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ABSTRACT: We analytically study the lightcone limit of the conformal bootstrap for 4-point
functions containing scalars charged under global symmetries. We show the existence of
large spin double-twist operators in various representations of the global symmetry group.
We then compute their anomalous dimensions in terms of the central charge Cr, current
central charge Cj, and the OPE coefficients of low dimension scalars. In AdS, these
results correspond to the binding energy of two-particle states arising from the exchange of
gravitons, gauge bosons, and light scalar fields. Using unitarity and crossing symmetry, we
show that gravity is universal and attractive among different types of two-particle states,
while the gauge binding energy can have either sign as determined by the representation
of the two-particle state, with universal ratios fixed by the symmetry group. We apply
our results to 4D N =1 SQCD and the 3D O(N) vector models. We also show that in a
unitary CFT, if the current central charge C; stays finite when the global symmetry group
becomes infinitely large, such as the N — oo limit of the O(N) vector model, then the
theory must contain an infinite number of higher spin currents.
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1 Introduction

Recently there has been a resurgence of interest in the conformal bootstrap [1-3] approach
to studying CFTs in D > 2, including rigorous numerical bounds on scaling dimensions
and OPE coefficients [4-42], methods for constructing approximate solutions to crossing
symmetry [43-46] leading to high-precision determinations of the operator spectrum in
the 3D Ising [13, 25, 34, 47] and O(N) vector models [16, 37], and new insights into
supersymmetric CFTs, including 3D N =1 [20, 38], N' = 2 [35, 36, 40], and N = 8 26, 48]
theories, 4D N =1 [7, 10, 11, 21, 41], N = 2 [32, 42, 49, 50|, and N = 4 [15, 18, 24, 51]
theories, and the mysterious 6D SCFTs with (2,0) supersymmetry [39, 52].



In addition to these studies, very general analytical constraints have been obtained
by considering the bootstrap equations in the lightcone limit. In particular, it was argued
in [53, 54] and extended in [55-63] that the bootstrap conditions imply that every CFT
containing scalars ¢; of dimension A; must contain towers of “double-twist” operators O,
in the ¢; x ¢; OPE with twist 7 — A; + Aj + 2n 4 #% for integer n as their spin £ — oo.
Here 7,,, is the minimal twist in the ¢ x ¢ OPE and the coefficients =, can be calculated

in terms of the OPE coefficient of the leading twist operator. This general structure was
anticipated in the earlier work of [64]. Other nontrivial constraints on CFT correlators in
the Lorentzian regime have been recently studied in [65-68].

In many CFTs this leading twist operator is the stress-energy tensor, in which case
these corrections have a simple interpretation in the AdS/CFT correspondence — they
are simply the gravitational binding energies of two-particle states of large spin, which are
expected to be negative v, < 0 due to the attractive nature of gravitational interactions. If
the ¢; are charged under a global symmetry, then currents can also appear in the OPE, cor-
responding to gauge interactions in the bulk. The binding energy of large spin two-particle
states from gauge interactions can be computed via crossing symmetry. For example, in
the case of a complex scalar ¢ charged under an Abelian symmetry, one can show that
the the double-twist states in the ¢ x ¢ OPE receive positive corrections (corresponding to
repulsive like-charge interactions in AdS) while the double-twist states in the ¢f x ¢ OPE
receive negative corrections of the same size (corresponding to attractive opposite-charge
interactions in AdS) [54].

This analysis can be extended to non-Abelian symmetries. For example, two scalars in
the fundamental representation of SU(N) can combine into families of two-particle states
transforming under the symmetric or anti-symmetric representations with binding energies
denoted by v° and v4. We will compute them as a function of the current central charge
C'y of the CFT. We will see that their sign is determined only by the representation of the
two-particle states, and that v /v is a function of N that is independent of the dynamic
details of the theory. Using crossing symmetry, it will be obvious that these features holds
for any symmetry group. We will also compute the binding energies when there are O(N)
and SU(N) global symmetries with fundamentals, adjoints, and symmetric tensors.

Perhaps less intuitive are the consequences of charged operator exchange — e.g., in the
case of a U(1) symmetry we will see that exchanging a charged scalar induces corrections to
the anomalous dimensions that are negative for even spins but positive for odd spins. More
generally, for non-Abelian global symmetries, exchanging charged operators induces an
intricate set of representation and spin-dependent corrections to the dimensions of double-
twist states. We will work out these corrections for O(N) and SU(N) global symmetries
with fundamentals, adjoints, and symmetric tensors. We apply these results to 4D N =1
SQCD and the 3D O(XNV) vector models.

All the results outlined above do not rely on any type of large N limit. However, we
will show in section 3.3 that crossing symmetry and unitarity implies a sufficient condition
for the existence of higher spin symmetries in the large N limit of CFTs with O(NV) or
SU(N) global symmetries. In particular, we predict that if a unitary CFT has Cy ~ O(1)
as N — oo, then in this limit it must have higher spin conserved currents in order to solve



the crossing equations, while if C; > O(N) they are not required. In the former case,
we also argue that the theory cannot contain scalar operators with dimension A < d — 2
whose coefficients remain O(1) at large N. Examples of theories in both these classes can
be found.

While the results of this analysis may have applications to many other theories, we
also view this as an important precursor to the more sophisticated analysis of correlation
functions containing global symmetry currents and stress-energy tensors, which we pursue
in a separate publication [69].

This paper is organized as follows. In section 2 we briefly review the argument that
allows us to compute the dimensions of double-twist operators and apply this reasoning
to CFTs with U(1), O(N), and SU(N) global symmetries. In section 3 we discuss some
applications of our results and in section 4 we conclude. Appendix A briefly reviews the
scalar-scalar OPE. Appendix B contains further details about the tensor structures and
crossing relations that we suppress in the main text. Appendix C provides some technical
details for the analysis at large V.

2 From crossing equations to binding energies

2.1 Real scalars

We will start by reviewing the basic results of [53, 54] and establishing some notation.
Let us consider a CFT 4-point function containing two real scalars ¢; and ¢2 of the
form (¢1(x1)d1(x2)d2(x3)d2(x4)). Expanding this 4-point function in conformal blocks
and equating the s-channel and ¢-channel expansions gives a crossing relation of the form

11,22 11,22 o Ag, — (A +A) 12, 21 12 21
Z Py 9r (u,v) = u=2v" 3(B1+A2) Z P, (v,u), (2.1)
O€g1,2X¢1,2 O€d1 X2

where the coefficients are related to the OPE coefficients as P” okl — (%1)[ Apid; O G O5 WE

label the conformal blocks g” kl(

u,v) by the twist 7 and spin £ of the exchanged operator,
and we work in a normalization such that g, ,(u,v) — u™/?(1 — v)* when we take u — 0
and then v — 1. The twist of an operator is defined as 7 = A — £, where A is its conformal
dimension.

To satisfy the crossing equations, the ¢ x ¢o OPE should contain a tower of double-
twist operators that are schematically of the form O, ~ #1009 and have twist ap-
proaching 7 — Ay + Ay + 2n as £ — co. One can see this rigorously by considering (2.1)
in the eikonal limit u < v < 1. As in section 2.3 of [53], we will make the assumption that
this tower is isolated in the sense that there is a single operator at each value of n and ¢
that gives the dominant contribution to the large-¢ sum in the 4-point function. In this
work we will focus our attention on the n = 0 tower with lowest twist Oy = Og ¢, though
all of the results can be straightforwardly extended to larger values of n following [59, 61].

Under this assumption, the OPE coeflicients and anomalous dimensions 7, of these
operators can then be calculated using the conformal bootstrap equations by matching the
infinite sum over spins on the r.h.s. to the singularities of the minimal-twist contributions



that are shared between the ¢1 X ¢1 and ¢2 X ¢o OPEs on the lL.h.s., corresponding to the
approximate relation

11,22 11,22 ~ (A14A2) 12,21 12,21
1+P Om gT L (u,?))+. . U U 2 1o ZP A1+A2+’ylf( ) (22)

The leading contributions on the lLh.s. arise from the identity operator, and the next
contribution could either be a low-dimension scalar or the stress-energy tensor with twist
Tm = d — 2, where d is the spacetime dimension.

To be more specific, as described in [53, 54], matching the identity operator contribu-
tion on the L.h.s. to the infinite sum over spins on the r.h.s. in the lightcone limit u < v < 1
fixes the leading behavior of the OPE coefficient to be

12.91 22—A1—A2\/7T_£A1+A2—%
Py =
Or T(AT(Ay) 2%

= PAl,AQ (6) (23)

Next, by matching the log(v) singularity contained in the conformal block of the mini-
mal twist (non-identity) operator Oy, on the L.h.s. to the log(v) obtained by expanding the
anomalous dimensions of the O, operators on the r.h.s. gives

AmA
11,22é , 9.4
Yo = _F)Om ngm : ’ ( . )

where the coefficient

_ 2F(A )T'(A2)T (Tm+2€ )
§A1,A2 = F(Al ) (A2 ) (Tm Iy ) (25)

is a positive quantity. In general the correction to the anomalous dimension could have
either sign due to the product of different OPE coefficients, but in the case of stress-tensor
exchange the coefficients are fixed by the Ward identity to have the same sign, leading to
a negative-definite anomalous dimension. Note that the unitarity bound is A; > % — 1 for
scalars and 7 > d — 2 for operators with spin. Therefore, when the exchanged operator is
conserved, the I' functions in the denominator force the anomalous dimensions to vanish if
either ¢1 or ¢s is a free field.

In the next sections we will generalize this matching to cases where the scalars are
charged under a global symmetry. The general form of the crossing relations in this sit-
uation appeared in [9] and some aspects of this situation in the context of the lightcone
bootstrap were discussed in [54]. Here we will give a more detailed analysis, taking care to
disentangle the double-twist operators in different global symmetry representations.

2.2 Complex scalars

To begin, we start with a complex scalar ¢ charged under a U(1) global symmetry and
consider 4-point functions of the form (¢(z1)¢f(z2)p(2x3)¢ (24)). Relating the (12)—(34)
channel to the (14)—(32) channel in the lightcone limit gives the relation

u\2e
L+ Pegr.0(u,v) + Prga—21(u,v) + Prgi—22(u,v) = <5> ZPOg92A¢+w,£(07 u), (2.6)
¢



where we explicitly show the contributions of the leading scalar €, the U(1) global symmetry
current J,, and the stress-energy tensor T}, on the Lh.s. . The coefficients are written in
terms of the positive quantities Pp = %P‘(M)TO’Q and the r.h.s. runs over double-twist
operators of the form Oy ~ 0.

