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1 Introduction

The conformal bootstrap program [1-3] has seen a marked revival in recent years for CFTs
in d > 2 spacetime dimensions. Using only unitarity and associativity of the operator
product expansion (OPE), it was found in [4] that one could derive numerical bounds on
the spectrum of an arbitrary CFT by studying the four point function of identical scalars.
The numerical work has been extended greatly to include global symmetries [5-14], su-
persymmetry [15-33|, and correlation functions of non-identical scalars [34]. In particular,
there has been remarkable progress in numerically solving the 3d Ising [34-37] and critical
O(N) models [9, 10]. Furthermore, it was found that there do exist limits where the confor-
mal bootstrap equations can be solved analytically. The pertinent example for this paper
is the lightcone limit, first studied in [38, 39] and extended in [40-48]. In this limit the
expansion parameter is the twist of the exchanged operator, as opposed to its dimension.
In a unitary, interacting CFT in d > 2 dimensions there exist a finite number of operators
with very low twist, namely the identity operator, conserved operators, and possibly some
low dimension scalars. This fact is crucial in solving the lightcone bootstrap equations.
With the exception of recent work on the four point function of 3d fermions [49], the
bootstrap equations have primarily been studied for four external scalars. In this work
we will focus instead on four point functions of 3d CFTs that include external conserved
spin 1 and spin 2 operators, i.e. conserved currents J, and the stress-energy tensor 7).
The restriction to 3d is technical, as in this dimension all the relevant conformal blocks
are known [50]. We will study these equations analytically in the lightcone limit and solve
for the anomalous dimensions of a wide variety of double-twist states. To be specific, we
will study the correlation functions (JJ¢@), (JJJJ), and (T'T¢¢) where J is a conserved
current for a global U(1) or SU(N) symmetry, 7" is the stress energy tensor, and ¢ is a
scalar of arbitrary dimension. The s-channel conformal block expansion is dominated by
the contribution from low twist operators such as the identity, the conserved currents J,
the stress tensor 7', and possibly some scalars with small dimensions. As in [38, 39], we
show that large spin double-twist operators must exist to satisfy the crossing equations.
Their anomalous dimensions are determined by the OPE coefficients of the lower twist



operators exchanged in the s-channel. In an AdS dual description, the contributions to the
anomalous dimensions from J and 1" correspond to the binding energies of well separated
2-particle states arising from gauge and gravitational interactions.

An important feature of our results will be that the contributions of J or T" exchange
to the anomalous dimensions of double-twist states flip signs if the relevant s-channel OPE
coefficients do not lie between the free boson and free fermion values. For the exchange of
T, this means requiring that gravity in the bulk be attractive yields the Hofman-Maldacena
conformal collider physics bounds [51] on coefficients appearing in (JJT) and (TTT) (ex-
tended to general dimensions in [52, 53|), which were originally discovered by requiring
that the integrated energy flux produced by a localized perturbation in Minkowski space
is positive.

Unlike the energy flux, it is not obvious if the integrated charge flux should have
a definite sign. Consequently it is not clear if analogous bounds on the current three
point function coefficients should hold. However, we will see that when these coefficients
do not lie between the free field theory values, the contributions of J to the anomalous
dimensions would have counter-intuitive signs, motivating us to speculate that analogous
bounds on the coefficients appearing in (J.JJ) might hold. A corollary of our results is that
when these OPE coefficients saturate their free field theory values, some of the anomalous
dimension asymptotics vanish, possibly indicating that subsectors or the entirety of the
theory are free [54].

The organization of this paper is as follows. In section 2 we review the construction
of correlation functions for operators with spin using an embedding formalism. By con-
structing a differential representation of the 3-point functions we can calculate the relevant
conformal blocks. In section 3 we review the lightcone bootstrap for four external scalars
and generalize it to include external operators with spin. In section 4 we consider (JJ¢¢)
with J being either a U(1) or a SU(N) conserved current. We first solve the crossing equa-
tion at leading order in the lightcone limit, where large spin double-twist operators must
contribute in order to reproduce the identity contribution. We then solve the equation at
the first subleading order, where the exchange of a conserved current and stress energy
tensor in the s-channel is reproduced by the anomalous dimensions of the aforementioned
double-twist operators. This procedure is repeated in sections 5 and 6 for (JJJJ) and
(TT¢¢) respectively. We also generalize a sufficient condition for the existence of higher
spin symmetry in the limit of large global symmetry groups discovered in [47]. In section 7
we discuss some applications of our results to superconformal field theories (SCFTs) and
in section 8 we discuss some implications of our results and possible future work. In the
appendices we collect technical details referenced in the paper.

2 Correlation functions

2.1 The embedding formalism

We will first review the embedding space formalism for CFTs developed in [50, 55]. The
idea, first noted by Dirac [56], is that the conformal group in d Euclidean dimensions,
SO(d+1,1), can be realized linearly in an embedding space M%*+2 as the group of isometries.



The constraints on correlation functions of primary operators simplifies to the constraints
of Lorentz symmetry once we lift the fields to the embedding space. In this paper we will
be interested in CF'Ts living in a d-dimensional Minkowski spacetime with conformal group
SO(d,2), but we can always Wick rotate between the two pictures.

The lift of R? to M2 is accomplished by identifying points  in R? with null rays in
Md+2 as

PA=)(1,2%2%), XeR, PAemt? (2.1)
where P4 is written in the lightcone basis
P4 = (P*, P, PY), (2.2)
with the metric given by
P.P=nupPAPE = —PtP~ 4 6,P*P". (2.3)

A linear SO(d 4 1,1) transformation maps null rays to null rays and therefore defines
a transformation of the physical space onto itself. It can be shown that any SO(d + 1,1)
transformation of M induces a conformal transformation on R and that every conformal
transformation can be obtained in this way.

We now need to give the correspondence between fields in the physical space and those
in the embedding space. This was done using an index-free notation for symmetric trace-
less tensor fields in [50, 55] and has also been generalized to arbitrary tensor fields [57],
spinors in three [49] and four dimensions [58-60], and various situations with supersymme-
try, e.g. [25, 61-66] and references therein. Three dimensions is special because the only
irreducible tensor representations of SO(3) are the totally symmetric and traceless repre-
sentations. We only study 3d CFTs in this paper so we will restrict our review to these
representations.

The mapping is as follows. Consider a field Fa, a,(P), a tensor of SO(d + 1,1), with
the following properties:

1. Defined on the cone P%=0,
2. Homogeneous of degree ~A: Fyu, a,(AP) = /\*AFAI_.AIZ (P), A>0,
3. Symmetric and traceless,
4. Transverse: (P F)a, a, = PAFaa,. ., =0.
Now we define the Poincaré section as
PA = (1,2%2%), zeR% (2.4)

Due to the homogeneity property, once F' is known on the Poincaré section it is known
everywhere on the lightcone. The projection to the Poincaré section defines a symmetric
traceless field on RY,

opt gpAe
fal...ag(x) = 7WFA1A4(Px) (25)

Ox®



To encode the symmetric traceless tensors in terms of a polynomial we introduce an aux-
iliary complex polarization vector z%, contract it with the tensor field, and restrict to the
submanifold defined by 2% = 0,

fa1..a, symmetric and traceless <> f(2)| (2.6)

22=0"

We do not lose any information with this condition since our tensors will be traceless. Two
polynomials that differ by terms that vanish when z? = 0 correspond to the same tensor.
There is in fact a one to one correspondence between symmetric traceless tensors fq,. .4,
and polynomials f (z)}ZQZO. The same idea is applied for tensors in the embedding space

and we have that

Fa,..4,(P) symmetric and traceless < F(P,Z (2.7)

)|ZQ:O,Z~P:O'

Once again we restrict to Z2? = 0 since the tensor will be traceless and Z - P = 0 since it
is transverse. That is, the polynomial is invariant under Z — Z + AP. Any polynomial
that differs from F'(P,Z) by such terms corresponds to the same underlying tensor field.
Defining Z, , = (0,2x - 2, z), the correspondence between the polynomials can be stated as

f((l?, Z) = F(an Zx,z) (28)

2.2 3-point functions

In embedding space the classification of 3-point functions simplifies. Conformal symmetry
fixes the basic building blocks for symmetric, traceless fields to be:

Hij = =2[(Zi- Zj)(P; - Py) = (Zi - Py)(Z; - )], (2.9)
(Zi - Pj) (P - Py) — (Zi - P)(Ps - B))
Viip = . 2.10
(PP 240
To simplify notation we define P;; = —2PF; - P;. When projected to the Poincaré section we

have P;; — x?j with z;; = x; — z;. The 3-point function can be written as

Qx1xoxs{Fir Zi})
GXI;XQ;XS({‘Pi; Z'L}) = 01+0270'3X1 A Xi2+a31;alz o1+03—09 ) (211)

(Pri2)” 2 (Pa3)” 2 (P1)” 2

where o; = A; + ¢;. Defining
Vi=Vias, Va=Voz, V3=V319, (2.12)

then () can be written as a linear combination of structures of the form

v & (2.13)

7 1<J
where the homogeneity properties of the operators imply

m; + an‘j = él (2.14)
J#



In three dimensions some of these tensor structures are degenerate. In particular,
(ViHos + Volis + VaHia + 2ViVaVs)? = —2H1oHizHas + O({Z7, Z; - P}).  (2.15)

We discuss these degeneracy conditions in more detail in appendix C.

There is an alternative way to represent the 3-point functions that will be useful for
constructing conformal blocks. When the 3rd operator is symmetric and traceless, the
spinning 3-point function can be expressed in terms of differential operators acting on an
appropriate scalar 3-point function:

(61 (1) (22) Oy (23)) = DL, () (1) (22) Oy (3)) (2.16)

Explicit construction of these operators can be done in the embedding space, where they
satisfy the consistency conditions DO(P2, P; - Z;, Z2) = O(P?, P, - Z;, Z?). Such operators
can be built out of the building blocks

Dy, = (P ~P2)(Zl : 8an> —(Z ~P2)(P1 . (98132) —(Z1 - Z3) (P1 . (‘38Z2) + (P - ZQ)(Zl . 8822) ,

Dip = (P, - Py) <Z1 : aaP1> —(Z1-Py) <P1 : a;) (21 - Py) <Z1 : 8821) . (2.17)

There are two more operators Dgo and Do; which can be found by permuting 1 < 2.
D;; acts to increase the spin at point ¢ by 1 and decreases the dimension at point j by
1. A fifth operator is multiplication by Hpo which increases the spin and decreases the
dimension at both points by one. The most general parity even spinning 3-point function
can be constructed with the following basis:!

H{32 D3° Dyi® Dyt Doy Smtneotmizmatmotmz (G, (Py) o (Py) O(Ps, Z3)),  (2.18)

where mi +ni9+n12 = ¢1 and ma+nag+nqs = 5. The R%b operators shift the dimensions
by Ay — A1 4+ a and Ay — As +b. We call this the differential basis. The transformation
to the standard basis, (2.11) and (2.13), is computed in [55].

In three dimensions we also have parity odd structures, which are given by the parity
even tensor structures above multiplied by the epsilon tensor. In the standard basis we
have the 3-point function structure

Eij EBjG(Zi’Zj)P17P27P3)) (219)

where on the right hand side we have used the 5d epsilon tensor. We could also consider the
structure formed with three Z vectors and two P vectors, but these can always be solved
for in terms of €;;. Similarly we can always solve for €12 in terms of €13 and ep3 [50, 55].
Therefore, we only need to use €13 and ea3 to construct parity odd 3-point functions. Note
that when multiplying by €;; the scaling dimensions must be shifted to preserve the desired
scaling properties.

The operators can be reordered, keeping in mind two pairs do not commute: [D11, D22] # 0 and
[D12, D21] # 0. All other differential operators commute with each other.



The corresponding parity odd differential operators are:

D1:E<Z1,P1,88PI,P2,£> +€<Zlaplvaaplvz?a8822>a (220)

13256(22,132,38132,13173?31) +6<Z27P27£32,Zhaazl>- (2.21)

D; increases the spin at point ¢ by 1. To construct a parity odd 3-point function we act
with a single odd differential operator, Dy or Dg, and then the parity even operators.

