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1 Introduction

An interest to conformal field theories (CFT) with extended nonlinear W-symmetry gen-

erated by the higher spin holomorphic currents has long history, starting from the original

work [1]. These theories resemble many features of ordinary CFT (with only Virasoro

symmetry), like free field representation and degenerate fields [2, 3], but it already turns

to be impossible to construct in generic situation their conformal blocks [4] (or the blocks

for the algebra of higher spin W-currents) which are the main ingredients in the bootstrap

definition of the physical correlation functions.
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This interest has been seriously supported in the context of rather nontrivial cor-

respondence between two-dimensional CFT and four-dimensional supersymmetric gauge

theory [5–7], where the conformal blocks have to be compared with the Nekrasov instanton

partition functions [8, 9] producing in the quasiclassical limit the Seiberg-Witten prepo-

tentials [10]. This correspondence meets serious difficulties beyond the level of the SU(2)

gauge quivers on gauge theory side, i.e. for the higher rank gauge groups, which should

correspond to the not yet defined generic blocks of the W-conformal theories. It is already

clear, however, that the technique developed in two-dimensional CFT can be applied to

four-dimensional gauge theories, and vice versa. Following [11–13] we are going to demon-

strate how it can save efforts for the computation of the exact conformal blocks for the

twist fields in theories with W-symmetry.

Even in the Virasoro case generic conformal block is a very nontrivial special func-

tion [14], but there exists two important particular cases where the answer is known al-

most in explicit form — the correlation functions containing degenerate fields (which are

related to the integrals of hypergeometric type) and the exact Zamolodchikov blocks for a

nontrivial (though c = 1) theory [15–17].1 The first class can be generalized to the case of

W-algebras, where similar hypergeometric formulas arise in the case of so-called completely

degenerate fields [19]. The algebraic definition still exists when degeneracy is not complete,

and in this case the most effective way of computation comes from use of the gauge theory

Nekrasov functions.

Below we are going to study the W-analogs of the Zamolodchikov conformal blocks,

which do not belong to the class of algebraic ones. They can be nevertheless computed

exactly, partially using the methods of gauge theories and corresponding integrable sys-

tems. We are going to demonstrate also their direct relations with exactly known isomon-

odromic τ -functions [20–24], which confirms therefore their role as an important example

of a generic W-block which can be possibly defined (for integer central charges) in terms

of corresponding isomonodromic problem [25].

The exact conformal blocks of the W-algebras are closely related to the correlation

functions of the twist fields, studied long ago in the context of perturbative string theory

(see e.g. [26, 27, 29–31]). However, unlike [16], the correlators of the twist fields in these

papers were not really expressed through the conformal blocks, and therefore their relation

to the W-algebras remained out of interest, so we are going to fill partially this gap.

The paper is organized as follows. In section 2 we define the correlators of currents

on sphere in presence of the twist fields, and show how they can be computed in terms

of free conformal field theory on the cover. In section 3 we identify the twist fields with

the primary fields of the W-algebra and propose a way to extract the values of their

quantum numbers from the previously computed correlation functions of the currents. We

also show there that these W-charges have obvious meaning in terms of the eigenvalues

of the quasipermutation monodromy matrices. In section 4 we define the result for the

exact conformal block in terms of integrable systems. In particular, we show that the main

1Strictly speaking the CFT-Painlevé correspondence [18] gives rise to a collection of new exact conformal

blocks, coming from the algebraic solutions of Painlevé VI.
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classical contribution to the result satisfies the well-known Seiberg-Witten (SW) period

equation [10, 11], moreover, in this case they can be immediately solved, which gives the

most effective way to express the answer through the period matrix and the prime form

on the covering surface. Next, in section 5 we discuss the connection of the W-algebra

conformal blocks with the τ -function of the isomonodromic problem, and show that the

W-blocks we have constructed correspond in this context to the τ -function for the case of

quasipermutation monodromy data. In section 6 we construct some explicit examples, and

some extra technical information (the recursion procedure we have used for construction

of correlators of the higher W-currents, the discussion of their OPE with the stress-tensor,

and the computation of the asymptotics of the period matrix on the cover and its relation

with the structure constants in the expansion of the isomonodromic τ -function) is located

in the appendix.

2 Twist fields and branched covers

2.1 Definition

We start now with the construction of the conformal blocks of W (slN ) = WN algebra at

integer Virasoro central charges c = N − 1 following the lines of [16, 26, 27, 29, 30]. It

is well-known [3] that WN algebra has free-field representation in terms of N − 1 bosonic

fields with the currents Ja(z) = i∂φa(z) satisfying operator product expansion (OPE)

Ja(z)Jb(z′) =
Kab

(z − z′)2
+ reg. (2.1)

where Kab is the scalar product in the Cartan subalgebra h ⊂ g = slN . For the current

J(z) =
∑N−1

a=1 haJ
a(z) = i∂φ(z), where ha is the basis in h, it is useful to introduce explicit

components

Ji(z) = (ei, J(z)), i = 1, . . . , N (2.2)

with {ei} being the weights of the first fundamental or vector representation, so that

Ji(z)Jj(z
′) =

(ei, ej)

(z − z′)2
+ reg. =

δij − 1
N

(z − z′)2
+ reg. (2.3)

All high-spin currents of the WN -algebra at c = N − 1 are elementary symmetric polyno-

mials of Ji(z) (
∑

i Ji(z) = 0), e.g. the first three are

T (z) = −W2(z) =
1

2
: (J(z), J(z)) :=

1

2

∑

i

: Ji(z)
2 :

W (z) = W3(z) =
∑

i<j<k

: Ji(z)Jj(z)Jk(z) :=
1

3

∑

i

: Ji(z)
3 :

W4(z) =
∑

i<j<k<l

: Ji(z)Jj(z)Jk(z)Jl(z) :=
1

8
:

(∑

i

J2
i (z)

)2

: −1

4

∑

i

: J4
i (z) :

(2.4)

and the primary fields for the current algebra are exponentials of φ(z) ∈ h

Vθ(z) = ei(θ,φ(z)) (2.5)

– 3 –
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with the corresponding eigenvalues wk(θ) of the zero modes of the Wk(z)-generators given

by symmetric functions of (ei,θ).

Now we are going to introduce new fields Os(z), which are still primary for all high-spin

currents {Wk(z)}, but not for the currents Ji(z). They can be realized as monodromy fields

γq : J(z)Os(q) 7→ s(J(z))Os(q) (2.6)

for some contours γq encircling the point q on the base curve, where s ∈ WslN = SN is an

element of the corresponding Weyl group. The particular cases of this construction were

known for the Abelian monodromy group of the cover [16, 29, 30], but even there in the

cases with N > 2 they were not identified with WN primary fields.

Now we are going to construct the particular conformal block (on P1 with global

coordinate z), where all monodromy fields can be grouped as Os(q2i+1)Os−1(q2i+2) at

q2i+1 → q2i+2, so that one can take an OPE

Os(z)Os−1(z′) =
∑

θ

Cs,θ(z − z′)∆(θ)−2∆(s)
(
Vθ(z

′) + descendants
)

(2.7)

and fix the quantum numbers in the intermediate channels, where there are only the fields

with definite h = u(1)N−1 charges 1
2πi

∮
z dζJ(ζ)Vθ(z) = θ · Vθ(z). In order to do this

consider G0(q) = G0(q1, . . . , q2L), together with 1-form Gi
1(z|q)dz = Gi

1(z|q1, . . . , q2L)dz
and bidifferential Gij

2 (z, z′|q)dzdz′ = Gij
2 (z, z′|q1, . . . , q2L)dzdz′, where

G0(q1, . . . , q2L) = 〈Os1(q1)Os−1
1
(q2) . . .OsL(q2L−1)Os−1

L
(q2L)〉

Gi
1(z|q1, . . . , q2L) = 〈Ji(z)Os1(q1)Os−1

1
(q2) . . .OsL(q2L−1)Os−1

L
(q2L)〉

Gij
2 (z, z′|q1, . . . , q2L) = 〈Ji(z)Jj(z′)Os1(q1)Os−1

1
(q2) . . .OsL(q2L−1)Os−1

L
(q2L)〉

(2.8)

which become single-valued on the cover π : C → P1 with the branch points qα and

corresponding monodromies sα. The indices i, j are just labels of the sheets of this cover,

so the multi-valued differentials (2.8) on P1 are now expressed in terms of the single-valued

G1(ξ|q1, . . . , q2L)dξ and G2(ξ, ξ
′|q1, . . . , q2L)dξdξ′ on the covering surface C:

Gi
1(z|q1, . . . , q2L)dz = G1(z

i|q1, . . . , q2L)dzi

Gij
2 (z, z′|q1, . . . , q2L)dzdz′ = G2(z

i, z′j |q1, . . . , q2L)dzidz′j
(2.9)

where zi = π−1(z)i is the coordinate at i’th preimage of the point z, not the power (note

that number i is not defined globally due to the presence of monodromies). We should

also point out that only local deformations of the positions of the branch points {qα} are

allowed, since the global ones — due to nontrivial monodromies — can change the global

structure of the cover π : C → P1. This leads in particular to the fact that in the case

of non-abelian monodromy group the positions of the branch points {qα} cannot play the

role of the global coordinates on the corresponding Hurwitz space.2

2Although, sometimes the Hurwitz space of our interest occurs to be rational, and in this case one

can choose some global coordinates — but not the positions of the branch points. An explicit example is

considered below in section 6.
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q1

q2

Figure 1. Covering Riemann surface C with simplest cuts between the positions of colliding twist-

fields. Sum of the shown cycles of A-type vanishes in H1(C).
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α
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5=q

6

α
α

q4
α π
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z1
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z3

z4

z5

z6

Figure 2. Vicinity of a ramification point of a general type.