Alternatively, we can relate the (12)—(43) channel to the (13)—(42) channel, giving the

sum rule

u\ B¢ +
14—Rﬂnp0%vy—fﬁm#agﬁuv)+F%g¢agﬁuv)Az(;) %;f%?gﬂ%+ﬁnAvﬂO,(27)

where we have implicitly relabeled the coordinates so the crossing symmetry equations take
the same form as before. In this case the current has an opposite sign on the l.h.s. and the
r.h.s. runs over charged double-twist operators of the form (’)Z ~ ¢d'¢ with coefficients
Pg = 2%,\)\ 607 2. Here the notation T means that the sum only runs over even spins.

‘ Finally, if there is a low-twist charged scalar ¢ exchanged in the ¢ x ¢ OPE then by
switching the role of v and v we also have the condition

TANAY” ¢
PngC,O(ua U) ~ (5) %: PO[(_l) 92A¢+'yg,f(v¢ u) (28)
Matching the identity in (2.6) and (2.7) yields the mean-field theory behavior

1
Po, = =P}, = Pa,a,(0), (2.9)

i 2@?

while matching terms of order u'T log(v) on both sides gives the shifts in the anomalous

dimensions .
Sy = oy = — 0 o 2.10
Ve T 4(d — 1)2CT53 pd—2 ( )
arising from stress-tensor exchange, and the shifts
J
1 Sa,a
iy = —§ ot = — 80 2.11

arising from current exchange. We have inserted the value of Pr and P; as determined

by the Ward identity where Sy = 127(’5) is the area of the d-1 dimensional sphere. Our
normalization of the conserved currents and stress energy tensor differ by a factor of Sg
in comparison to previous work on the conformal bootstrap (see appendix A for our con-
ventions). The corrections from the stress-tensor are universal and negative while the
corrections due to current exchange to the two double-twist states have opposite signs but
the same magnitude.

In the bulk, the anomalous dimensions (2.10) and (2.11) correspond to the binding
energies between a pair of well separated particles arising from gravitational and gauge
interactions. If the weak gravity conjecture holds, then there should exist a particle in the
bulk for which the gravitational attraction is dominated by the U(1) gauge repulsion, or



5T’y£F +0 J’yj > 0. Note that we assumed the operator ¢ to have unit charge. If we consider
instead an operator ¢, with carrying charge g, then this condition holds if

A7 d—1)2
o o 4D (2.12)
q? 2d(d+1)
At d = 4, this matches with the kinematic version of the weak gravity conjecture

found in [70].
We also find the contribution to the anomalous dimensions from the exchange of a
Ac
light scalar by matching terms of order u2 log(v):

€
£A¢,A¢

deve = 56’7@+ =P 7y

(2.13)

Finally, by adding or subtracting (2.8) from (2.6), we can project onto the even or odd spin
uncharged double-twist operators. By matching terms of order u’s log(v) we then see that
the existence of the charged scalar ¢ induces contributions of opposite sign to the even-spin
and odd-spin anomalous dimensions:

§A A
S+ = —bcvp- = —PF—5—=.

T (2.14)

At first sight, the positive contributions to the anomalous dimensions of odd-spin
operators in (2.14) may look worrying in light of the Nachtmann theorem [54, 71] regarding
convexity of the leading twist operators. However, it is important to note that the argument
only applies to operators of even spin in reflection-positive OPEs, such as ¢! x ¢.!

2.3 O(N)

In this section we will generalize the above discussion to the situation where the CFT has
an O(N) global symmetry.

2.3.1 Fundamentals

Let us first take ¢; to be in the fundamental representation of O(NV). This is the situation
considered in the context of the numerical bootstrap in e.g. [9-11, 16, 23, 31, 33, 37]. We
will start by rewriting the crossing conditions used in these works in a form that is suitable
for our analysis.

Concretely, if we write the generic tensor structure of the 4-point function and switch
9 <> x4 and i9 <> 74, we obtain the condition

2A,4 2A
15 “@3q * (Giy (21) iy (22) diy (3) Py (24))
= 5i1i25i3i418 (uv U) + (5i1i45i213 - 5i1i35izi4) AS(ua U)
2

+ <5i1i45i2i3 + 5i1i35i2i4 - N5i1i26i3i4> SS(uvv) (2'15)

Tn the notation of [54], the reason is that the amplitude A(v,¢*) = [ d%ye'® (P|T'(y)¢(0)|P) with
v = 2q- P is no longer symmetric under v — —v, so the moment j¢(g?) receives distinct contributions from
both branch cuts in the complex v plane. This gives u,(¢°) = % fol drat~! [ImA(z,q%) + (=1)“ImA(—=z, )],
with x = —q2/1/, which is monotonic only for even ¢ after imposing the unitarity condition ImA(z, q2) > 0.



(TAAY
= (*) OiyiaOigin Lt (vy 1) + (0iriyOisis — 0irisOinis) Ar(v, )

[

2
+ (5i1i25i4i3 + 5i1i36i2i4 - N5i1i45i3i2> St(?), u)) . (216)

Solving for the functions in the t-channel expansion then gives

(Z)A¢ L(v,u) = %Is(u,v) + <1 - le) As(u,0) + <1 * % - Jé?> i
(%)A¢ Ai(v,u) = %IS(U,U) + %As(uvv) - % <1 + ;) Ss(u,v),
<%>A¢ Sy(v,u) = %Is(u,v) - %As(u,v) + % (1 - ;) Ss(u,v). (2.17)

Focusing on the regime v < v < 1, in the (12)—(34) channel we have contributions
from the identity operator, singlet scalars €, symmetric tensor scalars ¢;;, the O(/V) current
Ju, and the stress tensor T},

Ii(u,v) = 14 Pga, o(u,v) + Prgq—22(u,v),
AS(“?”) ~ PJgd—Q,l(uav)a
Ss(u,v) =~ Pga, o(u,v). (2.18)

In all cases we define the coefficients Pp by projecting the full contraction of the 3-
point structures 2—1[)\@1%2 o, )\01@3 ¢;, from the conformal OPE onto the tensor structures
in (2.15).

On the other hand, the (14)—(32) channel has three types of double-twist operators in
different O(NV) representations:

1
Op = ¢i0'6i, O = ¢;0'¢y,  OF = 60" ¢j) — +:016k0" b1 (2.19)

and the functions I;(u,v), A¢(u,v), and Si(u,v) sum over these contributions using the
cross-channel conformal blocks

Li(v,u) = ZPO£Q2A¢+7[{,E<U7U)7
¢+

At(vv u) ~ Z P(’)g‘g2A¢+724,Z<’U7 u)7
-

Si(v,u) ~ ZPOZggQAéJWq’Z(U,u), (2.20)

+

where all of the coefficients are real and positive in unitary theories.
Now by matching the identity contribution in (2.17) as in the previous sections, we
can easily read off the asymptotic behavior of the OPE coefficients to be

N



Similarly, by matching terms of order u's log(v) in (2.17) we obtain the corrections to the
anomalous dimensions from stress-tensor exchange

2 A2 T
d Ad> §A¢»A¢>
4(d —1)2CpS% a2~

vy = S1vit = 61 = — (2.22)

As above, we have inserted the value of Pr as determined by the Ward identity (see
appendix A). Again we see that the corrections due to stress-tensor exchange are universal
and negative, which is consistent with a universal and attractive gravitational interaction
in the bulk. The corrections due to the current exchange are

1 5i¢,A¢
QCJSCQZ -2 -

1
N -1

SVt =87 = =00 = (2.23)

These shifts exhibit more structure. First, the signs of the corrections are determined
by the representation of the composite operator. The singlet representation always has the
largest negative anomalous dimension. This is consistent with our intuition about gauge
interactions in the bulk, that two-particle states carrying the minimum charge are less
energetic than other configurations. Another feature is that the ratios between different
gauge binding energies are determined by the group structure and are independent of the
dynamical details of the theory.

For scalar exchange the corrections depend on the O(NN) representation of the scalar.
Singlets give a universal contribution

5evi = 0evit = 6ey) = —Pe gAZZfd’, (2.24)
while symmetric tensor exchange gives corrections of either sign that depend on N
N I N A S SN
NIE N 20 = TN gt = vy g0 = P yg, (2.25)

Note that in the special case that N = 2, these results reduce to the U(1) case consid-
ered in the previous section after identifying P, = 2P;. Similar to the discussion in [11, 37],
the results are also valid in the special cases N = 3,4, where the additional identifications
and possible structures involving e-tensors do not lead to any modification of these results.

2.3.2 Adjoints

Next let us consider the case of 4-point functions of O(N) adjoints (AAAA). The adjoint

N(N—1)
2

representation of O(NN) is the same as the -dimensional anti-symmetric representa-

tion E, whose tensor product with itself admits the decomposition

NoH-raHe s @3@ -




where all symmetrizations have traces removed. Double-twist operators O} in each of these
representations appear in the A x A OPE, with spins restricted to be even/odd according
to (+,—,+,+, —,+) in the order of representations shown in (2.26).

Again we can decompose the 4-point function into a sum over tensor structures

2A 4 2A A A
P19 A A (A jy (1) Ao (92) Ay (08) Aigy (1)) = D (Y Vivinigiajijoisss G (1),

' (2.27)
where 7 runs over each possible representation. By expanding G4 (u,v) = 3 Porg, ¢(u,v)
in conformal blocks, we can write out the crossing symmetry conditions relating the (12)—
(34) OPE to the (14)-(32) OPE. We give the detailed form of the tensor structures and
crossing equations in appendix B.

Applying the same logic, we first match the contributions of the identity operator,
fixing the asymptotic behavior of the coefficients to be

4 1 1 2 1> (2.28)

Po; =P 0 Z1,-
O AA’AA()<N(N—1)’N—2’N—2’3’ '3

where again we show the representations in the same order as (2.26).
Matching the stress-tensor block, we again see universal contributions to the anomalous
dimensions

T
d2A,24 EAA,AA
4(d —1)2CpS% (=2

Iy = — (1,1,1,1,1,1), (2.29)

for each representation r, but representation-dependent corrections from current exchange

fJ
S = _; Aa,Au
T 0,82 pd-2

(2N —4,N —2,N —4,-2,0,4). (2.30)

We again notice that very similar structures show up as in the fundamental case. Note in
particular that the fifth family of double trace states (with a “hook”-like Young diagram)
receive no anomalous dimensions at leading order in the large spin expansion. In a weakly-
coupled bulk description, this result can be understood as a cancellation between the
binding energy of the symmetrized and anti-symmetrized fundamental “components” of
the adjoint representation.