Finally, we will be interested in studying correlation functions involving conserved
currents. As explained in [50, 55|, requiring that a 3-point function be conserved at point
P; is equivalent to requiring that dp, - Dz, vanish when acting on the embedding space
correlation function, where

0 d 0 0 1 0?
6P'DZ—78PM {(2_1+Z.8Z>6ZM_2ZM82-8Z . (2.22)

2.3 4-point functions

In this section we will review the structure of conformal blocks that appear in the 4-point
functions of scalars as well as how to construct the conformal blocks for external operators
with spin. First we start with four distinct scalars with dimensions 4;, so the four point
function is fixed by conformal invariance to be of the form

72 A1 22 3034 G(u,v
<¢1(1?1)¢2($2)¢3(x3)¢4(934)>Z(34) <§4> R (w,v) . (2.23)

1
iy Ti3 ArtA2)(g2 )3 (As+Ad)

Here G(u,v) is an arbitrary function of the conformal cross ratios

2 .2 2 .2

_ Tio%34 _ Ti4%a3 (2.24)

I T = '
13724 13724

Next we note that the OPE of two scalars takes the general form

$1(21)d2(x2) = Y Moo C(@12,0,) Oy e, (w2). (2.25)
(@

The sum runs over all primary operators which can appear in this OPE. The contribution
of all the descendants is given by the kinematical function C(z12, 0;,), which can be found
using the 3-point functions by multiplying both sides with Oy, (23) and taking the
vacuum expectation value. The OPE coefficients, Ao, are related to the coefficient of the
3-point functions and are not determined by kinematics. Applying the OPE for ¢1¢9 and

2There are two more differential operators, Dlgl = e(Zl,ZQ,Pth,%) and 13122 =

€ (Z17 Za, P1, P2, aiP?). For this paper, they can be ignored since their action on the scalar 3-point functions

can be re-expressed in terms of the first two operators.



¢3¢, the contribution of a single irreducible representation is given by a conformal block
go(u,v) or equivalently the conformal partial wave Wo(x1, xo, 3, z4) [67-69],

(D1(x1)P2(22)P3(23)pa(24)) = Y M20AsaoWo (21, 22, 3, 24), (2.26)
0

Wo(x1, 2, 3,24) = C(212, 0zy) O34, 0z )T Oy o) (12) O, 1, (24)),

1 1
B <"”%4> - (”"?4) o go(u,v)
- 2 2 1 1 )
Ty T13 (z3,)2(A182) (g2 )2 (Astha)

3

where go and Wp also depend on the external scaling dimensions.
To repeat the same idea for operators with spin we need to consider the OPE

1 @) o () = D A20C (w12, 02,) 1" Oy, (2.27)
0

where we have used the shorthand {a} = a; ...ay. As described in [50], the OPE structures
for spinning operators can be found by acting with differential operators on the scalar
structures

C(212, 05, )90 = D2V C(19, 0,) 1. (2.28)

1,22
DY is a differential operator constructed via the methods of section 2.2. The conformal

partial waves are then given by

W({9a7b7c’d}($1,1‘2,$3,$4):Da’b Do Wol(w1, w2, w3, 24). (2.29)

x1,T2°7 T3,T4

To be more explicit, the 4-point function of spinning operators is:
(D(Pr, Z0)0(Pa, Z2)B(Py, Z3)®(Py, Za)) = Xe({Pi})Y_ G, 0) Qs ({Pii Zi}), (2.30)
k

o1—03

(@) 2 (ﬂ) 2

Py Py3
og1+o9 o3+toy

(Pr2) 2 (Psa) 2

where y; denotes the representation of the operator and Q*) denote independent tensor

o3—04

Xs({hi}) =

(2.31)

structures. X, is the universal prefactor appearing in the s-channel expansion. The coeffi-
cient functions, G (u,v), depend only on the conformal cross ratios. The conformal block
decomposition is:

s -1\’ ¢ j 12,34, (i
Giluv) = <2> A g0 s,0900 P (u,v). (2.32)
O,i,j

Note that an exchanged operator can generically give rise to different tensor structures.
Rewriting (2.29) in terms of conformal blocks, we get:

g82’34)’(ij)(u,v) _ X;lpz(i)p}sé(j)W({QAl,AQ,Ag,A4}(PhP27P37P4)7 (2.33)
12,34,(i5 12,34,(i5
go,k (j)(uav) =90 (j)(uav) ko (234)

3In this paper we will work with a slightly different normalization than the one found using the above
method, namely our conformal blocks will have an extra factor of (—2)%: gg””e) = (—2)g3F¥. An extra
factor of (—1/2)* will then appear multiplying Ai20 X340 in the conformal block expansion.



where Dz(i) and Df%(j ) give the s-channel differential operators and ’ . means we project onto
the k-th tensor structure. We will construct the differential operators case by case explicitly.
We have two extra indices, ¢ and j, which label the independent 3-point function tensor
structures for each operator. That is, the 3-point function (®;®20) may have multiple,
linearly independent tensor structures with unfixed relative coefficients. For example, in
three dimensions, (T'T'T) has three structures, two parity even and one parity odd. The
parity even structures can be identified with the structures found in a theory of free bosons
or free fermions while the odd structure can only appear in an interacting theory. The
superscript labels the OPE channels under consideration. To simplify notation later we
will write expressions in terms of the conformal block coefficients

Y4 l
123465 _ (—1\ () (j _(1\ 0 ()
PO ! = <2> ‘1)1@2(9)\53@40_ <2> ACI’1<I>QO)\£4<I’3O' (235)

In all cases under investigation this matrix is diagonal in the differential basis (at leading
order in 1/¢ where we will be working), and positive definite.

Everything we have said corresponds to doing a conformal partial wave expansion in
the (12)—(34) channel or s-channel. The partial wave expansion in the (14)—(32) channel,
or t-channel, can be found by exchanging 2 <+ 4 in all of these expressions. We will denote
these t-channel differential operators with a superscript “t” to distinguish them from the
s-channel differential operators.

3 Lightcone bootstrap

We will now review the lightcone bootstrap when looking at the correlation function of four
scalars (see [38, 39] for a more thorough analysis). The important result is that for any
CFET in d > 2 spacetime dimensions, the large spin spectrum contains multi-twist states
with a Fock space structure whose anomalous dimension asymptotics are determined by
the minimal twist sector of the theory. The twist of an operator is defined as the difference
between its conformal dimension and spin, 7 = A — £. Analogous results hold when we
consider correlation functions involving the stress-energy tensor and conserved currents,
except the contributions of 7}, and J, to the anomalous dimension of these double-twist
states can have either sign. Requiring that it be non-positive for the stress-energy tensor
yields the d = 3 conformal collider bounds. We will also see interesting behavior when the
contribution of J changes sign, but we are not aware of any pre-existing bounds on the
relevant OPE coefficient.

3.1 Review: scalar 4-point functions

We start by reviewing the basic results of [38, 39] and establishing some notation. Given
a 4-point function of scalars, (¢1(x1)p1(x2)p2(z3)p2(x4)), we can perform the OPE inside
the correlation function in three different ways, corresponding to three distinct channels.
Requiring that the resulting sums of conformal blocks agree yields the bootstrap equations.
For our purpose, we only need the bootstrap equations from the (12)-(34) and the (14)-(32)



channels,

11,22 11,22 l 12,21 12 ,21
Do PogP(uw) =ubnmiita) KT P (v.u),  (31)
O€p1,2Xp1,2 OEp1 X P2

where the coeflicients Pij’kl are related to the OPE coefficients as in (2.35), we label the

, kl(u, v) by the twist 7 and spin ¢ of the exchanged operator, and we

conformal blocks g
work in a normalization such that gro(u,v) = u™/?(1 — v)’ when u — 0 and then v — 1.
In the eikonal (or lightcone) limit of v < v < 1, the conformal blocks in (12)-(34)
channel are proportional to u7/2. Therefore the Lh.s. of (3.1) is dominated by the low twist
operators: the identity with 7 = 0, conserved currents with 7 = d — 2 and scalars with low
dimensions. In spacetime dimensions d > 2, the leading u contribution comes exclusively

from the identity operator, yielding the following crossing equation:

umBepr i) = B TP g (0, ). (3.2)
70

One puzzle is that the left hand side has the power law singularity uw~22 while the

A1=42 djvergence, for generic A;. This

crossed channel partial waves can have at most a u
problem is even more dramatic if Ay = A, in which case the right hand side has at
most a log(u) divergence. The resolution discovered in [38, 39] is that the correct power
law singularity can only be reproduced on the r.h.s. by the infinite sum over large spin
operators with twist Ay + Ay with the OPE coefficients given by the generalized free field
theory. Solving (3.2) at leading order in u and all orders in v reveals the existence of large
spin operators with twists A; + As + 2n, where n is a non-negative integer. We refer
to them as double-twist operators. Solving (3.1) to the next leading order in w includes
contributions to the l.h.s. from conserved currents and low dimensional scalars, which are
reproduced on the r.h.s. by large-¢ suppressed anomalous dimensions of the double-twist
operators correcting the canonical twists given above.

To see this explicitly we need an approximate form of the conformal blocks in this
limit. Generalizing for the moment, we will start with the conformal block in the (14)-(32)
channel when all four operators are distinct scalars with dimensions A;. Then in the limit
u << v <1with y/ul < O(1) we can use the approximation

12,34 27+2£\[ T(A1+A2—A3—Ay)

9" (v,u) = 7 ’U2K1(A1+A2 Ag—Aq) (20\/u), (3.3)
where K, () is the modified Bessel function of the second kind. Details about the derivation
of this equation can be found in appendix A.

The n = 0 operators, i.e. those with twist Aj+4Asg, are required to match the v2 3 (A1+42)
term on the left hand side. The generalized free field theory OPE coefficients squared in

the large spin limit are given by

4ﬁ Aq+Ay—3
P~ 1+A2—3 A4
70, P(Al)F(A2)2T0+2££ ? (3-4)



After setting Ay = Ay and Ay = Ag in the above formula for the conformal block and
approximating the sum over £ as an integral we obtain

4
S P o) = ey [ 4O Ka st (69)
70

Using the integral

/dEZ“Kb(E) — 2a—1r<;(1 +a— b)>1“(;(1 +a+ b)), (3.6)

—A2y3(A1tA2), Considering a general CFT in d > 2 dimensions,

we reproduce exactly u
where we have isolated the identity by taking the v — 0 limit, this illustrates that at large
spin there exist double-twist states of the schematic form ¢10,, ...8“£¢2,4 whose twists
are approximately A; + Ay, However, if we only have this tower of operators, the crossing
equations cannot be solved because their conformal blocks gives higher order contributions
in v that do not appear on the left hand side. To cancel these we must include operators
with twist 7 = A1 4+ Ay 4+ 2n. These correspond to the ¢ ((92)"8“1 ... Oy, ¢2 operators.
Going to higher order in u in (3.1), we must include non-identity operators O,, with

small twist 7, in the s-channel:

14 ZPH 22 11,22 (u, ) ~ A%f% (A1+As) ZP12 21 12 21 (v, ). (3.7)

Tm Lm,

Using this equation, the anomalous dimensions and correction to the OPE coefficients of
the double-twist states can be solved in terms of 7,,, ¢, and P,}ll’m. For the moment we
will assume that for each 7, = A1 4+ Ao+ 2n there exists a unique operators at each spin ¢,
with twist approaching 7, as £ — co. We will relax this assumption later when considering
4-point functions of conserved currents.

In a unitary theory the stress energy tensor will always be present in the s-channel
with 7 = d — 2. There is also the possibility of conserved currents with 7 = d — 2 and
scalars with % < 7 <d— 2. Higher spin conserved currents also have 7 = d — 2, but the
existence of a single higher spin current in a theory with a finite central charge C'r would
imply the theory is free [70]. Therefore we will restrict the sum on the L.h.s. to £, < 2.

When u < 1 the conformal blocks in the s-channel have the following behavior [69]

T 1
gi2634(u7v) uz(1— v) 2F1< (T+ Ay — Ap) + ¢, §(T+ Ag—Ag)+ 0,17 +20;1— v).
(3.8)
When Az = Ay and Ay = Ao,

o] 2
2F(55.28.1 1) = gt S (D) o (2wt + 1) - w() - ox)). - 39
n=0

4This form is schematic since we also have to symmetrize the Lorentz indices, remove the traces and the
descendant contributions to construct a conformal primary operator. The exact form of these primaries
will not be important to us.
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where (z), = F(rgf(;)n ) and Y(x) = r(( )) At leading order in v, the log(v) singularity from
the o F is reproduced by the anomalous dimensions of the double-twist operators on the
right hand side: 7 — Ay + Ay + v(n, £), where v(n, ¢) is power-law suppressed at large /.

The log(v) piece arises from expanding gii’gl(v, u) ~ v? to leading order in the anomalous

dimension, 7(71 0

v? log(v). The power law singularity in u is then reproduced from the t-
channel expansmn via the infinite sum over spins. Approximating the anomalous dimension
at large £ as y(n,l) = 7" and matching the u divergence from the s-channel yields § = 7,,.

Matching the v° log(v ) erm in the s-channel yields the coefficient [38-40]

B 2F(A Tm+2€ )
0= "HA; - I A2_7 Z m (3.10)

The case of matching g is particularly simple since we just need to multiply each Oth
order OPE coefficient by 2 5
form Pry x ¢, 077, where the first coefficient ¢y is proportional to 79 and can be found

7o, The t-channel OPE coefficient receives a correction of the

by matching the v” term. Recently there has been success in finding ~, for general n in
arbitrary dimension [41, 45], but here we will restrict ourselves to the 7y terms.