The picture of the 3-sheeted cover with the most simple branch cuts looks like at

figure 1, where we have shown explicitly three (dependent) cycles in H1(C) corresponding
to the cuts between the positions of the fields, labeled by mutually inverse permutations.

To understand our notations better we present also at figure 2 the picture of the vicinity

of the branch-point (of the 6-sheeted cover) of the cyclic type s ∼ [3, 1, 2] with several

independent permutation cycles.

2.2 Correlators with the current

Consider a permutation of the cyclic type s ∼ [l1, . . . , lk], which corresponds to the ram-

ification at z = q (for simplicity we put q = 0) with k preimages qi, π(qi) = q with

multiplicities li. The coordinates in the vicinity of these points can be chosen as ξi = z1/li .

One can write down a general expression for the expansion of current J(z) on the cover

J(z) =
k∑

i=1

li−1∑

vi=1

∑

n∈Z

a
(i)
n−vi/li

· hi,vi
z1+n−vi/li

+
k−1∑

j=1

∑

n∈Z

b
(j)
n ·Hj

zn+1
(2.10)
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where hi,vi and Hj form the orthogonal basis in h out of the eigenvectors of the permutation

s, and in coordinates (related to the weights {ei}) they have the form

h1,v1 = (1, e2πi·v1/l1 , . . . , e2πi(l1−1)·v1/l1 ; 0, . . . , 0; . . . ; 0, . . . , 0)

h2,v2 = (0, . . . 0; 1, e2πi·v2/l2 , . . . , e2πi(l2−1)·v2/l2 ; 0, . . . , 0; . . . ; 0, . . . , 0)

Hj = (y
(1)
j , . . . , y

(1)
j ; y

(2)
j , . . . , y

(2)
j ; . . . .; y

(k)
j , . . . , y

(k)
j )

∑

i

liy
(i)
j = 0

(2.11)

with hi,vi , corresponding to non-zero eigenvalues of the permutation cycles si, while Hj —

to the trivial permutations.

The expansion modes satisfy usual Heisenberg commutation relations [a
(i)
u , a

(j)
v ] =

uδu+vδij , [b
(i)
u , b

(j)
v ] = uδu+vδij , up to possible inessential numerical factors which can be

extracted from the singularity of the OPE J(z)J(z′). The condition that field Os(q) is

primary for the W-currents means in terms of the corresponding state that

a(i)ui
|s〉 = b(j)n |s〉 = 0, ui > 0, n > 0, ∀ i, j (2.12)

and this state is also an eigenvector of the zero modes b
(j)
0 ∀ j. The corresponding eigen-

values are extra quantum numbers — the charges, which have to be included into the

definition of the state |s〉 → |s, r〉 (and Os(q) → Os,r(q)) and fixed by expansion of the

h-valued 1-form dzJ(z)|s〉 at z → 0, i.e.

dz

z
J(z)|s, r〉 = dz

z

N∑

i=1

riei|s, r〉+ reg. (2.13)

where r1 = . . . = rl1 , rl1+1 = . . . = rl1+l2 , etc: the U(1) charges are obviously the same for

each point of the cover, they also satisfy the slN condition

N∑

i=1

riα = 0, ∀ α (2.14)

for each branch point q ∈ {qα}. It means that G1(z)dz on the cover C has only poles with

prescribed by (2.13) singularities, so one can write

G1(ξ|q)dξ
G0(q)

=
2L∑

α=1

dΩrα +

g∑

I=1

aIdωI = dS (2.15)

and we shall call this 1-form as the Seiberg-Witten (SW) differential, since its periods over

the cycles in H1(C) play important role in what follows. Here {dωI}, I = 1, . . . , g are the

canonically normalized first kind Abelian holomorphic differentials

1

2πi

∮

AI

dωJ = δIJ

(in slightly unconventional normalization of [32] as compare to [33, 34]), while

dΩrα =
N∑

i=1

riαdΩqiα,p0

– 6 –
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is the third kind meromorphic Abelian differential with the simple poles at all preimages

of qα (with the expansion dΩrα =
piα

liαr
i
α
dξiα
ξiα

+ reg. in corresponding local coordinates) and

vanishing A-periods. We denote by qiα = π−1(qα)
i, i = 1, . . . , N the preimages on C of

the point qα, with such conventions the point of multiplicity liα has to be counted liα times

(Res piαdΩrα = liαr
i
α).

The A-periods of the differential (2.15)

aI =
1

2πi

∮

AI

dS =
1

2πi

∮

AI

dξG1(ξ|q)
G0(q)

, I = 1, . . . , g (2.16)

are determined by fixed charges in the intermediate channels due to (2.7). The number of

these constraints is ensured by the Riemann-Hurwitz formula χ(C) = N ·χ(P1)−#BP for

the cover π : C → P1, or

g =
L∑

α=1

kα∑

j=1

(
lαj − 1

)
−N + 1 =

L∑

α=1

(N − kα)−N + 1 (2.17)

where kα stands for the number of cycles in the permutation sα. One can easily see this

in the “weak-coupling” regime, when we can apply (2.7) in the limit q2α−1 → q2α, so that

G0(q1, . . . , q2L)|θ = 〈Os1(q1)Os−1
1
(q2)

∣∣∣
θ1

. . . OsL(q2L−1)Os−1
L
(q2L)

∣∣∣
θL

〉 ∼

∼
q2α−1→q2α

〈
L∏

α=1

Vθα
(q2α)〉+ . . .

(2.18)

and the charge conservation law
∑L

α=1 θα = 0 gives exactly N − 1 constraints to the

parameters {θα}, whose total number is
∑L

α=1 (N − kα), since for each pair of colliding

ends of the cut (i.e. α = 1, . . . , L) there are kα linear relations for the N integrals over

the contours, encircling two colliding ramification points, see figure 1 (this procedure also

gives a way to choose convenient basis in H1(C) as shown on this picture). For the dual

B-periods of (2.15) one gets

aDI =

∮

BI

dS = TIJaJ + UI , I = 1, . . . , g (2.19)

where the last term can be transformed using the Riemann bilinear relations (RBR) as

UJ =
∑

α

∮

BJ

dΩrα =
∑

α,m

rmα AJ(q
m
α ), J = 1, . . . , g (2.20)

where AJ(p) =
∫ p
p0
dωJ is the Abel map of a point p ∈ C, and UJ do not depend on the

reference point p0 ∈ C due to (2.14).

2.3 Stress-tensor and projective connection

Similarly the 2-differential from (2.8) is fixed by its analytic properties and one can write

G2(p
′, p|q)

G0(q)
dξp′dξp = dS(p′)dS(p) +K(p′, p)− 1

N
K0(p

′, p) (2.21)

– 7 –
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where

K(p′, p) = dξp′dξp logE(p′, p) =
dξp′dξp

(ξp′ − ξp)2
+ reg.,

∮

AI

K(p′, p) = 0 (2.22)

is the canonical meromorphic bidifferential on C (the double logarithmic derivative of the

prime form, see [34]), normalized on vanishing A-periods in each of two variables, while

K0 =
dπ(ξ)dπ(ξ′)

(π(ξ)− π(ξ′))2
(2.23)

is just the pull-back π∗ of the bidifferential dzdz′

(z−z′)2
from P1. Formula (2.21) is fixed by the

following properties: in each of two variables it has almost the same structure as G1(ξ)dξ,

but with extra singularity on diagonal p′ = p, which comes from (2.3), it also satisfies an

obvious condition
∑

i G
ij
2 (z, z′) =

∑
j G

ij
2 (z, z′) = 0

Now one can define [34] the projective connection tx(p) by subtracting the singular

part of (2.22)

tx(p)dx
2 =

1

2

(
K(p′, p)− dx(p′)dx(p)

(x(p′)− x(p))2

)∣∣∣∣
p′=p

(2.24)

It depends on the choice of the local coordinate x(p), and it is easy to check that

tx(p)dx
2 − tξ(p)dξ

2 =
1

12
{ξ, x}dx2 (2.25)

where {ξ, x} = (Sξ)(x) = ξxxx
ξx

− 3
2

(
ξxx
ξx

)2
is the Schwarzian derivative.

