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1 Introduction

Recently there has been a resurgence of interest in the conformal bootstrap [1–3] approach

to studying CFTs in D > 2, including rigorous numerical bounds on scaling dimensions

and OPE coefficients [4–42], methods for constructing approximate solutions to crossing

symmetry [43–46] leading to high-precision determinations of the operator spectrum in

the 3D Ising [13, 25, 34, 47] and O(N) vector models [16, 37], and new insights into

supersymmetric CFTs, including 3D N = 1 [20, 38], N = 2 [35, 36, 40], and N = 8 [26, 48]

theories, 4D N = 1 [7, 10, 11, 21, 41], N = 2 [32, 42, 49, 50], and N = 4 [15, 18, 24, 51]

theories, and the mysterious 6D SCFTs with (2, 0) supersymmetry [39, 52].
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In addition to these studies, very general analytical constraints have been obtained

by considering the bootstrap equations in the lightcone limit. In particular, it was argued

in [53, 54] and extended in [55–63] that the bootstrap conditions imply that every CFT

containing scalars φi of dimension ∆i must contain towers of “double-twist” operators Oτ,`
in the φi × φj OPE with twist τ → ∆i + ∆j + 2n+ γn

`τm for integer n as their spin `→∞.

Here τm is the minimal twist in the φ × φ OPE and the coefficients γn can be calculated

in terms of the OPE coefficient of the leading twist operator. This general structure was

anticipated in the earlier work of [64]. Other nontrivial constraints on CFT correlators in

the Lorentzian regime have been recently studied in [65–68].

In many CFTs this leading twist operator is the stress-energy tensor, in which case

these corrections have a simple interpretation in the AdS/CFT correspondence — they

are simply the gravitational binding energies of two-particle states of large spin, which are

expected to be negative γn < 0 due to the attractive nature of gravitational interactions. If

the φi are charged under a global symmetry, then currents can also appear in the OPE, cor-

responding to gauge interactions in the bulk. The binding energy of large spin two-particle

states from gauge interactions can be computed via crossing symmetry. For example, in

the case of a complex scalar φ charged under an Abelian symmetry, one can show that

the the double-twist states in the φ×φ OPE receive positive corrections (corresponding to

repulsive like-charge interactions in AdS) while the double-twist states in the φ† × φ OPE

receive negative corrections of the same size (corresponding to attractive opposite-charge

interactions in AdS) [54].

This analysis can be extended to non-Abelian symmetries. For example, two scalars in

the fundamental representation of SU(N) can combine into families of two-particle states

transforming under the symmetric or anti-symmetric representations with binding energies

denoted by γS and γA. We will compute them as a function of the current central charge

CJ of the CFT. We will see that their sign is determined only by the representation of the

two-particle states, and that γS/γA is a function of N that is independent of the dynamic

details of the theory. Using crossing symmetry, it will be obvious that these features holds

for any symmetry group. We will also compute the binding energies when there are O(N)

and SU(N) global symmetries with fundamentals, adjoints, and symmetric tensors.

Perhaps less intuitive are the consequences of charged operator exchange — e.g., in the

case of a U(1) symmetry we will see that exchanging a charged scalar induces corrections to

the anomalous dimensions that are negative for even spins but positive for odd spins. More

generally, for non-Abelian global symmetries, exchanging charged operators induces an

intricate set of representation and spin-dependent corrections to the dimensions of double-

twist states. We will work out these corrections for O(N) and SU(N) global symmetries

with fundamentals, adjoints, and symmetric tensors. We apply these results to 4D N = 1

SQCD and the 3D O(N) vector models.

All the results outlined above do not rely on any type of large N limit. However, we

will show in section 3.3 that crossing symmetry and unitarity implies a sufficient condition

for the existence of higher spin symmetries in the large N limit of CFTs with O(N) or

SU(N) global symmetries. In particular, we predict that if a unitary CFT has CJ ∼ O(1)

as N →∞, then in this limit it must have higher spin conserved currents in order to solve
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the crossing equations, while if CJ ≥ O(N) they are not required. In the former case,

we also argue that the theory cannot contain scalar operators with dimension ∆ < d − 2

whose coefficients remain O(1) at large N . Examples of theories in both these classes can

be found.

While the results of this analysis may have applications to many other theories, we

also view this as an important precursor to the more sophisticated analysis of correlation

functions containing global symmetry currents and stress-energy tensors, which we pursue

in a separate publication [69].

This paper is organized as follows. In section 2 we briefly review the argument that

allows us to compute the dimensions of double-twist operators and apply this reasoning

to CFTs with U(1), O(N), and SU(N) global symmetries. In section 3 we discuss some

applications of our results and in section 4 we conclude. Appendix A briefly reviews the

scalar-scalar OPE. Appendix B contains further details about the tensor structures and

crossing relations that we suppress in the main text. Appendix C provides some technical

details for the analysis at large N .

2 From crossing equations to binding energies

2.1 Real scalars

We will start by reviewing the basic results of [53, 54] and establishing some notation.

Let us consider a CFT 4-point function containing two real scalars φ1 and φ2 of the

form 〈φ1(x1)φ1(x2)φ2(x3)φ2(x4)〉. Expanding this 4-point function in conformal blocks

and equating the s-channel and t-channel expansions gives a crossing relation of the form∑
O∈φ1,2×φ1,2

P 11,22
O g11,22

τ,` (u, v) = u∆2v−
1
2

(∆1+∆2)
∑

O∈φ1×φ2

P 12,21
O g12,21

τ,` (v, u), (2.1)

where the coefficients are related to the OPE coefficients as P ij,klO ≡
(−1

2

)`
λφiφjOλφkφlO, we

label the conformal blocks gij,klτ,` (u, v) by the twist τ and spin ` of the exchanged operator,

and we work in a normalization such that gτ,`(u, v) → uτ/2(1 − v)` when we take u → 0

and then v → 1. The twist of an operator is defined as τ = ∆− `, where ∆ is its conformal

dimension.

To satisfy the crossing equations, the φ1 × φ2 OPE should contain a tower of double-

twist operators that are schematically of the form On,` ∼ φ1∂
`∂2nφ2 and have twist ap-

proaching τ → ∆1 + ∆2 + 2n as ` → ∞. One can see this rigorously by considering (2.1)

in the eikonal limit u� v � 1. As in section 2.3 of [53], we will make the assumption that

this tower is isolated in the sense that there is a single operator at each value of n and `

that gives the dominant contribution to the large-` sum in the 4-point function. In this

work we will focus our attention on the n = 0 tower with lowest twist O` ≡ O0,`, though

all of the results can be straightforwardly extended to larger values of n following [59, 61].

Under this assumption, the OPE coefficients and anomalous dimensions γ` of these

operators can then be calculated using the conformal bootstrap equations by matching the

infinite sum over spins on the r.h.s. to the singularities of the minimal-twist contributions
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that are shared between the φ1 × φ1 and φ2 × φ2 OPEs on the l.h.s. , corresponding to the

approximate relation

1 + P 11,22
Om g11,22

τm,`m
(u, v) + . . . ≈ u∆2v−

1
2

(∆1+∆2)
∑
`

P 12,21
O` g12,21

∆1+∆2+γ`,`
(v, u). (2.2)

The leading contributions on the l.h.s. arise from the identity operator, and the next

contribution could either be a low-dimension scalar or the stress-energy tensor with twist

τm = d− 2, where d is the spacetime dimension.

To be more specific, as described in [53, 54], matching the identity operator contribu-

tion on the l.h.s. to the infinite sum over spins on the r.h.s. in the lightcone limit u� v � 1

fixes the leading behavior of the OPE coefficient to be

P 12,21
O` =

22−∆1−∆2
√
π

Γ(∆1)Γ(∆2)

`∆1+∆2− 3
2

22`
≡ P∆1,∆2(`). (2.3)

Next, by matching the log(v) singularity contained in the conformal block of the mini-

mal twist (non-identity) operator Om on the l.h.s. to the log(v) obtained by expanding the

anomalous dimensions of the O` operators on the r.h.s. gives

γ` = −P 11,22
Om

ξOm∆1,∆2

`τm
, (2.4)

where the coefficient

ξOm∆1,∆2
≡ 2Γ(∆1)Γ(∆2)Γ(τm + 2`m)

Γ(∆1 − τm
2 )Γ(∆2 − τm

2 )Γ( τm2 + `m)2
(2.5)

is a positive quantity. In general the correction to the anomalous dimension could have

either sign due to the product of different OPE coefficients, but in the case of stress-tensor

exchange the coefficients are fixed by the Ward identity to have the same sign, leading to

a negative-definite anomalous dimension. Note that the unitarity bound is ∆i ≥ d
2 − 1 for

scalars and τ ≥ d− 2 for operators with spin. Therefore, when the exchanged operator is

conserved, the Γ functions in the denominator force the anomalous dimensions to vanish if

either φ1 or φ2 is a free field.

In the next sections we will generalize this matching to cases where the scalars are

charged under a global symmetry. The general form of the crossing relations in this sit-

uation appeared in [9] and some aspects of this situation in the context of the lightcone

bootstrap were discussed in [54]. Here we will give a more detailed analysis, taking care to

disentangle the double-twist operators in different global symmetry representations.

2.2 Complex scalars

To begin, we start with a complex scalar φ charged under a U(1) global symmetry and

consider 4-point functions of the form 〈φ(x1)φ†(x2)φ(x3)φ†(x4)〉. Relating the (12)–(34)

channel to the (14)–(32) channel in the lightcone limit gives the relation

1 + Pεgτε,0(u, v) + PJgd−2,1(u, v) + PT gd−2,2(u, v) ≈
(u
v

)∆φ∑
`

PO`g2∆φ+γ`,`(v, u), (2.6)

– 4 –
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where we explicitly show the contributions of the leading scalar ε, the U(1) global symmetry

current Jµ, and the stress-energy tensor Tµν on the l.h.s. . The coefficients are written in

terms of the positive quantities PO ≡ 1
2`
|λφφ†O|2 and the r.h.s. runs over double-twist

operators of the form O` ∼ φ∂`φ†.
Alternatively, we can relate the (12)–(43) channel to the (13)–(42) channel, giving the

sum rule

1 + Pεgτε,0(u, v)− PJgd−2,1(u, v) + PT gd−2,2(u, v) ≈
(u
v

)∆φ∑
`+

P+

O+
`

g2∆φ+γ+
` ,`

(v, u), (2.7)

where we have implicitly relabeled the coordinates so the crossing symmetry equations take

the same form as before. In this case the current has an opposite sign on the l.h.s. and the

r.h.s. runs over charged double-twist operators of the form O+
` ∼ φ∂`φ with coefficients

P+

O+
`

≡ 1
2`
|λφφO+

`
|2. Here the notation `+ means that the sum only runs over even spins.

Finally, if there is a low-twist charged scalar c exchanged in the φ × φ OPE then by

switching the role of u and v we also have the condition

P+
c gτc,0(u, v) ≈

(u
v

)∆φ∑
`

PO`(−1)`g2∆φ+γ`,`(v, u). (2.8)

Matching the identity in (2.6) and (2.7) yields the mean-field theory behavior

PO` =
1

2
P+

O+
`

= P∆φ,∆φ
(`), (2.9)

while matching terms of order u
d−2

2 log(v) on both sides gives the shifts in the anomalous

dimensions

δTγ` = δTγ
+
` = −

d2∆2
φ

4(d− 1)2CTS2
d

ξT∆φ,∆φ

`d−2
(2.10)

arising from stress-tensor exchange, and the shifts

δJγ` = −δJγ+
` = − 1

2CJS2
d

ξJ∆φ,∆φ

`d−2
(2.11)

arising from current exchange. We have inserted the value of PT and PJ as determined

by the Ward identity where Sd = 2π
d
2

Γ( d
2

)
is the area of the d-1 dimensional sphere. Our

normalization of the conserved currents and stress energy tensor differ by a factor of S2
d

in comparison to previous work on the conformal bootstrap (see appendix A for our con-

ventions). The corrections from the stress-tensor are universal and negative while the

corrections due to current exchange to the two double-twist states have opposite signs but

the same magnitude.