From exchange of a scalar ¢ in representation 7/, we obtain a set of shifts described by

the matrix
EXua
AR A
57./’}/2 = — P(i)r/ 7£A¢ (231)
1 1 1 1 1 1
2N —4 N -2 N —4 -2 0 4
2(N+2)(N—2) (N+2)(N—4) N2_8 2N—8 8 __4AN+8
N N N N N N
X | ()W FD(V=8) _ (N4(N+H)(N-3) (NFD(N=3)(N—4) N2_gNi11 _ (N+D(N—4) (N+2)(N+1) |
2(N—1) 2(N—1)(N—2) 2(N-D(N-2) (N-1)(N-2) (N-D)(N-2) (N-1)(N-2)
(NF2)(N-3) 0 _2(N-3) _N-a 1 _Nt2
2 (N=2) N—2 N-2
W=2)(N=-3) N -3 —(N -3) 1 -1 1



where e.g. the first row corresponds to exchanging a singlet, the second row corresponds
to exchanging an anti-symmetric representation, etc. Note that in a 4-point function of

identical scalars, Pyr = 0 for r = E, ﬁj But they may be nonzero when the external
scalars are not identical.

Finally, we mention a few special cases. For N = 4, the 4-index anti-symmetric
representation can be identified with an SO(4) singlet that is odd under the Zs subgroup of
O(4), while the hook representation can be identified with a Zs odd symmetric tensor. We
have checked that the results after these identifications are the same as the general results
at N = 4.2 Also note that in (2.30), the anomalous dimensions of the aforementioned pairs
become degenerate when N = 4. For N = 2 or N = 3, the adjoint is equivalent to the
singlet /fundamental and the results from the previous sections can be applied.

2.3.3 Symmetric tensors

We can also repeat the analysis for 4-point functions of O(N) symmetric tensors (SSSS),
where we have the tensor product

Me[M=reHe el e+ o [TTT1 e

In these cases the spins of the double-twist operators O are restricted to (+, —, +,+, —, +)
in the order of representations shown in (2.32). We again decompose the 4-point function
into tensor structures

1552555 (Siy gy (1) Singa (£2) S (£3) Siaja (14)) = D (E5 isiginiagjngnia G (u,v), (2.33)

T

and expand G (u,v) = Y Porgr(u,v) in conformal blocks, writing the structures and
crossing relations explicitly in appendix B.

Matching the identity contribution, the asymptotic behavior of the double-twist con-
formal block coefficients is determined to be

4 1 N 2 1)
(N+2)(N-1)N+2 (N+4)(N—-2)"3 "3

Poy = Pagas(f) ( (2.34)

Matching the stress-tensor contribution gives universal contributions to the anomalous
dimensions

dQAé ’Sgs,ﬁs
4(d — 1)2C’TS§ gd=2

Sy = — (1,1,1,1,1,1), (2.35)

while the current gives

o1 gisAs
80]53 fdi?

Sy = (2N, N +2,N,2,0,—4). (2.36)

2If the theory has SO(N) instead of O(N) symmetry, then for N < 8, the 4-point function may have
additional structures containing € tensors, but they only transform into themselves under crossing. So our
crossing equations and results still apply. The e structures will generate another set of crossing equations
that may produce interesting constraints, but we will leave this for future study.

~10 -



Finally, exchanging a scalar ¢ in a representation 7/, gives contributions

£x
67’”7£ P¢r’ Agijs X (237)
1 1 1 1 1 1
2N N+2 N 2 0 —4
2(N+4)(N—2) (N+4)(N-2) N24H4N—24 __2N+8 8 4N-8
N N N N N N
X N(N41)(N—3) (N+1)(N-3)  N(N+1)(N-3) N2-9N+3 _ N(N-3) N-3
2(N-1) 2(N-1) 2(N-1)(N-2) (N-1)(N-2) (N-1)(N-2) -1
(N+4)(N+1)(N-2) 0 _ 2(N41) _ N44 1 _N-2
2(N+2) (N+2) N+2 N+2
N(N46)(N+1)  (N46)(N+1) N(N46)(N+1) N+6 __ N(N+6) ( —2)
2(N+2) (N+2) (N+4)(N+2) N+2 (N+4)(N+2) (N+4)(N+2)

Note that in a 4-point function of identical scalars, Py = 0 for r = E, HE. But they may
be nonzero when the external scalars are not identical.

2.4 SU(N)

Next we will study the double-twist asymptotics for CFTs with scalars charged under an
SU(N) global symmetry, focusing on the most common cases of fundamentals and adjoints.
2.4.1 Fundamentals

To begin, let us consider a 4-point function containing SU(N) fundamentals and their
conjugates, which can be decomposed in singlet and adjoint contributions in either the
(12)—(34) channel or the (14)—(32) channel as

2A4 2A i
21 P w5y (i (21) 12 (22) iy (23) 9T (4))
= 525%[ (u,v) + <5;f5§§ - 635;;‘) Adj,(u,v) (2.38)

= () (ousinto) + (s50ls - o6 ) Adifev)).
Solving for the t-channel contributions gives the crossing equations

<E>A¢ Li(v,u) = %Is(u,v) + (1 - ]\172> Adj(u,v),

v

(E)Aq5 Adj,(v,u) = Is(u,v) — %Adjs(u, v). (2.39)

[

In the lightcone limit, we can approximate

Is(u,v) =14 Pega, o0+ Prga—22(u,v),
Adj,(u,v) = Pyga,0(u,v) + Prga—21(u,v), (2.40)

where we have included the contributions of the lowest-twist singlet scalar ¢ and adjoint
scalar a.
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On the other hand, the t-channel functions sum over the contributions of the double-
twist operators O} ~ ¢;0°¢! and O?dj ~ ;017

Ii(v,u) =~ Z.Pol 92A¢+7 (v,u JrZPoI 9on s (v, u),

Adjt(v> U) ~ Z POAdngAqﬁ-’yffj (Ua U) + Z PO?_(j'jQQA(p-i—’yeA_dj (Uv ’LL), (241)

where for clarity we have written separately the even-spin and odd-spin contributions.
Let us finally consider the constraint connecting the symmetric and anti-symmetric
tensors in ¢ X ¢ to the singlet and adjoint operators in ¢ x ¢:
204 2A4

27y " may *(Biy (1) iy (22) 0 (23) 91" (24))

(5%3514 + 514523) S(u, v) + (524513 - 513524) Alu,v)  (2.42)

i1 712 i1 12 i1 712 i1 12

uNDs [ o o 3
() (sisoeiton + (si25; = o) Ao ).

v

giving the conditions

(5)™ Fo) = (1 ) Sty + (1 5 ) A
(E) Adj(v,u) = S(u,v) — A(u, ), (2.43)

or equivalently on switching u < v

(E)A¢ S(v,u) = %f(u,v) + ; (1 - 1) Adj(u,v),

(Y

(E>A¢ Alv,u) = %j(u,v) ; <1 + )Adj(u v). (2.44)

v

Both (2.43) and (2.44) give interesting information in the u < v < 1 limit.
In particular, the r.h.s. of (2.43) at small u probes the low-twist scalar symmetric
tensors s, giving

S(u,v) ~ PngS,g(u,v), (2.45)

while the r.h.s. of (2.44) probes the low-twist singlets and adjoints, with the current having
an opposite relative sign compared to (2.40),

I(u,v) = 14 Pega.,0 + Prga—s2(u,v),
AdJ (u, 'U) ~ PagAmo(u, ’U) — Pjgd,Q,l(u, 1)). (2.46)

On the other hand, the l.h.s. of (2.43) distinguishes between the even- and odd-spin
uncharged double-twist operators

I(Uv u) ~ Z; PO[{JF g2A¢—i-'ylf+ (’U, u) - Z POtL g2A¢+fyel (Q}, u)?
1 -

Adj(v,u) ~ Z Pojfj92A¢+vffj (v,u) = Z Poffj92A¢+vf_dj (v, u), (2.47)
o+ -
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while the L.h.s. of (2.44) probes the symmetric and anti-symmetric tensor double-twist
operators Oflr ~ ¢(iaf¢j) and (’)24_ ~ qﬁ[i@%ﬂ,

~ +
S(v,u) ~ €Z+P05+92A¢+75+ (v, u),

A(”v U) ~ - Z Pg?* 92A¢+'7247 (U, U’)7 (248)
o

Matching the identity operator on the r.h.s. of (2.39) and (2.44) gives the asymptotic
behavior of the OPE coefficients

Popas = NPo = Pos, = ch;, = Pa,n,(0), (2.49)

while matching the log(v) singularities as expected gives universal negative shifts in the
anomalous dimensions from stress-tensor exchange and singlet scalar exchange

d?A\? fZ A Ea,n
Sl = — ¢ $2¢ s v p 2868 250
TY¢ 4(d —_ 1)ZCTS§ ﬂd—Q , OeVp € gAé ; ( )
shifts from current and adjoint scalar exchange of a similar form given by
J
N Adj N 1 SA,a

———69] = —N§ = — SV = ——6 vt = — il 2.51
N2_1 J’Yf nye N—l JV@‘F N+1 J’YZ 20JS§ gd_Q 9 ( )

N I Adj N s A 24,0,
m(sa’ye = —N(;a’ye ) — —méa’)/e_’_ = Ni_'_l(sa’}/e_ = —Pa gAa 5 (252)

and shifts to %{ and 'yﬁdj from symmetric-tensor scalar exchange that gives opposite sign
contributions to even and odd spins
Adj Adj EApA

V= 6y = —pF =Tl (2.53)

1 I 1 I
N 10 = TN e =0 = 0 = R s

2.4.2 Adjoints

Finally we consider the situation of 4-point functions of SU(N) adjoints @g . This case was
considered in the numerical 4D bootstrap in [21]. Following the notation of [21], the tensor
product contains 7 irreducible representations