It is almost obvious that expression (2.24) is directly related with the average of the

Sugawara stress-tensor T (z) (2.4) of conformal field theory (with extended W-symmetry),

since normal ordering of free bosonic currents exactly results in subtraction of its singular

part. One gets in this way from (2.21) that

〈: 1
2Ji(z)Ji(z) : Os1(q1)Os−1

1
(q2) . . .OsL(q2L−1)Os−1

L
(q2L)〉

〈Os1(q1)Os−1
1
(q2) . . .OsL(q2L−1)Os−1

L
(q2L)〉

= tz(z
i) +

1

2

(
dS(zi)

dz

)2

(2.26)

where z = z(p) is the global coordinate on P1, and we have used that after subtraction (2.24)

one can substitute K 7→ 2tz(p)dz
2 and K0 7→ 0, leading to

〈T (z)〉O =
〈T (z)Os1(q1)Os−1

1
(q2) . . .OsL(q2L−1)Os−1

L
(q2L)〉

〈Os1(q1)Os−1
1
(q2) . . .OsL(q2L−1)Os−1

L
(q2L)〉

=
∑

π(p)=z

(
tz(p) +

1

2

(
dS(p)

dz

)2
) (2.27)

where sum in the r.h.s. computes the pushforward π∗, appeared here as a result of sum-

mation in (2.4).

– 8 –
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3 W-charges for the twist fields

3.1 Conformal dimensions for quasi-permutation operators

Using the OPE with the stress-tensor T (z)

T (z)Os,r(q) =
∆(s, r)Os,r(q)

(z − q)2
+

∂qOs,r(q)

z − q
+ reg. (3.1)

one can extract from the singularities of (2.27) the dimensions of the twist fields. Follow-

ing [29, 30] we first notice from (2.24) that near the branch point (e.g. at q = 0) the local

coordinate is ξi = z1/li , so that

tz(p) = tξ(p)

(
dξ

dz

)2

+
1

12
{ξ, z} = tξ(p)z

2/li−2 +
l2 − 1

24l2
1

z2
(3.2)

The first term in the r.h.s. cannot contain 1
z2
-singularity, since tξ(p) is regular in local

coordinate on the cover C. The second source of the second-order pole in (2.27) comes

from the poles of the Seiberg-Witten differential (2.15), which look as

dS ≈ rili
dξi
ξi

+ reg. = ri
dz

z
+ reg. (3.3)

Taking them into account together with (3.2) one comes finally to the formula

∆(s, r) =

k∑

i=1

l2i − 1

24li
+

k∑

i=1

1

2
lir

2
i (3.4)

which gives the full conformal dimension for the twist fields with r-charges.

Since we are going to use this formula intensively below, let us illustrate first, how it

works in the first two nontrivial cases:

• N = 2: there are only two possible cyclic types:

– s ∼ [1, 1], then l1 = l2 = 1, r1 = −r2 = r, so ∆(s, r) = r2 is only given by the

r-charges;

– s ∼ [2], then the only l1 = 2, the single r-charge must vanish, so one just gets

here the original Zamolodchikov’s twist field with ∆(s, r) = 1
16 .

• N = 3: here one has three possible cyclic types:

– s ∼ [1, 1, 1], then l1 = l2 = l3 = 1, r1 + r2 + r3 = 0, ∆(s, r) = 1
2

(
r21 + r22 + r23

)

– s ∼ [2, 1], then l1 = 2, l3 = 1, r1 = r2 = r, r3 = −2r, ∆(s, r) = 1
16 + 3r2

– s ∼ [3], then l1 = 3, the single r-charge again should vanish, so that the dimen-

sion is ∆(s, r) = 1
9 .
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3.2 Quasipermutation matrices

The hypothesis of the isomonodromy-CFT correspondence [25] relates the constructed

above twist fields to the quasipermutation monodromies (we return to this issue in more

details later). This correspondence relates theWN charges of the twist fields to the symmet-

ric functions of eigenvalues of the logarithms of the quasipermutation monodromy matrices

Mα ∼ e2πiθα , α = 1, . . . , 2L , (3.5)

being the elements of the semidirect product SN ⋉ (C×)N (here we consider only the

matrices with detMα = 1). An example of the quasipermutation matrix of cyclic type

s ∼ [3, 2] is

M =




0 a1e
2πir1 0 0 0

0 0 a2e
2πir1 0 0

a3e
2πir1 0 0 0 0

0 0 0 0 b1e
2πir2

0 0 0 b2e
2πir2 0




(3.6)

where a1a2a3 = 1, b1b2 = −1, 3r1 +2r2 = 0 to get detM = 1. A generic quasipermutation

is decomposed into several blocks of the sizes {li}, each of these blocks is given by

e2πiri × e
iπ
li
ǫ(li)sli , i = 1, . . . , k

where sli is the cyclic permutation of length li, ǫ(l) = 0 for l-odd and ǫ(l) = 1 for l-even.

It is easy to check that eigenvalues of such matrices are

λi,vi = e2πiθi,vi = e
2πi

(

ri+
vi
li

)

, i = 1, . . . , k

vi =
1− li
2

,
1− li
2

+ 1 . . . ,
li − 1

2
− 1,

li − 1

2

(3.7)

According to relation (3.5) the conformal dimension of the corresponding field is

∆(M) =
1

2

∑
θ2i,vi =

1

2

∑(
ri +

vi
li

)2

=
k∑

i=1

l2i − 1

24li
+

k∑

i=1

1

2
lir

2
i (3.8)

where we have used that
∑

vi = 0 for any fixed i = 1, . . . , k, and

l(l2 − 1)

12
=





∑(l−1)/2
−(l−1)/2 v

2 l = 2m+ 1 (v ∈ Z)

∑(l−1)/2
−(l−1)/2 v

2 l = 2m
(
v ∈ Z+ 1

2

) (3.9)

for both even or odd l ∈ {li}. The calculation (3.8) for the quasipermutation matrices

reproduces exactly the CFT formula (3.4), confirming the correspondence.
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3.3 W3 current

One can also perform a similar relatively simple check for the first higher W3-current. An

obvious generalization of (3.8) gives

w3(M) =
∑

a<b<c

(
ra +

va
la

)(
rb +

vb
lb

)(
rc +

vc
lc

)
=

1

3

∑

a

(
ra +

va
la

)3

=
1

3

∑

a

r3a +
∑

a

ra
v2a
l2a

=
k∑

i=1

1

3
lir

3
i +

k∑

i=1

ri
l2i − 1

12li

(3.10)

To extract such formulas from conformal field theory one has to analyze the multicurrent

correlation functions in presence of twist operators and action of the corresponding modes

of the Wk(z) currents. For W = W3(z), following (2.8) one can first define

Gijk
3 (z, z′, z′′|q)dzdz′dz′′

= Gijk
3 (z, z′, z′′|q1, . . . , q2L)dzdz′dz′′

= 〈Ji(z)Jj(z′)Jk(z′′)Os1(q1)Os−1
1
(q2) . . .OsL(q2L−1)Os−1

L
(q2L)〉dzdz′dz′′

(3.11)

and write, similarly to (2.21)

G3(p
′′, p′, p|q)
G0(q)

dξp′′dξp′dξp = dS(p′′)dS(p′)dS(p) + dS(p′′)

(
K(p′, p)− 1

N
K0(p

′, p)

)

+ dS(p′)

(
K(p′′, p)− 1

N
K0(p

′′, p)

)

+ dS(p)

(
K(p′′, p′)− 1

N
K0(p

′′, p′)

)

(3.12)

where the r.h.s. has appropriate singularities at all diagonals and correct A-periods in each

of three variables. Extracting singularities and using (2.4), (2.24) one can write

〈W (z)〉O =
∑

π(p)=z

(
1

3

(
dS(p)

dz(p)

)3

+ 2tz(p)
dS(p)

dz(p)

)
(3.13)

It is easy to see that due to (3.2), (3.3) this formula gives the same result as (3.10).

Formula (3.7) also shows, how the charges of the twist fields can be seen within the con-

text of W-algebras. It is important, for example, that for the complete cycle permutation

one would get its WN charges w2(θ), w3(θ), . . . , wN (θ), where

θ =
ρ

N
=

1

N

(
N − 1

2
,
N − 1

2
− 1, . . . ,

1−N

2
+ 1,

1−N

2

)
(3.14)

i.e. the vector of charges is proportional to the Weyl vector of g = slN . Such fields are non-

degenerate from the point of view of the WN algebra, since for degenerate fields the charge

vector always satisfy the condition (θ, α) ∈ Z for some root α. It means that here we are

beyond the algebraically defined conformal blocks, and further investigation of descendants

W−1O etc can shed light on the structure of generic conformal blocks for the W-algebras.