In the bulk, the anomalous dimensions (2.10) and (2.11) correspond to the binding

energies between a pair of well separated particles arising from gravitational and gauge

interactions. If the weak gravity conjecture holds, then there should exist a particle in the

bulk for which the gravitational attraction is dominated by the U(1) gauge repulsion, or

– 5 –
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δTγ
+
` +δJγ

+
` > 0. Note that we assumed the operator φ to have unit charge. If we consider

instead an operator φq with carrying charge q, then this condition holds if

∆2
φq

q2
<

(d− 1)2

2d(d+ 1)
. (2.12)

At d = 4, this matches with the kinematic version of the weak gravity conjecture

found in [70].

We also find the contribution to the anomalous dimensions from the exchange of a

light scalar by matching terms of order u
∆ε
2 log(v):

δεγ` = δεγ
+
` = −Pε

ξε∆φ,∆φ

`∆ε
. (2.13)

Finally, by adding or subtracting (2.8) from (2.6), we can project onto the even or odd spin

uncharged double-twist operators. By matching terms of order u
τc
2 log(v) we then see that

the existence of the charged scalar c induces contributions of opposite sign to the even-spin

and odd-spin anomalous dimensions:

δcγ`+ = −δcγ`− = −P+
c

ξc∆φ,∆φ

`∆c
. (2.14)

At first sight, the positive contributions to the anomalous dimensions of odd-spin

operators in (2.14) may look worrying in light of the Nachtmann theorem [54, 71] regarding

convexity of the leading twist operators. However, it is important to note that the argument

only applies to operators of even spin in reflection-positive OPEs, such as φ† × φ.1

2.3 O(N)

In this section we will generalize the above discussion to the situation where the CFT has

an O(N) global symmetry.

2.3.1 Fundamentals

Let us first take φi to be in the fundamental representation of O(N). This is the situation

considered in the context of the numerical bootstrap in e.g. [9–11, 16, 23, 31, 33, 37]. We

will start by rewriting the crossing conditions used in these works in a form that is suitable

for our analysis.

Concretely, if we write the generic tensor structure of the 4-point function and switch

x2 ↔ x4 and i2 ↔ i4, we obtain the condition

x
2∆φ

12 x
2∆φ

34 〈φi1(x1)φi2(x2)φi3(x3)φi4(x4)〉

= δi1i2δi3i4Is(u, v) + (δi1i4δi2i3 − δi1i3δi2i4)As(u, v)

+

(
δi1i4δi2i3 + δi1i3δi2i4 −

2

N
δi1i2δi3i4

)
Ss(u, v) (2.15)

1In the notation of [54], the reason is that the amplitude A(ν, q2) =
∫
ddyeiqy〈P |Tφ†(y)φ(0)|P 〉 with

ν ≡ 2q ·P is no longer symmetric under ν → −ν, so the moment µ`(q
2) receives distinct contributions from

both branch cuts in the complex ν plane. This gives µ`(q
2) = 1

2

∫ 1

0
dxx`−1

[
ImA(x, q2) + (−1)`ImA(−x, q2)

]
,

with x ≡ −q2/ν, which is monotonic only for even ` after imposing the unitarity condition ImA(x, q2) > 0.
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=
(u
v

)∆φ
(
δi1i4δi3i2It(v, u) + (δi1i2δi4i3 − δi1i3δi2i4)At(v, u)

+

(
δi1i2δi4i3 + δi1i3δi2i4 −

2

N
δi1i4δi3i2

)
St(v, u)

)
. (2.16)

Solving for the functions in the t-channel expansion then gives(u
v

)∆φ

It(v, u) =
1

N
Is(u, v) +

(
1− 1

N

)
As(u, v) +

(
1 +

1

N
− 2

N2

)
Ss(u, v),(u

v

)∆φ

At(v, u) =
1

2
Is(u, v) +

1

2
As(u, v)− 1

2

(
1 +

2

N

)
Ss(u, v),(u

v

)∆φ

St(v, u) =
1

2
Is(u, v)− 1

2
As(u, v) +

1

2

(
1− 2

N

)
Ss(u, v). (2.17)

Focusing on the regime u � v � 1, in the (12)–(34) channel we have contributions

from the identity operator, singlet scalars ε, symmetric tensor scalars tij , the O(N) current

Jµ, and the stress tensor Tµν :

Is(u, v) ≈ 1 + Pεg∆ε,0(u, v) + PT gd−2,2(u, v),

As(u, v) ≈ PJgd−2,1(u, v),

Ss(u, v) ≈ Ptg∆t,0(u, v). (2.18)

In all cases we define the coefficients PO by projecting the full contraction of the 3-

point structures 1
2`
λφi1φi2OIλOIφi3φi4

from the conformal OPE onto the tensor structures

in (2.15).

On the other hand, the (14)–(32) channel has three types of double-twist operators in

different O(N) representations:

OI` = φi∂
`φi, OA` = φ[i∂

`φj], OS` = φ(i∂
`φj) −

1

N
δijφk∂

`φk, (2.19)

and the functions It(u, v), At(u, v), and St(u, v) sum over these contributions using the

cross-channel conformal blocks

It(v, u) ≈
∑
`+

POI`
g2∆φ+γI` ,`

(v, u),

At(v, u) ≈
∑
`−

POA`
g2∆φ+γA` ,`

(v, u),

St(v, u) ≈
∑
`+

POS`
g2∆φ+γS` ,`

(v, u), (2.20)

where all of the coefficients are real and positive in unitary theories.

Now by matching the identity contribution in (2.17) as in the previous sections, we

can easily read off the asymptotic behavior of the OPE coefficients to be

N

2
POI`

= POA`
= POS`

= P∆φ,∆φ
(`). (2.21)

– 7 –
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Similarly, by matching terms of order u
d−2

2 log(v) in (2.17) we obtain the corrections to the

anomalous dimensions from stress-tensor exchange

δTγ
I
` = δTγ

A
` = δTγ

S
` = −

d2∆2
φ

4(d− 1)2CTS2
d

ξT∆φ,∆φ

`d−2
. (2.22)

As above, we have inserted the value of PT as determined by the Ward identity (see

appendix A). Again we see that the corrections due to stress-tensor exchange are universal

and negative, which is consistent with a universal and attractive gravitational interaction

in the bulk. The corrections due to the current exchange are

1

N − 1
δJγ

I
` = δJγ

A
` = −δJγS` = − 1

2CJS2
d

ξJ∆φ,∆φ

`d−2
. (2.23)

These shifts exhibit more structure. First, the signs of the corrections are determined

by the representation of the composite operator. The singlet representation always has the

largest negative anomalous dimension. This is consistent with our intuition about gauge

interactions in the bulk, that two-particle states carrying the minimum charge are less

energetic than other configurations. Another feature is that the ratios between different

gauge binding energies are determined by the group structure and are independent of the

dynamical details of the theory.

For scalar exchange the corrections depend on the O(N) representation of the scalar.

Singlets give a universal contribution

δεγ
I
` = δεγ

A
` = δεγ

S
` = −Pε

ξε∆φ,∆φ

`∆ε
, (2.24)

while symmetric tensor exchange gives corrections of either sign that depend on N

N

N2 +N − 2
δtγ

I
` = − N

N + 2
δtγ

A
` = +

N

N − 2
δtγ

S
` = −Pt

ξt∆φ,∆φ

`∆t
. (2.25)

Note that in the special case that N = 2, these results reduce to the U(1) case consid-

ered in the previous section after identifying Pc = 2Pt. Similar to the discussion in [11, 37],

the results are also valid in the special cases N = 3, 4, where the additional identifications

and possible structures involving ε-tensors do not lead to any modification of these results.

2.3.2 Adjoints

Next let us consider the case of 4-point functions of O(N) adjoints 〈AAAA〉. The adjoint

representation of O(N) is the same as the N(N−1)
2 -dimensional anti-symmetric representa-

tion , whose tensor product with itself admits the decomposition

⊗ = I ⊕ ⊕ ⊕ ⊕ ⊕ , (2.26)

– 8 –
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where all symmetrizations have traces removed. Double-twist operators Or` in each of these

representations appear in the A×A OPE, with spins restricted to be even/odd according

to (+,−,+,+,−,+) in the order of representations shown in (2.26).

Again we can decompose the 4-point function into a sum over tensor structures

x2∆A
12 x2∆A

34 〈Ai1j1(x1)Ai2j2(x2)Ai3j3(x3)Ai4j4(x4)〉 =
∑
r

(tA,r)i1i2i3i4j1j2j3j4G
A,r(u, v),

(2.27)

where r runs over each possible representation. By expanding GA,r(u, v) =
∑
POrgτ,`(u, v)

in conformal blocks, we can write out the crossing symmetry conditions relating the (12)–

(34) OPE to the (14)–(32) OPE. We give the detailed form of the tensor structures and

crossing equations in appendix B.

Applying the same logic, we first match the contributions of the identity operator,

fixing the asymptotic behavior of the coefficients to be

POr` = P∆A,∆A
(`)

(
4

N(N − 1)
,

1

N − 2
,

1

N − 2
,

2

3
, 1,

1

3

)
(2.28)

where again we show the representations in the same order as (2.26).

Matching the stress-tensor block, we again see universal contributions to the anomalous

dimensions

δTγ
r
` = −

d2∆2
A

4(d− 1)2CTS2
d

ξT∆A,∆A

`d−2
(1, 1, 1, 1, 1, 1) , (2.29)

for each representation r, but representation-dependent corrections from current exchange

δJγ
r
` = − 1

2CJS2
d

ξJ∆A,∆A

`d−2
(2N − 4, N − 2, N − 4,−2, 0, 4) . (2.30)

We again notice that very similar structures show up as in the fundamental case. Note in

particular that the fifth family of double trace states (with a “hook”-like Young diagram)

receive no anomalous dimensions at leading order in the large spin expansion. In a weakly-

coupled bulk description, this result can be understood as a cancellation between the

binding energy of the symmetrized and anti-symmetrized fundamental “components” of

the adjoint representation.

From exchange of a scalar φ in representation r′, we obtain a set of shifts described by

the matrix

δr′γ
r
` = − Pφr′

ξφ∆A,∆A

`∆φ
(2.31)

×


1 1 1 1 1 1

2N − 4 N − 2 N − 4 −2 0 4
2(N+2)(N−2)

N
(N+2)(N−4)

N
N2−8
N

2N−8
N − 8

N −4N+8
N

(N+2)(N+1)(N−3)
2(N−1) − (N+2)(N+1)(N−3)

2(N−1)(N−2)
(N+1)(N−3)(N−4)

2(N−1)(N−2)
N2−6N+11

(N−1)(N−2) −
(N+1)(N−4)
(N−1)(N−2)

(N+2)(N+1)
(N−1)(N−2)

(N+2)(N−3)
2 0 −2(N−3)

(N−2) −N−4
N−2 1 −N+2

N−2
(N−2)(N−3)

2 N − 3 −(N − 3) 1 −1 1

 ,
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where e.g. the first row corresponds to exchanging a singlet, the second row corresponds

to exchanging an anti-symmetric representation, etc. Note that in a 4-point function of

identical scalars, Pφr = 0 for r = , . But they may be nonzero when the external

scalars are not identical.

Finally, we mention a few special cases. For N = 4, the 4-index anti-symmetric

representation can be identified with an SO(4) singlet that is odd under the Z2 subgroup of

O(4), while the hook representation can be identified with a Z2 odd symmetric tensor. We

have checked that the results after these identifications are the same as the general results

at N = 4.2 Also note that in (2.30), the anomalous dimensions of the aforementioned pairs

become degenerate when N = 4. For N = 2 or N = 3, the adjoint is equivalent to the

singlet/fundamental and the results from the previous sections can be applied.