Adj ® Adj = 1 ® Adj, ® Adj, @ ((S, A)a ® (A, 5)a) ® (A, A)s (S, 5)s,  (2.54)

where the subscript s or a denotes whether the representation is in the symmetric or
anti-symmetric product of the adjoints and we group together ((S, 4), & (4, 5),) because
they are conjugates and will have identical dimensions and OPE coefficients. In the case
of identical adjoints, the representations on the r.h.s. of (2.54) can appear with spins
(+,—,+,—+,+).
As before, we decompose the 4-point function into tensor structures
2y gyt (@) (2) 8 (2) ®F (23) 8] (20)) = D (P LEIIG (u,v),  (2.55)

11121314
I8
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and expand G*"(u,v) = Y Porg.(u,v) in conformal blocks, writing the structures and
crossing relations explicitly in appendix B.
Matching the identity gives the asymptotic coefficients of the double-twist operators

2 1 N 11
Por =P, 14 , =, 1, ==, 2.56
O A‘I”A‘D()<(N+1)(N—1) N (N+2)(N=2) "2 2) (2.56)
matching the stress-tensor gives a universal shift
d2A2 fT
Sy = — 0 Bo8e (11 1,1,1,1 2.57
TY¢ 4(d - 1)20{1“53 pd—2 ( Pt R Bt )a ( )
matching the currents gives the shifts
PP S .Y (2N, N, N,0,2,~2) (2.58)
JYe 2CJS§ ﬁd’2 ) ) s Uy &y ) .
and matching contributions from a scalar ¢ in representation r’ gives the matrix
SR
_ DH,D
(57,/'7; = — P¢T/ £A¢ (259)
1 1 1 1 1
2N N N 0 2 -2
2(N+2)(N-2)  (N+2)(N-2) N2-12 _4 _2N+4 2N—4
y N N N N N N
(N +2)(N —2) 0 -2 1 — N2 — =2
N?2(N-3) N(N-3)  N*N-3)  N(N-3) N2—-N+2 N-3
N—T) N—1 N—2)(N—-1) ~ (N=-2)(N-T) (N-2)(N—1) N—1
N2(N+3) _ N(N+3) N2(N+3)  _ _ N(N+3) N+3 N24N+42
D N+ (NRR)(N+D) — (N+2)(N+1) N+1 (N+2)(N+1)

Note that in a 4-point function of identical scalars, Py = 0 for r = Adj, or (S, A),®(4, S),.
But they may be nonzero when the external scalars are not identical.

In the case of SU(3) the (A, A); representation does not exist but otherwise the results
apply with N = 3. In the case of SU(2) only the (S, S)s, Adj,, and trivial representations
exist, but the results for these operators are also correct after setting N = 2.3

3 Applications

3.1 4D N =1 SQCD

In this section, we apply our results to interacting 4D N = 1 superconformal field theories
(SCFTs). The supersymmetric unitarity bound for real operators, A > ¢ + 2, forbids real
scalars with twist lower than that of conserved currents. For interacting SCFTs, a real
scalar with A = 2 belongs to a supermultiplet containing a conserved current.

For concreteness, we consider NV = 1 SCFTs with an SU(F) global symmetry and
focus on the 4-point function <g£a1<;§a2 q@ag <Z~>a4>, where qza is the canonically-normalized lowest

3Comparing to the O(3) case, there is an apparent factor of 2 arising from different normalization of the
generator and the current central charge. In our conventions for SU(2), fase = vV 2€ape and CEU(Q) = ZC?(S).
See appendix A for more details.
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T 1 K | K1 c

3NN 6N2 | N | N | & (7N? -9, —2)

Table 1. The central charges and anomaly coefficients of A" = 1 SQCD.

component of the SU(F') current multiplet and « is an adjoint index. For the expansion of
this 4-point function, we have

1 1 1 k2 23
Pr=—, Pj=—, Pua, =-—=, Py=-", 3.1
790 77T 6r TN T o3 Tl oy (3:-1)
where ¢ = 0254 is the coefficient of the Weyl anomaly in (Tf) = 1= c o (Weyl)? —
s (Buler)?. Cj = 4:% is the flavor central charge for SU(F'). In SCFTs 7 is related

to the SU(F)2U(1)g anomaly. 7y is the similar quantity for a U(1) current contained in
the multiplet denoted as ¢!. x and #; are the coefficients of the SU(F)? and SU(F)2U(1)
anomalies, respectively.

Let us now consider the specific case of N' =1 SQCD, which has an SU(F') x SU(F’) x
U(1)p xU(1) g global symmetry together with an SU(N) gauge symmetry. The theory flows
to an interacting conformal fixed point when 3N < F < 3N [72]. The relevant coefficients
can be computed by anomaly matching and are given by: Using these OPE coefficients,
we can work out the anomalous dimensions of large spin double-twist operators QNSCL@Z(ZN)b
at leading order in 1//?, where qgmb are the lowest components of the current multiplet
corresponding to one of the SU(F') flavor symmetries. For F' = 3, we can only have N = 2
on the boundary of the conformal window where the magnetic theory is free, so our analysis
does not apply. For ' > 4, the result is

1 2 1 144F? I8N2F? + F* — 3F?
v = + (3.2)
2702 \TN2F2 —9N4 — 2F2 N4 ’
144F2 IN2F? 4+ JF* — F?
- a7 62 TN2F2? — o2 T N4 ) (3.3)
21 144F2 IN?F? 4 LF* — 5F?
2702 \ TN2F2 — o2 T N4 ’ (3.4)
2 144 F?2 F? (3.5)
2752 TN2F2 —9gN4 —2F2 N4 '
144F2 18N2F — F3 — F?
- 27 62 TNZF2? _9N4 _oF? T N4 ’ (3.6)
B 144F? 18N?F — F3 4 F? 3.7)
7’ = To7 e? TN2F2 — QN4 _ 22 N ‘ '

In these expressions the index r of 4" labels the representation of the double-twist operator
under SU(F') as given in (2.54).

Note that the first term in these results is from the stress tensor exchange and is the
same across different representations. Going to the Veneziano limit with ¢ > N, F > 1
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and F/N fixed to be in the conformal window, we have at leading order

<§>4+18 (ﬁf +(’)<]$2> (3.8)
4_ 211 [MA(}S)_(F)Q +O<1\§4>’ (3.9)

TN (e W
+0<A}3) (3.10)

21

1 2 3
v v v o7 2

56211
212N

27 (2 N2
3
s(£) - (£
N N

Here we see that the anomalous dimensions of the singlet and adjoint representations

(r = 1,2,3) have no additional suppression at large N while the anomalous dimensions
of the remaining representations fall off like 1/N or 1/N?. This is reflecting the fact that
the former states correspond to “generalized single trace” operators with neighboring color
and flavor indices contracted, while the latter representations describe “generalized double
trace” operators. See e.g. [73] for a discussion of this large-N counting in the Veneziano
limit of SQCD. The existence of these “generalized single trace” operators is still consistent
with large- N factorization because their OPE coefficients become suppressed at large V.

3.2 3D O(N) vector models

Our analysis can also be applied to the 3D O(N) vector models in the regime ¢ > N
(for N > ¢ approximate higher spin currents must also be included, as we discuss in the
next subsection). If we consider 4-point functions of the O(N) fundamental ¢‘, then our
analysis gives

Te = +

_Pe - Pt

BCrm 2€A¢,A¢ W€A¢,A¢ 7 /A, N A s
9AZ 1 1 &,a, N+2 Ea,n
A - A - P29 P29
Yo = (280 2§A¢,A¢ 32CJ7T2 €A¢,A¢.> / Pe £A€ + N Pt EAt ey
9AZ 1 1 _&,a, N-2 &
S _ J =9 ¢1=29
= (280 7T2§A¢7A¢ 32072 €A¢7A¢> 7 Pe A TN P A (3.11)

where we included the stress tensor, O(V) current, and the leading scalar singlet and O(N)
symmetric tensor.

In table 2 we summarize some numerical data for the most interesting cases N =
1

32 82"
Unfortunately, we are not aware of determinations of the coefficients P6 and Pt, but it is

2,3. In our normalization, the free field theory values are C’%ee =

likely that they can be extracted from future conformal bootstrap studies of the O(N)
vector models.

Plugging in numbers, we see that for the O(2) model we have the corrections:
I 0.00310 0.04389 0.13388

Yo =TT T ittt T e sz
4 0.00310 0.04389 0.13388
Vo = T Nz T ey
0.00005 0.13388
S ~
Vo =TT T fersnz (3.12)
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Cr/NCiee C/Clree Ay A, Ay
0(2) | 0.94365(13) [16] | 0.9050(16) [37] | 0.51905(10) [74] | 1.51124(22) [74] | 1.237(4) [75]
0(3) | 0.94418(43) [16] | 0.9065(27) [37] | 0.51875(25) [76] | 1.5939(10) [76] | 1.211(3) [75]
Table 2. Numerical data for the O(2) and O(3) vector models.
while for the O(3) model we have:
0.00396 0.07423 0.18524
I ~
Te=TTy - B /1211 - /15939 7
0.00249 0.02749 0.18524
A ~
=TTy + 5 /1211 - F /15939 7
0.00046 0.00550 0.18524
S _ _
=t Be=ramr — Pejisose (3.13)

Interestingly, the twist 1 contribution to 7@9 appears to change sign between the O(2)
and the O(3) model. On the other hand, the coefficients of the twist 1 terms are likely
somewhat suppressed relative to the scalar contributions (assuming O(1) OPE coefficients),
so at moderate values of £ we expect the latter to dominate.

In the regime of moderate ¢ we also expect the contributions of higher spin operators
of minimal twist to become more important. In [63] it was seen that these will lead to

corrections of the form v, ~ M

for some function f(log¢) that could be computed in
an expansion in the limit of approximate higher spin symmetry. In our context including
only the twist 1 contributions, as above, corresponds to taking f(log¢) — f(o0). It would

be interesting to better understand the form of these higher spin corrections.

3.3 CFTs with a large global symmetry

A generic feature of our results (2.23), (2.30), (2.36), (2.51), (2.58) is that the anomalous
dimensions of certain double-twist operators grow with the size IV of the global symmetry
group O(N) or SU(N). This implies that our results are only valid when ¢ > N unless C;
grows fast enough to cancel this effect. Otherwise, some of these anomalous dimensions
would violate the unitarity bounds and/or cannot be used as perturbative parameters.

It is extremely interesting to understand what happens when £ ~ N, but this regime
is subtle to work with because the small u expansion is not clearly separated from the
large N expansion. In this section, we focus instead on the opposite regime with £ < N,
where N is sent to infinity. What we will see is that, under a set of assumptions, crossing
symmetry requires the existence of an infinite number of conserved higher spin currents
at N — oo and that scalars with twist smaller than d — 2 cannot appear in the OPE in
this limit.