We are going to return to this issue elsewhere.
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3.4 Higher W-currents

For the higher W-currents (Wk(z) with k > 3) the situation becomes far more complicated.

We discuss here briefly only the case of W4(z), which already gives a hint on what happens

in generic situation. An analog of (3.8), (3.10) gives for the quasipermutation matrices

w4(M) =
∑

a<b<c<d

(
ra +

va
la

)(
rb +

vb
lb

)(
rc +

vc
lc

)(
rd +

vd
ld

)
=

1

2
∆(M)2 − 1

4
A (3.15)

with ∆(M) given by (3.8) and

A =

N∑

a=1

(
ra +

va
la

)4

=

k∑

i=1

lir
4
i + 6

k∑

i=1

r2i
l2i − 1

12li
+

k∑

i=1

(l2i − 1)(3l2i − 7)

240l3i
(3.16)

To get this from CFT one needs just the most singular part of the correlation function

〈W4(z)〉O(dz)4 =
z→q

w4

(
dz

z − q

)4

+ . . . (3.17)

which is a particular case of the current correlators

Ri1,...in(z1, . . . zn) = 〈: Ji1(z1), . . . Jin(zn) :〉Odz1 . . . dzn (3.18)

and the technique of calculation of such expressions is developed in appendix A.

From the definition of the W4(z) current (2.4) it is clear, that one should take only the

most singular parts of the correlation functions of four currents

Riiii(z, z, z, z) =
t

t

i

i

t

t

i

i

t

t

i

i

t

t

i

i

t

t

i

i

t

t

i

i
+ +6 · 3 ·

= dS(zi)4 + 6dS(zi)2K̂ii(z, z) + 3K̂ii(z, z)
2 (3.19)

and

Riijj(z, z, z, z) =
t

t

i

i

t

t

j

j

t

t

i

i

t

t

j

j

t

t

i

i

t

t

j

j
+ +

t

t

i

i

t

t

j

j

t

t

i

i

t

t

j

j

t

t

i

i

t

t

j

j
+ + +4 · 2 ·

= dS(zi)2dS(zj)2 + K̂ii(z, z)dS(z
j)2 + K̂jj(z, z)dS(z

i)2

+4K̂ij(z, z)dS(z
i)dS(zj) + K̂ii(z, z)K̂jj(z, z) + 2K̂ij(z, z)

2 (3.20)

taken at the coinciding values of all arguments. It means, that one has to substitute

dS(zi) = ri
dz

z
+ . . . (3.21)
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(we again put here q = 0 for simplicity) and do the same for the propagator K̂ij(z1, z2) =

K(zi1, z
j
2)− δijK0(z1, z2) (see appendix A for details), i.e. to substitute into (3.19), (3.20)

K̂ii(z, z) =
dz1/ldz̃1/l

(z1/l − z̃1/l)2
− dzdz̃

(z − z̃)2

∣∣∣∣∣
z→z̃

+ . . . =
l2 − 1

12l2
(dz)2

z2
+ . . .

K̂ij(z, z) =
ζidz1/lζjdz1/l

(ζiz1/l − ζjz1/l)2
+ . . . =

1

l2
ζi−j

(1− ζi−j)2
(dz)2

z2
+ . . .

(3.22)

where ζ = exp
(
2πi
l

)
. In order to compute −1

4

∑
iRiiii(z, z, z, z)+

1
8

∑
i,j Riijj(z, z, z, z) it is

useful to move the term Kij(z, z)
2 from the second expression to the first one, which gives

∑

i

dS(zi)4 + 6
∑

i

dS(zi)2K̂ii(z, z) + 3
∑

i

K̂ii(z, z)
2

−
∑

ij

K̂ij(z, z)
2 →
(3.21),(3.22)

A

(
dz

z

)4 (3.23)

while the rest from (3.20) gives rise to
(∑

i

dS(zi)2 +
∑

i

K̂ii(z, z)

)2

+ 4
∑

ij

K̂ij(z, z)dS(z
i)dS(zj) →

(3.21),(3.22)
4∆2

N

(
dz

z

)4

(3.24)

after using (3.21), (3.22) and several nice formulas like

1

l

l−1∑

j=1

ζj

(1− ζj)2
=

1

l

l−1∑

j=1

e2πij/l

(1− e2πij/l)2
= −

(l−1)/2∑

v=(1−l)/2

v2

l2

1

l3

l−1∑

j=1

ζ2j

(1− ζj)4
=

1

l3

l−1∑

j=1

e4πij/l

(1− e2πij/l)4
=

2

l




(l−1)/2∑

v=(1−l)/2

v2

l2




2

−
(l−1)/2∑

v=(1−l)/2

v4

l4

(3.25)

Here the sum over the roots of unity can be performed using the contour integral

l−1∑

j=1

ζjm

(1− ζj)2m
=

1

2πi

∮

z 6=1

d log
zl − 1

z − 1
· zm

(1− z)2m

= Res z=1d log
z − 1

zl − 1
· zm

(1− z)2m

(3.26)

and the result indeed allows to identify the coefficients at maximal singularities

in (3.23), (3.24) with the expressions (3.16). It means that the conformal charge (3.17)

of the twist field indeed coincide with the corresponding symmetric function (3.15)

of the eigenvalues of the permutation matrix, but it comes here already from a

nontrivial computation.

It is known from long ago that already a definition of the higher W-currents is a

nontrivial issue (see e.g. [2, 3, 35–37]). Here it was important to consider the particular

(normally ordered) symmetric function of the currents (2.4), since, for example, another

natural choice
∑

i : J
4
i (z) : is even not contained in the algebra generated by T (z), W3(z)

and W4(z). However, the so defined W4(z)-current is not a primary field of conformal

algebra, we discuss this issue in appendix B.
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4 Conformal blocks and τ -functions

Consider now the next singular term from the OPE (3.1), which immediately allows to

extract from (2.27) the accessory parameters

∂

∂qα
log G0(q1, . . . , q2L) =

∑

π(qiα)=qα

Res qiαtzdz +
1

2

∑

π(qiα)=qα

Res qiα
(dS)2

dz (4.1)

Computing residues in the r.h.s. one gets the set of differential equations (α = 1, . . . , 2L),

which define the correlation function of the twist fields G0(q1, . . . , q2L) itself. A non-trivial

statement [11, 13, 38, 41] is that these equations are compatible, moreover (4.1) defines

actually two different functions τSW(q) and τB(q), where

∂

∂qα
log τSW(q1, . . . , q2L) =

1

2

∑

π(qiα)=qα

Res qiα
(dS)2

dz (4.2)

and
∂

∂qα
log τB(q1, . . . , q2L) =

∑

π(qiα)=qα

Res qiαtzdz (4.3)

so that G0(q) = τSW(q) · τB(q), and the claim of [12, 38, 41] is that both them are well-

defined separately.

4.1 Seiberg-Witten integrable system

Let us concentrate attention on τSW = τSW(a,q) or the Seiberg-Witten prepotential F =

log τSW, which is the main contribution to conformal block, and the only one, which depends

on the charges in the intermediate channel. According to [12, 13] F(a,q), up to some

possible only a-dependent term, satisfies also another set of equations

∂

∂aI
log τSW = aDI , I = 1, . . . , g (4.4)

where the dual periods aDI are defined in (2.19). The total system of equations (4.2), (4.4)

is also integrable [11–13] due to the Riemann bilinear relations. Moreover, in our case this

system of equations can be easily solved due to

Theorem 1. Function

log τSW =
1

2

∑

I,J

aITIJaJ +
∑

I

aIUI +
1

2
Q(r) (4.5)

solves the system (4.2), iff Q(r) solves the system ∂Q(r)
∂qα

=
∑

π(qiα)=qα
Res qiα

(dΩ)2

dz for α =

1, . . . , 2L, dΩ =
∑

α dΩrα and other ingredients in the r.h.s. are given by (2.16), (2.20)

and the period matrix of C.
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qi
α

(qi)ϵα

C

Figure 3. Integration path for Q(r)~ǫ.

One can check this statement explicitly, using the definitions (2.15) and (2.20)

∑

π(qiα)=qα

Res qiα
dωIdωJ

dz
= −

∑

π(qiα)=qα

Res qiα
∂ωI

∂qα
dωJ = −

∮

∂C

∂ωI

∂qα
dωJ

=
∂

∂qα

∮

BI

dωJ =
∂TIJ
∂qα

,

(4.6)

where we have first applied the formula ∂ωI

∂qα
= −dωI

dz + hol. and then the RBR. Similarly,

for the second term:

∑

π(qiα)=qα

Res qiα
dωIdΩrα

dz
= −

∑

π(qiα)=qα

Res qiα
∂Ωrα

∂qα
dωI = −

∮

∂C

∂Ωrα

∂qα
dωI

=
∂

∂qα

∮

BI

dΩrα =
∂UI

∂qα
,

(4.7)

while the last term Q(r), vanishing after taking the a-derivatives, should be computed

separately, and the proof will be completed in next section.