2.3.3 Symmetric tensors

We can also repeat the analysis for 4-point functions of O(N) symmetric tensors 〈SSSS〉,
where we have the tensor product

⊗ = I ⊕ ⊕ ⊕ ⊕ ⊕ . (2.32)

In these cases the spins of the double-twist operators Or` are restricted to (+,−,+,+,−,+)

in the order of representations shown in (2.32). We again decompose the 4-point function

into tensor structures

x2∆S
12 x2∆S

34 〈Si1j1(x1)Si2j2(x2)Si3j3(x3)Si4j4(x4)〉 =
∑
r

(tS,r)i1i2i3i4j1j2j3j4G
S,r(u, v), (2.33)

and expand GS,r(u, v) =
∑
POrgτ,`(u, v) in conformal blocks, writing the structures and

crossing relations explicitly in appendix B.

Matching the identity contribution, the asymptotic behavior of the double-twist con-

formal block coefficients is determined to be

POr` = P∆S ,∆S
(`)

(
4

(N + 2)(N − 1)
,

1

N + 2
,

N

(N + 4)(N − 2)
,

2

3
, 1,

1

3

)
. (2.34)

Matching the stress-tensor contribution gives universal contributions to the anomalous

dimensions

δTγ
r
` = −

d2∆2
φ

4(d− 1)2CTS2
d

ξT∆S ,∆S

`d−2
(1, 1, 1, 1, 1, 1) , (2.35)

while the current gives

δJγ
r
` = − 1

8CJS2
d

ξJ∆S ,∆S

`d−2
(2N,N + 2, N, 2, 0,−4) . (2.36)

2If the theory has SO(N) instead of O(N) symmetry, then for N ≤ 8, the 4-point function may have

additional structures containing ε tensors, but they only transform into themselves under crossing. So our

crossing equations and results still apply. The ε structures will generate another set of crossing equations

that may produce interesting constraints, but we will leave this for future study.
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Finally, exchanging a scalar φ in a representation r′, gives contributions

δr′γ
r
` = − Pφr′

ξφ∆S ,∆S

`∆φ
× (2.37)

×



1 1 1 1 1 1

2N N + 2 N 2 0 −4
2(N+4)(N−2)

N
(N+4)(N−2)

N
N2+4N−24

N −2N+8
N − 8

N
4N−8
N

N(N+1)(N−3)
2(N−1)

(N+1)(N−3)
2(N−1) −N(N+1)(N−3)

2(N−1)(N−2)
N2−2N+3

(N−1)(N−2) −
N(N−3)

(N−1)(N−2)
N−3
N−1

(N+4)(N+1)(N−2)
2(N+2) 0 −2(N+1)

(N+2) −N+4
N+2 1 −N−2

N+2
N(N+6)(N+1)

2(N+2) − (N+6)(N+1)
(N+2)

N(N+6)(N+1)
(N+4)(N+2)

N+6
N+2 − N(N+6)

(N+4)(N+2)
N(N−2)

(N+4)(N+2)


.

Note that in a 4-point function of identical scalars, Pφr = 0 for r = , . But they may

be nonzero when the external scalars are not identical.

2.4 SU(N)

Next we will study the double-twist asymptotics for CFTs with scalars charged under an

SU(N) global symmetry, focusing on the most common cases of fundamentals and adjoints.

2.4.1 Fundamentals

To begin, let us consider a 4-point function containing SU(N) fundamentals and their

conjugates, which can be decomposed in singlet and adjoint contributions in either the

(12)–(34) channel or the (14)–(32) channel as

x
2∆φ

12 x
2∆φ

34 〈φi1(x1)φ†i2(x2)φi3(x3)φ†i4(x4)〉

= δi2i1δ
i4
i3
Is(u, v) +

(
δi4i1δ

i2
i3
− 1

N
δi2i1δ

i4
i3

)
Adjs(u, v) (2.38)

=
(u
v

)∆φ
(
δi4i1δ

i2
i3
It(v, u) +

(
δi2i1δ

i4
i3
− 1

N
δi4i1δ

i2
i3

)
Adjt(v, u)

)
.

Solving for the t-channel contributions gives the crossing equations(u
v

)∆φ

It(v, u) =
1

N
Is(u, v) +

(
1− 1

N2

)
Adjs(u, v),(u

v

)∆φ

Adjt(v, u) = Is(u, v)− 1

N
Adjs(u, v). (2.39)

In the lightcone limit, we can approximate

Is(u, v) ≈ 1 + Pεg∆ε,0 + PT gd−2,2(u, v),

Adjs(u, v) ≈ Pag∆a,0(u, v) + PJgd−2,1(u, v), (2.40)

where we have included the contributions of the lowest-twist singlet scalar ε and adjoint

scalar a.
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On the other hand, the t-channel functions sum over the contributions of the double-

twist operators OI` ∼ φi∂`φ†i and OAdj
` ∼ φi∂`φ†j :

It(v, u) ≈
∑
`+

POI
`+
g2∆φ+γI

`+
(v, u) +

∑
`−

POI
`−
g2∆φ+γI

`−
(v, u),

Adjt(v, u) ≈
∑
`+

POAdj

`+
g

2∆φ+γAdj

`+
(v, u) +

∑
`−

POAdj

`−
g

2∆φ+γAdj

`−
(v, u), (2.41)

where for clarity we have written separately the even-spin and odd-spin contributions.

Let us finally consider the constraint connecting the symmetric and anti-symmetric

tensors in φ× φ to the singlet and adjoint operators in φ× φ†:

x
2∆φ

12 x
2∆φ

34 〈φi1(x1)φi2(x2)φ†i3(x3)φ†i4(x4)〉

=
(
δi3i1δ

i4
i2

+ δi4i1δ
i3
i2

)
S(u, v) +

(
δi4i1δ

i3
i2
− δi3i1δ

i4
i2

)
A(u, v) (2.42)

=
(u
v

)∆φ
(
δi4i1δ

i3
i2
Ĩ(v, u) +

(
δi3i1δ

i4
i2
− 1

N
δi4i1δ

i3
i2

)
Ãdj(v, u)

)
,

giving the conditions(u
v

)∆φ

Ĩ(v, u) =

(
1 +

1

N

)
S(u, v) +

(
1− 1

N

)
A(u, v),(u

v

)∆φ

Ãdj(v, u) = S(u, v)−A(u, v), (2.43)

or equivalently on switching u↔ v(u
v

)∆φ

S(v, u) =
1

2
Ĩ(u, v) +

1

2

(
1− 1

N

)
Ãdj(u, v),(u

v

)∆φ

A(v, u) =
1

2
Ĩ(u, v)− 1

2

(
1 +

1

N

)
Ãdj(u, v). (2.44)

Both (2.43) and (2.44) give interesting information in the u� v � 1 limit.

In particular, the r.h.s. of (2.43) at small u probes the low-twist scalar symmetric

tensors s, giving

S(u, v) ≈ P+
s g∆s,0(u, v), (2.45)

while the r.h.s. of (2.44) probes the low-twist singlets and adjoints, with the current having

an opposite relative sign compared to (2.40),

Ĩ(u, v) ≈ 1 + Pεg∆ε,0 + PT gd−2,2(u, v),

Ãdj(u, v) ≈ Pag∆a,0(u, v)− PJgd−2,1(u, v). (2.46)

On the other hand, the l.h.s. of (2.43) distinguishes between the even- and odd-spin

uncharged double-twist operators

Ĩ(v, u) ≈
∑
`+

POI
`+
g2∆φ+γI

`+
(v, u)−

∑
`−

POI
`−
g2∆φ+γI

`−
(v, u),

Ãdj(v, u) ≈
∑
`+

POAdj

`+
g

2∆φ+γAdj

`+
(v, u)−

∑
`−

POAdj

`−
g

2∆φ+γAdj

`−
(v, u), (2.47)
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while the l.h.s. of (2.44) probes the symmetric and anti-symmetric tensor double-twist

operators OS`+ ∼ φ(i∂
`φj) and OA`− ∼ φ[i∂

`φj],

S(v, u) ≈
∑
`+

P+
OS
`+
g2∆φ+γS

`+
(v, u),

A(v, u) ≈ −
∑
`−

P+
OA
`−
g2∆φ+γA

`−
(v, u), (2.48)

Matching the identity operator on the r.h.s. of (2.39) and (2.44) gives the asymptotic

behavior of the OPE coefficients

POAdj
`

= NPOI`
= POS

`+
= P+

OA
`−

= P∆φ,∆φ
(`), (2.49)

while matching the log(v) singularities as expected gives universal negative shifts in the

anomalous dimensions from stress-tensor exchange and singlet scalar exchange

δTγ
r
` = −

d2∆2
φ

4(d− 1)2CTS2
d

ξT∆φ,∆φ

`d−2
, δεγ

r
` = −Pε

ξε∆φ,∆φ

`∆ε
, (2.50)

shifts from current and adjoint scalar exchange of a similar form given by

N

N2 − 1
δJγ

I
` = −NδJγAdj

` = − N

N − 1
δJγ

S
`+ =

N

N + 1
δJγ

A
`− = − 1

2CJS2
d

ξJ∆φ,∆φ

`d−2
, (2.51)

N

N2 − 1
δaγ

I
` = −NδaγAdj

` = − N

N − 1
δaγ

S
`+ =

N

N + 1
δaγ

A
`− = −Pa

ξa∆φ,∆φ

`∆a
, (2.52)

and shifts to γI` and γAdj
` from symmetric-tensor scalar exchange that gives opposite sign

contributions to even and odd spins

1

N + 1
δsγ

I
`+ = − 1

N + 1
δsγ

I
`− = δsγ

Adj
`+

= −δsγAdj
`− = −P+

s

ξs∆φ,∆φ

`∆s
. (2.53)

2.4.2 Adjoints

Finally we consider the situation of 4-point functions of SU(N) adjoints Φj
i . This case was

considered in the numerical 4D bootstrap in [21]. Following the notation of [21], the tensor

product contains 7 irreducible representations

Adj ⊗Adj = I ⊕Adja ⊕Adjs ⊕
(
(S, Ā)a ⊕ (A, S̄)a

)
⊕ (A, Ā)s ⊕ (S, S̄)s, (2.54)

where the subscript s or a denotes whether the representation is in the symmetric or

anti-symmetric product of the adjoints and we group together
(
(S, Ā)a ⊕ (A, S̄)a

)
because

they are conjugates and will have identical dimensions and OPE coefficients. In the case

of identical adjoints, the representations on the r.h.s. of (2.54) can appear with spins

(+,−,+,−,+,+).

As before, we decompose the 4-point function into tensor structures

x2∆Φ
12 x2∆Φ

34 〈Φ
j1
i1

(x1)Φj2
i2

(x2)Φj3
i3

(x3)Φj4
i4

(x4)〉 =
∑
r

(tΦ,r)j1j2j3j4i1i2i3i4
GΦ,r(u, v), (2.55)
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and expand GΦ,r(u, v) =
∑
POrgτ,`(u, v) in conformal blocks, writing the structures and

crossing relations explicitly in appendix B.

Matching the identity gives the asymptotic coefficients of the double-twist operators

POr` = P∆Φ,∆Φ
(`)

(
2

(N + 1)(N − 1)
,

1

N
,

N

(N + 2)(N − 2)
, 1,

1

2
,

1

2

)
, (2.56)

matching the stress-tensor gives a universal shift

δTγ
r
` = −

d2∆2
φ

4(d− 1)2CTS2
d

ξT∆Φ,∆Φ

`d−2
(1, 1, 1, 1, 1, 1) , (2.57)

matching the currents gives the shifts

δJγ
r
` = − 1

2CJS2
d

ξJ∆Φ,∆Φ

`d−2
(2N,N,N, 0, 2,−2) , (2.58)

and matching contributions from a scalar φ in representation r′ gives the matrix

δr′γ
r
` = − Pφr′

ξφ∆Φ,∆Φ

`∆φ
(2.59)

×



1 1 1 1 1 1

2N N N 0 2 −2
2(N+2)(N−2)

N
(N+2)(N−2)

N
N2−12
N − 4

N −2N+4
N

2N−4
N

(N + 2)(N − 2) 0 −2 1 −N+2
N −N−2

N
N2(N−3)

(N−1)
N(N−3)
N−1 − N2(N−3)

(N−2)(N−1) −
N(N−3)

(N−2)(N−1)
N2−N+2

(N−2)(N−1)
N−3
N−1

N2(N+3)
(N+1) −N(N+3)

(N+1)
N2(N+3)

(N+2)(N+1) −
N(N+3)

(N+2)(N+1)
N+3
N+1

N2+N+2
(N+2)(N+1)


.

