflecting

the absence of the space-time SUSY.

For comparison, it would be useful to exhibit the massless spectra in the untwisted

sector for the 3/4-SUSY vacuum (3.6) and the 1/2-SUSY vacuum (3.7). We present them

in table 3 and table 4.

11Here, the ‘14 (pseudo) scalars’ include the dilaton and the 4-dimensional axion field (dual of Bµν),

which universally exist.
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4.2 Unitarity

The torus partition functions we constructed in the previous section include the non-trivial

phase factors which originate from the requirement of the modular covariance and depend

on the winding numbers along the base circle. Thus, it may not be so obvious whether the

spectrum is unitary in each vacuum, though that is evident in the untwisted sector with

w = 0 by construction.

An explicit way to check the unitarity is to examine the string spectrum by the Poisson

resummation of the relevant partition function with respect to the temporal winding m

along the base circle. To this end, we decompose the partition functions with respect to

the spatial winding w and the spin structures, and factor out the component of Ztr
M4×S1 :

Z(τ, τ̄) =
1

4
Ztr
M4×S1(τ, τ̄)

∑

s,s̃

∑

w∈Z
Z(s,s̃)
w (τ, τ̄), (4.1)

where s, s̃ = NS, R denote the left and right-moving spin structures.

For instance, let us pick up the non-SUSY vacuum built from T 4[SO(8)] given by (3.9).

Making the Poisson resummation, we find that each function Z
(s,s̃)
w (τ, τ̄) with fixed w

becomes as follows:

• w ∈ 4Z;

Z(NS,NS)
w (τ, τ̄) = −Z(R,NS)

w (τ, τ̄) =
1

4

∑

n∈Z
q

1
4(

n
2R

−Rw)
2

q
1
4(

n
2R

+Rw)
2

×
{∣∣∣∣

θ3
η

∣∣∣∣
8

+

∣∣∣∣
θ4
η

∣∣∣∣
8

+

∣∣∣∣
θ2
η

∣∣∣∣
8
}∣∣∣∣∣

(
θ3
η

)4

−
(
θ4
η

)4
∣∣∣∣∣

2

, (4.2)

Z(R,R)
w (τ, τ̄) = −Z(NS,R)

w (τ, τ̄) =
1

4

∑

n∈Z+ 1
2

q
1
4(

n
2R

−Rw)
2

q
1
4(

n
2R

+Rw)
2

×
{∣∣∣∣

θ3
η

∣∣∣∣
8

+

∣∣∣∣
θ4
η

∣∣∣∣
8

+

∣∣∣∣
θ2
η

∣∣∣∣
8
}∣∣∣∣

θ2
η

∣∣∣∣
8

. (4.3)

• w ∈ 4Z+ 2;

Z(NS,NS)
w (τ, τ̄) =−Z(R,NS)

w (τ, τ̄) =
1

4

∑

n∈Z+ 1
2

q
1
4(

n
2R

−Rw)
2

q
1
4(

n
2R

+Rw)
2

(4.4)

×
{∣∣∣∣

θ3
η

∣∣∣∣
8

+

∣∣∣∣
θ4
η

∣∣∣∣
8

+

∣∣∣∣
θ2
η

∣∣∣∣
8
}{(

θ3
η

)4

+

(
θ4
η

)4
}{(

θ3
η

)4

−
(
θ4
η

)4
}
,

Z(R,R)
w (τ, τ̄) =−Z(NS,R)

w (τ, τ̄) =
1

4

∑

n∈Z
q

1
4(

n
2R

−Rw)
2

q
1
4(

n
2R

+Rw)
2

×
{∣∣∣∣

θ3
η

∣∣∣∣
8

+

∣∣∣∣
θ4
η

∣∣∣∣
8

+

∣∣∣∣
θ2
η

∣∣∣∣
8
}∣∣∣∣

θ2
η

∣∣∣∣
8

. (4.5)
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• w ∈ 2Z+ 1;