4.2 Quadratic form of r-charges

In the limit aI = 0 equation (4.2) gives us the formula

∂

∂qα
Q(r) =

∑

qiα∈π−1(qα)

Res qiα
dΩ2

dz (4.8)

where
dΩ =

∑

α

dΩrα =
∑

α,i

riαdΩqiα,p0 (4.9)

Theorem 2. Regularized expression for Q(r)

Q(r)~ǫ =
∑

α,i

riα

∫ (qiα)ǫα

p̃0

dΩ (4.10)

satisfies (4.8) in the limit ǫ → 0

– 15 –
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Proof. It is useful to introduce the differential with shifted poles

dΩ~ǫ =
∑

α,i

riαdΩ(qiα)ǫα ,p̃0 (4.11)

Note that due to conditions (2.14) nothing depends on the reference points p0, p̃0. The

regularized points (qαi )ǫα are defined in such a way that

z ((qαi )ǫα) = z (qαi )− ǫα = qα − ǫα (4.12)

and this is the only place where the coordinate z on P1 enters the definition of Q(r). All

other parts of τSW do not depend explicitly on the choice of the coordinate z because

they are given by the periods of some meromorphic differentials on the covering curve.

Expression (4.10) can now be rewritten equivalently

Q(r)~ǫ = − 1

2πi

∮

C
Ω~ǫ dΩ (4.13)

where contour C (see figure 3) encircles the branch-cuts of Ω~ǫ, while the poles of dΩ are

left outside. Taking the derivatives one gets

∂

∂qα
Q(r)~ǫ =

1

2πi

∮

C

[
∂Ω

∂qα
dΩ~ǫ −

∂Ω~ǫ

∂qα
dΩ

]
(4.14)

where each of the terms in r.h.s. contains only the poles at the points qiα and (qiα)ǫα corre-

spondingly. One can therefore shrink the contour of integration in the first term onto the

points qiα (up to the integration over the boundary of cut Riemann surface, which vanishes

due to the Riemann bilinear relations for the differentials with vanishing A-periods), and

in the second — to the points (qiα)ǫα , hence

∂

∂qα
Q(r)~ǫ = −

∑

i

Res qiα
∂Ω

∂qα
dΩ~ǫ −

∑

i

Res (qiα)ǫα
∂Ω~ǫ

∂qα
dΩ (4.15)

Near the point piα one can choose the local coordinate ξ such that z = qα + ξl, so that

expansion of Abelian integrals can be written as

Ω = ri log(z − qα) + c0(q) + c1(q)(z − qα)
1/l + c2(q)(z − qα)

2/l + . . .

Ω~ǫ = c̃0(q) + c̃1(q)(z − qα)
1/l + c̃2(q)(z − qα)

2/l + . . .
(4.16)

giving rise to
∂Ω

∂qα
= − dΩ

dz
+

∂c0(q)

∂qα
+O

(
(z − qα)

1/l
)

∂Ω~ǫ

∂qα
= − dΩ

dz
+

∂c̃0(q)

∂qα
+O

(
(z − qα − ǫα)

1/l
) (4.17)

Since the differential dΩ~ǫ is regular near z = qα, one can ignore the regular part when

computing the residues:

∂

∂qα
Q(r)~ǫ =

∑

i

Res qiα
dΩ

dz
dΩ~ǫ +

∑

i

Res (qiα)ǫα
dΩ~ǫ

dz
dΩ

=
∑

i

1

2πi

∮

qiα,(q
i
α)ǫα

dΩdΩ~ǫ

dz

(4.18)

– 16 –



J
H
E
P
0
2
(
2
0
1
6
)
1
8
1

The r.h.s. of this formula has a limit when ǫα → 0, so extracting the singular part from

Q(r)~ǫ (easily found from the explicit formula below)

Q(r) = Q(r)~ǫ − 2
∑

∆α log ǫα (4.19)

one gets from (4.18) exactly the formula (4.8). This also completes (together

with (4.6), (4.7)) the proof of (4.5).

Using the integration formula for the third kind Abelian differentials [34]
∫ b

a
dΩc,d = log

E(c, b)E(d, a)

E(c, a)E(d, b)

one gets from (4.10) an explicit expression

Q(r)~ǫ =
∑

α,i,β,j

riαr
j
β log

E((qiα)ǫα , q
j
β)E(p̃0, p0)

E((qiα)ǫα , p0)E(p̃0, q
j
β)

=
∑

α,i,β,j

riαr
j
β logE((qiα)ǫα , q

j
β)

=
∑

qiα 6=qj
β

riαr
j
β logE(qiα, q

j
β) +

∑

α,i

(riα)
2liα logE((qiα)ǫα , q

i
α)

(4.20)

The first term in the r.h.s. is regular, while for the second one can use

E((qiα)ǫα , q
i
α) =

(z − qα + ǫα)
1/liα − (z − qα)

1/liα
√
d(z − qα + ǫα)1/l

i
αd(z − qα)1/l

i
α

≈ ǫ
1/liα
α

d
[
(z − qα)1/l

i
α

]
∣∣∣∣∣
z→qα

(4.21)

Therefore

Q(r) =
∑

qiα 6=qj
β

riαr
j
β logE(qiα, q

j
β)−

∑

α,i

(riα)
2liα log d[(z − qα)

1/l]

∣∣∣∣∣∣
z→qα

(4.22)

Substituting expression of the prime form

E(p, p′) =
Θ∗(A(p)−A(p′))

h∗(p)h∗(p′)
(4.23)

in terms of some odd theta-function Θ∗, the already defined above Abel map A(p), and

holomorphic differential

h2∗(p) =
∑

I

∂Θ∗(0)

∂AI
dωI(p) (4.24)

one can write more explicitly

Q(r) =
∑

qiα 6=qj
β

riαr
j
β logΘ∗(A(q

i
α)−A(qjβ))−

∑

qiα

(riα)
2liα log

d(z(q)− qα)
1/liα

h2∗(q)

∣∣∣∣∣∣
q=qiα

(4.25)

If cover C has zero genus g(C) = 0 itself, the prime form is just E(ξ, ξ′) = ξ−ξ′√
dξ

√
dξ′

in terms

of the globally defined coordinate ξ, and formula (4.25) acquires the form

Q(r) =
∑

piα 6=pj
β

riαr
j
β log(ξ

i
α − ξjβ)−

∑

ξiα

(riα)
2liα log

d(z(ξ)− qα)
1/liα

dξ

∣∣∣∣∣∣
ξ=ξiα

(4.26)
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Below we are going to apply this formula to explicit calculation of a particular example for a

genus zero cover, but with a non-abelian monodromy group. The result of the computation

clearly shows that τ -function (4.26) cannot be expressed already in such case as a function

of positions of the ramification points z = qα on P1, which means that the corresponding

formula for Q(r) from [40] can be applied only in the case of Abelian monodromy group.

4.3 Bergman τ -function

The Bergman τ -function, was studied extensively for the different cases [16, 26, 27, 29, 30]

from early days of string theory, mostly using the technique of free conformal theory.

Modern results and formalism for this object can be found in [38, 41]. Already from

its definition (4.3) τB can be identified with the variation w.r.t. moduli of the complex

structure of the one-loop effective action in the free field theory on the cover.

We are not going to present here an explicit formula for the general Bergman τ -

function. We would like only to point out, that for our purposes of studying the conformal

blocks this is the less interesting part, since it does not depend on quantum numbers of the

intermediate channels. Below in section 6 we present the result of its direct computation

in the simplest case with non-abelian monodromy group. The result shows that it arises

just as some quasiclassical renormalization of the term (4.26) in the classical part.

However, as for the SW tau-function, the definition (4.3) is easily seen to be consistent.

Taking one more derivative one gets from this formula

∂2 log τB(q)

∂qα∂qβ
=

∂

∂qβ

∑

π(p)=qα

Res
p

1

dz(p)
lim
p′→p

(
K(p′, p)− dz(p′)dz(p)

(z(p′)− z(p))2

)

=
∑

π(p)=qα

Res
p

1

dz(p)
lim
p′→p

∂K(p′, p)

∂qβ

=
∑

π(p)=qα

Res
p

1

dz(p)
lim
p′→p

∑

π(p′′)=qβ

Res
P

K(p′, p′′)K(p, p′′)

dz(p′′)

=
∑

π(p)=qα
π(p′′)=qβ

Res
p,p′′

K(p, p′′)2

dz(p)d(p′′)
,

(4.27)

where we have used the Rauch variational formula [42, formula 3.21] for the canonical

meromorphic bidifferential, computed in the points p and p′ with fixed projections

∂K(p′, p)

∂qβ
=

∑

π(P )=qβ

Res
P

K(p′, P )K(p, P )

dz(P ) (4.28)

so that the expression in r.h.s. of (4.27) is symmetric w.r.t. α ↔ β.