Note that in a 4-point function of identical scalars, Pφr = 0 for r = Adja or (S, Ā)a⊕(A, S̄)a.

But they may be nonzero when the external scalars are not identical.

In the case of SU(3) the (A, Ā)s representation does not exist but otherwise the results

apply with N = 3. In the case of SU(2) only the (S, S̄)s, Adja, and trivial representations

exist, but the results for these operators are also correct after setting N = 2.3

3 Applications

3.1 4D N = 1 SQCD

In this section, we apply our results to interacting 4D N = 1 superconformal field theories

(SCFTs). The supersymmetric unitarity bound for real operators, ∆ ≥ `+ 2, forbids real

scalars with twist lower than that of conserved currents. For interacting SCFTs, a real

scalar with ∆ = 2 belongs to a supermultiplet containing a conserved current.

For concreteness, we consider N = 1 SCFTs with an SU(F ) global symmetry and

focus on the 4-point function 〈φ̃a1 φ̃a2 φ̃a3 φ̃a4〉, where φ̃a is the canonically-normalized lowest

3Comparing to the O(3) case, there is an apparent factor of 2 arising from different normalization of the

generator and the current central charge. In our conventions for SU(2), fabc =
√

2εabc and C
SU(2)
J = 2C

O(3)
J .

See appendix A for more details.
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τ τ1 κ κ1 c

3N
2

F 6N2 N N 1
16

(
7N2 − 9N

4

F 2 − 2
)

Table 1. The central charges and anomaly coefficients of N = 1 SQCD.

component of the SU(F ) current multiplet and a is an adjoint index. For the expansion of

this 4-point function, we have

PT =
1

90c
, PJ =

1

6τ
, PφAdjs =

1

2

κ2

τ3
, PφI =

2κ2
1

τ2τ1
, (3.1)

where c = CT π
4

40 is the coefficient of the Weyl anomaly in 〈Tµµ 〉 = c
16π2 (Weyl)2 −

a
16π2 (Euler)2. CJ = 3τ

4π4 is the flavor central charge for SU(F ). In SCFTs τ is related

to the SU(F )2U(1)R anomaly. τ1 is the similar quantity for a U(1) current contained in

the multiplet denoted as φI . κ and κ1 are the coefficients of the SU(F )3 and SU(F )2U(1)

anomalies, respectively.

Let us now consider the specific case of N = 1 SQCD, which has an SU(F )×SU(F )×
U(1)B×U(1)R global symmetry together with an SU(N) gauge symmetry. The theory flows

to an interacting conformal fixed point when 3
2N < F < 3N [72]. The relevant coefficients

can be computed by anomaly matching and are given by: Using these OPE coefficients,

we can work out the anomalous dimensions of large spin double-twist operators φ̃a∂
`φ̃b

at leading order in 1/`2, where φ̃a,b are the lowest components of the current multiplet

corresponding to one of the SU(F ) flavor symmetries. For F = 3, we can only have N = 2

on the boundary of the conformal window where the magnetic theory is free, so our analysis

does not apply. For F ≥ 4, the result is

γ1 = − 2

27

1

`2

(
144F 2

7N2F 2 − 9N4 − 2F 2
+

18N2F 2 + F 4 − 3F 2

N4

)
, (3.2)

γ2 = − 2

27

1

`2

(
144F 2

7N2F 2 − 9N4 − 2F 2
+

9N2F 2 + 1
2F

4 − F 2

N4

)
, (3.3)

γ3 = − 2

27

1

`2

(
144F 2

7N2F 2 − 9N4 − 2F 2
+

9N2F 2 + 1
2F

4 − 5F 2

N4

)
, (3.4)

γ4 = − 2

27`2

(
144F 2

7N2F 2 − 9N4 − 2F 2
− F 2

N4

)
, (3.5)

γ5 = − 2

27

1

`2

(
144F 2

7N2F 2 − 9N4 − 2F 2
+

18N2F − F 3 − F 2

N4

)
, (3.6)

γ6 = − 2

27

1

`2

(
144F 2

7N2F 2 − 9N4 − 2F 2
− 18N2F − F 3 + F 2

N4

)
. (3.7)

In these expressions the index r of γr labels the representation of the double-twist operator

under SU(F ) as given in (2.54).

Note that the first term in these results is from the stress tensor exchange and is the

same across different representations. Going to the Veneziano limit with ` � N,F � 1
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and F/N fixed to be in the conformal window, we have at leading order

γ1 = 2γ2 = 2γ3 = − 2

27

1

`2

[(
F

N

)4

+ 18

(
F

N

)2
]

+O
(

1

N2

)
, (3.8)

γ4 = − 2

27

1

`2
1

N2

[
144

(
F
N

)2
7
(
F
N

)2 − 9
−
(
F

N

)2
]

+O
(

1

N4

)
, (3.9)

γ5 = −γ6 = − 2

27

1

`2
1

N

[
18

(
F

N

)
−
(
F

N

)3
]

+O
(

1

N3

)
. (3.10)

Here we see that the anomalous dimensions of the singlet and adjoint representations

(r = 1, 2, 3) have no additional suppression at large N while the anomalous dimensions

of the remaining representations fall off like 1/N or 1/N2. This is reflecting the fact that

the former states correspond to “generalized single trace” operators with neighboring color

and flavor indices contracted, while the latter representations describe “generalized double

trace” operators. See e.g. [73] for a discussion of this large-N counting in the Veneziano

limit of SQCD. The existence of these “generalized single trace” operators is still consistent

with large-N factorization because their OPE coefficients become suppressed at large N .

3.2 3D O(N) vector models

Our analysis can also be applied to the 3D O(N) vector models in the regime ` � N

(for N � ` approximate higher spin currents must also be included, as we discuss in the

next subsection). If we consider 4-point functions of the O(N) fundamental φi, then our

analysis gives

γI` = −

(
9∆2

φ

28CTπ2
ξT∆φ,∆φ

+
N − 1

32CJπ2
ξJ∆φ,∆φ

)
1

`
− Pε

ξε∆φ,∆φ

`∆ε
− N2−N+2

N
Pt
ξt∆φ,∆φ

`∆t
+ . . . ,

γA` = −

(
9∆2

φ

28CTπ2
ξT∆φ,∆φ

+
1

32CJπ2
ξJ∆φ,∆φ

)
1

`
− Pε

ξε∆φ,∆φ

`∆ε
+
N + 2

N
Pt
ξt∆φ,∆φ

`∆t
+ . . . ,

γS` = −

(
9∆2

φ

28CTπ2
ξT∆φ,∆φ

− 1

32CJπ2
ξJ∆φ,∆φ

)
1

`
− Pε

ξε∆φ,∆φ

`∆ε
− N − 2

N
Pt
ξt∆φ,∆φ

`∆t
+ . . . ,(3.11)

where we included the stress tensor, O(N) current, and the leading scalar singlet and O(N)

symmetric tensor.

In table 2 we summarize some numerical data for the most interesting cases N =

2, 3. In our normalization, the free field theory values are C free
T = 3

32π2 and C free
J = 1

8π2 .

Unfortunately, we are not aware of determinations of the coefficients Pε and Pt, but it is

likely that they can be extracted from future conformal bootstrap studies of the O(N)

vector models.

Plugging in numbers, we see that for the O(2) model we have the corrections:

γI` ' −
0.00310

`
− Pt

0.04389

`1.237
− Pε

0.13388

`1.5112
,

γA` ' −
0.00310

`
+ Pt

0.04389

`1.237
− Pε

0.13388

`1.5112
,

γS` ' −
0.00005

`
− Pε

0.13388

`1.5112
, (3.12)
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CT /NC
free
T CJ/C

free
J ∆φ ∆ε ∆t

O(2) 0.94365(13) [16] 0.9050(16) [37] 0.51905(10) [74] 1.51124(22) [74] 1.237(4) [75]

O(3) 0.94418(43) [16] 0.9065(27) [37] 0.51875(25) [76] 1.5939(10) [76] 1.211(3) [75]

Table 2. Numerical data for the O(2) and O(3) vector models.

while for the O(3) model we have:

γI` ' −
0.00396

`
− Pt

0.07423

`1.211
− Pε

0.18524

`1.5939
,

γA` ' −
0.00249

`
+ Pt

0.02749

`1.211
− Pε

0.18524

`1.5939
,

γS` ' +
0.00046

`
− Pt

0.00550

`1.211
− Pε

0.18524

`1.5939
. (3.13)

Interestingly, the twist 1 contribution to γS` appears to change sign between the O(2)

and the O(3) model. On the other hand, the coefficients of the twist 1 terms are likely

somewhat suppressed relative to the scalar contributions (assuming O(1) OPE coefficients),

so at moderate values of ` we expect the latter to dominate.

In the regime of moderate ` we also expect the contributions of higher spin operators

of minimal twist to become more important. In [63] it was seen that these will lead to

corrections of the form δγ` ∼ f(log `)
` for some function f(log `) that could be computed in

an expansion in the limit of approximate higher spin symmetry. In our context including

only the twist 1 contributions, as above, corresponds to taking f(log `)→ f(∞). It would

be interesting to better understand the form of these higher spin corrections.

3.3 CFTs with a large global symmetry

A generic feature of our results (2.23), (2.30), (2.36), (2.51), (2.58) is that the anomalous

dimensions of certain double-twist operators grow with the size N of the global symmetry

group O(N) or SU(N). This implies that our results are only valid when `� N unless CJ
grows fast enough to cancel this effect. Otherwise, some of these anomalous dimensions

would violate the unitarity bounds and/or cannot be used as perturbative parameters.

It is extremely interesting to understand what happens when ` ∼ N , but this regime

is subtle to work with because the small u expansion is not clearly separated from the

large N expansion. In this section, we focus instead on the opposite regime with ` � N ,

where N is sent to infinity. What we will see is that, under a set of assumptions, crossing

symmetry requires the existence of an infinite number of conserved higher spin currents

at N → ∞ and that scalars with twist smaller than d − 2 cannot appear in the OPE in

this limit.

To be concrete, we will demonstrate this idea in a unitary CFT with a SU(N) global

symmetry. We study the 4-point function of fundamental and antifundamental scalars,

but the same argument applies to all cases where the anomalous dimensions at ` � N

grow with N . The first assumption is that there exist scalar operators transforming under

the global symmetry. This is not essential since similar behavior is seen when studying
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the 4-point function of conserved currents [69]. The second assumption is that 4-point

functions of the canonically normalized operators have well-defined limits when N → ∞.

In the SU(N) 4-point function we are considering, this means that Is(u, v) and Adjs(u, v)

do not blow up as N → ∞. This for example implies that NCT → ∞ as N → ∞, which

is natural because CT is generically expected to grow as a function of N . Finally, the key

assumption we need is CJ → O(1) as N →∞. That is, we will assume CJ does not grow

with N for N large.

For free field theories these assumptions hold if we only have a finite number of scalars

and fermions in the fundamental representation of the flavor symmetry group. In general,

the contribution of a free scalar or fermion in representation r of the flavor symmetry

group to CJ is of order C(r), or the index of the representation [77]. The index is defined

as Tr(T ar T
b
r ) = C(r)δab and is only independent of N for the fundamental representation.

For interacting theories with a slightly broken higher spin symmetry, e.g. the critical O(N)

model and CPN−1 field theory in 3-dimensions, we also see that CJ stays finite when

N → ∞ [78, 79]. In contrast, generalized free theories have CJ → ∞ and do not have

higher spin symmetries. N = 1 SQCD in the Veneziano limit has CJ ∝ N and does not

have higher spin symmetries either (except at the boundaries of the conformal window).