To be concrete, we will demonstrate this idea in a unitary CFT with a SU(N) global
symmetry. We study the 4-point function of fundamental and antifundamental scalars,
but the same argument applies to all cases where the anomalous dimensions at £ > N
grow with N. The first assumption is that there exist scalar operators transforming under
the global symmetry. This is not essential since similar behavior is seen when studying
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the 4-point function of conserved currents [69]. The second assumption is that 4-point
functions of the canonically normalized operators have well-defined limits when N — oo.
In the SU(N) 4-point function we are considering, this means that I5(u,v) and Adj,(u,v)
do not blow up as N — oco. This for example implies that NC7 — oo as N — oo, which
is natural because Cr is generically expected to grow as a function of N. Finally, the key
assumption we need is C; — O(1) as N — oo. That is, we will assume C; does not grow
with N for N large.

For free field theories these assumptions hold if we only have a finite number of scalars
and fermions in the fundamental representation of the flavor symmetry group. In general,
the contribution of a free scalar or fermion in representation r of the flavor symmetry
group to C is of order C(r), or the index of the representation [77]. The index is defined
as Tr(TT?) = C(r)6® and is only independent of N for the fundamental representation.
For interacting theories with a slightly broken higher spin symmetry, e.g. the critical O(N)
model and CPV~! field theory in 3-dimensions, we also see that Cj stays finite when
N — oo [78, 79]. In contrast, generalized free theories have C'; — oo and do not have
higher spin symmetries. N/ =1 SQCD in the Veneziano limit has C; oc N and does not
have higher spin symmetries either (except at the boundaries of the conformal window).
All these examples are consistent with our sufficient condition for the existence of higher
spin currents at infinite V.

The relevant crossing equation is the first line of (2.39); we reproduce it here:

(E)% Li(v,u) = %Is(u,v) + (1 - ]\1[2> Adj, (u,v). (3.14)

[

Since Is(u,v) is at most O(1), the first term drops out at large N, giving

(ANAYS ) 1
<7) (v, ) = Adj,(u,v) + O(=). (3.15)
v N
We now argue that at N — oo, this crossing equation is not solvable in a unitary CFT
without an infinite number of conserved higher spin currents. We will first consider the
case that we do not have scalars with A < d — 2 contributing to Adj,(u,v) at large N.
Their effect will be considered in the end of this subsection. Without low twist scalars
or higher spin currents, the dominant contribution in Adj,(u,v) is given by the conserved

global currents:
1

mgdq,l
When v < v < 1, we have the behavior

Ga—z1 (1, 0) = FF((;)LJEQ <—logv ) <¢(1) - w(i))) I (3.17)

Adjy(u,v) = (u,v) +.... (3.16)

At small v, the logv term dominates and the crossing equation becomes

uy Ao 1 @)
(5) Ii(v,u) = 20,82 I'(4)2

d—2
w2 logv+.... (3.18)
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It is not possible to reproduce this logwv term on the L.h.s. in a unitary CFT. In the
reflection positive 4-point function we are considering, each operator should give a positive
contribution to I;(v,u), but matching the logv term requires negative contributions. We
present a detailed argument for this statement in appendix C. The only possible remedy
for this problem is having an infinite number of higher spin conserved currents contributing
to Adj,(u,v). A finite number of higher spin currents will not solve the problem because
they all contribute a log v term with the same sign. As discussed in [63], the infinite sum
over this tower of log v singularities will yield a power-law singularity in v and the crossing
equations can then be solved.*
We now consider the contributions of scalar operators with A; < d — 2:

Adj,(u,v) = S P fa,0(0,0) (u,0) + ..., (3.19)

1
o Ga-
2C, 527721

where

fa0(0,v) = F(ﬁi) <— logv + 2 <1/1(1) — <AZ>>> +.... (3.20)
P52 2

If the smallest A; is less than d — 2, then we cannot introduce higher spin operators

to convert the logv into power law singularities since they will violate unitarity bounds.

Therefore the crossing equations cannot be satisfied unless P; -+ 0as N — oco. If A; =d—2

with P; finite at large IV, then we need an infinite number of higher spin currents.

This analysis is not restricted to scalars or conserved operators in the adjoint repre-
sentation of SU(N). Rather this problem generically arises in CFTs with any large rank
global symmetry group when the lowest twist operator whose OPE coefficient is not % sup-
pressed does not belong to an infinite tower of states with fixed twist. Similar arguments
will also apply e.g. to adjoint and symmetric tensor representations appearing in the OPE
of O(N) fundamentals. What makes the case of current contributions special is that C;
is a universal quantity which can approach a constant as N — oo in a variety of theories,
implying the existence of higher spin currents for these theories.

In theories where Cy ~ O(1) and higher spin currents appear as N — oo, it would be
very interesting to compute their anomalous dimensions in the % expansion using bootstrap
techniques. This would require considering situations with slightly broken higher spin
symmetry as in [63, 82|, but taking into account the full global symmetry structure. In
particular it would be interesting to understand the role of higher spin currents in different
representations of the global symmetry group. We leave a full analysis of this direction to
future work.

4 Discussion

In this paper, we applied the method of [53, 54] to CFTs with global symmetries in space-
time dimensions D > 2. We assumed our CFT contains scalar operators transforming

4 Another situation where an infinite sum over log v singularities produces a power law is in the expansion
of 2D Virasoro blocks in terms of global conformal blocks. This for example plays an important role in the
analysis of 2D Virasoro blocks in [57, 62, 80, 81].
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under various representations of the global symmetry. Crossing symmetry of their 4-point
functions implies the existence of large spin double-twist operators in all possible symmetry
representations. We then computed their anomalous dimensions as a function of the cen-
tral charge Cp, the current central charge C, and the OPE coefficients of low-dimension
scalars. These results correspond in AdS to the binding energies of large spin two-particle
states arising from gravitational, gauge, and scalar interactions.

As expected, we saw that the gravitational binding energy is negative and universal (it
does not depend on the representation of the two-particle state). The gauge binding energy,
on the other hand, has a sign and magnitude that is determined by the representation. For
scalar exchange, the result similarly depends on the representation of the exchanged scalar
— in particular, when a charged scalar is exchanged, the resulting binding energy for
even and odd spin two-particle states can have opposite sign. This is not in conflict with
Nachtmann’s theorem [71], which only implies convexity for the even spin, minimal twist
sector in reflection positive OPEs.

We applied our analysis to 4D SU(N) N =1 SQCD and the 3D O(N) vector models.
In both these cases we focused on the limit N <« ¢, where the anomalous dimensions can
be used as perturbative parameters. For A/ = 1 SQCD we found the anomalous dimensions
for a generic number of flavors and colors within the conformal window and then considered
their behavior in the Veneziano limit, where both the number of colors and the number of
flavors become large. In this limit we saw that some double-twist anomalous dimensions
do not have any additional suppression with N at large spin, which is consistent with the
existence of generalized single trace states. For the O(V) vector models we made use of
existing numerical results for the conformal dimensions and central charges to write down
approximate formulas for the anomalous dimensions.

In addition, we discussed general CFTs with a large global symmetry group and con-
sidered the limit 1 < £ < N. In this regime we argued that if the current central charge
C'y does not grow with IV, then there must exist an infinite tower of higher spin currents in
the adjoint representation of the global symmetry group. Such theories also cannot have
scalar operators of dimension A < d — 2 whose OPE coefficients remain finite as N — oo.
These statements are consistent with known theories that have a higher spin symmetry in
the N — oo limit, e.g. the O(N) vector models [78].

In this work our computations were mostly restricted to the regime N < ¢. To fully
extend our analysis to the cases with £ ~ N and 1 < ¢ < N with C; ~ O(1), we
would need to include the effects of a tower of approximate higher spin currents in the
s-channel. This would allow us to more directly make contact with and extend existing
results on CFTs with a slightly broken higher spin symmetry [63, 82]. It would also be
interesting to extend our analysis to the Regge limit and to make connections with causality
constraints outside the lightcone [67]. We hope that the present work and its extension to
correlators containing currents and stress tensors [69] will constitute useful steps towards
unraveling the beautiful and universal structures inherent to higher-dimensional conformal
field theories.
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A Scalar-scalar OPE

In this appendix we review the OPE of two scalars in generic representations of global
symmetries. If the two scalars are in conjugate representations, then their OPE takes
the form
(3 67”":1 - a\mn 1 'CL'/‘L a
@) X 6(0) = e — (T —n =g O (A1)
1 Agd  zHa¥
O G - 1) e ar 0+ o

(A.2)

where Sy = 27%/2T'(d/2)~" is the area of a (d—1)-dimensional sphere. The OPE coefficients
of the stress tensor and the global symmetry currents are related to the corresponding
central charges appearing in their 2-point functions:

1

(@) Tp(0)) = 8 C i v (A.3)
(T (2T (0)) = Cr 3 Ty (A4)

where
Ty = My — 2%7 Lyv,po = %(Iupfvo + Luolyp) — %mwnpa- (A.5)

Our normalization for J and T follow the conventions of [77] which does not include a
factor of Sd_2 in the two point function. Note that we have not yet normalized T" and J
to have 2-point functions o< 1. If we do this, then the OPE coeflicients of J=—1_J and

A Ner
T = —L_T become

VCr

d A crann L

Aot = == \/ijsd, (Ko = =T =g (A.6)
These coefficients are derived from the following Ward identities:
(0" Ty (1) (@) d(3)) = 6% (1 — 22)(" $(w2)d(3))

+ 8% (w1 — w3)(d(22)0" P(3)), (A.7)

(0" T (1) pi(2)dj(w3)) = 6%(w1 — @2)i(T)F Pk (2)Bj(w3))
+ 8% (x1 — 23)i(T)5 (i(w2) dr(3))- (A.8)
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Our conventions for the non-Abelian generators are as follows. The structure constant and
the index of a representation is defined as usual: [T%, T?] = ifoeTe, Tr(TT) = C(r)§®.
For each group, we explicitly define the the index of the fundamental representation.
Matching fupe = %TT(T“[T”,TC]) then fixes the normalization of generators for any
generic representation. The adjoint is given by i(Tde)bC = fobc. We define the current cen-
tral charge such that the 3-point function coefficient of canonically normalized conserved
currents is equal to ﬁ fabe,
For SU(N), we choose the fundamental generator to be

4 — 1
(T))), = (T)(T)}, = 6,04 — 55010 (A.9)

Therefore C = 1. This convention may be slightly different from the standard choice.
For example, for the fundamental representation of SU(2), the generators are given by
T = %aa, the structure constant is f®¢ = /2¢%¢. The 4-point projector T%T* thus
generated matches with what we used in (2.38).