3.2 Spinning operators

The case of external operators with spin is complicated by the presence of multiple tensor
structures appearing in the 4-point function. Each independent tensor structure yields an
independent crossing equation. For the 4-point function of two pairs of identical operators
(P1(Py, Z1)P1(Pa, Zo)Po(Ps, Z3)Po(Py, Z4)), crossing symmetry becomes

T 7 (u,v) = Gi(v,u) vk, (3.11)
Z Pll 22;(i7) 11 22 (Z])<u 1)) (312)
O,i,j
12,21;(i5) 12,21,(ij
Giv,u) =) Py (j)go,k P w,u), (3.13)
0

where k runs over the allowed 4-point tensor structures and o; = A; + £;.

The strategy for solving these equations in the lightcone limit mimics the scalar case.
We consider the limit v < v < 1 and ¢/u < O(1). The s-channel is dominated in
this limit by the operators with minimal twist, which is the identity for d > 2. The
identity contribution has a power law divergence of ©~?2, while all the conformal blocks
in the t-channel have a weaker power law singularity in u. We will show that the identity
contribution in the s-channel is reproduced in the t-channel via an infinite sum over spins
for multiple families of double-twist states. The simplest such states have the schematic
form <I>1’(p1mp£18m o Oy, @27,,1.“,,@2) and have twist 7 = 7 +72 and spin ¢; +/¢2+k. But there
are other families of double-twist operators arising from contractions between the fields,
derivatives, and/or the epsilon tensor. In particular, to reproduce the full tensor structure
of the identity exchange in the s-channel, we need to include a few double-twist families
with non-minimal twist in the t-channel. The matching will fix their OPE coefficients at
leading order in 1/¢.
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Unlike in the scalar case we do not know the closed form expressions for the generalized
free field theory OPE coefficients. Instead we will make the ansatz that the modified OPE
coefficients squared for the double-twist states, the P(¥) terms, have the form A¢Z2-2¢ at
large . Here A and B are determined by matching the t-channel expansion to the identity
contribution. There are a few justifications for this form, besides the fact that it gives the
right answer. One is that we computed the exact generalized free theory OPE coefficients
for the [J¢], ¢ double-twist states using conglomeration [71], and their large spin limit is of
this form. Alternatively, if we follow the analysis of [46], we can decompose operators with
spin into representations of the lightcone (collinear) subgroup of the conformal group. The
problem then reduces to a 2d CFT problem where a single correlation function containing
an operator with spin can be rewritten in terms of multiple correlation functions containing
the lightcone primaries. Then the lightcone bootstrap equations can be solved in the usual
way with the scalar collinear blocks and the OPE coefficients take the above form.

With the results from the identity matching, we can expand the crossing equations
to the next leading order in u and solve for the large ¢ asymptotics of the double-twist
anomalous dimensions. In the s-channel, this includes the next-to-minimal twist operators,
which we will assume to be conserved spin 1 and 2 operators, whose conformal blocks have
an additional log(v) divergence. This logarithm is reproduced in the t-channel in the same
way as the scalar case via the anomalous dimensions: vz — p3(TH(0) %vnvgv% log(v).
The anomalous dimension asymptotics take the form

v(n, l) = % (3.14)
where 0 is fixed by reproducing the u dependence in the s-channel. We will find 6 = 1, which
in 3 dimensions is the twist of conserved currents. The coefficient 7, can be determined in
terms of the s-channel OPE coefficients using the crossing equations.

In our analysis we will only consider contributions in the s-channel from 3-point struc-
tures of even parity. In a 3d CFT with a parity symmetry, conserved currents and the
stress tensor have even parity so these are guaranteed to be the only contributions. The
effect of parity odd contributions, which would arise in theories without parity such as
Chern-Simons-matter theories, as well as the effects of scalar exchange, will be considered
in future work.

3.3 Bootstrap with SU(N) adjoint operators

In this subsection, we briefly review the structure of the bootstrap equations when all four
operators transform under a global symmetry. In general, the 4-point function will contain
several different index structures. Matching their coefficients in different OPE channels
generically leads to independent crossing equations.

We take the adjoint representation of SU(N) as an example. We will first discuss the
scalar 4-point function (¢?¢?¢°¢?) before generalizing to the spinning case. See [27, 47] for
more thorough reviews of the conformal bootstrap with adjoint scalars.

For N > 4, there are 7 representations that can appear in the product of two ad-
joints (using the notation of [27]): (I ,Adj, , Adjs , (S, A)a @ (A, S)a, (A, A)s, (S, S)s). The
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subscript s or a denotes whether the operator appears in the symmetric or antisymmetric
combination of the two adjoints. The notation (4, S) means the tensor is antisymmetric in
the two fundamental indices and symmetric in the anti-fundamental indices. (A4, S), and
(S, A), are complex conjugate and appear together in 4-point functions of real operators.

The 4-point function can then be decomposed into 6 independent index structures
corresponding to these representations. If we construct them using the tensor product in
the s-channel, we obtain:

(0% (21)9" (22)9° (3) 9" (xa)) = X )Gy (u, v) (L) ™7, (3.15)

where r = (I, Adj, , Adjs , (S, A)a®(A, S)a, (A, A)s, (S, S)s) runs over the 6 representations
and I gives the corresponding index structures. We can further decompose each G(u,v)
in terms of conformal blocks,

Nol?
Gi(u,v) = > Pogapse(t,v), Po= oo

Oc(pxP)r

(3.16)

We can do a similar decomposition in the t-channel and require that the results agree.
Matching the coefficients of the 6 index structures gives rise to 6 crossing equations:

u\ Ao t v’ s
(;) GL(v,u) = ME G (u,v). (3.17)
The explicit matrix ./\/lﬁl is given in appendix F.

We can generalize this discussion to 4-point functions of operators with spin. Each
different choice of global index structure and tensor structure, (r, k), gives rise to a crossing

equation:
u2p” 2 OFOIGE (v, u) = ME G (u,v), (3.18)
s r p12,34;(i7) (i
Gipluv)= 3 (~D)EPZHED D (), (3.19)
O€(¢X¢)F7i7j
14,32;(i5) (ij
Glpwo)= 3 (~0rpe P (), (3.20)

OE(¢X¢)T7i7j

where £, keeps track of the extra minus signs due to the exchange symmetries of the global
index structure. It is 0 for representations that appear in the symmetric product of adjoints
and 1 for those that appear in the antisymmetric product of adjoints. Note that here the
coefficients P'23%() also contain a factor of (—1)¢ which in some cases cancels against the
(—1)% (this implicitly occurred in (3.16)).

For N = 2 and 3 some representations do not appear, but the large ¢ OPE coefficients
and anomalous dimensions can still be found by dropping these representations and setting
N to the appropriate values. For N = 3 the (A, A), representation does not appear and
for N = 2 the (S, A),, (Adj)s, and (A, A)s representations do not appear.
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4 Mixed current-scalar 4-point functions

In this section we will investigate correlation functions of the form (J,,J,¢¢), where J, is a
conserved spin one current and ¢ is a real scalar operator of arbitrary dimension. The cur-
rent has dimension A ; = d—1 and corresponds to either a U(1) or SU(N) global symmetry.
For the U(1) case we will take the scalars to be uncharged under the U(1) symmetry, while
for the SU(N) case we will assume they transform in the adjoint representation. There is
no loss in generality for the U(1) case since the 3-point function of identical U(1) currents,
(JJJ), vanishes for a 3d CFT [72].

4.1 Identity matching
4.1.1 U(1)

At leading order in the small u limit, the 4-point function is given by:

Hio

(J(Py; Z1)J (P2; Z2)b(Ps)p(Py)) = CJW +....

(4.1)

This is the result of the identity exchange in the s-channel. In other words, the 4-point
function factorizes at this order and is equal to the generalized free field theory result, even
when we are not assuming a large IV limit. C'; is the current central charge and describes
the normalization of the current 2-point function

Hio

<J(P1; Zl)J(PQ; Z2)> = CJ (P12)d.

(4.2)

In this subsection we reproduce this contribution from the t-channel conformal block ex-
pansion. We will show that this requires the t-channel to receive contributions from two
families of double-twist operators, the parity even ones [J @], ¢ ~ J,(8%)", ... Oy, , ¢ with
twist 7, ¢ = 77 +75+2n, as well as the parity odd ones [:]\(?)]mg ~ e“”pjyap(a2)”3ul oo Opy @
with twist 77 +Ag + 2n + 1. We will solve the crossing equations at leading order in v and
v, where only the lowest twist states (n = 0) from both families contribute.

To construct the spinning conformal blocks in the t-channel, we use the fact that the
(Jo[J¢]) 3-point function can be represented in terms of differential operators acting on
the scalar correlator. After imposing the conservation conditions, for [J¢|p, we have

(J(Pr; Z1)d(P2) [T @lo.e(Ps; Z3))

2—d 10 0 1) Nsstsolo. Vs
= (2" DS + DY : (43
<f + A¢ -1 oL 1251 (P12)%—Z(P13)d+f—% (PQB)Aqﬁ-E—% ( )

where A Jo[Jdlo, 1S an arbitrary coefficient. For the parity odd double-twist states, we have

N 14
)\Jfb[Jd)}o,zV?’

(Pm)%fé(Plg)dJréf% (P23)A¢+€7% ’

(J(Pr; Z1)¢(P2) [T dlo.e(Ps: Z3)) = Dy (4.4)
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This correlation function is automatically conserved. The t-channel differential operators
that generate the spinning blocks are then®
1 1
¢ t 1,0 t 0,1 t 1,0 t 0,1
Disgloe = <_ U+ Ay — 1D112L,t + D14EL,t) (‘ 1A, 1 1D2QER¢ + D23ER,1;>’ (4.5)
Dt = DiD} 4.6
[J¢]O7£ 1 29 ( )
where we have set d = 3. The crossing equation at leading order in w is
Hio

o2 t t _ t ¢
CJ (P12)3(P34)A¢ o En’g P[J(’b]"veD[JQﬂn,ZW[J@s]n,Z + P[qu]n’[D[‘]/\an,éWmnl7 (47)
where P4, , and P[j&] , are positive squares of OPE coefficients as normalized in (2.35).

W denotes the t-channel conformal partial wave with scalars, which is (2.26) with 2 <» 4
exchanged.

We now solve (4.7) at the lowest order in v. Thus we set n = 0 and restrict the sum
to be over £.5 As mentioned in section 3.2, we make the ansatz that as £ — oo we have
P; ~ A;¢Bi272t The bootstrap equation is now straightforward solve, we act with the
differential operators on the large spin conformal blocks in (3.3), which produces terms of
a similar form, ~ (¢ K3 (20+/u). The sum is then approximated as an integral and evaluated
using (3.6). Computationally, it is more efficient to compute the integral first and then act
with the differential operators. The result gives the OPE coefficients at leading order in 1/¢:

~ V7 1(204-1) _ VTCy 12A,-7)
P[J¢]O’e - 224+A¢*1I‘(A¢)£2 ’ ’ P[:f:ﬁ]o,z ~ 22Z+A¢+1F(A¢)£2 ¢ . (4'8)

4.1.2 SU(N)

At leading order in u, the 4-point function is dominated by the identity exchange:
Hio

ﬁ + “ e

(P12)?(Ps4) "9

As explained in section 3.3, there are 6 independent bootstrap equations corresponding to

(J(Pr; Z1).J"(Py; Za)°(P3) ¢ (Py)) = Cy6°°6% (4.9)

the 6 index structures. They are given in eq. (3.19) with the matrix defined in appendix F.
For each equation the analysis is the same as the U(1) case. Matching the identity con-
tribution shows that double-twist operators in all representations appear in the t-channel
with the following coefficients:

CIVT_ tea~p CIVT_ peanp

Pliglo. = 285 +1+2D(A ) ’ P[j&]o,e - 285 F3420T (A ) ’

(4.10)

where we have defined the vector P = (ﬁ, %, %, 2,1, 1) using the basis of representa-

tions (I, Adjq , Adjs , (S, A)q @ (A, S)a, (A, A)s, (S, 5)s). One interesting point is that the
OPE coefficients for the singlet representations decay like ~ 1/N?, the (Adj)s and (Adj)q,
coefficients like ~ 1/N, and all others approach a constant as N — oo, showing that the
former states decouple at large N.

5We explicitly label the differential operators by ¢ as a reminder that these are the differential operators
for the t-channel. In other words, in our original formulas we must let 2 — 4. In these expressions EaL’b
shifts Ay by a and A4 by b, while Z‘}-{’b shifts Ag by a and As by b.