All these examples are consistent with our sufficient condition for the existence of higher

spin currents at infinite N .

The relevant crossing equation is the first line of (2.39); we reproduce it here:(u
v

)∆φ

It(v, u) =
1

N
Is(u, v) +

(
1− 1

N2

)
Adjs(u, v). (3.14)

Since Is(u, v) is at most O(1), the first term drops out at large N , giving(u
v

)∆φ

It(v, u) = Adjs(u, v) +O(
1

N
). (3.15)

We now argue that at N → ∞, this crossing equation is not solvable in a unitary CFT

without an infinite number of conserved higher spin currents. We will first consider the

case that we do not have scalars with ∆ ≤ d − 2 contributing to Adjs(u, v) at large N .

Their effect will be considered in the end of this subsection. Without low twist scalars

or higher spin currents, the dominant contribution in Adjs(u, v) is given by the conserved

global currents:

Adjs(u, v) =
1

2CJS2
d

gd−2,1(u, v) + . . . . (3.16)

When u� v � 1, we have the behavior

gd−2,1(u, v) =
Γ(d)

Γ(d2)2
u
d−2

2

(
− log v + 2

(
ψ(1)− ψ

(
d

2

)))
+ . . . . (3.17)

At small v, the log v term dominates and the crossing equation becomes(u
v

)∆φ

It(v, u) = − 1

2CJS2
d

Γ(d)

Γ(d2)2
u
d−2

2 log v + . . . . (3.18)
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It is not possible to reproduce this log v term on the l.h.s. in a unitary CFT. In the

reflection positive 4-point function we are considering, each operator should give a positive

contribution to It(v, u), but matching the log v term requires negative contributions. We

present a detailed argument for this statement in appendix C. The only possible remedy

for this problem is having an infinite number of higher spin conserved currents contributing

to Adjs(u, v). A finite number of higher spin currents will not solve the problem because

they all contribute a log v term with the same sign. As discussed in [63], the infinite sum

over this tower of log v singularities will yield a power-law singularity in v and the crossing

equations can then be solved.4

We now consider the contributions of scalar operators with ∆i ≤ d− 2:

Adjs(u, v) =
∑
i

Piu
∆i
2 f∆i,0(0, v) +

1

2CJS2
d

gd−2,1(u, v) + . . . , (3.19)

where

f∆i,0(0, v) =
Γ(∆i)

Γ(∆i
2 )2

(
− log v + 2

(
ψ(1)− ψ

(
∆i

2

)))
+ . . . . (3.20)

If the smallest ∆i is less than d − 2, then we cannot introduce higher spin operators

to convert the log v into power law singularities since they will violate unitarity bounds.

Therefore the crossing equations cannot be satisfied unless Pi → 0 as N →∞. If ∆i = d−2

with Pi finite at large N , then we need an infinite number of higher spin currents.

This analysis is not restricted to scalars or conserved operators in the adjoint repre-

sentation of SU(N). Rather this problem generically arises in CFTs with any large rank

global symmetry group when the lowest twist operator whose OPE coefficient is not 1
N sup-

pressed does not belong to an infinite tower of states with fixed twist. Similar arguments

will also apply e.g. to adjoint and symmetric tensor representations appearing in the OPE

of O(N) fundamentals. What makes the case of current contributions special is that CJ
is a universal quantity which can approach a constant as N →∞ in a variety of theories,

implying the existence of higher spin currents for these theories.

In theories where CJ ∼ O(1) and higher spin currents appear as N →∞, it would be

very interesting to compute their anomalous dimensions in the 1
N expansion using bootstrap

techniques. This would require considering situations with slightly broken higher spin

symmetry as in [63, 82], but taking into account the full global symmetry structure. In

particular it would be interesting to understand the role of higher spin currents in different

representations of the global symmetry group. We leave a full analysis of this direction to

future work.

4 Discussion

In this paper, we applied the method of [53, 54] to CFTs with global symmetries in space-

time dimensions D > 2. We assumed our CFT contains scalar operators transforming

4Another situation where an infinite sum over log v singularities produces a power law is in the expansion

of 2D Virasoro blocks in terms of global conformal blocks. This for example plays an important role in the

analysis of 2D Virasoro blocks in [57, 62, 80, 81].
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under various representations of the global symmetry. Crossing symmetry of their 4-point

functions implies the existence of large spin double-twist operators in all possible symmetry

representations. We then computed their anomalous dimensions as a function of the cen-

tral charge CT , the current central charge CJ , and the OPE coefficients of low-dimension

scalars. These results correspond in AdS to the binding energies of large spin two-particle

states arising from gravitational, gauge, and scalar interactions.

As expected, we saw that the gravitational binding energy is negative and universal (it

does not depend on the representation of the two-particle state). The gauge binding energy,

on the other hand, has a sign and magnitude that is determined by the representation. For

scalar exchange, the result similarly depends on the representation of the exchanged scalar

— in particular, when a charged scalar is exchanged, the resulting binding energy for

even and odd spin two-particle states can have opposite sign. This is not in conflict with

Nachtmann’s theorem [71], which only implies convexity for the even spin, minimal twist

sector in reflection positive OPEs.

We applied our analysis to 4D SU(N) N = 1 SQCD and the 3D O(N) vector models.

In both these cases we focused on the limit N � `, where the anomalous dimensions can

be used as perturbative parameters. For N = 1 SQCD we found the anomalous dimensions

for a generic number of flavors and colors within the conformal window and then considered

their behavior in the Veneziano limit, where both the number of colors and the number of

flavors become large. In this limit we saw that some double-twist anomalous dimensions

do not have any additional suppression with N at large spin, which is consistent with the

existence of generalized single trace states. For the O(N) vector models we made use of

existing numerical results for the conformal dimensions and central charges to write down

approximate formulas for the anomalous dimensions.

In addition, we discussed general CFTs with a large global symmetry group and con-

sidered the limit 1 � ` � N . In this regime we argued that if the current central charge

CJ does not grow with N , then there must exist an infinite tower of higher spin currents in

the adjoint representation of the global symmetry group. Such theories also cannot have

scalar operators of dimension ∆ < d− 2 whose OPE coefficients remain finite as N →∞.

These statements are consistent with known theories that have a higher spin symmetry in

the N →∞ limit, e.g. the O(N) vector models [78].

In this work our computations were mostly restricted to the regime N � `. To fully

extend our analysis to the cases with ` ∼ N and 1 � ` � N with CJ ∼ O(1), we

would need to include the effects of a tower of approximate higher spin currents in the

s-channel. This would allow us to more directly make contact with and extend existing

results on CFTs with a slightly broken higher spin symmetry [63, 82]. It would also be

interesting to extend our analysis to the Regge limit and to make connections with causality

constraints outside the lightcone [67]. We hope that the present work and its extension to

correlators containing currents and stress tensors [69] will constitute useful steps towards

unraveling the beautiful and universal structures inherent to higher-dimensional conformal

field theories.
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A Scalar-scalar OPE

In this appendix we review the OPE of two scalars in generic representations of global

symmetries. If the two scalars are in conjugate representations, then their OPE takes

the form

φm(x)× φn(0) =
δnm
x2∆φ

− i(T a)nm
1

CJSd

xµ

x2∆φ−d+2
Jaµ(0) (A.1)

+ δnm
1

CTSd

∆φd

(d− 1)

xµxν

x2∆φ−d+2
Tµν(0) + . . . , (A.2)

where Sd = 2πd/2Γ(d/2)−1 is the area of a (d−1)-dimensional sphere. The OPE coefficients

of the stress tensor and the global symmetry currents are related to the corresponding

central charges appearing in their 2-point functions:

〈Jaµ(x)Jbν(0)〉 = δabCJ
1

x2(d−1)
Iµν , (A.3)

〈Tµν(x)Tρσ(0)〉 = CT
1

x2d
Iµν,ρσ, (A.4)

where

Iµν = ηµν − 2
xµxν
x2

, Iµν,ρσ =
1

2
(IµρIνσ + IµσIνρ)−

1

2
ηµνηρσ. (A.5)

Our normalization for J and T follow the conventions of [77] which does not include a

factor of S−2
d in the two point function. Note that we have not yet normalized T and J

to have 2-point functions ∝ 1. If we do this, then the OPE coefficients of Ĵ = 1√
CJ
J and

T̂ = 1√
CT
T become

(λφφT̂ )nm = δnm
d

d− 1

∆φ√
CTSd

, (λa
φφĴ

)nm = −i(T a)nm
1√
CJSd

. (A.6)

These coefficients are derived from the following Ward identities:

〈∂µTµν(x1)φ(x2)φ(x3)〉 = δd(x1 − x2)〈∂νφ(x2)φ(x3)〉
+ δd(x1 − x3)〈φ(x2)∂νφ(x3)〉, (A.7)

〈∂µJaµ(x1)φi(x2)φj(x3)〉 = δd(x1 − x2)i(T a)ki 〈φk(x2)φj(x3)〉
+ δd(x1 − x3)i(T a)kj 〈φi(x2)φk(x3)〉. (A.8)
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Our conventions for the non-Abelian generators are as follows. The structure constant and

the index of a representation is defined as usual: [T a, T b] = ifabcT c, Tr(T aT b) = C(r)δab.

For each group, we explicitly define the the index of the fundamental representation.

Matching fabc = 1
C(r)Tr(T

a[T b, T c]) then fixes the normalization of generators for any

generic representation. The adjoint is given by i(T aAdj)
bc = fabc. We define the current cen-

tral charge such that the 3-point function coefficient of canonically normalized conserved

currents is equal to 1√
CJSd

fabc.

For SU(N), we choose the fundamental generator to be

(T ji )lk ≡ (T a)ji (T
a)lk = δliδ

j
k −

1

N
δji δ

l
k. (A.9)

Therefore C = 1. This convention may be slightly different from the standard choice.

For example, for the fundamental representation of SU(2), the generators are given by

T a = 1√
2
σa, the structure constant is fabc =

√
2εabc. The 4-point projector T aT a thus

generated matches with what we used in (2.38).

We define the generator of the O(N) group on the fundamental representation as

i(Tij)kl ≡ δikδjl − δilδjk. (A.10)

Therefore C = 2. Note that if interpreted as adjoint indices, the anti-symmetric pair ij

only runs through three values: 12, 13, and 23. The adjoint generators are obtained by

computing the structure constants. The generators in the symmetric representation are

computed by acting with a fundamental generator on each individual index i(Tij)kl,mn =

i(Tij)kmδln + i(Tij)lnδkm and then symmetrizing.

B Tensor structures and crossing relations

B.1 O(N) adjoints

Tensor product representations of the O(N) group break down into irreducible represen-

tations (irreps) characterized by traceless tensors with permutation symmetry specified

by the Young tableaux. For example, the tensor product of two O(N) adjoints can be

decomposed into the following irreps:

r =

(
I , , , , ,

)
. (B.1)

The Young projectors can be generated by first anti-symmetrizing indices along the

columns and then symmetrizing them along the rows. We also need to eliminate the traces.