Z(NS,NS)
w (τ, τ̄) =−Z(NS,R)

w (τ, τ̄) =
1

4

∑

r∈Z2

∑

n∈Z
q

1
4(

n
2R

−Rw)
2

q
1
4(

n
2R

+Rw)
2

(4.6)

×(−1)rn

(
θ2θ3

(
r
2

)

η2

)4


(−1)r

(
θ3

(
r
2

)

η

)4

+

(
θ2
η

)4




{(
θ3
η

)4

+

(
θ4
η

)4
}
,

Z(R,R)
w (τ, τ̄) =−Z(R,NS)

w (τ, τ̄) =
1

4

∑

r∈Z2

∑

n∈Z
q

1
4(

n
2R

−Rw)
2

q
1
4(

n
2R

+Rw)
2

×(−1)rn

(
θ2θ3

(
r
2

)

η2

)4




(
θ3

(
r
2

)

η

)4

+ (−1)r
(
θ2
η

)4




(
θ2
η

)4

. (4.7)

Here, we denoted θi ≡ θi(τ, 0), and θ3(
r
2) ≡ θ3(τ,

r
2), and made use of the identity

θ43 − θ44 − θ42 = 0.

As expected, all of these partition functions are suitably q-expanded so as to be consistent

with the unitarity.

The SUSY T-fold vacua (3.6), (3.7) are similarly analyzed. For the 3/4-SUSY vac-

uum (3.6), Z
(s,s̃)
w (τ, τ̄) becomes as follows:

• w ∈ 2Z;

Z(NS,NS)
w (τ, τ̄) = Z(R,R)

w (τ, τ̄) = −Z(R,NS)
w (τ, τ̄) = −Z(NS,R)

w (τ, τ̄) = (4.2). (4.8)

• w ∈ 2Z+ 1;

Z(NS,NS)
w (τ, τ̄) = Z(R,R)

w (τ, τ̄) = −Z(R,NS)
w (τ, τ̄) = −Z(NS,R)

w (τ, τ̄) = (4.7). (4.9)

On the other hand, for the 1/2-SUSY vacuum (3.7), we find the following:

• w ∈ 4Z;

Z(NS,NS)
w (τ, τ̄) = −Z(R,NS)

w (τ, τ̄) = (4.2),

Z(R,R)
w (τ, τ̄) = −Z(NS,R)

w (τ, τ̄) = (4.3). (4.10)

• w ∈ 4Z+ 2;

Z(NS,NS)
w (τ, τ̄) = −Z(R,NS)

w (τ, τ̄) = (4.5),

Z(R,R)
w (τ, τ̄) = −Z(NS,R)

w (τ, τ̄) = (4.5). (4.11)

• w ∈ 2Z+ 1;

Z(NS,NS)
w (τ, τ̄) = Z(R,R)

w (τ, τ̄) = −Z(R,NS)
w (τ, τ̄) = −Z(NS,R)

w (τ, τ̄) = (4.7). (4.12)
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These analyses can be extended to other vacua built from F
T 2[SO(4)]×T 2[SO(4)]
(∗,∗) in (B.2) or

F̃
T 2[SO(4)]×T 2[SO(4)]
(∗,∗) in (B.4). In each case, we obtain the unitary q-expansion in a parallel

way as above.