5The crossing equation only depends on the cross ratios u, v even when this is not manifest in (4.7).
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4.2 Stress tensor and current matching
4.2.1 UQ1)

We now solve the crossing equation at the next leading order in w. In the U(1) case, the
s-channel contains the contribution of the stress-energy tensor.” The spinning conformal
block for stress-tensor exchange can be obtained by acting with a differential operator Dy,
on the scalar partial wave, which is fixed by the condition Dy, 7(¢s¢,1) = (JJT), where
in general ¢ is a real scalar with dimension d — 1. Conformal symmetry implies

aViVaVE+B(Hi3Va + HosVh)Va+vH12VE + nHisHas

(J(P1; Z1)J (Pa; Z2)T(Ps; Z3)) = (Pra) Py (o) 1)

(4.11)

After imposing conservation conditions and the Ward identity, this 3-point function is fixed
in terms of two coefficients, Ay;r and Cy [73]:

Cy(d* —4) = 2X1y7dSq

=d = -2\ 4.12
o 55, ) B JJT (4.12)
d(d—2)C dC
v =—d\jjT + g, n= =257+ 7J, (4.13)
254 Sa
where C is the current central charge and Sy is the volume of a d — 1-dimensional sphere,
d
Sy = 1%?; 7 The coefficient A 7 is arbitrary and was denoted as ¢ in [73] and ¢ in [53].
2

We can reproduce this 3-point function with the following differential operator:

d(d—2)C;
(d-1)Sq4

d*C
>D11D22+ (2)\JJT — J> D19Doy —2X 7 Hi2 2}517

Dpr= K?)\JJT - (d=1)5,

(4.14)
where EaL’b shifts the dimensions of the first two operators.

In the 4-point function, the identity contribution is corrected by the stress tensor
exchange in the s-channel, which is suppressed by an extra factor of \/u:

Hyo 1 s
(J(Pr; Z1)J (Po; Z2)$(P3)p(Py)) = CJW + )‘¢¢TWDL,TWT({P1'}) +..
(4.15)
where A\yy7 is also fixed by the Ward identity to be
Ayd 1
A = 4.1
T T DS VOr (19

In this first correction, the leading contribution at small v is a logarithmic singularity. This
log(v) is matched in the t-channel by expanding the conformal blocks in the anomalous

"To simplify the analysis, we are assuming that there are no scalars with % < A < 1. Their contributions
can also be included with the methods described here.
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dimensions of double-twist operators. The crossing equation then takes the form®

)‘¢¢T s _ t t ot t
wyog e =2 Fusel. Mo O Dlser, Voo + Pz, 7m0 Pl Wira,,

n,l

(4.17)

where we implicitly restrict to terms multiplying log(v). This equation can be solved with
the same technique as before. The anomalous dimensions are necessarily 1/¢ suppressed at
large £ for their effect to appear at the correct order in u. With the notation vo, , =70, /4,
the n = 0 results are:

_4A¢(3CJ - 87T)\JJT)F(A¢) o _8A¢(167T)\JJT - 3CJ)F(A¢)
T2Cr T (Ay— 1) 7 0l 7T 2C7CuT (Ay — 1)

7[J¢}0 = (4.18)

In an AdS bulk description, these anomalous dimensions correspond to the gravita-
tional binding energies for well-separated 2-particle states [38]. Since gravity is expected
to be attractive, we expect the anomalous dimensions to be negative. Assuming that the
CFT is unitary, so Cp > 0 and C; > 0, and that the scalar is not free, or equivalently
Ay > %, we see that the anomalous dimensions are non-positive if and only if the relevant
3d conformal collider bounds [53] are satisfied:

30, 30,
2T N < 22 4.19
160 = T =gy (4.19)

These bounds were originally discovered by requiring the integrated energy flux at spatial
infinity due to a localized perturbation in the CFT to be positive. Our results suggest
that the positivity of this energy flux is equivalent to the attractiveness of bulk gravity at
long distances. We could also turn this around and conclude that our analysis combined
with the conformal collider bounds gives an argument for the attractive nature of bulk
gravity at long distances, using entirely properties of the field theory. The negativity of
the anomalous dimensions is also related to bulk causality in large N theories [74]. We
hope to explore this connection in more detail in future work.

30, 30,

Note that the two boundary values, <2 and g2,

a theory of free fermions and free bosons respectively. When Ajjr saturates one of the

correspond to the values found in

bounds, one of the asymptotic anomalous dimensions vanishes. This could be an indication
that certain sectors of the theory are decoupling (see [54] for related work in 4d). It would
be interesting to extend this analysis to higher order in n or ¢ to see if this behavior
continues to hold. The fact that the other anomalous dimensions remains non-zero at
the boundary free values indicates that our analysis is incomplete for free theories, which
contain an infinite number of higher spin conserved currents. We have not included them
in the s-channel analysis since we focused on interacting theories which have a twist gap
separating the spin 1,2 conserved currents from the other operators. After summing up all
the contributions from higher spin conserved currents, we expect the logarithm to disappear
and the anomalous dimensions of the double-twist states to vanish.

8The division by v/C7 comes from how we normalize the stress energy tensor. A division by /Cj will
also appear for current exchange. See appendix D for our conventions.
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4.2.2 SU(N)

For a 4-point function of SU(N) adjoint operators, the SU(NN) conserved currents can
appear in the OPE decomposition. This gives rise to another contribution at the same
order compared to the stress tensor exchange. The spinning conformal block for the current
exchange can be obtained by acting with a differential operator Dy, ; on the scalar partial
wave, which is fixed by the condition Dy, j(¢s¢5J) = (JJJ), where ¢ is a real scalar with
dimension d — 1. After imposing the conservation conditions and the Ward identity, we see
that this 3-point function is fixed by two coefficients, C; and A\ [73]:

(J(Py, Z1)J"(Py, Z2)J(Ps, Z3))
(2 — 2+ d)A\yy)ViVaVs — Ay (Hi2Vs + HisVa + HasVi)

_ fabc . . .
(P12)2(P13)2 (Pa3)2

. (4.20)

where fo%¢ are the structure constants, corresponding to the (Adj), representation in the
tensor product. In [73] the coefficient A;;; was called b.
The associated differential operator that generates this 3-point function is given by
dC'y

Dpy =+ (D12D23)* + D11 Dy 7% — Dig Doy 5p1) +
(d—2)Sy

4Ny 7584 —dCy
(d—2)Sq

D11 Dgp>

(4.21)

This is all we need to construct the spinning conformal block. After solving the crossing
equation at the next-to-leading order in u, we find that the t-channel anomalous dimen-
sions receive separate contributions from 7" and J exchange. The anomalous dimensions
asymptote to vo,, , = ~o, ¢! at large £. The n = 0 coefficients are given by:

2(Cy —4nrAyy0)T(Ag) - 4A4(3Cy — 8 y1)T'(Ag)

W =T T Rcr (A, — 1) T T A RCCT (A - 1) T
28770 — Cr)L(Ay) 8A, (167 1 — 3C )T (Ay)
o _ 4.22
VTde RO (Mg —3) T RO (A=) T )

7J:(2N7N7N70727_2)7 7T2(17171717171)7

where vy and 7 give the results for double-twist operators in different representations
of SU(N): (I ,Adjg , Adjs , (S, A)g @ (A, 9)a, (A, A)s, (S, S)s), The second terms in these
expressions are the corrections to the dimension due to the stress tensor exchange in the
s-channel. As in the U(1) case, they correspond to the gravitational binding energies
between well separated 2-particle states in AdS. The fact that they are the same for different
representations is consistent with the universality of gravity. From the CFT perspective
this is due to the fact that 7" appears in the singlet representation of SU(N). Since gravity
at long distance is expected to be attractive, we expect these anomalous dimensions to be
negative. Once again, we find that this holds if and only if the same conformal collider
bounds (4.19) are satisfied.

The anomalous dimensions from current exchange are given by the first terms in (4.22).
In a dual AdS description, they correspond to the binding energy from non-Abelian gauge

,18,



interactions for well-separated 2-particle states. We find that this interaction is attractive
for the neutral 2-particle states, or the singlet, if and only if

Cy Cy
—— <\ < = 4.2
8r — "= (4.23)

% while in
™

a theory of free fermions Ay ; = % [73]. Just as in the case of T-exchange, when (J.J.J)

where Ay;; and Cj parameterize (JJJ). In a theory of free bosons A\jj; =

saturates the free boson or free fermion structures some of the asymptotic anomalous
dimensions vanish.

The inequalities (4.23) are intimately related to conformal collider physics. By acting
with a properly chosen non-Abelian current on the vacuum, we can create a localized state
with a positive charge under a U(1) C SU(N) at the origin.? This local perturbation
propagates and the charge flux at infinity can be measured. We show in appendix E
that the expectation value of the charge flux at infinity is positive if and only if (4.23) is
satisfied. In contrary to the energy flux, the charge flux in any single event may trivially
have different signs at different angles, as expected from a showering of charged particles.
But this doesn’t imply that (4.23) is generically violated. Indeed, to make the expectation
value of the charge flux negative, one needs a large charge flux asymmetry. This is the
much more non-trivial behavior that is forbidden by (4.23).

From the perspective of gauge interactions in the bulk, the regime violating (4.23)
seems rather strange. Eq. (4.23) is equivalent to the statement that the gauge represen-
tation of a well separated 2-particle state determines the sign of its gauge binding energy.
In particular, this sign will not depend on the spin of the particles or the parity of the
state. This follows from comparing (4.22) to the corresponding result in scalar 4-point
functions [47], where this sign is uniquely determined by the representation. However if,
for example, \jy; > %, then all the parity-even 2-particle states consisting of a scalar and
a gauge boson [J¢] will have binding energies with opposite signs compared to the scalar-
scalar state [¢¢] or the parity odd states [jg/t] These behaviors seems counter-intuitive.
For example, the singlet 2-particle state [J¢] which intuitively holds the least energy in the
gauge field configurations will become the most energetic one. We do not have a rigorous
way to forbid this situation, but it is tempting to conjecture that the bound (4.23) holds
in all unitary CF'Ts.

It would be interesting to see if there could exist consistent CFTs or theories in AdS
that violate (4.23). We are not aware of any examples. Some holographic constraints
on massive triple vector boson couplings were found in [75], but their analysis does not
apply to this case. For all superconformal theories this bound holds. Supersymmetry fixes
the parity even 3-point functions of conserved global symmetry currents up to an overall
coefficient [76]. Therefore, A\;;; can be calculated in a free theory and the result holds
for all SCF'Ts since the positivity of the number of bosons and fermions in the free theory
implies (4.23).

9 Although we only analyzed the case of SU(N), we expect similar features to appear more generally. In
particular, from the analysis of [47] we expect them to show up in 4-point functions of operators in other
representations of SU(N) as well as in CFTs with other global symmetries such as O(N).
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Furthermore, using the constraints of slightly broken higher spin symmetry, Malda-
cena and Zhiboedov [77] found the correlation functions of all currents to leading order
in N in two classes of CF'T's parametrized by an effective 't Hooft coupling A, which they
called the quasi-bosonic and quasi-fermionic theories. Large N Chern-Simons theories with
fundamental matter fall into this category and include as special cases the critical O(N)
model and UV Gross-Neveu O(N) model. Specifically they found that (J(1).7(s2) j(s3)) is
parametrized by three structures ()pos, () fers ()oda; Which refer to correlators found in a
theory of free bosons, free fermions, and a structure that only shows up in an interacting
theory. The coefficients in front of the bosonic and fermionic structures are always positive
semidefinite, so the conjectured bound on A;;; holds for CFTs with slightly broken higher
spin symmetries.

Finally, let us consider the dependence of the anomalous dimensions with respect to N.
We expect that C'r scales with some positive power of N, while the behavior of C; is less
clear.'® The bounds (4.19) and (4.23), if true, indicate that Ay ~ C; and Aj5; ~ Cj.
At large N we see that the contribution of T' to the anomalous dimension becomes small
for all the operators. This is consistent with bulk gravity turning off. If C; stays constant
as N — oo, the anomalous dimensions of double-twist states in the singlet and adjoint
channels can start to decrease like —N/¢. In this case our results should only hold when
N </, otherwise we cannot treat the anomalous dimensions as perturbative parameters. If
C'y also scales with some positive power of N, our results may have a wider range of validity.

5 Current 4-point functions

In this section we will generalize the above analysis to 4-point functions of currents (J.J.J.J).
As before, we will first match the identity contribution in the s-channel to an infinite sum
over large spin double-twist states. Then we will match the current and stress-tensor
contributions to compute the anomalous dimensions of these states.