In this way, we obtain the following generators:

Pr = P̃r − traces, (B.2)

where a Young projector P̃r maps an arbitrary 4-index tensor Ti1,i2,i3,i4 to a tensor with de-

sired exchange properties. We also remove the traces after the projection. More explicitly,
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P̃r are given by:

P̃1 = δi1i3δi2i4 ,

P̃2 = δi2i4δi3j1δi1j2 − δi2i3δi4j1δi1j2 − δi1i4δi3j1δi2j2 + δi1i3δi4j1δi2j2

− δi2i4δi1j1δi3j2 + δi1i4δi2j1δi3j2 + δi2i3δi1j1δi4j2 − δi1i3δi2j1δi4j2 ,
P̃3 = − δi2i4δi3j1δi1j2 + δi2i3δi4j1δi1j2 + δi1i4δi3j1δi2j2 − δi1i3δi4j1δi2j2

− δi2i4δi1j1δi3j2 + δi1i4δi2j1δi3j2 + δi2i3δi1j1δi4j2 − δi1i3δi2j1δi4j2 ,
P̃4 = δi4j1δi3j2δi2j3δi1j4 − δi3j1δi4j2δi2j3δi1j4 − δi2j1δi4j2δi3j3δi1j4 + δi2j1δi3j2δi4j3δi1j4

− δi4j1δi3j2δi1j3δi2j4 + δi3j1δi4j2δi1j3δi2j4 + δi1j1δi4j2δi3j3δi2j4 − δi1j1δi3j2δi4j3δi2j4
− δi4j1δi2j2δi1j3δi3j4 + δi4j1δi1j2δi2j3δi3j4 + δi2j1δi1j2δi4j3δi3j4 − δi1j1δi2j2δi4j3δi3j4
+ δi3j1δi2j2δi1j3δi4j4 − δi3j1δi1j2δi2j3δi4j4 − δi2j1δi1j2δi3j3δi4j4 + δi1j1δi2j2δi3j3δi4j4 ,

P̃5 = − δi4j1δi3j2δi2j3δi1j4 + δi4j1δi2j2δi3j3δi1j4 + δi4j1δi3j2δi1j3δi2j4 − δi4j1δi1j2δi3j3δi2j4
− δi4j1δi2j2δi1j3δi3j4 + δi4j1δi1j2δi2j3δi3j4 − δi3j1δi2j2δi1j3δi4j4 + δi2j1δi3j2δi1j3δi4j4

+ δi3j1δi1j2δi2j3δi4j4 − δi1j1δi3j2δi2j3δi4j4 − δi2j1δi1j2δi3j3δi4j4 + δi1j1δi2j2δi3j3δi4j4 ,

P̃6 = δi4j1δi3j2δi2j3δi1j4 − δi3j1δi4j2δi2j3δi1j4 − δi4j1δi2j2δi3j3δi1j4 + δi2j1δi4j2δi3j3δi1j4

+ δi3j1δi2j2δi4j3δi1j4 − δi2j1δi3j2δi4j3δi1j4 − δi4j1δi3j2δi1j3δi2j4 + δi3j1δi4j2δi1j3δi2j4

+ δi4j1δi1j2δi3j3δi2j4 − δi1j1δi4j2δi3j3δi2j4 − δi3j1δi1j2δi4j3δi2j4 + δi1j1δi3j2δi4j3δi2j4

+ δi4j1δi2j2δi1j3δi3j4 − δi2j1δi4j2δi1j3δi3j4 − δi4j1δi1j2δi2j3δi3j4 + δi1j1δi4j2δi2j3δi3j4

+ δi2j1δi1j2δi4j3δi3j4 − δi1j1δi2j2δi4j3δi3j4 − δi3j1δi2j2δi1j3δi4j4 + δi2j1δi3j2δi1j3δi4j4

+ δi3j1δi1j2δi2j3δi4j4 − δi1j1δi3j2δi2j3δi4j4 − δi2j1δi1j2δi3j3δi4j4 + δi1j1δi2j2δi3j3δi4j4 .

The three point structures are given by, for example:

〈Ai1i2Ai3,i4(Or)j1,j2,j3,j4〉 ∝ Si1i2;i3i4;j1,j2,j3,j4 , (B.3)

SA,ri1i2;i3i4;j1,j2,j3,j4
=

1

4
(δi1i′1δi2i′2−δi1i′2δi2i′1)(δi3i′3δi4i′4−δi3i′4δi4i′3)(Pr)i′1i′2i′3i′4;j1j2j3j4 .

We then build the 4-point structures tA,r in 〈Ai1i2Ai3i4Aj1j2Aj3j4〉 by contracting two 3-

point structures together:

tA,ri1i2;i3i4;j1j2;j3j4
=

1

nr
SA,r
i1i2;i3i4;j′1j

′
2j
′
3j
′
4
SA,r
j1j2;j3j4;j′1j

′
2j
′
3j
′
4
, (B.4)

where nr = (1/4,−2, 2, 24,−6, 16) are normalizations chosen for the 4-point structures.

They are chosen such that certain reflection positive configurations have unit tensor struc-

ture. In particular, tA,11212;1212 = 1, tA,r1213;1312 = 1 for r = 2, 3, and tA,r1234;3412 = 1 for r = 4, 5, 6.

We explicitly write down tA,r for r = 1, 2, 3 below. Note that we permuted the indices such

that the 4-point function is 〈Ai1j1Ai2j2Ai3j3Ai4j4〉.

tA,1 = (δi2i3δi1i4 − δi1i3δi2i4) (δj2j3δj1j4 − δj1j3δj2j4) ,

tA,2 = − δi2i4δi3j2δj1j3δi1j4 − δi2i3δi4j2δj1j3δi1j4 − δi2i4δi3j1δj2j3δi1j4 + δi2i3δi4j1δj2j3δi1j4

− δi1i4δi3j2δj1j3δi2j4 + δi1i3δi4j2δj1j3δi2j4 + δi1i4δi3j1δj2j3δi2j4 − δi1i3δi4j1δj2j3δi2j4
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− δi2i4δi1j2δj1j3δi3j4 + δi1i4δi2j2δj1j3δi3j4 + δi2i4δi1j1δj2j3δi3j4 − δi1i4δi2j1δj2j3δi3j4
+ δi2i3δi1j2δj1j3δi4j4 − δi1i3δi2j2δj1j3δi4j4 − δi2i3δi1j1δj2j3δi4j4 + δi1i3δi2j1δj2j3δi4j4

− δi2i4δi3j2δi1j3δj1j4 + δi2i3δi4j2δi1j3δj1j4 + δi1i4δi3j2δi2j3δj1j4 − δi1i3δi4j2δi2j3δj1j4
+ δi2i4δi1j2δi3j3δj1j4 − δi1i4δi2j2δi3j3δj1j4 − δi2i3δi1j2δi4j3δj1j4 + δi1i3δi2j2δi4j3δj1j4

+ δi2i4δi3j1δi1j3δj2j4 − δi2i3δi4j1δi1j3δj2j4 − δi1i4δi3j1δi2j3δj2j4 + δi1i3δi4j1δi2j3δj2j4

− δi2i4δi1j1δi3j3δj2j4 + δi1i4δi2j1δi3j3δj2j4 + δi2i3δi1j1δi4j3δj2j4 − δi1i3δi2j1δi4j3δj2j4 ,
tA,3 = δi2i4δi3j2δj1j3δi1j4 − δi2i3δi4j2δj1j3δi1j4 − δi2i4δi3j1δj2j3δi1j4 + δi2i3δi4j1δj2j3δi1j4

− δi1i4δi3j2δj1j3δi2j4 + δi1i3δi4j2δj1j3δi2j4 + δi1i4δi3j1δj2j3δi2j4 − δi1i3δi4j1δj2j3δi2j4
+ δi2i4δi1j2δj1j3δi3j4 − δi1i4δi2j2δj1j3δi3j4 − δi2i4δi1j1δj2j3δi3j4 + δi1i4δi2j1δj2j3δi3j4

− δi2i3δi1j2δj1j3δi4j4 + δi1i3δi2j2δj1j3δi4j4 + δi2i3δi1j1δj2j3δi4j4 − δi1i3δi2j1δj2j3δi4j4
− δi2i4δi3j2δi1j3δj1j4 + δi2i3δi4j2δi1j3δj1j4 + δi1i4δi3j2δi2j3δj1j4 − δi1i3δi4j2δi2j3δj1j4
− δi2i4δi1j2δi3j3δj1j4 + δi1i4δi2j2δi3j3δj1j4 + δi2i3δi1j2δi4j3δj1j4 − δi1i3δi2j2δi4j3δj1j4
+ δi2i4δi3j1δi1j3δj2j4 − δi2i3δi4j1δi1j3δj2j4 − δi1i4δi3j1δi2j3δj2j4 + δi1i3δi4j1δi2j3δj2j4

+ δi2i4δi1j1δi3j3δj2j4 − δi1i4δi2j1δi3j3δj2j4 − δi2i3δi1j1δi4j3δj2j4 + δi1i3δi2j1δi4j3δj2j4

+
8

N
(δi1i3δi2i4δj2j3δj1j4−δi2i3δi1i4δj2j3δj1j4 +δi2i3δi1i4δj1j3δj2j4−δi1i3δi2i4δj1j3δj2j4).

As noted in appendix A, the generators are normalized as (Tij)kl = δikδjl − δilδkj . We

then have fi1j1i2j2i3j3 = − i
2Tr{Ti1j1 , [Ti2j2 , Ti3j3 ]} and i(TAdj

i1j1
)i2j2i3j3 = fi1j1i2j2i3j3 . The

contracted generators i
2(TAdj

ij )i(TAdj
ji ) match with the projector tA,2 given above.

Matching tensor structures between the (12)–(34) channel and the (14)–(32) channel

gives the crossing relations:(u
v

)∆Φ

Gr,t(v, u) =Mr′
r Gr′,s(u, v), (B.5)

with

Mr′
r =



2
(N−1)N

4(N−2)
(N−1)N

4(N−2)(N+2)
(N−1)N2

(N−3)(N+1)(N+2)
(N−1)2N

(N−3)(N+2)
(N−1)N

(N−3)(N−2)
(N−1)N

1
2(N−2)

1
2

(N−4)(N+2)
2(N−2)N − (N−3)(N+1)(N+2)

4(N−2)2(N−1)
0 N−3

2(N−2)
1

2(N−2)
N−4

2(N−2)
N2−8

2(N−2)N
(N−4)(N−3)(N+1)

4(N−2)2(N−1)
− N−3

(N−2)2 − N−3
2(N−2)

1
3 −2

3
2(N−4)

3N
N2−6N+11

3(N−2)(N−1) − N−4
3(N−2)

1
3

1
2 0 − 4

N − (N−4)(N+1)
2(N−2)(N−1)

1
2 −1

2
1
6

2
3 −2(N+2)

3N
(N+1)(N+2)
6(N−2)(N−1) − N+2

6(N−2)
1
6


.

(B.6)

B.2 O(N) symmetric tensors

The tensor product of two O(N) symmetric traceless tensors can be decomposed in the

following irreps:

r =

(
I , , , , ,

)
. (B.7)
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Their Young projectors are:

P̃S,1 = δi1i3δi2i4 ,

P̃S,2 = − δi3i4δi2j1δi1j2 − δi2i4δi3j1δi1j2 − 2δi2i3δi4j1δi1j2 + δi3i4δi1j1δi2j2 − δi1i3δi4j1δi2j2
+ δi2i4δi1j1δi3j2 − δi1i2δi4j1δi3j2 + 2δi2i3δi1j1δi4j2 + δi1i3δi2j1δi4j2 + δi1i2δi3j1δi4j2 ,

P̃S,3 = δi3i4δi2j1δi1j2 + δi2i4δi3j1δi1j2 + δi2i3δi4j1δi1j2 + δi3i4δi1j1δi2j2 + δi1i4δi3j1δi2j2

+ δi1i3δi4j1δi2j2 + δi2i4δi1j1δi3j2 + δi1i4δi2j1δi3j2 + δi1i2δi4j1δi3j2 + δi2i3δi1j1δi4j2

+ δi1i3δi2j1δi4j2 + δi1i2δi3j1δi4j2 ,

P̃S,4 = δi4j1δi3j2δi2j3δi1j4 + δi3j1δi4j2δi2j3δi1j4 − δi3j1δi2j2δi4j3δi1j4 − δi2j1δi3j2δi4j3δi1j4
+ δi4j1δi3j2δi1j3δi2j4 + δi3j1δi4j2δi1j3δi2j4 − δi4j1δi1j2δi3j3δi2j4 − δi1j1δi4j2δi3j3δi2j4
− δi4j1δi1j2δi2j3δi3j4 − δi1j1δi4j2δi2j3δi3j4 + δi2j1δi1j2δi4j3δi3j4 + δi1j1δi2j2δi4j3δi3j4