We remark that the above results (4.8) and (4.9) suggest that there are supercharges

both from the left and right movers for the SUSY T-fold (3.6). Similarly, (4.10), (4.11)

and (4.12) are consistent with the existence of the chiral SUSY that originates only from

the left-mover. Then, how about the non-SUSY vacuum (3.9)? We note that, for instance,

Z(NS,NS)
w (τ, τ̄) = −Z(R,NS)

w (τ, τ̄), Z(R,R)
w (τ, τ̄) = −Z(NS,R)

w (τ, τ̄),

Z(NS,NS)
w (τ, τ̄) 6= −Z(NS,R)

w (τ, τ̄), Z(R,R)
w (τ, τ̄) 6= −Z(R,NS)

w (τ, τ̄), (4.13)

for w ∈ 2Z. These relations of the bose-fermi cancellation look as if we had left-moving

SUSY, in spite that no supercharges exist in the left-mover in fact. On the other hand,

we find

Z(NS,NS)
w (τ, τ̄) = −Z(NS,R)

w (τ, τ̄), Z(R,R)
w (τ, τ̄) = −Z(R,NS)

w (τ, τ̄),

Z(NS,NS)
w (τ, τ̄) 6= −Z(R,NS)

w (τ, τ̄), Z(R,R)
w (τ, τ̄) 6= −Z(NS,R)

w (τ, τ̄), (4.14)

for w ∈ 2Z+1, which would appear to be consistent with right-moving SUSY. We emphasize

that any supercharges can never be compatible with both (4.13) and (4.14) at the same

time. It may be an interesting issue whether such a curious feature is common to the vacua

showing the bose-fermi cancellation without SUSY.

We also point out that the bose-fermi cancellation in (3.10) among different winding

sectors does not happen (for arbitrary w′), as is clear from the explicit forms of the partition

functions presented above. Even at a special radius, the cancellation for arbitrary winding

in (3.10) is not possible.

4.3 Absence of winding tachyons

Recall that our non-SUSY string vacuum (3.9) from T 4[SO(8)] has been constructed by

including the Sherk-Schwarz type modification. Therefore, we would potentially face an

issue of the instability caused by the winding tachyons that are typical in the Sherk-

Schwarz compactification. That would be implied by the ‘wrong GSO projections’ observed

in (4.5), (4.7).12 However, the spectrum is in fact free from the winding tachyons.

To show this, we first note that potentially dangerous states come from the winding

sectors with w ∈ 4Z + 2 or w ∈ 2Z + 1, which are anticipated from the wrong GSO

projections. Among them, we further focus on the NS-NS sector, since the spectrum is

lifted in the R-R sector due to the θ2-factors, and the partition functions in the NS-R

and R-NS sectors are the same as for the NS-NS or the R-R sector up to sign. From the

partition functions (4.5), (4.7), we then find the following:

12In the T-fold vacuum (3.7), despite the existence of the space-time SUSY, we still find the wrong GSO

fermions in the right-mover (with no SUSY), since Z
(NS,NS)
w

(

= −Z
(R,NS)
w

)

coincides with the partition

function (4.5) for w ∈ 4Z+ 2. Of course, one can confirm the absence of tachyonic modes in this model by

a similar argument given here.
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• For w ∈ 4Z+2, the wrong GSO states are in the right-mover. The lightest excitations

appear in the sectors of w = ±2, the conformal weights of which read

hL =
1

2
+

1

4

( n

2R
± 2R

)2
, hR =

1

4

( n

2R
∓ 2R

)2
, (4.15)

with the KK momenta n ∈ Z+ 1
2 . Their minima for the physical states are achieved

by setting n = ∓1
2 , to give

hL = hR =
1

2
+

1

4

(
1

4R
− 2R

)2

≥ 1

2
. (4.16)

This means that the winding states from these sectors are always massive except

at the special radius R = 1
2
√
2
of the base circle, where extra massless excitations

appear.

• For w ∈ 2Z+1, the wrong GSO states are in the left-mover. The lightest excitations

appear in the sectors of w = ±1, and the leading contribution from the θ-part comes

from θ3(
r
2) = 1 + (−1)rq

1
2 + · · · . The summation over r ∈ Z2 then projects the KK

momenta onto n ∈ 2Z+ 1, and the conformal weights read

hL =
1

4

( n

2R
±R

)2
, hR =

1

2
+

1

4

( n

2R
∓R

)2
, (n ∈ 2Z+ 1). (4.17)

Their minima for the physical states are achieved by setting n = ±1, to give

hL = hR =
1

2
+

1

4

(
1

2R
−R

)2

≥ 1

2
. (4.18)

This means that the winding states from these sectors are always massive except at

the special radius R = 1√
2
, where extra massless excitations appear.