5.1 Identity matching

5.1.1 U(1)
At the leading order in the u < v < 1 limit, the 4-point function factorizes:

HioH
(J(P1, 20)J(Py, Z2)J (Ps, Z3)J (Pa, Za)) = CF 220 (5.1)

(P12)(Psa)

This corresponds to the contribution from the identity exchange in the s-channel.'! We
will see that to reproduce all polarizations of (5.1) at leading order in the lightcone limit
from the t-channel conformal block decomposition, we would need to include contributions

10The scaling properties of C'; can be determined if we are close to a free field theory description. For
example, the contribution of a free field in representation r of the global symmetry group to C; scales like
the index of the representation C(r), which is defined as Tr,(T%T%) = C(r)d%® [73]. For the fundamental
representation this is a constant, but for the adjoint representation, this grows like V.

HThere are also identity exchanges in the t- and u-channel, but these contributions are subleading in the
small u limit.
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operator | twist | parity spin constructions

[JJ]o.e 2 even even JuOy, - 0y 5,

c V-2

[JJ]1e 4 even even Ju0?0y, ... 0yy o dpy MOy, ... 0y,

* V-2

[JJ]o.e 3 odd | even & odd | €/ J,0x0y, ... 00, yJo. €47 Tu0u ... 0, Ik

Table 1. T-channel double-twist operators that reproduce the s-channel identity exchange in
(JJJJ). From the bootstrap perspective, we cannot distinguish different constructions with the
same twist and parity, with the exception that the second construction of [f] Jo,¢ exists only for even
£. Our solutions represent the sum of their OPE coefficients and the average of their anomalous

3 3 — — 27 POi Yo,
dimensions, e.g., Po = Zl Po, and vp = S

from the three families of large spin double-twist operators given in table 1. It is perhaps
surprising that the twist 4 states [J.J]; ¢ should contribute at leading order. One of the
polarizations in (5.1), (Z1 - Z2)(Z3 - Z4), receives a contribution at leading order from this
state when we take into account degeneracies among the four point function structures (see
appendix C).

We will start by constructing the spinning conformal blocks associated with these
operators. The conformal blocks for exchanging a general spin-¢ operator in (JJJJ) can
be written in terms of differential operators acting on the known blocks for scalar 4-point
functions. In the conformal partial wave expansion, the contribution from a primary O, to
(JJJJ) can be written as

P Dy iDp W, (5.2)

where W, is the scalar conformal partial wave (2.26) with (2 <> 4) permuted. ng ) are
products of OPE coefficients in the normalization of (2.35). Our goal in this subsection is to
solve for them in the large ¢ regime with the crossing equations. The t-channel differential
operators are [50]

(A—f—1)(A—C—3)(A+L—2)(A+0) o
Dy, = (2 + N DY, DY, sk
2,0 0,2 1,1
— (A =0 =1)(A+0)(Dyy D, 577 + D1y DiySp") + Ca DD Xy (5.3)
Djy=— ADY DSyt + Ca g HuS T (5.4)

(3—A)A + ((1+0)
Chay
(B—A)A+L(1+0)—4
Cay

DtL,+ = (Dilf)iZi’o—k D§4D4E%1) + (DZ4D§EOL71 + Dilﬁizlﬁo)a (5.5)

Dj = (D} Dix}° — DY DY) + (DiuDIZ}" - Dy DIz,

(5.6)

where Cay = A(A —d) + €({ + d — 2) is the quadratic Casimir and A,/ refer to the
scaling dimension and spin of the exchanged operator. Note that each DtLﬂ- respects the
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conservation conditions of the external currents. The first two are parity even and appear
in the conformal blocks of [J.J], while the last two are parity odd and appear with [J.J].
D ; is obtained by permuting (1 <+ 3,4 <> 2) in D .
At leading order in u < v < 1, the crossing equation becomes
2 124134 (i) t mt t (i5) t mt t
¢ —-E:[f’ PLiDriWiine, T Byn, LrilriWiian,,

J(Plz)d(P34)d T [T 0. [JJ)1,e

(j) Pt F t
+P) D, mum] (5.7)

As explained in appendix C, there are two degeneracy conditions among the four point
function tensor structures. In practice, it is simpler to match particular dot products ap-
pearing in the four point function tensor structures, taking into account the aforementioned
degeneracies.

We find a few simplifications when solving (5.7). First, both the parity-even differential
operators and the parity-odd differential operator D L+ are symmetric under the exchange
of 1 <» 4. Therefore they only appear when ¢ is even. DtLﬁ, on the other hand, is
odd under this exchange and appears when /¢ is odd. Second, for any coefficient matrix
PU3) constructed from (2.35), the cross terms, DEJD%’2 and Dj:,lDf%,w give sub-dominant
contributions compared to D} ; D% | and D} ,D% 5, and can be ignored. Finally, we find
from identity matching that to leading order in ¢, P, [(fif =0 and P[(J J]) =0.

To summarize, we find that at leading order, the tw1st—2 parity even states only con-
tribute through Dj ; D, |, and the twist-4 ones only contribute through D} , D% ,. This is
a nice simplification as we do not have to worry about a matrix of OPE coefficients. The

differential operators for each double trace state are given by:
t — pt pt
Diysee = DL,IDR,IlA:eré,e’ (5.8)
t — pt pt
D[JJh,e = DL,2DR,2|A:4+£,£7

1
t —
D[JJ} 4

[(1+(=1)") DY+ 1+ (=)D} _][(1+(=1)") Dl . +(1+(-1)) Dk _],

with a corresponding OPE coefficient Pp». For the odd differential operators we have
grouped the even and odd spin differential operators together. In practice we should
separate these contributions, split the sum over even and odd spins, approximate as an
integral, and then solve. However, we find that parity odd states of even and odd spin
yield contributions of the same form, so we can only determine the sum of their OPE
coeflicients, which is denoted by P[f’]o,e'

Matching all the dot products that appear in HisHsg, we find the OPE coefficients of
double-twist states at leading order in 1/¢ to be

\/7?03 -z ﬁcj -2 \FCJ -3
Pynoe = 020+2 2, By, = 920+6 276 ¢ P70, = 920+2 s ¢ (5.9)

5.1.2 SU(N)

The SU(N) case is similar to the U(1) case with extra structures from the global symmetry
indices. At leading order in the lightcone limit, the s-channel decomposition is dominated
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by the identity exchange and the 4-point function factorizes. This contribution is repro-
duced in the t-channel by large spin double-twist states. As in section 4.1.2, two conserved
currents can form 6 types of double-twist states corresponding to different representations
of SU(N). For each type, there is a crossing equation similar to (5.7) that requires 3
families of double-twist operators with different twists as given in table 1.

For the parity even operators the same selection rules hold as in the purely scalar case,
operators of (odd) even spin appear in representations (anti)symmetric under the exchange
of adjoint indices. There are no such selection rules for the parity odd sector and we will
need to keep track of extra minus signs relative to the scalar case when operators of odd
spin appear in representations symmetric with respect to the adjoint indices and vice versa.
This is the origin of the factor (—1)% that appears multiplying ng) in eq. (3.19).

Exchange symmetry for the parity odd operators implies we need the following differ-
ential operator

Do = 1 (L4 (<1 D+ (14 (—) DY ]
(14 (-)"")Df . + 1+ (-1)"*™Df _], (5.10)

where £, is 0 or 1 for representations that appear in the symmetric or antisymmetric
product of adjoints. As in the U(1) case, we choose to group together operators of even
and odd spin for each representation because their contributions have the same form.

Using the crossing symmetry equations for SU(N) adjoints, the crossing equation at
leading order in ©u < v < 1 can be solved to find the OPE coefficients of double-twist
states at leading order in 1/¢:

e VTt e VT s o VT 5
with P = ( NI ﬁ,, N2 121 1) giving the result for each double-twist state in different

representations under SU(N), which are (I, Adj, , Adjs , (S, A)a® (A, S)a, (4, A)s, (S, 9)s).

5.2 Stress tensor and current matching

We now solve the crossing equations at the next-to-leading order. We include in the s-
channel the contribution of the exchange of the stress tensor 7', as well as the conserved
currents J¢ in the SU(N) case. These contributions are suppressed by a factor of /u
relative to the identity contribution. The log(v) singularity in the conformal blocks of T
and J are reproduced on the right hand side by the anomalous dimensions of double-twist
operators, v, ¢ = Yn/{. The power of ¢ is determined by matching the extra /u suppression
in the s-channel. We will only focus on the n =0 and n = 0, 1 case for the parity odd and
even double-twist operators, respectively.

5.2.1 U(1)
Including the exchange of T}, and yields the following equations for the anomalous
dimensions:
1 s t t
1 PLrDrrWr = > Y0Po0-, D W, (5.12)
0,0
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where we have implicitly restricted to terms proportional to log(v). The sum for O runs over
the 3 families of operators [JJ]g ¢, [JJ]1,, and [I]]ng as given in table 1. The differential
operators Do are given in (5.8), Dy, 7 is given in (4.14), and Dp r is obtained by permuting
1< 3,2 <+ 4. The OPE coefficients Py are solutions to the leading order problem and are
given in (5.9).

Solving (5.12), we obtain the anomalous dimensions y0,, = 70, /¢ of operators in
table 1 at leading order in 1/¢:

16(3C; — 87y 7)?

MNJJlo = — 37T4CTCL2] ’ (513)
64(3C; — 167\ 1 7)>
Y = — 37T4CT03 ) (514)
- 32(3C; — 8 Ay yr)(167A 5 — 3C)
Nine =~ 3mtCrC% . (5:15)

We see the parity even double-twist states cannot have positive anomalous dimensions
while the parity odd anomalous dimensions are not sign definite. Requiring that they
be negative semidefinite yields the conformal collider bounds (4.19). The fact that the
negativity conditions of (5.15) agrees with that of (4.18) provides a non-trivial consistency
check for our calculations. The results from the (J.JJ.J) analysis is more general because
it does not assume the existence of scalar operators in the spectrum.

5.2.2 SU(N)

In the non-Abelian case the s-channel includes, in addition to the stress tensor, a con-
served current in the Adj, representation. At leading order in 1//, the resulting anomalous
dimensions of the double-twist operators again take the form vo0, , = 70, /¢, where

8(Cy —4nhyyy)? 16(3Cy — 87y 7)?
Mo = T T3 7= 3ricpcz (5.16)
8(87T>\J]J—CJ)2 64(167T)\JJT—3CJ)2
Y = — w8 Y5 — 37102 Y, (5.17)
o _S(CJ - 47T)\]JJ)(87T)\JJJ - CJ) . 32(3CJ - 87T)\JJT)(167T)\JJT - 30])
e = TC3 v 3riCrC3 o
(5.18)

with vy = (2N, N, N,0,2,-2), vr = (1,1,1,1,1,1). They give the result for double-twist
operators in different representations (I ,Adjy , Adjs , (S, A)a @ (A, 8)a, (A, A)s, (S, 5’)5).

The second terms in (5.16)—(5.18) are corrections due to the stress tensor exchange
in the s-channel and correspond to the gravitational binding energies in AdS between well
separated 2-particle states. The fact that they are the same for different representations
is consistent with the universality of gravity. Once again, we find that these anomalous
dimensions are negative, or gravity in AdS is attractive at long distances, if and only if the
same conformal collider bounds (4.19) are satisfied.
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The corrections to the dimensions from the current exchange are given in the first terms
in (5.16)—(5.18). In the dual AdS theory, they correspond to the binding energy from non-
Abelian interactions for well separated 2-particle states. For the parity even states, we
find that the sign of the binding energy only depends on the SU(N) representation of the
double-twist state. For a given family, it is the most negative for the singlet double-twist
state and only positive for the symmetric representation (S, 5)s. This matches with our
intuition and also agrees with the signs found in the anomalous dimensions of scalar-scalar
2-particle states [47]. However, for the parity odd state this is not true a priori. The parity
odd SU(N) singlet 2-particle state has non-positive gauge binding energy if and only if the
3-point function coefficients in (J.J.J) satisfy the bounds (4.23). This is also equivalent to
demanding the sign of the gauge binding energy to be independent of the parity of the
bound state. As noted in section 4.2.2, the bounds (4.23) also imply that the charge flux
one-point function does not change sign at different angles.

5.3 Higher spin symmetry at large N

As discussed in the (JJ¢¢) case, if C; does not grow with N, then the leading ¢ anomalous
dimension we computed holds only when N/¢ < 1. Even with the freedom of choosing
AjjJ, the anomalous dimensions of at least one family of double-twist operators would
grow with N. The N ~ £ regime is subtle because the large ¢ expansion is not separated
from the large N expansion. In this subsection we will focus on the opposite regime of
N > [, where we will not be able to establish the presence of the double-twist operators.
However, the crossing equations and unitarity imply that if C; and (JJJJ) stay finite in
the N — oo limit, then the theory must contain an infinite number of higher spin currents
at infinite N. We will show this by assuming the higher spin currents do not exist and
deriving a contradiction.

We focus on the first two crossing equations in (F.2), where we first take N — oo and
then go to the lightcone limit. These crossing equations become:

u\ 3 < 5 .