− δi3j1δi2j2δi1j3δi4j4 − δi2j1δi3j2δi1j3δi4j4 + δi2j1δi1j2δi3j3δi4j4 + δi1j1δi2j2δi3j3δi4j4 ,

P̃S,5 = − δi4j1δi3j2δi2j3δi1j4 − δi3j1δi4j2δi2j3δi1j4 − δi4j1δi2j2δi3j3δi1j4 − δi2j1δi4j2δi3j3δi1j4
− δi3j1δi2j2δi4j3δi1j4 − δi2j1δi3j2δi4j3δi1j4 + δi3j1δi2j2δi1j3δi4j4 + δi2j1δi3j2δi1j3δi4j4

+ δi3j1δi1j2δi2j3δi4j4 + δi1j1δi3j2δi2j3δi4j4 + δi2j1δi1j2δi3j3δi4j4 + δi1j1δi2j2δi3j3δi4j4 ,

P̃S,6 = δi4j1δi3j2δi2j3δi1j4 + δi3j1δi4j2δi2j3δi1j4 + δi4j1δi2j2δi3j3δi1j4 + δi2j1δi4j2δi3j3δi1j4

+ δi3j1δi2j2δi4j3δi1j4 + δi2j1δi3j2δi4j3δi1j4 + δi4j1δi3j2δi1j3δi2j4 + δi3j1δi4j2δi1j3δi2j4

+ δi4j1δi1j2δi3j3δi2j4 + δi1j1δi4j2δi3j3δi2j4 + δi3j1δi1j2δi4j3δi2j4 + δi1j1δi3j2δi4j3δi2j4

+ δi4j1δi2j2δi1j3δi3j4 + δi2j1δi4j2δi1j3δi3j4 + δi4j1δi1j2δi2j3δi3j4 + δi1j1δi4j2δi2j3δi3j4

+ δi2j1δi1j2δi4j3δi3j4 + δi1j1δi2j2δi4j3δi3j4 + δi3j1δi2j2δi1j3δi4j4 + δi2j1δi3j2δi1j3δi4j4

+ δi3j1δi1j2δi2j3δi4j4 + δi1j1δi3j2δi2j3δi4j4 + δi2j1δi1j2δi3j3δi4j4 + δi1j1δi2j2δi3j3δi4j4 .

We proceed similarly to the anti-symmetric case. The 3-point structures are con-

structed by removing the traces from the Young projectors and contracting with anti-

symmetric projectors 1
2(δi1i′1δi2i′2 + δi1i′2δi2i′1 −

2
N δi1i2δi′1i′2). The 4-point structures can

be obtained by contracting two 3-point function structures with normalization constants

nS,r = (1/4,−2, 2, 16,−4, 24), chosen such that tS,11212;1212 = 1, tS,r1213;1312 = 1 for r = 2, 3,

and tS,r1234;3412 = 1 for r = 4, 5, 6. We explicitly write down tS,r for r = 1, 2, 3 below. Note

that we slightly permuted the indices such that the 4-point function is 〈Si1j1Si2j2Si3j3Si4j4〉.

tS,1 = (δi2i3δi1i4 + δi1i3δi2i4) (δj2j3δj1j4 + δj1j3δj2j4) +
4

N2
(δi1i2δi3i4δj1j2δj3j4)

− 2

N
((δi1i2δi3i4 (δj2j3δj1j4 + δj1j3δj2j4) + (δi2i3δi1i4 + δi1i3δi2i4) δj1j2δj3j4)) ,

tS,2 = δi2i4δi3j2δj1j3δi1j4 + δi2i3δi4j2δj1j3δi1j4 + δi2i4δi3j1δj2j3δi1j4 + δi2i3δi4j1δj2j3δi1j4

+ δi1i4δi3j2δj1j3δi2j4 + δi1i3δi4j2δj1j3δi2j4 + δi1i4δi3j1δj2j3δi2j4 + δi1i3δi4j1δj2j3δi2j4

− δi2i4δi1j2δj1j3δi3j4 − δi1i4δi2j2δj1j3δi3j4 − δi2i4δi1j1δj2j3δi3j4 − δi1i4δi2j1δj2j3δi3j4
− δi2i3δi1j2δj1j3δi4j4 − δi1i3δi2j2δj1j3δi4j4 − δi2i3δi1j1δj2j3δi4j4 − δi1i3δi2j1δj2j3δi4j4
+ δi2i4δi3j2δi1j3δj1j4 + δi2i3δi4j2δi1j3δj1j4 + δi1i4δi3j2δi2j3δj1j4 + δi1i3δi4j2δi2j3δj1j4

− δi2i4δi1j2δi3j3δj1j4 − δi1i4δi2j2δi3j3δj1j4 − δi2i3δi1j2δi4j3δj1j4 − δi1i3δi2j2δi4j3δj1j4
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+ δi2i4δi3j1δi1j3δj2j4 + δi2i3δi4j1δi1j3δj2j4 + δi1i4δi3j1δi2j3δj2j4 + δi1i3δi4j1δi2j3δj2j4

− δi2i4δi1j1δi3j3δj2j4 − δi1i4δi2j1δi3j3δj2j4 − δi2i3δi1j1δi4j3δj2j4 − δi1i3δi2j1δi4j3δj2j4 ,
tS,3 = δi2i4δi3j2δj1j3δi1j4 + δi2i3δi4j2δj1j3δi1j4 + δi2i4δi3j1δj2j3δi1j4 + δi2i3δi4j1δj2j3δi1j4

+ δi1i4δi3j2δj1j3δi2j4 + δi1i3δi4j2δj1j3δi2j4 + δi1i4δi3j1δj2j3δi2j4 + δi1i3δi4j1δj2j3δi2j4

+ δi2i4δi1j2δj1j3δi3j4 + δi1i4δi2j2δj1j3δi3j4 + δi2i4δi1j1δj2j3δi3j4 + δi1i4δi2j1δj2j3δi3j4

+ δi2i3δi1j2δj1j3δi4j4 + δi1i3δi2j2δj1j3δi4j4 + δi2i3δi1j1δj2j3δi4j4 + δi1i3δi2j1δj2j3δi4j4

+ δi2i4δi3j2δi1j3δj1j4 + δi2i3δi4j2δi1j3δj1j4 + δi1i4δi3j2δi2j3δj1j4 + δi1i3δi4j2δi2j3δj1j4

+ δi2i4δi1j2δi3j3δj1j4 + δi1i4δi2j2δi3j3δj1j4 + δi2i3δi1j2δi4j3δj1j4 + δi1i3δi2j2δi4j3δj1j4

+ δi2i4δi3j1δi1j3δj2j4 + δi2i3δi4j1δi1j3δj2j4 + δi1i4δi3j1δi2j3δj2j4

+ δi1i3δi4j1δi2j3δj2j4 + δi2i4δi1j1δi3j3δj2j4 + δi1i4δi2j1δi3j3δj2j4

+ δi2i3δi1j1δi4j3δj2j4 + δi1i3δi2j1δi4j3δj2j4 −
128

N3
(δi1i2δi3i4δj1j2δj3j4

)
− 4

N

(
δi2i4δj1j2δi3j3δi1j4 +δi2i3δj1j2δi4j3δi1j4 +δi3i4δi2j2δj1j3δi1j4 +δi3i4δi2j1δj2j3δi1j4

+ δi1i4δj1j2δi3j3δi2j4 + δi1i3δj1j2δi4j3δi2j4 + δi3i4δi1j2δj1j3δi2j4 + δi3i4δi1j1δj2j3δi2j4

+ δi2i4δj1j2δi1j3δi3j4 + δi1i4δj1j2δi2j3δi3j4 + δi1i2δi4j2δj1j3δi3j4 + δi1i2δi4j1δj2j3δi3j4

+ δi2i3δj1j2δi1j3δi4j4 + δi1i3δj1j2δi2j3δi4j4 + δi1i2δi3j2δj1j3δi4j4 + δi1i2δi3j1δj2j3δi4j4

+ δi3i4δi2j2δi1j3δj1j4 + δi3i4δi1j2δi2j3δj1j4 + δi1i2δi4j2δi3j3δj1j4 + δi1i2δi3j2δi4j3δj1j4

+ 2δi2i3δi1i4δj2j3δj1j4 + 2δi1i3δi2i4δj2j3δj1j4 + δi3i4δi2j1δi1j3δj2j4 + δi3i4δi1j1δi2j3δj2j4

+ δi1i2δi4j1δi3j3δj2j4 + δi1i2δi3j1δi4j3δj2j4 + 2δi2i3δi1i4δj1j3δj2j4 + 2δi1i3δi2i4δj1j3δj2j4

+ δi2i4δi3j1δi1j2δj3j4 + δi2i3δi4j1δi1j2δj3j4 + δi1i4δi3j1δi2j2δj3j4 + δi1i3δi4j1δi2j2δj3j4

+ δi2i4δi1j1δi3j2δj3j4 + δi1i4δi2j1δi3j2δj3j4 + δi2i3δi1j1δi4j2δj3j4 + δi1i3δi2j1δi4j2δj3j4
)

+
16

N2

(
δi3i4δj1j2δi2j3δi1j4 +δi3i4δj1j2δi1j3δi2j4 +δi1i2δj1j2δi4j3δi3j4 +δi1i2δj1j2δi3j3δi4j4

+ 2δi1i2δi3i4δj2j3δj1j4 + 2δi1i2δi3i4δj1j3δj2j4 + δi3i4δi2j1δi1j2δj3j4 + δi3i4δi1j1δi2j2δj3j4

+ δi1i2δi4j1δi3j2δj3j4 + δi1i2δi3j1δi4j2δj3j4 + 2δi2i3δi1i4δj1j2δj3j4 + 2δi1i3δi2i4δj1j2δj3j4).

Matching tensor structures between the (12)–(34) channel and the (14)–(32) channel

gives the crossing relations:(u
v

)∆Φ

Gr,t(v, u) =Mr′
r Gr′,s(u, v), (B.8)

with

Mr′
r =



2
(N−1)(N+2)

4N
(N−1)(N+2)

4(N−2)(N+4)
(N−1)N(N+2)

(N−3)N(N+1)
(N−1)2(N+2)

(N−2)(N+1)(N+4)
(N−1)(N+2)2

N(N+1)(N+6)
(N−1)(N+2)2

1
2(N+2)

1
2

(N−2)(N+4)
2N(N+2)

(N−3)(N+1)
4(N−1)(N+2) 0 − (N+1)(N+6)

2(N+2)2

N
2(N−2)(N+4)

N2

2(N−2)(N+4)
N2+4N−24

2(N−2)(N+4) −
(N−3)N2(N+1)

4(N−2)2(N−1)(N+4)
− N(N+1)

(N−2)(N+2)(N+4)
N2(N+1)(N+6)

2(N−2)(N+2)(N+4)2

1
3

2
3 −2(N+4)

3N
N2−2N+3

3(N−2)(N−1) − N+4
3(N+2)

N+6
3(N+2)

1
2 0 − 4

N − (N−3)N
2(N−2)(N−1)

1
2 − N(N+6)

2(N+2)(N+4)
1
6 −2

3
2(N−2)

3N
N−3

6(N−1) − N−2
6(N+2)

(N−2)N
6(N+2)(N+4)


.