These demonstrate that no winding tachyons emerge in the non-SUSY vacuum (3.9).

The non-SUSY vacua associated with F
T 2[SO(4)]×T 2[SO(4)]
(∗,∗) in (B.2) and

F̃
T 2[SO(4)]×T 2[SO(4)]
(∗,∗) in (B.4) can be examined in a parallel way, and we obtain al-

most the same spectra of the winding excitations. However, there is a slight difference

for the sectors of w ∈ 2Z + 1 in the model from F̃
T 2[SO(4)]×T 2[SO(4)]
(∗,∗) . In this case, the

conformal weights of the w = ±1 sectors become

hL =
1

4
+

1

4

( n

2R
±R

)2
, hR =

1

2
+

1

4

( n

2R
∓R

)2
,

(
n ∈ Z+

1

2

)
. (4.19)

Here, hL also acquires the twisted energy from the extra θ2-factor. The KK momenta are

shifted by one half due to the absence of the phase factors depending on the temporal

winding m (see (B.4)). Consequently, the lightest excitations lie in the sectors with w =

±1, n = ±1
2 , giving

hL = hR =
1

2
+

1

4

(
1

4R
−R

)2

≥ 1

2
. (4.20)

Again these are always massive except at the massless point R = 1
2 .
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5 Summary and discussions

In this paper, we have studied type II string vacua which are defined by the asymmetric

orbifolding based on the chiral reflections/T-duality twists in T 4 combined with the shift

in the base circle, in such a way that the modular invariance is kept manifest. They repre-

sent the non-geometric string vacua for T-folds, supposed that the world-sheet description

of T-folds is generally given by asymmetric/generalized orbifolds. Including appropriate

phases as in (B.4), the full OPE also respects the invariance under the T-duality twists in

accord with [10]. As the main result, we have presented simple examples of the non-SUSY

vacua with vanishing cosmological constant at one loop. We summarize the points to be

emphasized as follows:

• Our non-SUSY vacuum (3.9) has been defined by a cyclic orbifold which is gener-

ated by a single element g in (3.8). Thus, it provides a simpler model than the

previous ones [21–27]. In this construction, taking both the asymmetric orbifold

action with σ2 = (−1)FR and the Scherk-Schwarz compactification (orbifolding by

(−1)FL ⊗ T2πR
∣∣
base

) at the same time is truly crucial in order to make the SUSY-

breaking compatible with the bose-fermi cancellation. Indeed, it is important that

the left and right-moving non-SUSY chiral blocks f(∗,∗)(τ), f(∗,∗)(τ), which originate

from the SUSY-breaking twists (−1)FL , (−1)FR , depend on the winding numbers

along the Scherk-Schwarz circle in an asymmetric way.

• The modular invariant partition function given in (3.9) is q-expanded so as to be

compatible with unitarity, as shown in subsection 4.2. Curiously, it turns out that

the left-moving bose-fermi cancellation occurs in the even winding sectors, while we

have the right-moving bose-fermi cancellation in the odd winding sectors. This aspect

is in sharp contrast with any SUSY vacua.

• Despite the absence of the space-time SUSY and adopting the Scherk-Schwarz type

compactification, we are free from the tachyonic instability at any radius of the

Scherk-Schwarz circle.

To conclude, we would like to make a few comments on possible future studies. First

of all, it would indeed be an interesting issue whether our non-SUSY vacuum (3.9) has

vanishing cosmological constant at higher loops. Since the orbifold structure of this vacuum

is simpler than those of the previous ones quoted above, it would be worthwhile to examine

especially the two-loop case by following the analysis in [28].