We define the generator of the O(N) group on the fundamental representation as
Z(Tz])kl = 5ik5jl — 5il5jk- (A.IO)

Therefore C' = 2. Note that if interpreted as adjoint indices, the anti-symmetric pair j
only runs through three values: 12,13, and 23. The adjoint generators are obtained by
computing the structure constants. The generators in the symmetric representation are
computed by acting with a fundamental generator on each individual index i(75;)ki mn =
i(T35) kmOin, + 1(Ti5)in0km and then symmetrizing.

B Tensor structures and crossing relations

B.1 O(N) adjoints

Tensor product representations of the O(N) group break down into irreducible represen-
tations (irreps) characterized by traceless tensors with permutation symmetry specified
by the Young tableaux. For example, the tensor product of two O(N) adjoints can be
decomposed into the following irreps:

r:<1,a,m,53,ﬁjﬂ>. (B.1)

The Young projectors can be generated by first anti-symmetrizing indices along the
columns and then symmetrizing them along the rows. We also need to eliminate the traces.
In this way, we obtain the following generators:

P, = P, — traces, (B.2)

where a Young projector ]57“ maps an arbitrary 4-index tensor 7j, ;, 4, to a tensor with de-
sired exchange properties. We also remove the traces after the projection. More explicitly,
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P, are given by:

Py = 814430z
PQ = 6i2i45i3j16i1j2 - 5i2i36i4j1 5i1j2 - 6i1i45i3j1 51'2]'2 + 51'11'351'4j15i2j2
— igiy 5i1j15i3j2 + 5i1i45i2j1 5i3j2 + 5i2i36i1j15i4j2 — iy 5i2j15i4j27
Py = — 5i2i4 5i3j1 51'1]'2 + 51'21'361'4]'1 51'1]'2 + 6i1i46i3j1 6i2j2 - 5i1i3 5i4j1 5i2j2
— igiy 6i1j1(5i3j2 + 5i1i45i2j1 5i3j2 + 5i2i35i1j1 5i4j2 — iy 5i2j15i4j27
Py = 6i4j1 5i3j25i2j3 5i1j4 - 5i3j1 51'4]'2 52’2]’3 5i1j4 - 51'2]'1 5i4j2 5i3j3 5i1j4 + 52’2]’1 5i3j2 5i4j3 5i1j4
= Oigr OisgaOir j3Oinga + Oisjy OiagaOings Oinja + Oingy Oinjais s Oinga — Oirjs Oisgn OiajaOiaja
- 5i4j1 51'2j25i1j36i3j4 + 5i4j1 5i1j26i2j3 isja T 5i2j1 11j2Y%453%3j4 — 6i1j1 i12J2%%4j3 Y374

23]3

)

)
iaja + 0i1 g1 0injoOis s Oigjas

)

1)

)

1) Giginl Gininl
+ 04541 0injn 01 j3 0iajia — Oinji OirjoOingsOiaja — Oinjr O joissjsO 0ioinl w
Ps = — 0i,5,0i3550i5550i1 4 + Gy OinjoOinjzOiiju + Oigji OissjnOir s Oinga — OiajiOi joOinjs Oinj
= 0i4j10izj20irjs Oisja + Oiajy OirjaOings Oinja — Oiaji OingaOirjaOiaja + Oinja Oisjo i jaOiaga
1) Ginin Oy 70 0iainO Ginin0

+ igy 0iy o Oinjs Oigja — Oiyjs OigjoOingsOiaga — OingyOirjoOisgaOiasa T Oirgy VingaOisgaOigjas

Ps = 0i4j1 052 0i2j50irja — Oigja 0iajoOingsOirja — Oiajr OingaOiajsOirja T Oings OiagoOigja i
+ 8igj10izjoOigjsOirja — Oinjy OigjoOiajaOirja — OigjyOigjaOiyjaOinja T Oigjy OigjaOiy s Vs
+ Oigj1 0irja Oiaja Oinjia — Oigy OiagoOinjaOings — OiajyOinjaiagyOizja + Oiy gy OiggaOiajs Oinjia
13j4 5@'4]’1 11j2 izja T 5i1j1

6 Giginl Giaio0iyia0

1) 0170 0i0ia 0 Oigio0inial
1473 5i3j4 — Oizgn 6i2j2 5i1j3 51'4]'4 + 6i211 5i3]'2 51'1]'3 5i4j4

) 0170 0n7a0 Oioio0iain

+ 5i4j1 51'2]'2 51'1]'352'3]'4 - 51'2]'1 51'4]'2 5i1j3 1273 1472 91273013]
+ 5i2j15i1j2 5i4j35i3j4 - 61'1J'15i2j2(S
+ igy 0iy o OigjsOija — Oiyjs OinjaOingsOiaga — OingyOirgaOisgaOissa + Oiygy OingaOigjaOigja-

The three point structures are given by, for example:

<Ai1i2Ai3,i4 (OT)j1,j2,j3,j4> X Si12’2;i314;j1,j2,j3,j4a (B'?’)
Ar o 1
Sivigsisitign.ogids = g Onnit sty ~Onnit it ) it Oiaity — gt ait)) (Pr)ig syt o

We then build the 4-point structures 4" in (A; i, Aiyiy Ajyjo Ajyj,) by contracting two 3-
point structures together:

Ar - iSA,r A,r (B 4)

inigsizidijigeigaja T g Tiviesiziaijijadsdy T j1iesisiaiiniadsis’ '
where n, = (1/4,-2,2,24,—6,16) are normalizations chosen for the 4-point structures.
They are chosen such that certain reflection positive configurations have unit tensor struc-
ture. In particular, tfz’%2~1212 =1, tf2’§3.1312 = 1forr = 2,3, and tf2’§4.3412 = 1forr =4,5,6.
We explicitly write down t4" for r = 1,2, 3 below. Note that we permuted the indices such
that the 4-point function is (A;, j; Ay joAisjs Aigja)-

A71 — . . . . . . . . . . . . . . . .
t - (5121351124 - 5@123 522@4) (532]3 5]1]4 - 5]1]35]2]4) )
A72 e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
t - 51214 513]2 5]133521]4 - 51223 514]2 5]1]351134 - 51214 513315J2J3 511]4 + 52213524115321% 511]4

— 8iyigOisja 01 jsOinjs + OiyigOinga iy jaOings + OiyiaOisgs Ojajsinga — OivisOiajy OjogaOinja
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Oisgy + OiyigOinjaOjyjsisga + OinigOirjy OjojaOigja — OiyigOingy OjnjsOisja
o)

+ 51'22'3 i1j25]1j3 14J4

— igiy i1j25j1j3 o

j 5i1i3 6i2j2 5j1j3 5i4j4 - 5i2i3 5i1j1 5j2j3 5i4j4 + 5i12'3 5i2j1 5j2j3 5i4j4
= OinigOisj2Oings Ojnja + Oinis OiajnOirjsOjrja + OiniaOisgoinjsOjaga — OivizOiagaOings Onja
1)
0

1)
1)
Ogaio0 1)
+ Oigig i1 j20ig s 0jija — OirigOingainjaOjija — OinigirjoOiajaOsija + OirigOinjo0iajadjija
+ 62'22'4 5i3j1 51'1]'3 5J2j4 - 5i2i3 51'4]'1 5i1j36j2j4 - i1i45i3j1 6i2j35j2j4 =+ 5i1i36i4j1 6i2j35j2j4
- 57?21'4 5i1j15i3j3 5j2j4 + 51'12'4 5i2j15i3j35j2j4 + 51'21'3 5i1j16i4j35j2j4 - 5i1i35i2j1 5i4j35j2j47
t = G Ging Oy s Oirja — Oinis Oiajn0jujaOisga — OiniaOing OsnaOinja + OinisOias OO o
— 0iigOig 2 0j1 5 Oingy + OiyigOigja Oy s Oinja + OiriaOisjs OjajisOiaja — OiviaOiggy OjagsOinga
+ 0izis0i1j 051 j5 Oigja — OiriaOinga O jsOigja — OigiaOir i OjajaOigsia T OiviaOingi Ojosia Oigia

1)
1143 %1271 5j2j3 5i4j4
6

1) )
= 0igiz0i1j2 05153 Oiajs + OirizOingaOjajaisja + OigizOirja Ojajsinja — O
— Oigiy 51'3]'2 51’1]’3 5j1j4 + digiy 5i4j2 5i1j35j1j4 + 5i1i451'3j2 5i2j3511j4 - 5i12'35i4j2 5i2j3 J1j4
— Oigiy 5i1j2 5i3j3 5j1j4 + diria 5i2j2 5i3j3 5j1j4 + 5i2i3 5i1j2 5@'43'3 5j1j4 - 5i1i3 52'23’2 5i4j3 5j1j4
+ OinisOizj1 Oirjs Ogaja — OinisOiaga OirjsOjaja — Oiriaisjn OinjsOjaja + OivigOiags Oings O
+ 5@'2@'452'1]'151'3]'3 5]'2j4 - i1i45i2j15i3j35j2j4 - 5i2i3 5i1j16i4j35j2j4 + 5i1i36i2j1 5i4j35j2j4

8
tw (Oiyi50inis 0oz Oy ja — OinizOiria Ojajs Oy ja +OinigOiriaOr s Ojnsa — OivigOinia 01 js Ojaga )

As noted in appendix A, the generators are normalized as (Tjj)i = didj — 0udr;. We

i . . Adj
then have fi1j1i2j2i3j3 = _%Tr{Tiljy [Ti2j27Ti3j3]} and Z(Tz‘ljlj)iﬂéiwé = fi1j1i2j2i3j3‘ The
contracted generators %(TZ/; dJ)i(Tj/?dJ) match with the projector t4? given above.