(B.9)
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B.3 SU(N) adjoints

Expanding the 4-point function of SU(N) adjoints 〈ΦΦΦΦ〉, we take the tensor structures

in (2.55) to be:

tΦ,I = δj1i2 δ
j4
i3
δj3i4 δ

j2
i1
− 1

N

(
δj2i2 δ

j4
i3
δj3i4 δ

j1
i1

+ δj1i2 δ
j3
i3
δj4i4 δ

j2
i1

)
+

1

N2
δj2i2 δ

j3
i3
δj4i4 δ

j1
i1
,

tΦ,Adja = δj4i2 δ
j3
i4
δj1i3 δ

j2
i1

+ δj3i2 δ
j1
i4
δj4i3 δ

j2
i1

+ δj1i2 δ
j4
i3
δj2i4 δ

j3
i1

+ δj1i2 δ
j2
i3
δj3i4 δ

j4
i1
− 16

N3
δj2i2 δ

j3
i3
δj4i4 δ

j1
i1

+
4

N2

((
2δj4i3 δ

j3
i4
δj2i2 + δj2i3 δ

j4
i4
δj3i2 + δj3i3 δ

j2
i4
δj4i2

)
δj1i1

+2δj1i2 δ
j3
i3
δj4i4 δ

j2
i1

+ δj2i2 δ
j1
i3
δj4i4 δ

j3
i1

+ δj2i2 δ
j3
i3
δj1i4 δ

j4
i1

)
− 2

N

((
δj4i2 δ

j3
i4
δj2i3 +δj3i2 δ

j2
i4
δj4i3

)
δj1i1 +

(
2δj4i3 δ

j3
i4
δj1i2 + δj1i3 δ

j4
i4
δj3i2 + δj3i3 δ

j1
i4
δj4i2

)
δj2i1

+
(
δj2i3 δ

j4
i4
δj1i2 + δj4i3 δ

j1
i4
δj2i2

)
δj3i1 +

(
δj3i3 δ

j2
i4
δj1i2 + δj1i3 δ

j3
i4
δj2i2

)
δj4i1

)
,

tΦ,Adjs = δj4i1 δ
j2
i3
δj3i4 δ

j1
i2
− δj3i1 δ

j4
i3
δj2i4 δ

j1
i2

+ δj2i1 δ
j3
i2
δj4i3 δ

j1
i4
− δj2i1 δ

j4
i2
δj1i3 δ

j3
i4
,

tΦ,(S,Ā)a+(A,S̄)a = δj4i1 δ
j3
i2
δj1i4 δ

j2
i3
− δj3i1 δ

j4
i2
δj2i4 δ

j1
i3

+
1

N

((
δj4i2 δ

j3
i3
δj2i4 − δ

j3
i2
δj2i3 δ

j4
i4

)
δj1i1 +

(
δj4i2 δ

j1
i3
δj3i4 − δ

j3
i2
δj4i3 δ

j1
i4

)
δj2i1

+
(
δj4i3 δ

j2
i4
δj1i2 + δj1i3 δ

j4
i4
δj2i2

)
δj3i1 −

(
δj2i3 δ

j3
i4
δj1i2 + δj3i3 δ

j1
i4
δj2i2

)
δj4i1

)
,

tΦ,(A,Ā)s =
(
δj4i1 δ

j3
i2
− δj3i1 δ

j4
i2

)(
δj2i3 δ

j1
i4
− δj1i3 δ

j2
i4

)
+

1

N − 2

(((
δj4i3 δ

j2
i4
− δj2i3 δ

j4
i4

)
δj3i2 +

(
δj2i3 δ

j3
i4
− δj3i3 δ

j2
i4

)
δj4i2

)
δj1i1

+
((
δj1i3 δ

j4
i4
− δj4i3 δ

j1
i4

)
δj3i2 +

(
δj3i3 δ

j1
i4
− δj1i3 δ

j3
i4

)
δj4i2

)
δj2i1

+
((
δj2i3 δ

j4
i4
− δj4i3 δ

j2
i4

)
δj1i2 +

(
δj4i3 δ

j1
i4
− δj1i3 δ

j4
i4

)
δj2i2

)
δj3i1

+
((
δj3i3 δ

j2
i4
− δj2i3 δ

j3
i4

)
δj1i2 +

(
δj1i3 δ

j3
i4
− δj3i3 δ

j1
i4

)
δj2i2

)
δj4i1

+
2

N − 1

(
δj2i1 δ

j1
i2
− δj1i1 δ

j2
i2

)(
δj4i3 δ

j3
i4
− δj3i3 δ

j4
i4

))
,

tΦ,(S,S̄)s =
(
δj4i2 δ

j3
i1

+ δj3i2 δ
j4
i1

)(
δj2i4 δ

j1
i3

+ δj1i4 δ
j2
i3

)
− 1

N + 2

(((
δj4i4 δ

j2
i3

+ δj2i4 δ
j4
i3

)
δj3i2 +

(
δj3i4 δ

j2
i3

+ δj2i4 δ
j3
i3

)
δj4i2

)
δj1i1

+
((
δj4i4 δ

j1
i3

+ δj1i4 δ
j4
i3

)
δj3i2 +

(
δj3i4 δ

j1
i3

+ δj1i4 δ
j3
i3

)
δj4i2

)
δj2i1

+
((
δj4i4 δ

j2
i3

+ δj2i4 δ
j4
i3

)
δj1i2 +

(
δj4i4 δ

j1
i3

+ δj1i4 δ
j4
i3

)
δj2i2

)
δj3i1

+
((
δj3i4 δ

j2
i3

+ δj2i4 δ
j3
i3

)
δj1i2 +

(
δj3i4 δ

j1
i3

+ δj1i4 δ
j3
i3

)
δj2i2

)
δj4i1

− 2

N + 1

(
δj2i2 δ

j1
i1

+ δj1i2 δ
j2
i1

)(
δj4i4 δ

j3
i3

+ δj3i4 δ
j4
i3

))
. (B.10)

Matching the index structures between the (12)–(34) channel and the (14)–(32) chan-

nel, we obtain the crossing relations relating the t-channel functions to the s-channel func-
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tions, given by: (u
v

)∆Φ

Gr,t(v, u) =Mr′
r Gr′,s(u, v) (B.11)

with

Mr′
r =



1
(N−1)(N+1)

2N
(N−1)(N+1)

2(N−2)(N+2)
(N−1)N(N+1)

(N−2)(N+2)
(N−1)(N+1)

(N−3)N2

(N−1)2(N+1)
N2(N+3)

(N−1)(N+1)2

1
2N

1
2

(N−2)(N+2)
2N2 0 N−3

2(N−1) − N+3
2(N+1)

N
2(N−2)(N+2)

N2

2(N−2)(N+2)
N2−12

2(N−2)(N+2) −
N

(N−2)(N+2) −
(N−3)N3

2(N−2)2(N−1)(N+2)
N3(N+3)

2(N−2)(N+1)(N+2)2

1
2 0 − 2

N
1
2 − (N−3)N

2(N−2)(N−1) − N(N+3)
2(N+1)(N+2)

1
4

1
2 −N+2

2N −N+2
4N

N2−N+2
4(N−2)(N−1)

N+3
4(N+1)

1
4 −1

2
N−2
2N −N−2

4N
N−3

4(N−1)
N2+N+2

4(N+1)(N+2)


(B.12)

in the basis

r =

(
I ,Adsa ,Adjs , (S, Ā)a ⊕ (A, S̄)a , (A, Ā)s , (S, S̄)s

)
. (B.13)

When N = 3 the (A, Ā)s representation does not exist and the equation reduces to

(u
v

)∆Φ


GI,t(v, u)

GAdja,t(v, u)

GAdjs,t(v, u)

G(S,Ā)a,t(v, u)

G(S,S̄)s,t(v, u)

 =


1
8

3
4

5
12

5
8

27
16

1
6

1
2

5
18 0 −3

4
3
10

9
10 −

3
10 −

3
5

81
100

1
2 0 −2

3
1
2 − 9

20
1
4 −

1
2

1
6 − 1

12
7
40

×


GI,s(u, v)

GAdja,s(u, v)

GAdjs,s(u, v)

G(S,Ā)a,s(u, v)

G(S,S̄)s,s(u, v)

 , (B.14)

while in the case that N = 2 we only have the I, Adja, and (S, S̄)s representations with

(u
v

)∆Φ

 GI,t(v, u)

GAdja,t(v, u)

G(S,S̄)s,t(v, u)

 =

 1
3

4
3

20
9

1
4

1
2 −

5
6

1
4 −

1
2

1
6

×
 GI,s(u, v)

GAdja,s(u, v)

G(S,S̄)s,s(u, v)

 . (B.15)

C Crossing symmetry of leading log(v) terms

In this appendix, we show that it is impossible to reproduce the log v term on the r.h.s.

of (3.18) in a unitary CFT. We can decompose It(v, u) into contributions from operators

with different twists. At leading order in 1/N, u, and v, the crossing equation becomes

− 1

2CJS2
d

Γ(d)

Γ(d2)2
log v = v−∆φu∆φ− d−2

2

∑
τ,`

Pτ,`gτ,`(v, u),

=
∑
τ,`

(
lim
u→0

u∆φ− d−2
2 Pτ,`k2`(1− u)

)
v
τ
2
−∆φF (d)(τ, 0),

=

∫ ∞
d−2

2

dσρ(σ)v
σ
2
−∆φF (d)(σ, 0). (C.1)
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We used the form of the conformal block at small u and v:

gτ,`(v, u) ≈ k2`(1− u)v
τ
2F (d)(τ, v),

k2β(x) ≡ xβ 2F1(β, β, 2β, x), (C.2)

and defined the density function

ρ(σ) ≡ lim
u→0

u∆φ− d−2
2

∑
τ,`

Pτ,`k2`(1− u)δ(τ − σ). (C.3)

Note that this decomposition is an integral over positive contributions, since F (d)(σ, v) is

positive and analytic near v → 0 and ρ(σ) ≥ 0 in unitary CFTs for this 4-point function.

We first show that the tail of the integral in (C.1) cannot give rise the the log v term

on the l.h.s. . This part of the argument parallels the argument given in appendix B.2

in [53]. In particular, we study the integral over operators with twists higher than τ∗ � 1.

Choosing a constant 1 < λ < 1
v , we have∫ ∞

τ∗
dσρ(σ)v

σ
2
−∆φF (d)(σ, 0) ≤ λ−

τ∗
2

∫ ∞
τ∗
dσρ(σ)(λv)

σ
2
−∆φF (d)(σ, 0),

≤ λ−
τ∗
2

∫ ∞
d−2

2

dσρ(σ)(λv)
σ
2
−∆φF (d)(σ, 0),

=
1

2CJS2
d

Γ(d)

Γ(d2)2
λ−

τ∗
2 (− log λv) , (C.4)

where we used the positivity of the integrand in the first two lines, and crossing symmetry

at the point (u, λv) in the last line. The condition λ < 1
v follows from the convergence of

the t-channel conformal block decomposition. Now we can choose λ = 1
2v , obtaining∫ ∞

τ∗
dσρ(σ)v

σ
2
−∆φF (d)(σ, 0) ≤ 1

2CJS2
d

Γ(d)

Γ(d2)2

(
− log

1

2

)
(2v)

τ∗
2 . (C.5)

So given a large but finite τ∗, for any 0 < v � 1, the sum of all operators with twists

higher than τ∗ is bounded by ∼ v
τ∗
2 and cannot generate a log v term with finite coefficient.

Therefore, the log v can only come from a finite part [ d−2
2 , τ∗] of the integration region.

When σ < 2∆φ, ρ = 0, otherwise the r.h.s. of (C.1) will have a power law divergence

when v → 0. The only way to reproduce the log v on the l.h.s. would be to have

ρ(σ) = A0∂σδ(σ − 2∆φ) + . . . , (C.6)

where

A0 =
1

CJS2
d

Γ(d)

Γ(d2)2

1

F (d)(2∆φ, 0)
> 0. (C.7)

More generally, to solve the crossing equation (3.15) at the leading order in u and all orders

in v, we would need a sum of the form

ρ(σ) =
∑
k

Ak∂σδ(σ − 2∆φ − 2n) +Bkδ(σ − 2∆φ − 2n), (C.8)

where the coefficients can be determined order by order.
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This solution, however, violates unitarity because ∂δ(σ − 2∆φ) is not a positive

distribution. In particular, there exist smooth positive functions h(σ) > 0 such that∫
dσρ(σ)h(σ) < 0. This implies that there are no consistent unitary CFTs satisfying

the assumptions described at the beginning of section 3.3.5

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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