(5) G = Gsn T Gaa +Gss) (5.19)
u\3 1 B < . )

(;) Gagi, = 5 ( Adjq T Gagj, + G4 1) — G(S,S)) , (5.20)

where G5 denotes the part of the 4-point function corresponding to the representation
r in either the s- or t-channel. These functions implicitly depend on the polarization
vectors. Since the absence of higher spin currents is assumed, we only need to consider
the exchange of the identity and twist 1 operators of spin £ < 2 in the s-channel. Note
that G, which includes the contribution from identity and 7" exchange, drops out in this
limit. GsAdja includes the contribution from J exchange. This contribution is non-zero if
the OPE coefficients for (JJJ) are not suppressed, or equivalently, if C; stays finite as
N — oo. We do not make any assumptions on the twist 1 operators exchanged in the
other representations except for the absence of higher spin currents.

The contribution from the global symmetry current to Gidja contains a log(v) term at
leading order in u. In addition, we have shown in [47] that it is impossible to reproduce such
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a term when each primary operator in the t-channel contributes with the same sign. The
same problem shows up here when we consider the terms multiplying the (Z; - Z2)(Z3 - Z4)
and (Z1- P2)(Za- P1)(Z3- Py)(Z4 - P3) structures in both equations. Furthermore, the log(v)
terms in the s-channel G multiplying these structures also contribute with the same sign.
In particular, if one tries to cancel the logarithm in the r.h.s. of (5.20) by allowing for the
exchange of twist 1 operators in the (S, S) representation, then this exchange will induce
a log(v) term on the r.h.s. of (5.19), leading to another contradiction. The analysis then
reduces to that in [47]: the exchange of a finite number of higher spin currents in the
s-channel cannot remove the logarithms, rather we need to sum over an infinite tower of
higher spin currents. These higher spin currents necessarily transform non-trivially under
the global symmetry group of the CFT.

Let us now consider the exchange of scalars with % < Ay < 1. In fact, it is easy to see
that they cannot appear in the s-channel with O(1) coefficients at N — oo in a unitary
CFT. Such scalars would contribute a log(v) term that could not be cancelled by a sum
over higher spin operators. The reason is that, if such higher spin operators existed, they
would necessarily violate the unitarity bound. Thus, there are no finite contributions from
scalars with 1/2 <Ay <1 to Gy at N — oo.

The argument presented here for the existence of higher spin currents at N — oo
(assuming C; does not grow with N) is more general than the one made in [47], because
we did not need to assume the existence of scalar operators in the spectrum.

6 Mixed stress tensor-scalar 4-point functions

In this section, we study the correlation functions of the form (T'T'¢¢$) where T}, is the
stress-energy tensor and ¢ is a scalar operator of arbitrary dimension. Since T}, is conserved
it saturates the unitarity bound and has dimension d. At leading order in u < 1, the 4-
point function will be dominated by the identity contribution in the s-channel. We will
assume that the next leading order correction comes from stress-energy tensor exchange.
Note that the correlator (I'T'J) vanishes in three dimensional CFTs [72]. We will also not
consider the corrections due to the exchange of a light scalar.

6.1 Identity matching

At leading order in u, the 4-point function is approximately given by the factorized form
found in generalized free theories. In the t-channel this is reproduced by two families of
double-twist operators with even or odd parity, of the schematic form:

(Tlne = Ty (02)" Dy - - - Drp_y &, [T, = €Ty (0°)"0x0s, - . . Oy, (6.1)

The parity-even operators [T'¢], ¢ have twist 1 4+ 2n + Ay, while the parity-odd operators
[T'¢]p ¢ have twist 2 4 2n + Ay. The crossing equation at leading order in u is given by

2
H12

R ¥ t t . t t
Cr (Pr)*(Poa)Be st Prgln D), Wiral,.. + P 3. Dlra, Wi, (6.2)
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We solve this equation at leading order in v, which restricts the t-channel operators to
have n = 0. The t-channel differential operators are constructed in appendix D.3, and take

the form
6 4
t _ t \2v2,0 t t 1,1 t \2v0,2
D[T(ﬁ]@j_<(A¢+£_2)(A¢+£_1)(Dll) ZL _A¢+£_1D14D112L +(D14) EL >
6 4
Dt 222,0_ Dt Dt 21,1 Dt 220,2
<(A¢+€—2)(A¢+E—1)( 22) R A¢+€—1 23224 +( 23) R |
(6.3)
3 ~ 11,0 =1 0,1 3 <1 1,0 = 10,1
D][%:a]oz :<_ Aﬁﬁ—lDilDizL + Dubizy )(‘ A¢+e—1D52D§ZR # DuDiXg ).

(6.4)

We match all dot products appearing in H 122 in a basis of independent tensor structures.
In particular, we matched the coefficient of three structures: (Z1 - P»)?(Zo- P1)?, (Z1 - Z2)?,
and (Zy - Z9)(Zy - Py)(Z2 - Py). This results in a linearly dependent set of equations that
can be solved for the OPE coefficient at leading order in 1/¢:

N -A
V2R s P VAL aT

20304, Tilo. ~ ORI (Ay) (65)

P[T¢]0,e ~Cr

6.2 Stress tensor matching

At the next leading order in u we include the exchange of T" in the s-channel. This con-
tribution is suppressed by a factor of y/u compared to the identity. This implies that the
anomalous dimensions are 1/¢ suppressed at large ¢. At leading order in v and next-to-
leading order in u, the crossing equation takes the form

AggT s _ t t t t
e T %: V10900, F1ra  On Dirls, Wirero. + e, e, S0P, Vira,

lo,e

(6.6)

where we project onto the log(v) terms. The differential operator Dy is constructed in ap-
pendix D.3 by matching to the 3-point function of the stress tensor. This 3-point function
depends on two coefficients, C'r and Appp, where Crp is the central charge and Appp is de-
fined explicitly in terms of the 3-point function structures in appendix D.3.!2 Solving (6.6)
then gives the anomalous dimensions of the leading double-twist states o, , = 70, /¢ with
coefficients

_ 16A4(3CT — 16 Arr)T(Ag) 67

NTglo = — 7T7/2072—,F(A¢—%) ) ( . )

o 8A,(1287 gy — 210T)T(Ay)
Tiél TT2C2T (A, — 1)

. (6.8)

In an AdS bulk description, these anomalous dimensions corresponds to the correction to
the energy of well separated graviton-scalar two particle states from gravitational interac-
tions. We expect gravity to be attractive at large distances and requiring the anomalous

3C T (60—t4)
2107 .

1214 is related to the coefficient 4 used in [52] by the relation Aprr =

— 27 —



dimensions to be negative semidefinite yields the following constraints

21Cr - 3Cr

Cr>0 Tgr = = Tor

In a theory of free bosons and fermions in three dimensions we have [73]

ra M) MO o
It follows that free theories saturate the bounds:
AT _ i’ AT _ 2 (6.11)
Cr ng=0 16 Cr o 1287

Mooy =

Moreover, the bounds on Arprr above correspond to ng > 0 and ny, > 0, which match the
conformal collider bounds found in [52], eq. (3.43).

7 Superconformal field theories

It can be shown that every 3d superconformal field theory (SCFT) trivially satisfies the
conformal collider bounds on \jjr, Arpr, and the conjectured bound on Ajj;. For the
moment we will assume the conserved current corresponds to a flavor (non-R) symmetry.
Working in N = 1 superspace, it was found in [76] that the parity even 3-point functions
of conserved operators is fixed up to an overall coefficient.!3

Since these correlation functions are fixed up to an overall coefficient we can calculate
AjJJs Ajgr, and Appr in free supersymmetric theories in terms of the central charges using

section 5 of [73]. For general free field theories in three dimensions we have

Argg 22 20(x)my + O(ri)s

G~ 5 87(Cs)my + Cr)s)’ =
AT _ > 32C(ri)mys + C(ri)s) (7.2)
CJ ZZ 167T(C(I‘i)mf + C(I‘i)s)’ '
)\TTT . 3(8nmf + 7ns) (7'3)

Cr 1287 (s +ns)’

Here C(r;) is the index of the representation and the subscripts mf and s stand for Ma-
jorana fermions and real scalars respectively. Finally, n,,; and n, give the total number
of real Majorana fermions and real scalars. In a free supersymmetric theory there are an
equal number of Majorana fermions and real scalars, in total and in a given representation
of the flavor symmetry, so we have

Ajgg 3 Apr 9 Arrr 45

c, 16’ C; 32r° Cr 2567

(7.4)

131 [76] any multiplet containing conserved operators is referred to as a supercurrent, but we will follow
the terminology of [78, 79] and refer to only the supermultiplet containing the stress-energy tensor as the
supercurrent.
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Although we computed these using the free theory, these results holds for any 3d supercon-
formal field theory. We also see that \jjr/C; and Appp/Cr satisfy the conformal collider
bounds on (JJT) (4.19) and (TTT) (6.9). These values lead to a uniform integrated,
energy distribution measured at spatial infinity after a local perturbation is created by a
conserved current ([53], eq. (6.14)) or the stress-energy tensor ([52], egs. (3.8) and (3.43)).
We also note that the ratio \j;;/C} satisfies the conjectured bounds on (J.J.J) in (4.23).
We have computed the charge correlator in appendix E in terms of \j;;/C;, where we
find that the charge flux is also uniform for the supersymmetric value given above.

We will now move on to the case of R-symmetry currents. We will start with N' = 2
supersymmetric theories which have a U(1)p symmetry. For clarity we can make the
replacement C(r;)pmf,s — (qlmf *)2, where ¢; denotes the charge under the U(1)z symmetry.
As shown in [79], the three point function of the supercurrent is fixed up to an overall
constant, so once again we can calculate Ay /C; and Appp/Cr using a free field theory of
chiral multiplets (A does not appear since we have three U(1) currents). A free N' = 2
chiral multiplet consists of a scalar with R-charge 1/2 and a fermion of R-charge -1/2, so
the results for Ay and Appr found in (7.4) still hold.

Next we consider theories with A/ = 3 SUSY, which have an SO(3) R-symmetry. Once
again we have a one parameter family of free field theories, this time with an equal number
of complex scalars and fermions in the spinor representation of the R-symmetry group [76].
The three point function of the supercurrent J, is fixed up to an overall constant [79], so
we will find the same ratios as before.

Finally, we will study theories with A/ = 4 SUSY, which were extensively studied
in [78]. What makes these theories special is that the R-symmetry group, SO(4), is locally
isomorphic to SU(2)1, x SU(2)g. Therefore, we can consider a two-parameter family of free
field theories, consisting of hypermultiplets ¢* and ¢ in the (2,1) and (1,2) representation
of the R-symmetry group, respectively. Here we label representations by their dimension
and note that each hypermultiplet consists of four real scalars and four Majorana fermions.
The supercurrent is given by a real scalar superfield J and its three point function has
two linearly independent tensor structures parametrized by da—4 and dn—s. This is in
contrast to theories with less supersymmetry, where the three point function is fixed up
to an overall constant. The resolution found in [78] was that the A/ = 4 supermultiplet
contains two N = 3 supermultiplets, S and 7, the latter being the N’ = 3 supercurrent,
and that only one of the tensor structures contributes to (jajgj,y>.

We can now repeat the above analysis for a free theory with m left hypermultiplets and
n right hypermultiplets, specializing to study the SU(2); R-current, J,, 1. The correlation
functions (Jr,J1.Tpe) and (Jr ,Jr,,Jr,,) are once again fixed up to an overall coeffi-
cient and our results for A;;; and Aj;7r hold as before with C; — C;r. The analogous
substitution will also have to be made for the SU(2) g current.

Using these results, we can determine the large spin spectrum of double-twist states
involving an R-symmetry current. We will consider only the exchange of the R-current
itself and the stress-energy tensor in the s-channel and not the exchange of light scalars or
other conserved currents. For N = 2, (JrJrJR) vanishes so all double-twist states formed
from two R-currents or a R-current and a scalar will have negative anomalous dimensions.
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Moving on to theories with A/ = 3 SUSY, we first need to find the ratio Cr/C;. The
R-current and stress-energy tensor lie in the same supermultiplet, so we can calculate this
ratio either by expanding the supercurrent two point function as in [80] or by calculating
it in a free theory. Using egs. (5.5) and (5.6) in [73], we find that C7/C; = 3. We then
find that the coefficient of anomalous dimensions for double-twist states formed from the
R-current and a scalar in the adjoint representation of the R-symmetry group become

o = 38 +2)0(Ag)  3(As +1I'(Ag)  3(Ag — 1I(Ay) (75)

o =\ TTRCIT (8~ )’ WPCHT (8~ 1)’ ACHT (8, 1))

v = [ 12Be+ DT(Ag) 6246 + DT(Ag) 6(1 —244)T(Ag) (76)

Urdlo = \ " 7T2CoT (Ay — 3)7 7T2CoT(Ay — 1) 772CrT(Ay — 1) )7 '
where we have used that SO(3) ~ SU(2) and expressed our results in the basis

(I , Adja, (S, 5’)) Note that all the anomalous dimensions are non-positive if Ay > 1.
This bound is nothing more than the unitarity bound for 3d scalars in the adjoint repre-
sentation of the SO(3) R-symmetry group [81]. Furthermore, scalars which saturate this
bound belong to a short representation of the superconformal algebra and their leading
anomalous dimension asymptotic for the parity even (S,S) double-twist state vanishes.
Finally, for double-twist states formed from two R-currents, we have

9 6

MIrJrlo = <_7T40T’ _7T40T70> ) (7.7)
72 60 36

r}/[JRJRh - <_7T4CT7_7T4CT’_7T4CT> (78)

(24 18 6
Mirdale ~ \" #iCy’ 710y 7iCr

Once again, all the anomalous dimensions either vanish or are negative.