Matching tensor structures between the (12)—(34) channel and the (14)—(32) channel
gives the crossing relations:

A<I> /
(%) Gri(v,u) = M; G s(u,v), (B.5)
with
2 4(N—=2) 4(N-2)(N+2) (N-=3)(N+1)(N+2) (N-3)(N+2) (N—3)(N—2)
(N-I)N (N—-1)N ~ (N—-1)NZ (N—-1)2N (N-1)N (N-1)N
1 1 (N=4)(N42)  (N=3)(N+1)(N+2) 0 N—3
2(N—2) 2 2(N-2)N 4(N—2)2(N—-1) 2(N—-2)
1 N—4 N2-8 (N—-4)(N=3)(N+1)  N-3 __N-3
M = 2(N—2) 2(N—2) 2(N—2)N 4(N—2)2(N-1) (N—2)2 2(N—-2)
T 1 _2 2(N-4) N2_6N+11 _ N—4 1
3 3 3N 3(N—2)(N—1) 3(N—2) 3
1 0 a4 _ (VAN 1 1
2 N 2(N—2)(N—1) 2 2
1 2 _2(N+2) (N+1)(N+2) _ N+42 1
6 3 3N 6(N—2)(N—1) 6(N—2) 6

B.2 O(N) symmetric tensors

The tensor product of two O(N) symmetric traceless tensors can be decomposed in the
following irreps:

r:(I,E,m,Bﬂ,Eﬂ,Dﬂj) (B.7)
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Their Young projectors are:

Ps1 = 6iyi50inis
ﬁSJ = = 5i3i45i2j1 5i1j2 - 5i2i46i3j15i1j2 - 251’21351'4]'152'1& + 5i3145i1j15i2j2 - 5i1i361'4j15i2j2
+ 5i2i46i1j1 5i3j2 - 5i1i2 51'4]'152'33'2 + 25i2i35i1j1 5i4j2 + 5i1i36i2j1 5i4j2 + 5i1i2 5i3j15i4j27
]5573 = 51’31'4 5i2j15i1j2 + 5i2i45i3j1 511]’2 + 5i2i36i4j15i1jz + 51'31'4 5i1j1‘5i2j2 + 51’11'4 5i3j15i2j2
+ 5i1i36i4j1 5%'2]'2 + 52'2%'451'1]'1 5i3j2 + 61'12'4 5i2j1 51'3]'2 + 52’11'251'4]'1 5i3j2 + 6i2i36i1j1 5%'4]'2
+ 5i1i35i2j1 5i4j2 + 51'11'2 5i3j16i4j27
P4 = Biyjy Oig jo 0 s Oin ju. + O OininOinis Oiv ju — iy Oinjo O Oinjs — O O o Oy O s
+ i1 0is o Oir j3 Oinga + iz OiagoOirjs Oings — OiagyOirjoOisgsOinga — Oirg1OiagaOisysOinja
= 0iaj1 0i1j20i3 Oisja — Oirjr OiajaOingsOisja + Oinjy OingnOiagaOisja + iy OinjoOiajsOisj
- i220i1j30i0ja — Oinj1 Ois o 0irj Oiaja & Oinji OirjoOis s Oiaga + Oir i OingoOisgs Oiagas
- -0 - 5i2j161'4j2 i3j36i1j4
1)
1)

— Oigjy 0ingn0iggis Oiyja — Oiggy OigjaOigjaOirja + Oigjy OinjaOirjsOiggy + Oinjy OisgaOiyaDissa

) 0igin 0 )
Oy i 0 a0 0inin O )
Ps5 = — 0iyj,0i3j20i5j50i1 s — Oigjr OigjoOigjaOirja — Oigjr OigjaOigys iy ja
Oy i 0igin 0 0inin O 1) 1)
+ 0isj10i1 jo0injs Oigsa + Oirji OisjoOingsOiaja + Oingt OirjaOisjsOiaja T Oiyjr Oinsio Oissis Oinja s
Ps6 = 81451 0igja0injs Oivja + Oinjs OinjaOingsOirja + Oiajy OinjaOiajaOirja + Oinjs OiajaOisjsOivia
+ 0isj1 0injo0iajsOirja + Oiji OisjoOiajsOiria + Oigji OisjoOirjsOinja + Oiggr OigjiaOirjsOinja
F 0iaj1 i g Ois s Oinga + Oiy 1 OinjnOis j3 Oinja + i Vi o Oiags Oinja + Oir 1 Ois j2 i s Oin
+ 041000201 j3 0injia 7+ Oinji OigjoOitjaOisja F Oigsr Ody joOinsiz Oinja + 0y j10iasjnOinjsOisj
0igis0 ) )
0inyin O 0inin O 1)

1) )
+ 5i2j1 5i1j2 i4j30izja T 51'1]'1 i2J2 %1473 5i3j4 + 52'3j1 1272 5i1j3 5i4j4 + 5i2j1 5i3j2 i1j36i4j4
1) 1)

0
+ Oigj1 0irja Oinjs Oiagia + Oy OisjoOingsOiaga + injy OinjaOisjsOiaja + Oin g1 Oinja Oig s Oigia -
We proceed similarly to the anti-symmetric case. The 3-point structures are con-
structed by removing the traces from the Young projectors and contracting with anti-
symmetric projectors %(5,”-/1 Oinit, + Oiyit Oinit — %&11’25@"1 i) The 4-point structures can
be obtained by contracting two 3-point function structures with normalization constants
ng, = (1/4,-2,2,16,—4,24), chosen such that tfﬁllz-mm =1, tfﬁﬁs-lsu =1 for r = 2,3,
and tféT34.3412 =1 for r = 4,5,6. We explicitly write down +°7 for r = 1,2,3 below. Note

that we slightly permuted the indices such that the 4-point function is (S;, j, Sizjo Sisjs Sisja)-

4
t3 = (SigiaGinia + SinisOisia) (OjagsOjags + 8j1jsjajs) + N2 (Gi1i20isia 01 j20jaja)

2
- N ((52'11'252'31'4 (5j2j36j1j4 + 5j1j35j2j4) + (51'22'352'12'4 + 6i1i35i2i4) 6j1j25j3j4)) )

= 5i2i4 52'3j2 6j1j36i1j4 + 5i2i3 6i4j2 6j1j35i1j4 + 5i2i46i3j1 6j2j3 5i1j4 + 5i22'36i4j1 5j2j3 5i1j4
+ OiyiaOigjo0j1 s Oinga + OivigOiagaOjijaings + Oiriadiaji OjajaOisja + OirigOiajs OjajaOinga
— 0igig0i1 015 Oisja — OiriaOing20jijsOisga — OiniaOir 1 0jagsOisja — OiviaDinjy Oz Oizja
— GigigOi o 0 s Oiaga — DiviaOingaOjijisOinja — OinigOirji OjajaOiaja — OirigOigjs OjajaOiaga

1) 1)

+ 5i2i4 5i3j2

1) 1)
i1j30j1ja T 5i2i35i4j2 Z'1]'353'1j4 + 5i1i45i3j2 i2j35j1j4 + 5i1i35i4j25i2j3 J1ja
) 1)

1) ) 1)
- 5i2i46i1j25i3j35j1j4 - 51'11'46%'2j252’:5]'35]'1]'4 - 52'21'3 i1j25i4j35j1j4 - 51'12'3 i2j25i4j35j1j4
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tS’3

+ BiiyOisjy Oir s Ognja + OigigOisgy OirjaOjaga T OivigOigjy OingsOjoja + OiyigOiggy OingsOgnja

— OiigOiy j1 Oisjs Ojajs — OiriaOingy Oz Ojaja — OigigOiygs OigjaOasa — OiviaOingy OiajsOiajas

= 0iyigOigja01js0irja T OigisOinga Oy jaOirja + Oigiaisgy Ojajsirga T OinisOigy OjagaOiyja

+ 0i1ig 0igjo0ji1 3 Oingia + OirigOiagoOjijiaOinga + OiriaOiagi OjogaOinja + OirigOigss OjajaOinga
+ 5i2i46i1j26j1j3 13J4 + 51‘11'46%'2]'2 5j1j3 51'3]'4 + 52'21'4 1151 5j2j35i3j4 + 51'11'452'2]'1 5j2j35i3j4
+ Oigig i1 2051 5 Oiggia + OirigOingaOjijsOiaga + Oinig0irji OjajaOiaja + OirigOigjs OjajaOiaga
+ 5i2i46i3j2 113 5j1j4 + 51'21':«;61'4]'2 51’1]'3 5j1j4 + 52'11'4 5i3j2 1273 5]'1j4 + 5i1i3 6i4j2 5i2j3 5j1j4
+ Oigia i1 2 Oig s Ojuja + 0iriaOingaiajaOjija + OinigOirjoOiajaiija + OirigOigjaiajs O
+ Oigiy Ois 1 0i1 j3 0joga F OinisOiaji Oirj Ognga + OiriaOis s Oinjs O
+ 0iig Oiggy OingisOjoga + OigiaOirjy Oisjs Ojaja + OiyigOigjy Oiggy Ojaja
128

+ Oiig i1y Oiaja Ojaja + OiniaOiags Oiags Oja — 5 (Oiriadiniadjise 0jsjs)
- % (5i2i4 5j1j2 5i3j3 5i1j4 + 5i2i3 5j1j2 5i4j3 5i1j4 + 5i3i4 5i2j2 5j1j3 5i1j4 + 5i3i4 5i2j1 5j2j3 5i1j4
+ Giria 012 Oisjs Oinga + OivigOjrjoOiassOings + igiadirjoOjrjsOinja T OigiaOijr 0jajs Vi
+ 0igia 0152 0i1 s Oigja + 0iria0j1ja0ingsizja + irin0ingoOjijaOigja T OirioOiajs OjajaOissia

041300 1)

) 1)
+ 5i2¢?>6j1]'2 1173 %1474 + 51'11'3 5j1j2 1273 5i4j4 + 5i1i2 5i3j2 5j1j3 1474 + 6i1i2 5i3j1 6j2j3 5i4j4
) )

1)

+ 5i3i46i2j25i1j35j1j4 + (51‘31‘451‘1]‘25@‘2]‘3(53‘1]'4 + (51‘1,‘2 z’4j25i3j35j1j4 + 51‘11‘2 i3j25i4j35j1j4
+ 20403504134 05055 051 s T 2031350354005 0174 F OiginOingy Oi1 3 O0joja + OigiaOiyj1 Oinsz Ojinsia
+ 0i1in 01 Oisjs Ojoja 1 OirinOisgs OiajsOjajs + 204ni30i1i40j1 s Ogaga + 20i1i50ini4 051530
+ 0inig iz j1 0i1 o Ojisjia  OinigOinji iy joOjsja & OivigOisjr OinjoOjsju T OiyizOisjyOingaOjsia