Secondly, in order to search a more broad class of such vacua, one may extend the

construction in this paper to other toroidal models of asymmetric orbifolds. Furthermore,

toward more realistic models, it would also be important to consider the non-geometric

string vacua from SCFTs other than the toroidal ones. For previous attempts based on the

N = 2 SCFTs, see e.g. [12]. A challenging direction in this respect, and along [15], would

be to construct such vacua based on the generalized orbifolds through the topological

interfaces, which are wrapped around the cycles of the world-sheet torus in correlation
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with the shift operators.13 The point here would be how to organize the world-sheet chiral

sectors depending on the winding numbers along the Scherk-Schwarz like circle, so that the

bose-fermi cancellation does occur. We expect that the novel feature of the cancellation,

which is remarked at the end of subsection 4.2, would be observed only in the non-geometric

backgrounds.

Thirdly, one may also extend this work so as to include the open string sectors, namely,

D-branes. Possibilities of the bose-fermi cancellation in the open string Hilbert space have

been investigated [36] under particular SUSY breaking configurations of D-branes. Closely

related studies of D-branes in asymmetric orbifolds by the T-duality twists have been

presented e.g. in [11, 48–50]. It would be interesting to study the aspects of D-branes

in the type II vacua given in this paper (and their variants), in comparison with these

previous works.
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A Summary of conventions and useful formulas

Theta functions:

θ1(τ, z) := i
∞∑

n=−∞
(−1)nq(n−1/2)2/2yn−1/2 ≡ 2 sin(πz)q1/8

∞∏

m=1

(1−qm)(1−yqm)(1−y−1qm),

(A.1)

θ2(τ, z) :=
∞∑

n=−∞
q(n−1/2)2/2yn−1/2 ≡ 2 cos(πz)q1/8

∞∏

m=1

(1− qm)(1 + yqm)(1 + y−1qm),

(A.2)

θ3(τ, z) :=

∞∑

n=−∞
qn

2/2yn ≡
∞∏

m=1

(1− qm)(1 + yqm−1/2)(1 + y−1qm−1/2), (A.3)

θ4(τ, z) :=
∞∑

n=−∞
(−1)nqn

2/2yn ≡
∞∏

m=1

(1− qm)(1− yqm−1/2)(1− y−1qm−1/2). (A.4)

Θm,k(τ, z) :=

∞∑

n=−∞
qk(n+

m
2k )

2

yk(n+
m
2k ), (A.5)

Θ̃m,k(τ, z) :=
∞∑

n=−∞
(−1)nqk(n+

m
2k )

2

yk(n+
m
2k ), (A.6)

η(τ) := q1/24
∞∏

n=1

(1− qn). (A.7)

13For applications of the world-sheet conformal interfaces to string theory, see e.g. [44–47].
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Here, we have set q := e2πiτ , y := e2πiz (∀τ ∈ H
+, ∀z ∈ C), and used abbreviations,

θi(τ) ≡ θi(τ, 0) (θ1(τ) ≡ 0), Θm,k(τ) ≡ Θm,k(τ, 0). It is straightforward to prove the

following identities:

Θ̃0,1(τ)

η(τ)
=

√
2η(τ)

θ2(τ)
,

Θ1/2,1(τ)

η(τ)
=

√
η(τ)

θ4(τ)
,

Θ̃1/2,1(τ)

η(τ)
=

√
η(τ)

θ3(τ)
. (A.8)

Poisson resummation formula:

∑

n∈Z
exp

(
−πα(n+ a)2 + 2πib(n+ a)

)
=

1√
α

∑

m∈Z
exp

(
−π(m− b)2

α
+ 2πima

)
,

(α > 0, a, b ∈ R). (A.9)

B Summary of building blocks

In appendix B, we summarize the notations of relevant building blocks to construct the

torus partition functions used in the main text.