Finally, we will consider theories with A" = 4 SUSY and focus on the SU(2), R-current.
For the moment we only consider the effect of the R-currents and 7}, in the s-channel.
The supercurrent multiplet also contains a dimension 1 scalar which will contribute to the
anomalous dimensions at the same order which we will consider later.

If we consider a double-twist state formed from the SU(2); R-current and a scalar
in the same representation (i.e., adjoint of SU(2); and singlet of SU(2)g), we find that
the contribution of the R-current and stress energy tensor to the anomalous dimension
asymptotics is given by

_ (LA (=207 —3CsL8y)  T(Ag)(Cr +3C5LAs) T(Ag)(Cr —3C5LAs)
Mw4) 7T20rCy T (Ag — 5) 7 772000y 1T (A — 1) 772C1Cy T (A — 1)
(7.10)
- _4F(A¢)(CT+3CJ’LA¢) _2F(A¢)(CT+60JLA¢) 2F(A¢)(CT GCJLA¢)
T4l 712CrCr il (Ag — 3)" 772CpCyil (Ay — 3) 772CrCy T (Ag —3) )
(7.

11)
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So the contribution is non-positive for all double trace states if and only if Ay, > 3gfL.

When this inequality is saturated the parity even (5,5) term vanishes to leading order.
For the double-twist states formed from two SU(2); R-currents, the contribution of
Ju,r and Ty, to the anomalous dimensions becomes

_ _ 2CT + SCJ’L B CT + 30J7L CT - BCJ,L (7 12)

Mz Ixo mCrCyy ~ wCrCyp mCrCyyp )’ '
_ [ 8(Cr+6Cy1)  4(Cr+12C51) 4(Cr —12Cyy) (7.13)

YJrLJL)a 7T4CTCJ7L ) 7T4CTCJ7L ) 7T4CTCJ7L ’ ’
o _4(CT + 3CJ’L) - Q(CT + 6CJ,L) 2(0T - 6CJ,L) (7 14)

Py[JLJL]O 7T4CTCJ7L ’ 7T4CTCJ7L ’ 7T4CTCL]7L ' '

The above quantities are all negative if Cr < 3C; . When this inequality is saturated
the contribution of T}, and J,, ; vanishes for twist two, parity even double-twist states in
the (S, 5) representation. Similar results can be found for the SU(2)p current by letting
CJ’ I < C J,R-

If these inequalities are not satisfied then for some double trace states the contribution
of the R-current is greater than the contribution from the stress energy tensor. This may
be related to a non-Abelian version of the weak gravity conjecture [82].

To be complete we would also have to include the dimension 1 scalar superconformal
primary of the supercurrent multiplet, J. One might wonder whether, after taking it into
account, we will obtain a convex spectrum once the relevant unitarity bounds are satisfied.
There is a simple way to see this cannot be the case. As mentioned earlier, upon reduction
from N = 4 superspace to N' = 3 superspace, the supercurrent 7 splits into two superfields,
Ju, which contains the N'= 3 R-symmetry currents, and S which contains the dimension
1 scalar and the missing N/ = 4 R-currents. In [78] they found that both (7,J3S) and
(SSS) are determined by a single parameter dpr—s, which in a free theory is proportional
to m —n. Therefore if the theory has m = n, or JN:4:0, the scalar makes no contribution
and some of the double trace states will still have a concave spectrum in twist space at
large spin.

The effect of the dimension 1 scalar on the double twist states of two Jj, currents is to
shift the anomalous dimension of only the parity even, twist two state by

4(CT — 6CJ7L)2
M0 =~ 5o,

(1,1,1). (7.15)

One question that arises is how to to reproduce the N' = 3 results, where convexity was
automatically satisfied, from our A = 4 results. The natural choice is to identify the N' = 3
R-symmetry currents as the generators of the diagonal subgroup SU(2)z x SU(2) R‘ ding =
SU(2), given by Jj = J} ,+Ji ,. We have re-introduced the adjoint indices for the currents
to emphasize we are considering the diagonal subgroup. The analysis then exactly mimics
the N/ = 3 case, assuming that when studying (JJ¢¢) the scalar also transforms in the
adjoint representation of the diagonal subgroup.
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8 Discussion

By studying the conformal bootstrap equations in the lightcone limit, we have generalized
the CFT argument for the cluster decomposition principle to operators with spin. In doing
so we have derived the existence of large spin double-twist conformal primaries constructed
from spinning operators. We computed their anomalous dimensions and showed that they
turn off as £ — oo. In an AdS dual description, a large spin double-twist operator cor-
responds to a two particle state with a separation ~ log(¢). The anomalous dimension
then describes the binding energy induced by the exchange of light particles such as gauge
bosons and gravitons.

In this work we discovered a connection between the signs of the anomalous dimensions
and the conformal collider bounds (4.19) and (6.9) in parity-symmetric 3d CFTs. In all
cases under consideration, the anomalous dimensions due to stress-energy tensor exchange
are negative semi-definite if and only if the conformal collider bounds are satisfied. These
anomalous dimensions are expected to be non-positive from the bulk point of view, since
we expect gravity to be attractive at large distances. We can turn the logic around and
conclude that the conformal collider bounds, combined with our analysis, provide a pure
CFT argument for the attractiveness of bulk gravity at long distances, which does not
require a large N limit and holds for all unitary theories.

It would be interesting to see if the same bounds can be derived from more basic axioms
such as unitarity or causality. The connection to unitarity and deep inelastic scattering
(DIS) arguments were explored in [39, 83]. In [84] it was also seen that the conformal
collider bounds on (T'T'T) in 4d can be derived from unitarity if the stress tensor is the
only spin-2 conserved operator in the 77" OPE that can get a vacuum expectation value
at finite temperature.

For classes of large N CFTs it has been shown that causality is related to energy flux
positivity [52, 85-91]. Causality of bulk gravity is also related to the negativity of the
anomalous dimensions due to the exchange of T}, in the direct channel. The anomalous
dimensions of double-twist states of large spin and twist formed from scalars in large N
CFTs were found to be related to Shapiro time delay in the bulk [92-94]. This result
was generalized to arbitrary double-twist states formed from scalars in large N CFTs [74].
At least in large IV theories, there is an intimate relation between the negativity of the
anomalous dimensions or the attractiveness of gravity at long distances, causality in the
bulk, and positivity of integrated energy one point functions in the Lorentzian CFT. Our
work provides the direct link between the anomalous dimensions and the energy positivity
conditions, and also extends the discussion beyond the large N limit to generic, non-
perturbative CFTs. In this regime, it may also be possible to establish the connection to
causality along the lines of [95].

Furthermore, we speculated that a new conformal collider-like bound (4.23) may exist
for (JJJ), that its undetermined coefficient must lie in between the free fermion and
free boson values. This is equivalent to the requirement that the signs of the anomalous
dimensions due to J exchange only depend on the global symmetry representations of the
double-twist states and not on their spin or parity. In the conformal collider set-up, we
computed the charge 1-point function in terms of (JJJ). We find that the same bound
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implies that the expectation value of the integrated charge flux is positive at all angles
after a positive amount of charge is injected with a local perturbation created by J, thus
putting constraints on the charge flux asymmetry. In all cases we are aware of in three
dimensions, this bound holds and it would be interesting to see if there exists a proof or
explicit counterexamples.

We also applied our results to the study of 3d superconformal field theories. The
conformal collider bounds and conjectural bound for (JJJ) are found to be satisfied for
a theory with any amount of SUSY. The value of the corresponding 3-point functions
result in uniform energy/charge flux distributions at infinity after a local perturbation. In
addition, we find that for SCFTs with A/ = 2,3 SUSY the exchange of the supercurrent
multiplet induces non-positive anomalous dimensions for several families of double-twist
operators formed by two R-currents or one R-current and one scalar in the adjoint of
the R-symmetry. This does not seem to hold for theories with AN/ = 4 symmetry. The
distinguishing characteristic of N’ = 4 theories in comparison to CFTs with less SUSY in
three dimensions is that the R-symmetry group is locally isomorphic to a product of groups.

We have restricted ourselves to 3d CFTs since this is the only case where all the
conformal blocks are currently known. Given recent progress in calculating conformal
blocks for (JJ¢¢p) [96], it should be straightforward to extend the arguments for (JJT')
to higher dimensions. Generalizing our study of (T'T'¢¢) and (JJJJ) to 4d will require
more work. Another straightforward generalization will be to include the effects of parity-
violating couplings in 3d. We have also not yet studied (T'TTT) in three dimensions as
incorporating all possible degeneracy equations requires an intricate analysis [97] and it is
not required to probe the conformal collider bounds.

Our work is just a first step in analytically solving the bootstrap equations for spinning
operators. Some simple extensions would be to include external fermions, operators of
higher spin, or non-conserved spin 1 and 2 operators. By studying anomalous dimensions
of double-twist states with twist comparable to or much greater than their spin we can also
hope to derive the more stringent bounds of [74] on corrections to Einstein gravity in AdSy.

Finally, we should note these correlation functions have not yet been studied with the
numerical bootstrap. It will be exciting to see if these bounds can be derived there. Study-
ing the 4-point functions of these conserved operators, both analytically and numerically,
is a key step in mapping out the space of consistent CFTs.
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A Collinear conformal blocks at large spin

In the small v limit the t-channel conformal blocks become [69]
(A} 17 1 1
9re" (0, u) = v2 (1—u)t o Fy (T—I—%) 2(7+2€)—|—b;7’+2€;1—u . (A1)

where we use {7, ¢} in place of {A,¢}. Here a = $(Ay — Ay) and b = $(Az — Ap). The
form is same for the s-channel blocks in small u limit but with u — v, a = 1(Ay — Ay), and
b = $(A3 — A4). This approximation is sufficient in the s-channel since there we have a
finite number of blocks, but we will need to make further approximations in the t-channel.
Using the integral representation of the hypergeometric function, we rewrite this as

(2£ + 7_)( t)—b+€+§—1tb+€+§—l(t(u o 1) + 1)—a—£—§
T(—b+ 0+ 2T+ L+3) '

9 (v,u) = 02T (1-u) /odt
(A.2)

We want to expand the above expression at large ¢, where we keep y = uf? < O(1).

Defining s = (=) and expanding in this limit yields

lt)

\[22Z+-r ([)fafb(%)fafb
0 ﬁ s
1 g
VR ) IR 0 5)
N3
Plugging in our values for a, b, and y yields our final expression for crossed channel blocks
in the £ — oo limit with w¢? < O(1):

T

gi/}( )NUQ

(A.3)

\/Zj!2€+) ,UJT (A +A2—A3—A4) l(
1
) ~ V2

LAy AgtAgtay) (20V0)
= .

This approximation breaks down when uf? > 1, but all of our sums are dominated by

{A}(

9re (A.4)

regions of fixed u/?.

B Singularities in direct and crossed channel

A key result of this work is that to reproduce the identity block in the s-channel an infinite
number of double-twist states are required in the t-channel. In the case of four identical
scalars (¢pp@), this can be explained by the fact that the identity block is power law
divergent in u while the t-channel blocks have a log(u) divergence (see (3.11), which reduces
to this case with k=1 and 02 = 01 = Ay). Thus, any finite sum of the t-channel blocks
cannot reproduce the s-channel contribution.

In the spinning case, the t-channel spinning conformal blocks are obtained by acting
derivatives on the scalar blocks, which produces power law singularities in u that can
potentially become comparable to the s-channel divergences. If this were the case, then
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there may exist a solution to the crossing equation with a finite number of t-channel blocks.
In this appendix we will rule out this possibility.