+ 004041 j10i3520jinjia F 0314 0ingi OinjoOjaja + OinizOirji Oinjoljsja + 5¢1i35i2j15i4j25j3j4)
16
N2
+ 2041420334053 01 ja T 2031390353405, j50joja F OigiaOingr Oi1 joOjaja + OigiaOiyj10ingo O
+ Girin0igji OisjoOgaja + OivioOizjiOiajoOjaja T 20inis0irin0j1jo0jsja + 20i1i50i0is 051205550 )-

+ (5i3i4 5j1j2 52’2]’3 5i1j4 + 6i3i4 6j1j2 5i1j3 5i2j4 + 6i12'2 6j1j2 5i4j3 5i3j4 + 5i1i2 5j1j2 52'3j3 5i4j4

Matching tensor structures between the (12)—(34) channel and the (14)—(32) channel
gives the crossing relations:

with

~

<
|

u Ag '
(5) Gri(v,u) = M; Gy s(u,v), (B.8)
2 AN 4(N—2)(N+4) (N=3)N(N+1) (N=2)(N+1)(N+4) N(N+1)(N+6)
N-DH(N+2) (N-1)(N+2) (N—1)N(N+2) (N=-1)2(N+2) (N-1)(N+2)2 (N=1)(N+2)2
1 1 (N=2)(N+4) (N=3)(N+1) 0 (N+1)(N+6)
2(N+2) 2 2N(N+2) A(N-1)(N+2) 2(N+2)2
N N2 N244N-24  (N=3)N%(N+1) N(N+1) N2(N+1)(N+6)
2(N—2)(N+4) 2(N-2)(N+4) 2(N-2)(N+4) ~ 4(N—22(N-1)(N+4) (N-2)(N+2)(N+4) 2(N—2)(N+2)(N+4)?
1 2 _2(N+4) _N2-2N43 _ N4 _N46
3 3 3N 3(N—2)(N-1) 3(N+2) 3(N+2)
1 0 _4 _ (N3N 1 ___N(N+6)
2 N 2(N—2)(N—1) 2 2(N+2)(N+4)
1 _2 2(N-2) _N-=3_ _ _N-2_ _(N=2)N
6 3 3N 6(N—1) 6(N+2) 6(N+2)(N+4)
(B.9)
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B.3 SU(N) adjoints
Expanding the 4-point function of SU(N) adjoints (PPPP), we take the tensor structures
in (2.55) to be:

190 = 5169502502 — % (63207250203 + 67161367107 ) + %53;55;5{;5{;,

i9 713 i4 "1 99 713 d4 "1 i “13 V4 41
®,Adj, _ §J4 573 5J1 52 J3 §J1 §Ja 52 J1 574 572 §J3 J1 §J2 §J3 §J4 16 J2 §J3 574 §I1
t = 0220:20: 1057 + 62071 050057 + 67167107 +5i25i35i45i1 N35i26i35i45i1

19 Vt4 13 11 99 T4 13 11 99 713 T4 11

+% (207257207 + af201072 + 267262 ) o;

13 4 12 @3 T4 12

200 01 1407 4 6261011612 + G081 )

19 13 Tt4 11 99 713 "4 11

-2 ((fo3s 072 032572604 ) o1+ (2072672671 + 6715716 -+ o12071 531 ) o7

N 12 14 13 12 14 13 13 14 12
J2 574 §T1 Jja sJ1 572\ 573 J3 §J2 §T1 J1 573 572\ 574
+ (513 51'4 5i2 + 61'3 51'4 52'2 ) 51'1 + <613 52'4 5i2 + 51'3 51'4 51'2 ) 51'1 ) ’

D,Adj, _ siagi2 I3 Il $J3 574 £J2 §71 J2 §J3 §Ja §I1 __ §72 §J4 §1 573
t s =0y 51-3 03 51.2 d;, (51-3 a3, (51-2 + 03] (51-2 (5i3 03, — 03, 5i2 51-3 ;)

12 (8 A)a+(AS)a _ 5iagis 5i1 gi2 _ 573 574 572 501

1 712 "4 13 11 712 "4 73
vy ((essols —shotaly) ot + (sholsoly — osalsol) o
+ (S0ratzal: + ol ootz ) ofr — (st2alial: + oliallolz ) o)
AN = (ol - afol) (ohoh - ool
g (ol —olzol) ol (2ol —olosls) i) )

o+ ((of07: — odaalr) ofs 4 (3207 — ohiole) ol ) o7

3 "4 3 "4

+ (oo — ojuatz) ofs + (afesl: — ohralt) o) o
o+ ((of07 — o282 ) ol + (h0%s — B0t 682 o0
by (ool - ahial) (siols — s2elt) ).
e G U A N CRURRRRTH
s (o020 + o260 ) ot + (a0l + 61208 ) 1) o
(o707 + o3l ) ot 4 (oT207s + 631 02 ) o1t ) o7
(o0 + ozl ) ot + (oftalh + olralr) o) o
(05207 + o328 ) ol + (o3207s + 63102 672 ) o0
s (67207 + o182 (o318 + o 5{;)) . (B.10)

Matching the index structures between the (12)-(34) channel and the (14)-(32) chan-
nel, we obtain the crossing relations relating the t-channel functions to the s-channel func-
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tions, given by:

u\ Ae
(5) Gt (v, 1) = M Gy (u,v) (B.11)
with
1 oON 2(N—2)(N+2) (N-=2)(N+2) (N-3)N? N2(N+3)
(N-D(N+1) (N—-1) (N+1) (N= 1)N(N+1) (N—1)(N+1) (N71)2(N+1) (N-D)(N+1)2
1 (N—2)(N+2) 0 N+3
2N 2 2N2 2(N 1) T2(N+D)
, N N2-12 _ N . (N-3)N3 N3(N+3)
M" = 2(N—2)(N+2) 2(N— 2)(N+2) 2(N—-2)(N+2) (N—2) (N+2) ~ 2(N—2)2(N-1)(N+2) 2(N—2)(N+1)(N+2)2
r 1 0 _2 1 N3N __N(N+3)
2 N 2 2(N—2)(N71) 2(N+1)(N+2)
1 1 _ N+2 _ N+2 N+3
1 2 N 4 (N 2)(N 1) 4(N+1)
1 1 N—2 _N-2 N24N+2
1 2 2N 4N 4(N 1) A(NF)(N+2)
(B.12)
in the basis
r= <I,Adsa JAdj,, (S, A), @ (A, S)a, (A, A, (S, S)s>. (B.13)

When N = 3 the (A, A), representation does not exist and the equation reduces to

Gri(v,u) 3 5 52 Gr,s(u,v)
us Aa G agj, t(v,u) % % % 0 —% G adj,,s(u,v)
() Cagii(vu) [ =] 2 2 -2 2 3L o] G (uv) |, (B.14)
G 5,4y, (v, 1) 30 =% 5 —3% G (5,4),,s(u,0)
G(s,5).,t(v,u) i3 ¢ T ® G(5,5),,s(u,0)

while in the case that N = 2 we only have the I, Adj,, and (S, S)s representations with

e [ Gralew) L4 Gro(u,0)
(;) GAdja,t(U7U) = i % —% X GAdij(u,v) . (B.15)
G(S’S)S:t(v’u) i _% % G(S,S)S,s(uvv)

C Crossing symmetry of leading log(v) terms

In this appendix, we show that it is impossible to reproduce the logv term on the r.h.s.
of (3.18) in a unitary CFT. We can decompose I;(v,u) into contributions from operators
with different twists. At leading order in 1/N, u, and v, the crossing equation becomes

1 I —Dy, Dy—52
_QCJSC%F g)Q IOgU:U fuTeT 2 ZPT,ZQT,K(Uvu)v

u—0

= Z (hm ule— 7-751625(1 — u)) U%_A(”F(d)(ﬂ 0),

= [l . dop(o)vz =2 FD(q,0). (C.1)

2
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We used the form of the conformal block at small v and v:

gT,f(”)“) ~ k?ﬁ(l - U)U%F(d)(T,’L}),

kap(x) = 27 9F1(8, 8,28, x), (C.2)
and defined the density function
p(o) = lim uA‘ﬁ_%ZPT,gk‘gg(l —u)o(T — o). (C.3)
u—0 y

Note that this decomposition is an integral over positive contributions, since F(@) (o,v) is
positive and analytic near v — 0 and p(o) > 0 in unitary CFTs for this 4-point function.

We first show that the tail of the integral in (C.1) cannot give rise the the logv term
on the Lh.s. . This part of the argument parallels the argument given in appendix B.2
in [53]. In particular, we study the integral over operators with twists higher than 7* > 1.
Choosing a constant 1 < A < %, we have

/ dop(o)vs 2 FD(g,0) < A~ 7 / dop(o)(M) s~ F(¥(g,0),

< AT [ doplo) )T 2 F O 0,0),
2
1 I(d) -
= A —log A CA4

where we used the positivity of the integrand in the first two lines, and crossing symmetry
at the point (u, Av) in the last line. The condition A < % follows from the convergence of
the t-channel conformal block decomposition. Now we can choose A = 2—11), obtaining

Ay (d) oo ©
/T* dop(o)vz™ 20 F'9(0,0) < 20,52 T(1)2 ( log 2) (2v)2. (C.5)

So given a large but finite 7%, for* any 0 < v < 1, the sum of all operators with twists
higher than 7* is bounded by ~ v and cannot generate a log v term with finite coefficient.
Therefore, the logv can only come from a finite part [%, 7*] of the integration region.

When o < 2A,, p = 0, otherwise the r.h.s. of (C.1) will have a power law divergence
when v — 0. The only way to reproduce the logv on the l.h.s. would be to have

p(0) = ADed(c — 280) + . .., (C.6)

where
1 T@) 1
© CySIT(9)2 FU(2A4,0)

Ap > 0. (C?)

More generally, to solve the crossing equation (3.15) at the leading order in u and all orders
in v, we would need a sum of the form

p(o) = Apdsd(o — 284 — 2n) + Bpd(o — 204 — 2n), (C.8)
k

where the coefficients can be determined order by order.
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This solution, however, violates unitarity because 06(c — 2Ay4) is not a positive
distribution. In particular, there exist smooth positive functions h(c) > 0 such that
[dop(o)h(c) < 0. This implies that there are no consistent unitary CFTs satisfying
the assumptions described at the beginning of section 3.3.°
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