Bulidng blocks for the bosonic T
4-secotor:

1. Chiral reflection in T
4[SO(8)]:

F
T 4[SO(8)]
(a,b) (τ, τ̄) =





(−1)
a
2

(
θ3θ4
η2

)2
· 1
2

{(
θ3
η

)4
+
(
θ4
η

)4
}

(a ∈ 2Z, b ∈ 2Z+ 1),

(−1)
b
2

(
θ2θ3
η2

)2
· 1
2

{(
θ3
η

)4
+
(
θ2
η

)4
}

(a ∈ 2Z+ 1, b ∈ 2Z),

e−
iπ
2
ab
(
θ4θ2
η2

)2
· 1
2

{(
θ4
η

)4
−

(
θ2
η

)4
}

(a ∈ 2Z+ 1, b ∈ 2Z+ 1),

1
2

{∣∣∣ θ3η
∣∣∣
8
+
∣∣∣ θ4η

∣∣∣
8
+
∣∣∣ θ2η

∣∣∣
8
}

(a ∈ 2Z, b ∈ 2Z).

(B.1)

Of course, F
T 4[SO(8)]
(a,b) for the a, b ∈ 2Z case coincides with the original partition

function ZT 4[SO(8)] (2.3).

2. Chiral reflection in T
2[SO(4)] × T

2[SO(4)]:

F
T 2[SO(4)]×T 2[SO(4)]
(a,b) (τ, τ̄)

=





(−1)
a
2

(
θ3θ4
η2

)2
· 1
4

{(
θ3
η

)2
+ (−1)

a
2

(
θ4
η

)2
}2

(a ∈ 2Z, b ∈ 2Z+ 1),

(−1)
b
2

(
θ2θ3
η2

)2
· 1
4

{(
θ3
η

)2
+ (−1)

b
2

(
θ2
η

)2
}2

(a ∈ 2Z+ 1, b ∈ 2Z),

e−
iπ
2
ab
(
θ4θ2
η2

)2
· 1
4

{(
θ4
η

)2
− i(−1)

a+b
2

(
θ2
η

)2
}2

(a ∈ 2Z+ 1, b ∈ 2Z+ 1),

1
4

{∣∣∣ θ3η
∣∣∣
4
+
∣∣∣ θ4η

∣∣∣
4
+
∣∣∣ θ2η

∣∣∣
4
}2

(a ∈ 2Z, b ∈ 2Z).

(B.2)
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Here, F
T 2[SO(4)]×T 2[SO(4)]
(a,b) for a, b ∈ 2Z coincides with the partition function

ZT 2[SO(4)]×T 2[SO(4)] (2.4), and we also find the identities

1

4

{∣∣∣∣
θ3
η

∣∣∣∣
4

+

∣∣∣∣
θ4
η

∣∣∣∣
4

+

∣∣∣∣
θ2
η

∣∣∣∣
4
}2

=
1

2

[
ZT 4[SO(8)](τ, τ̄) +

∣∣∣∣
θ3θ4
η2

∣∣∣∣
4

+

∣∣∣∣
θ4θ2
η2

∣∣∣∣
4

+

∣∣∣∣
θ2θ3
η2

∣∣∣∣
4
]

=

[∣∣∣∣
Θ0,1

η

∣∣∣∣
2

+

∣∣∣∣
Θ1,1

η

∣∣∣∣
2
]4

. (B.3)

They obviously show the equivalence (2.5).

3. Chiral reflection in T
2[SO(4)] × T

2[SO(4)] with a phase factor:

F̃
T 2[SO(4)]×T 2[SO(4)]
(a,b) (τ, τ̄) =





∣∣∣ θ3θ4η2

∣∣∣
4

(a ∈ 2Z, b ∈ 2Z+ 1),
∣∣∣ θ2θ3η2

∣∣∣
4

(a ∈ 2Z+ 1, b ∈ 2Z),
∣∣∣ θ4θ2η2

∣∣∣
4

(a ∈ 2Z+ 1, b ∈ 2Z+ 1),

1
4

{∣∣∣ θ3η
∣∣∣
4
+
∣∣∣ θ4η

∣∣∣
4
+
∣∣∣ θ2η

∣∣∣
4
}2

(a ∈ 2Z, b ∈ 2Z).