This is certainly a well-known fact, but we would like just to point out here, that the

Rauch formula (4.28), which ensures integrability of (4.3) can be easily derived itself from
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the Wick theorem, using the technique, developed in section 2 and appendix A. Indeed,

∂K(z′i, zj)

∂qβ
=

∂

∂qβ

Gij
2 (z′, z|q)
G0(q)

dz′idzj

=




∂
∂qβ

Gij
2 (z′, z|q)
G0(q)

− Gij
2 (z′, z|q)
G0(q)

∂
∂qβ

G0(q)

G0(q)


 dz′idzj

(4.29)

as follows from (2.21) for the conformal block with two currents inserted Gij
2 (z′, z|q) =

Gij
2 (z′, z|q)0 = 〈Ji(z′)Jj(z)O(q)〉0 when projected to the vanishing a-periods (2.16) or the

charges in the intermediate channels (note, that the Bergman tau-function does not depend

on these charges). Proceeding with (4.29) and using ∂
∂qβ

= Lβ
−1 one gets therefore

∂K(z′i, zj)

∂qβ
=

(
〈Ji(z′)Jj(z)Lβ

−1O(q)〉0
〈O(q)〉0

− 〈Ji(z′)Jj(z)O(q)〉0
〈O(q)〉0

〈Lβ
−1O(q)〉0
〈O(q)〉0

)
dz′idzj

(4.30)

where we have used the obvious notations

〈O(q)〉0 = 〈
2L∏

α=1

Oα(qα)〉0 = 〈Os1(q1)Os−1
1
(q2) . . .OsL(q2L−1)Os−1

L
(q2L)〉0

〈Lβ
−1O(q)〉0 = 〈(L−1Oβ(qβ))

∏

α 6=β

Oα(qα)〉0 =
1

2

∮

qβ

∑

k

dζ〈: J2
k (ζ) : O(q)〉0

〈Ji(z′)Jj(z)Lβ
−1O(q)〉0 =

1

2

∮

qβ

∑

k

dζ〈Ji(z′)Jj(z) : J2
k (ζ) : O(q)〉0

(4.31)

where the integration
∮
qβ

dζ is performed on the base P1. Applying now in the r.h.s. the

Wick theorem (see appendix A for details), one gets

1

2
〈Ji(z′)Jj(z) : J2

k (ζ) : O(q)〉0〈O(q)〉0 =
1

2
〈Ji(z′)Jj(z)O(q)〉0〈: J2

k (ζ) : O(q)〉0

+ 〈Ji(z′)Jk(ζ)O(q)〉0〈Jj(z)Jk(ζ)O(q)〉0
(4.32)

which means for (4.30), that

∂K(z′i, zj)

∂qβ
=

∮

qβ

∑

k

dζ
〈Ji(z′)Jk(ζ)O(q)〉0

〈O(q)〉0
〈Jj(z)Jk(ζ)O(q)〉0

〈O(q)〉0
dz′idzj

=

∮

qβ

∑

k

K(z′i, ζk)K(zj , ζk)

dζ
=

∑

π(P )=qβ

Res
P

K(z′i, P )K(zj , P )

dz(P )

(4.33)

where we have used that
∮
qβ

∑
k =

∑
π(P )=qβ

Res
P

. Hence, the same methods, which give

rise to explicit formula for the main part τSW(a,q) of the exact conformal block, ensure

also the consistency of definition of the quasiclassical correction τB(q).
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5 Isomonodromic τ -function

The full exact conformal block equals therefore

G0(q|a) = τB(q) exp

(
1

2

∑

IJ

aITIJ(q)aJ +
∑

I

aIUI(q, r) +
1

2
Q(r)

)
(5.1)

According to [18, 25] the τ -functions of the isomonodromy problem [20–24] on sphere

with four marked points 0, q, 1,∞ can be decomposed into a linear combination of the

corresponding conformal blocks.3 This expansion looks as

τIM(q) =
∑

w∈Q(slN )

e(b,w)C
(0q)
w (θ0,θq,a, µ0q, ν0q)C

(1∞)
w (θ1,θ∞,a, µ1∞, ν1∞)×

× q
1
2
(σ0t+w,σ0t+w)− 1

2
(θ0,θ0)− 1

2
(θt,θt)Bw({θi},a, µ0q, ν0q, µ1∞, ν1∞; q)

(5.2)

and can be tested, both numerically and exactly for some degenerate values of the W-

charges θ of the fields [25, 39]. In (5.2) the normalization of conformal block Bw(•; q)
is chosen to be Bw(•; q) = 1 + O(q) and C

(•)
w (•) as usually denote the corresponding 3-

point structure constants (all these quantities in the case of W (slN ) = WN blocks with

N > 2 depend on extra parameters {µ, ν}, being the coordinates on the moduli space of

flat connections on 3-punctured sphere, and for their generic values the conformal blocks

Bw(•; q) are not defined algebraically, see [25] for more details).

We now conjecture that such decomposition exists also for conformal blocks considered

above. Moreover, then a natural guess is, that the structure constants have such a form that

C
(0q)
w (θ0,θq,a, µ0q, ν0q)C

(1∞)
w (θ1,θ∞,a, µ1∞, ν1∞)q

1
2
(a+w,a+w)− 1

2
(θ0,θ0)− 1

2
(θq ,θq) ·

· Bw({θi},a, µ0q, ν0q, µ1∞, ν1∞; q) = G0({θi},a+w; q)

(5.3)

i.e. they are absorbed into our definition of the W-block of the twist fields, and this can be

extended from four to arbitrary number of even (2L) points on sphere. This conjecture can

be easily checked in the N = 2 case, where the structure constants for the values, corre-

sponding to the Picard solution [18, 44], coincide exactly with given by degenerate period

matrices in (5.1), when applied to the case of the Zamolodchikov conformal blocks [13] (see

section 6 and appendix C).

It means that in order to get isomonodromic τ -functions from the exact conformal

blocks (5.1) one has just to sum up the series (for the arbitrary number of points one has

to replace the root lattice of Q(slN ) = ZN−1 by the lattice Zg, where g = g(C) is the genus
of the cover)

τIM(q|a, b) =
∑

n∈Zg

G0(q|a+ n)e(n,b)

= τB(q) exp

(
1

2
Q(r)

) ∑

n∈Zg

exp

(
1

2
(a+ n, T (a+ n)) + (U ,a+ n) + (b,n)

)

= τB(q) exp

(
1

2
Q(r)

)
Θ

[
a

b

]
(U) (5.4)

3This relation has been predicted in [26, 27], see also [28] for a slightly different observation of the

same kind.
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which is easily expressed through the theta-function. One gets in this way exactly the

Korotkin isomonodromic τ -function, where the only difference of this expression with pro-

posed in [40] is in the term Q(r), which is not expressed globally through the coordinates

of the branch points in the case of non-abelian monodromy group. This fact supports

both our conjectures: about the form of the structure constants, and about the general

correspondence between the isomonodromic deformations and conformal field theory.

Formula (5.4) has also clear meaning in the context of gauge theory/topological string

correspondence. It has been noticed yet in [6], that the CFT free fermion representation

exists only for the dual partition function, which is obtained from the gauge-theory matrix

element (conformal block) by a Fourier transform.4 We plan to return to this issue sepa-

rately in the context of the free fermion representation for the exact W-conformal blocks.

6 Examples

There are several well-known examples of the conformal blocks corresponding to Abelian

monodromy groups. All of them basically come from the Zamolodchikov exact conformal

block [16, formula 3.29] for the Ashkin-Teller model, defined on the families of hyperellip-

tic curves

y2 =
2L∏

α=1

(z − qα) (6.1)

with projection π : (y, z) 7→ z. Parameters r are absent here, so the result is just

G0(q) = τB(q) exp
(
1
2

∑
IJ aITIJ(q)aJ

)
, where for the hyperelliptic period matrices one

gets from (4.6) the well-known Rauch formulas (see e.g. [13] and references therein).

When the hyperelliptic curve degenerates (see appendix C), this formula gives

G0(q) ≈ 4−
∑

a2I−(
∑

aI)
2

g∏

I=1

(q2I − q2I−1)
a2I−

1
8

g∏

I>J

(q2I − q2J)
2aIaJR−(

∑

aI)
2

≈ 4−
∑

a2I−(
∑

aI)
2 ·

g∏

I=1

ǫ
a2I−

1
8

I R−(
∑

aI)
2 ·

g∏

I>J

(q2I − q2J)
2aIaJ

(6.2)

Here in the r.h.s. the second factor comes from the OPE (2.7), i.e. O(q2I − ǫI)O(q2I) ∼
ǫ
a2I−

1
8

I VaI (q2I) + . . ., while the third one is just the correlator 〈∏VaI (q2I)〉. Hence, the first

most important factor corresponds to the non-trivial product of the structure constants

in (5.3), which acquires here a very simple form. The main point of this observation is that

normalization of (5.1) automatically contains not only q# factors, but also the structure

constants, and we have already exploited such conjecture for general situation in section 5,

since the argument with degenerate tau-function can be easily extended.

These observations have an obvious generalization for the ZN -curves

yN =
2L∏

α=1

(z − qα)
kα (6.3)

4The fact, that only the Fourier-Legendre transformed quantity can be identified with partition function

in string theory has been established recently in quite general context from their transformation properties

in [43].
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with the same projection π : (y, z) 7→ z. The main contribution to the answer τSW =

exp
(
1
2

∑
IJ aITIJ(q)aJ

)
comes just from a general reasoning as in section 2 and to make it

more explicit one can use the Rauch formulas for ZN -curves, which express everything in

terms of the coordinates {q} on the projection, since there is no summing over preimages

in formulas like (4.6).

Let us now turn to an elementary new example with non-abelian monodromy group.

Notice, first, that a simple genus g(C) = 0 curve

y3 = x2(1− x) (6.4)

gives rise to the curve with non-abelian monodromy group if one takes a different (from

Z3-option πx : (y, x) 7→ x) projection πy : (y, x) 7→ y. For the curve C, which is just a sphere

or P1 itself, one gets here two essentially different (and unrelated!) setups, corresponding

to differently chosen functions x or y.

In the first case our construction leads, for example, to the formulas

〈T (x)〉O =
〈T (x)Os(0)Os−1(1)〉

〈Os(0)Os−1(1)〉 =
1

4
{ξ;x} =

1

9x2(x− 1)2
(6.5)

where x = 1
1+ξ3

in terms of the global coordinate ξ on C, and this formula fixes the insertions

at x = 0, 1 to be the twist operators for s = (123), with ∆(s) = l2−1
24l =

l=3

1
9 .

However, for a similar correlator on y-sphere

〈T (y)〉Õ =
〈T (y)∏A=0,1,2,3 Õ(yA)〉

〈∏A=0,1,2,3 Õ(yA)〉
=

1 + 54y3

(27y3 − 4)2y2

=
∑

A=0,1,2,3

(
1

16(y − yA)2
+

uA
y − yA

)

y0 = u0 = 0, 3yk = −8uk = 22/3e2πi(k−1)/3, k = 1, 2, 3

(6.6)

one has to insert the twist operators for s̃ = (12)(3) of dimension ∆(s̃) = l̃2−1
24l̃

=
l̃=2

1
16 .

The r.h.s. here follows from summation of

1

12
{ξ; y} =

ξ(ξ3 + 4)(1 + ξ3)4

2(2ξ3 − 1)4
=

ξ5(3y + ξ)

2y(2ξ − 3y)4
(6.7)

where

y =
ξ

1 + ξ3
, ξ ∈ C = P

1 (6.8)

To get (6.6) one has to sum (6.7) over π(ξ) = y, or three solutions of the equation R(ξ) =

ξ3 − 1
y ξ + 1 = 0, i.e.

〈T (y)〉C =
1

12

∑

β

{ξ(β); y} =
∑

β

resξ=ξ(β)

(
ξ5(3y + ξ)

2y(2ξ − 3y)4
d logR(ξ)

)

= − 1

2y

(
resξ=3y/2 + resξ=∞

)(ξ5(3y + ξ)R′(ξ)

(2ξ − 3y)4R(ξ)
dξ

)
=

1 + 54y3

(27y3 − 4)2y2

(6.9)
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in contrast to the sum over three sheets of the cover π(ξ) = x, which gives only a factor

〈T (x)〉O = 3 · {ξ;x}/12.
To analyze the simplest nontrivial τ -function for non-abelian monodromy group, let

us consider the deformation of the formula from (6.8) for z = 1/y = ξ2+1/ξ, i.e. the cover

π : C = P1
ξ → P1

z given by 1-parametric family

z =
(2ξ − t2 + 1)2(ξ − 4)

(t− 3)2(t2 − 2t− 3)ξ
(6.10)

The parametrization is adjusted in the way that the branching points dz = 0 are at

ξ =
1

2
(t2 − 1), z = 0

ξ = 1 + t, z = 1

ξ = 1− t, z = q(t) =
(t+ 3)3(t− 1)

(t− 3)3(t+ 1)

(6.11)

together with ξ = ∞, z = ∞.

One also has non-branching points above the branched ones ξ = 4, z = 0; ξ = (t− 1)2,

z = 1; ξ = (t+ 1)2, z = q(t). Now we rewrite these points in our notation

ξ10 = 4, ξ20 =
1

2
(t2 − 1), ξ30 =

1

2
(t2 − 1)

ξ1q = (t+ 1)2, ξ2q = 1− t, ξ3q = 1− t

ξ11 = (t− 1)2, ξ21 = 1 + t, ξ31 = 1 + t

ξ1∞ = 0, ξ2∞ = ∞, ξ3∞ = ∞

(6.12)

Using an explicit formula (4.26) and the definition (4.3) of τB one can write down the result

for the τ -function

τ(t) = τB(t) exp

(
1

2
Qr(t)

)

= (t− 3)δ3−
1
3 (t− 1)δ1+

1
8 tδ0+

1
24 (t+ 1)δ−1(t+ 3)δ−3+

1
24

(6.13)

where δν = δν(r) are given by some particular quadratic forms

δ3 = 9r2q − 9r2∞

δ1 = r20 − 4r0r1 + 4r21 + 8r0rq − 4r1rq + r2q − 4r0r∞ + 8r1r∞ − 4rqr∞ + 4r2∞

δ0 = − 9r21 − 9r2q

δ−1 = 4r20 + 8r0r1 + 4r21 − 4r0rq + 7r2q − 4r0r∞ − 4r1r∞ + 8rqr∞ + r2∞

δ−3 = − 9r20 − 9r2q

(6.14)

while their “semiclassical” shifts come from the Bergman τ -function. Notice that isomon-

odromic function (6.13) looks very similar to the tau-functions of algebraic solutions of the

Painlevé VI equation [18, examples 5-7], but depends on essentially more parameters.
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An interesting, but yet unclear observation is that in this example τB(t) itself can be

represented as

τB(t) = exp

(
1

2
Q(r̃)

)
(6.15)

for several particular choices of parameters r̃, e.g.

(r̃0, r̃q, r̃1, r̃∞) =

( √
7

12
√
3
,−

√
7

12
√
3
,

i

4
√
3
,

√
7

12
√
3

)

(r̃0, r̃q, r̃1, r̃∞) =

(
i

12
√
3
,

i

12
√
3
,

i

12
√
3
,

√
5

12

) (6.16)

whereas all other (altogether eight) solutions are obtained after the action of the Galois

group generated by
√
3 7→ −

√
3,

√
5 7→ −

√
5 and i 7→ −i. Notice that this statement is

nevertheless nontrivial because we express five variables δi in terms of only four variables r̃i.

7 Conclusions

We have presented above an explicit construction of the conformal blocks of the twist

fields in the conformal theory with integer central charges and extended W-symmetry. We

have computed the W-charges of these twist fields and show that their Verma modules are

non-degenerate from the point of view of W-algebra representation theory. The obtained

exact formulas for the corresponding conformal blocks were derived intensively using the

correspondence between two-dimensional conformal and four-dimensional supersymmetric

gauge theory. We also checked that so constructed exact conformal blocks, when considered

in the context of isomonodromy/CFT correspondence, give rise to the isomonodromic τ -

functions of the quasipermutation type.

We believe that it is only the beginning of the story and, finally, would like to present

a list (certainly not complete) of unresolved yet problems. For the conformal field theory

side these obviously include:

• What is the algebraic structure of the W-algebra representations corresponding to

the twist-field vertex operators, and in particular — what are the form-factors or

matrix elements of these operators?

• Already for the twist fields representations the analysis of this paper should be sup-

plemented by study of the W-analogs of the higher-twist representations [17] and of

the W-representations at “dual values” of the central charges (an example of such

block for the Virasoro case can be found in [15]).

• Finally, perhaps the most intriguing question is — what is the constructive general-

ization of these vertex operators to non-exactly-solvable case?