(B.4)

Again the building block for a, b ∈ 2Z coincides with (2.4), and the blocks for the

(0, b)-sectors with b ∈ 2Z+ 1 are explicitly computed as

F̃
T 2[SO(4)]×T 2[SO(4)]
(0,b) (τ, τ̄) =

[√
2η

θ2
· 1
η

∑

n∈Z
(−1)nqn

2

]4

=

∣∣∣∣
θ3θ4
η2

∣∣∣∣
4

. (B.5)

Here, we used the identity (A.8) and the Euler identity θ2θ3θ4 = 2η3 to derive the sec-

ond line. The building blocks of other sectors are obtained by requiring the modular

covariance, and one can quickly reproduce the results (B.4).

Chiral building blocks for the fermionic sector:

(i) For the case σ
2

L
= 1:

f(a,b)(τ) = 2q
1
4
a2e

iπ
2
ab

(
θ1

(
τ, aτ+b

2

)

η(τ)

)2(
θ1(τ, 0)

η(τ)

)2

≡





(−1)
a
2

{(
θ3
η

)2 (
θ4
η

)2
−
(
θ4
η

)2 (
θ3
η

)2
+0

}
(a ∈ 2Z, b ∈ 2Z+ 1),

(−1)
b
2

{(
θ3
η

)2 (
θ2
η

)2
+0−

(
θ2
η

)2 (
θ3
η

)2
}

(a ∈ 2Z+ 1, b ∈ 2Z),

−e
iπ
2
ab

{
0+

(
θ2
η

)2 (
θ4
η

)2
−
(
θ4
η

)2 (
θ2
η

)2
}

(a ∈ 2Z+ 1, b ∈ 2Z+ 1),
(
θ3
η

)4
−
(
θ4
η

)4
−
(
θ2
η

)4
(a ∈ 2Z, b ∈ 2Z).

(B.6)
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Since f(a,b)(τ) actually vanish, it is better to first consider

f(a,b)(τ, ǫ) ≡ 2q
1
4
a2e

iπ
2
ab

(
θ1

(
τ, aτ+b

2

)

η(τ)

)2(
θ1(τ, ǫ)

η(τ)

)2

, (B.7)

in order to express the modular covariance relation with no subtlety, One should then

interpret (2.24) as the ǫ → 0 limit of

fa,b(τ, ǫ)|S ≡ f(a,b)

(
−1

τ
,
ǫ

τ

)
= eiπ

2
τ
ǫ2f(b,−a)(τ, ǫ),

f(a,b)(τ, ǫ)|T ≡ f(a,b)(τ + 1, ǫ) = −e−2πi 1
6 f(a,a+b)(τ, ǫ). (B.8)

(ii) For the case of σ2

L
= (−1)FL:

f(a,b)(τ) = f(a,b)(τ), (a ∈ 2Z+ 1 or b ∈ 2Z+ 1), (B.9)

and

f(a,b)(τ) =





(
θ3
η

)4
−
(
θ4
η

)4
−
(
θ2
η

)4
(a ∈ 4Z, b ∈ 4Z),

(
θ3
η

)4
−
(
θ4
η

)4
+
(
θ2
η

)4
(a ∈ 4Z, b ∈ 4Z+ 2),

(
θ3
η

)4
+
(
θ4
η

)4
−
(
θ2
η

)4
(a ∈ 4Z+ 2, b ∈ 4Z),

−
{(

θ3
η

)4
+
(
θ4
η

)4
+
(
θ2
η

)4
}

(a ∈ 4Z+ 2, b ∈ 4Z+ 2).

(B.10)
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