However, the main intriguing part still corresponds to the side of supersymmetric gauge

theory, where the resolution of these problems can help to understand their properties in

the “unavoidable” regime of strong coupling, where even the Lagrangian formulation is not

known. We are going to return to these questions elsewhere.
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A Diagram technique

In order to compute the correlators of the currents (3.18) the first useful observation is

that one can embed slN ⊂ glN and introduce an extra current h(z), commuting with Ji(z),

such that

h(z)h(z′) =
1/N

(z − z′)2
+ reg., h(z)O(q) = reg. (A.1)

Introduce the glN currents

J̃i(z) = Ji(z) + h(z) (A.2)

which satisfy the OPE

J̃i(z)J̃k(z
′) =

δjk
(z − z′)2

+ reg. (A.3)

and their normally-ordered averages are the same as for Ji(z) since

〈: Ji1(z1) . . . Jim(zm)h(zm+1) . . . h(zn) :〉O

= 〈: Ji1(z1) . . . Jim(zm) :〉O · 〈: h(zm+1) . . . h(zn) :〉 = 0
(A.4)

Hence, one can simply to replace Ji(z) → J̃i(z) in (3.18), so below we just compute the

averages for the glN currents.

The normal ordering for two currents at colliding points is given by

: Ji(z)Jj(z
′) : dz dz′ = Ji(z)Jj(z

′)dz dz′ − δijdz dz
′

(z − z′)2

= Ji(z)Jj(z
′)dz dz′ − δijK0(z, z

′)

(A.5)

i.e. it is defined by subtracting the canonical meromorphic bidifferential on the base curve,

since it corresponds to the vacuum expectation value of the Gaussian fields. Normal

ordering for the correlators of many currents is defined, as usual, by the Wick theorem.

Similarly to (2.8) consider now

〈Ji1(z1) : Ji2(z2) . . . Jin(zn) :〉O dz1 . . . dzn

= dS(zi11 )〈: Ji2(z2) . . . Jin(zn) :〉O dz2 . . . dzn

+
n∑

j=2

K(zi11 , z
ij
j )〈: Ji2(z2) . . . Ĵij (zj) . . . Jin(zn) :〉O dz2 . . . d̂zj . . . dzn

(A.6)

where by zik = π−1(zk)
i we have denoted the preimages on the cover. This formula is again

obtained just from the analytic structure of this expression as 1-form in the first variable.

The next formula comes from the application of the Wick theorem and (A.5)

〈Ji1(z1) : Ji2(z2) . . . Jin(zn) :〉Odz1 . . . dzn = 〈: Ji1(z1) . . . Jin(zn) :〉Odz1 . . . dzn

+
n∑

j=2

δijK0(z1, zj)〈: Ji2(z2) . . . Ĵij (zj) . . . Jin(zn) :〉Odz2 . . . d̂zj . . . dzn
(A.7)
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Subtracting them, one gets the recurrence relation

〈: Ji1(z1) . . . Jin(zn) :〉Odz1 . . . dzn = dS(zi11 )〈: Ji2(z2) . . . Jin(zn) :〉Odz2 . . . dzn

+

n∑

j=2

K̂i1ij (z1, zj)〈: Ji2(z2) . . . Ĵij (zj) . . . Jin(zn) :〉Odz2 . . . d̂zj . . . dzn
(A.8)

where we have introduced the “propagator”

K̂ij(z1, z2) = K(zi1, z
j
2)− δijK0(z1, z2) (A.9)

Graphically for the result this recurrence produces one can write

Ri(z1) = ti = dS(zi1)

Rij(z1, z2) =
t

t

i

j
+

t

t

i

j
= dS(zi1)dS(z

j
2) + K̂ij(z

i
1, z

j
2)

Rijk(z1, z2, z3) =
t

t

i

j
tk

t

t

i

j
tk

t

t

i

j
tk

t

t

i

j
tk+ + +

✧
✧

❍
❍

= dS(zi1)dS(z
j
2)dS(z

k
3 ) + K̂ij(z1, z2)dS(z

k
3 )

+K̂jk(z2, z3)dS(z
i
1) + K̂ik(z1, z3)dS(z

j
2) (A.10)

These expressions have very simple meaning: the full correlation function is expressed

through the only possible connected parts Rc, which are Rc
i (z1) = dS(zi1), Rc

ij(z1, z2) =

K̂ij(z1, z2), while Rc
ijk(z1, z2, z3) = 0 and all higher connected parts vanish. The so con-

structed four point functions Rijkl(z1, z2, z3, z4) at coinciding arguments (and at least pair-

wise coinciding labels of the sheets of the cover) were used in section 3.4 for computation

of the higher W-charges.

B W4(z) and the primary field

Here we study the OPE of W4(z) with T (z) and show an explicit correction which makes

this field primary.

W4(z) =
∑

ijkl

Cijkl : Ji(z)Jj(z)Jk(z)Jl(z) : (B.1)

where Cijkl is completely symmetric tensor, Cijkl = 1
24 when i 6= j 6= k 6= l and Cijkl = 0

otherwise.

T (z)W4(z
′) =

6

(z − z′)4

∑

ijkl

(
δij −

1

N

)
Cijkl : Jk(z)Jl(z) :

+
4W4(z

′)

(z − z′)2
+

∂W4(z
′)

z − z′
+ reg.

(B.2)
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Figure 4. Degenerate hyperelliptic curve with chosen basis in H1.

The first sum equals

6
∑

ij

(
δij −

1

N

)
Cijkl = −(N − 2)(N − 3)

4N
(1− δij) (B.3)

Using now the fact that
∑

i Ji(z) = 0 we get

T (z)W4(z
′) =

(N − 2)(N − 3)

8N

T (z′)

(z − z′)4
+

4W4(z
′)

(z − z′)2
+

∂W4(z
′)

z − z′
+ reg. (B.4)

There is also another well-known field Λ(z) = (TT )(z) − 3
10∂

2T (z), where (TT )(z) =∮
z

dw
w−zT (w)T (z), with the OPE

T (z)Λ(z′) =

(
c+

22

5

)
T (z′)

(z − z′)4
+

4Λ(z′)

(z − z′)2
+

∂Λ(z′)

z − z′
+ reg. (B.5)

One can therefore cancel an anomalous term in (B.4) just introducing

W̃4(z) = W4(z)−
(N − 2)(N − 3)

8(N + 17
5 )

Λ(z) (B.6)

which is already a primary conformal field. Its charge therefore is given by the formula

w̃4 = w4 −
(N − 2)(N − 3)

8(5N + 17)
∆(5∆ + 1) (B.7)

C Degenerate period matrix

Here we compute the period matrix of the genus g hyperelliptic curve (see figure 4)

y2 = (z −R)

g∏

I=1

(z − q2I)(z − q2I + ǫI) = (z −R)

g∏

I=1

(z − q2I)(z − q2I−1) (C.1)

in the degenerate limit ǫI → 0, R → ∞ up to the terms of order O(ǫI) and O
(
1
R

)
(this

equivalence will be denoted by “≈”). The normalized first kind Abelian differentials with

such accuracy are

dωI =
√
q2I −R

∏

K 6=I

(z − q2K)
dz

y
,

1

2πi

∮

AJ

dωI ≈ δIJ (C.2)
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since z−qI√
(z−qI)(z−qI+ǫI)

≈ 1 when z goes far from qI . First we compute the off-diagonal

matrix element TIJ for J > I

TIJ =

∮

BJ

dωI ≈ −2

∫ R

qJ

√
q2I −R

z −R

dz

z − q2I
≈ −2 log 4 + 2 log

q2J − q2I
R

(C.3)

and then a little bit more complicated diagonal element

TII =

∮

BI

dωI ≈ − 2

∫ R

q2I

√
q2I −R

z −R

dz√
(z − q2I)(z − q2I + ǫI)

≈ 2

∫ R

q2I

(
1−

√
q2I −R

z −R

)
dz

z − q2I
− 2

∫ R

q2I

dz√
(z − q2I)(z − q2I + ǫI)

= − 2 log 4− 2 log 4 + 2 log
ǫI
R

(C.4)

where we have used the fact, that for our purposes in the expressions f(z)√
(z−q2I)(z−q2I+ǫI)

one can drop ǫI if f(q2I) = 0.

Now using (5.1) we can compute in this limit

τSW = exp

(
1

2

∑

I<J

aITIJaJ
)

≈ · 4−
∑

a2I−(
∑

aI)
2

g∏

I=1

(q2I − q2I−1)
a2I

g∏

I>J

(q2I − q2J)
2aIaJR−(

∑

aI)
2

(C.5)

The result for τB(q) in this simple hyperelliptic example can be taken from [16]

τB(q) =

2g+1∏

i<j

(qi − qj)
− 1

8 ×
[
det
IJ

1

2πi

∮

AI

zJ−1dz

y

]− 1
2

(C.6)

where the determinant can be easily computed using (C.1)

det
IJ

1

2πi

∮

AI

zJ−1dz

y
≈ det

IJ

qJ−1
2I√

R
∏

J 6=I(q2I − q2J)
= R− g

2

∏

I>J

(qI − qJ)
−1

(C.7)

Altogether this gives the formula (6.2) for the degenerate form of the hyperelliptic Zamolod-

chikov exact conformal block.
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