First we need to look at the small u limit of the collinear t-channel conformal block,
given by

Ag—Ap 1
2 2

As— A

- 1
’U2(1—u)£2F1<2(7'+2£)+ (1 +20) + 2;T—|—2£;1—u> (B.1)

~ mo™/?T(20 + 7) csc <;W(A1 + Ag — A3 — A4)> X
1

{F(%(Al — Ao+ Az + Ay +2))T(5(A1 — Ay + 204 7)T(3(A2 — Az + 20+ 7))
u%(A1+A2*A3*A4) :|

T (A + A= A=A+ 2)T(E(—A + Ay + 20+ 1) T(5(—Ag + Az + 20+ 7))

Clearly only the second term can lead to a singular behavior in a single spinning conformal
block that matches the identity contribution. In the following calculations this will be the
only term kept.

We start with (JJ¢¢) and the parity even double-twist states. Looking at the
Py1o(Zy - Zs) structure in the even channel we get a contribution of order u2_A¢, which is less
singular then the u~2¢ identity contribution. Similarly, the contribution to (Z;-P2)(Z2-P;)
is of order u*~%¢. For the parity odd blocks the contribution to the Pjo(Z; - Z) structure
starts at order u~?¢*2, while the contribution to (Z; - P»)(Zs - Py) starts at order u=2¢3,
Since we have to match all the dot products appearing in the identity piece, we only need
to look at one structure and see that it is subleading for all the double-twist states to
conclude that we cannot match the identity contribution with a finite number of blocks.

For (TT$¢), the even and odd double-twist states contribute to (Z1 - P»)?(Zs - P;)?

5Dy

starting at order u The identity contribution has a power law singularity of order

1?4 in comparison, so we cannot match this with a finite number of spinning blocks.

Finally, we need to look at (JJJJ). For simplicity we restrict to the U(1) case, but
the symmetry group will not affect our results. Furthermore, we will need to be more
careful with our approximation of the collinear block due to logarithmic singularities that
can arise for special values of the dimensions, e.g. if they are all equal. To take into account
these singularities we start with the hypergeometric form of the collinear blocks and do
not expand in w until after we act with the derivatives. The result is that both the twist
2 and 4 double-twist states contribute to the (Z1 - Py)(Zy - Py)(Zs3 - Py)(Z4 - P3) structure
at order log(u). The contribution of the twist 3 parity odd double-twist states to this

1

structure vanishes at order v~!, so we cannot match the « =3 power law singularity from

the identity channel.

To conclude, no t-channel block is singular enough at small v to match the identity
contribution. Therefore we need an infinite number of states, which as we showed in the
body of the text, has the spectrum of the double-twist states.
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C Degeneracy equations

Here we will review the degeneracy equations that appear in 3- and 4-point functions.

We start by deriving the degeneracy relations among tensor structures appearing in
the 3-point functions of spinning operators in three dimensions. These degeneracies arise
because the 3-point structures depend on 6 vectors {P;, Z;}, which cannot be linearly
independent in the 5-dimensional embedding space. The relation between the structures
are found to be [50, 55]:

(ViHaz + VaHi3 + V3Hyg + 2ViVaVa)? = —2H 9 Hi3Hoz + O({ 272, Z; - P;}).  (C.1)

To prove this we embed the vectors in a 6d space so that they lie on the xg = 0 surface.
It follows that e(Z1, Za, Z3, Py, P>, P3) = 0, or that the contraction of the vectors with the
6d epsilon tensor vanishes. Squaring this expression and using the identity

€(Z1, 22,23, Zs, Zs, Zs)e(W1, Wa, W3, Wy, W5, We) = deti<; j<6(Z; - W), (C.2)

we obtain the above degeneracy. We will use this identity repeatedly to derive degeneracy
conditions for the 4-point functions of spinning operators.

Conformal invariance required that the 4-point tensor structures have the following
properties:

k k 4
Qg(l)X2X3X4({)‘iPi; aiZi}) = an)XQXSXZl({Pi; Zz}) H()\iai) . (C3)
I

The Q%) (u,v) structures will be polynomials in the H;; and V; j;, tensor structures. There
are additional degeneracy equations for the four point function. The first is that in general
dimensions there are two independent V; ;i for each i. For example when 7 = 1 we have

Po3 P14 Vi 23 + Poy P13V 49 + P34 P1oVi 34 = 0, (C.4)

with related identities for i = 2, 3,4 related by permutation. Note that these conditions do
not depend on the spacetime dimension. For d < 6 there are more degeneracies among the
tensor structures. The four point function depends on 8 vectors, the four pairs of position
and polarization vectors, while the embedding space, if d < 6, is at most 7-dimensional.
We will only focus on d = 3 here with the embedding space being 5d. We will use (C.2)
with different vectors to derive the 4-point degeneracies.

For (JJ¢¢) there are no linear relations among the tensor structures. This is easy
to see, because the only nontrivial contraction of the vectors with the 6d epsilon ten-
sor is €(Py, Py, P3, Py, Z1, Z5), which must vanish. The only degeneracy conditions apart
from (C.4) is then found from e(Py, P2, P3, Py, Z1, Z2)? = 0, and rewriting it in terms of
dot products. This constraint is quadratic in Z; and Zs, while the four point function
(JJp@) is linear in both. Therefore, there are no degeneracies among the relevant tensor
structures.

We now will consider possible degeneracies for the four point function tensor structures
in (JJJJ). The basic structures are

{V1,23, V1,24, Vo34, Vo 31, Vaa1, V342, Va2, Vaiz, Hio, Hi3, Hia, Hoz, Hoy, Has},  (C.5)

out of which one can construct 43 distinct structures.
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There are three degeneracy equations, linear in each Z;, which follow from the fact
that we have six 5d vectors which cannot be linearly independent:

€(P1, Py, P3, Py, Z1, Zo)e(Py, Po, P3, Py, Z3, Z4) = 0, (C.6)
€(P1, Py, P3, Py, Z1, Z3)e(Py, Pa, P3, Py, Z5, Zy) = 0, (C.7)
€(Py, Po, Py, Py, Z1, Zy)e(Py, Pa, P3, Py, Zy, Z3) = 0. C.8)

Each individual contraction with the epsilon tensor vanishes and the product of two yields
the degeneracy equations for the H and V structures. The three equations are not linearly
independent; solving two implies the third. We will choose to solve for the latter two.
Converting to the standard basis yields:

Hiov(Hza(—2(u+1)v 4+ (u—1)% +v%) + 2uVy 12(Va a1 (u—v—1) + 2V3 45) — 2V 15(Va a1 (u + v — 1)
+ Vaao(u—v + 1)) + Higu(—Has(u® — 2u(v + 1) + (v — 1)?) + 20V 41 (Vaga(u — v + 1) — 2Va 31)
+2V342(Vaz1(—utv+1) + Vosa(u +v—1))) + 2(uVy12(Hazv Vi 23(u—v+ 1) + HazVi g4 (ut+v—1)
—20V3 41(Va,31(Vi 23 + Vi 24) — Vo 3a(uVi 23 — 0V 93 + Vi 24)) 4+ 2V5 42 (0V1 23 (Vo 31 + Va,34)

+ Vi2a(Va,31 — Vaz4))) + Vaiz(Hasu(—uVi 24 + v(Vi 24 — 2V7 23) + Vi 24)

+20V5 41 (Va2 — Vi,24) (Va1 — uVa34) — 2V a2 (v(uVh 23Va 34 + V123Va 31 — Vi 24V231)
+uVi24(Vazr — Va34))) + Haav(Vi23Vazi(—(u+v — 1)) +uVi23Va3a(u —v —1)
+Vi2aVazi(—u+v—1) 4+ 2uVi24V234)) = 0, (C.9)

Hiov(Hza(u® = 2u(v + 1) + (v — 1)%) + 2uVi10(Va a1 (u — v — 1) 4+ 2V5 40) — 2Vi13(V a1 (u+v—1)
+ Vaa2(u—v+1)))+ Hizu(— Hogv(u? —2u(v+1)+ (v—1)2)+2uVy 12(Va 34 (— (2u+1) v+ (u—1)u+v?)
+Vasi(—u+v+1))+2Vi13(Vasi(u+v—1)+uVosa(—u+v+1)))+

2(H24U(UQUV1,23V3,41 + uvViz 41 (—20V1 23 — Vi 93 + Vi 24) + uV5 42(vV1 23 + Vi 24)

+ (v—1)(vV1,23 — V1,24) (VV3.41 — V3.42)) + Hzav (V1 23Vo 31 (—(u +v — 1)) + uVi 23Va 3a(u—v—1)

+ VioaVagi(—u+v — 1) + 2uVi 24V 34) — 2(v*0V1 23V 34V3 41 Vi 12

+ u? (=202 V) 23Va 34 V3 41 Vana — v(Va12(Vi 23Va.a1 (Va,31 + Va 34)

—Vi23Vo3aV5 40 — Vi 04 Vo 34Va a1) + Vi23Va 3aV3 41 Vi 13) + Vi 24 Vo 34 V5 40V 12)+
uVi12(vV3 41 (VVa,34 (VW1 23 — Vi24) + (v + 1)Vi 23Va 31) — V3 42(Va 31 (0VA 23 + Vi 24)

+ vVa,34(vV1,23 = V1 24)) ) +uVa 13 (0V5 41 (V1 23 (V2 34+ Vo 31 + V2 34) = V1,24Va 34) — Vi,24V2 34V5 42)
+ (v —1)Va31Vi13(vV1 23V 41 — Vi24V5.42))) = 0. (C.10)

Using (C.9) we can solve for Vj23Va34V341Va12 and using (C.10) we can solve for
H13V534V412. The reason for choosing these structures is as follows. For each equa-
tion we would like to solve for the tensor structure that will yield the most singular
contribution to HjoHss. That is, we want to take into account the behavior of the
tensor structures themselves in the lightcone limit when solving the degeneracy equa-
tions. In practice, we then solve the above equations in terms of the dot products
(Z1-P3)(Zs-P1)(Za- Py)(Zy- Po) and (Z1 - Z3)(Za - P3)(Z4 - P2) in the respective equations.
Solving (C.9) for (Z1 - P3)(Zs - P)(Zy - Py)(Z4 - Py) will affect the large spin cross channel
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results, but not the s-channel. Solving (C.10) for (Z; - Z3)(Za - P3)(Z4 - P2) will not affect
either channel in the lightcone limit.

For (T'T'¢¢), we choose the basis of structures to be {V1 23, Vi 24, V2 31, V2,34, H12}, from
which one can construct the 14 four-point function structures:

2 2 2 12 2 12
{Hiy, H12V1 24Vo 31, H12V1 24V 34, V94 Vs 31, Vitaa Vo 31 Vo 34, ViToa Vi 54, H12V1 23V2 31,
2 2 2 12
H19V123V2 34, Vi,23V1,24V5 31, Vi,23V1,24V2,31 V2 34, Vi 23V1 24 V5 54, ViTag Vo 51,
2 2 12
V1,23V2731V2,34a Vl,23V2,34}- (0-11)

There is a single degeneracy equation following from e(Py, Py, P, Py, Z1, Z3)? = 0, which is

H122(u2 — QU(U + 1) + (U — 1)2) — 4H12V2731 (V1723(u + v — 1) -+ V1,24(u — v+ 1))

+ 4H19uVo 34(Via3(u — v — 1) + 2V3 24) + 4(uV1 23Va 34 — Vi23Va 31 + Vi24Va31)? = 0.
(C.12)

Following the same logic as for (JJJJ), we want to solve for the most singular tensor
structure in the lightcone limit. Since the above equation must hold for all configurations
and polarizations, we see that this structure must be 1/127231/22734. The degeneracy equation
says V12723V22734 = —iusz%Q + (...). Equivalently, we can expand the above equation in
terms of the dot products and solve for (Z; - P2)?(Zs - Py)? to find (Z; - P2)*(Zs - Py)? =
— 1z (=2(Py- Py)(Z1 - Z2))? + O(u).

D 3-point functions and differential operators

In this appendix we provide more details about the structure of various 3-point functions
in our analysis and the construction of the corresponding differential operators.

D.1 (¢¢J) and (¢¢T)

For the scalars in the adjoint representation we have the general form

V3

(P Py) T (Ps; Z3)) = Aoy . D.1
(0" (P1)9"(P2)J*(Ps; Z3)) = Agg | (Pra) 5o 2Py T2 Py )42 (D.1)
The Ward identity implies 5\¢¢ J = —Sid. Given our normalization of the current, what
appears in the conformal partial wave expansion is
j\ngg 7 1
Ao ] = =— , (D.2)
YT T STy
d
where Sy gives the volume of d — 1 dimensional sphere, S; = 1%7{; y- C'y is the current central
2

charge and describes the normalization of the current 2-point function,

Hio
(Pr2)®

(J(Pr; 20)J (P2 Zo)) = Cy (D.3)
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Similarly, for 3-point functions between scalars and the stress tensor we have

R V2
(P(PL)¢(P2)T (P35 Z3)) = ApgT 3 ;
¢$ (Pm)Aflf%(P13)§+1(P23)§+1
“ Ayd
A = —— D4
ST TS (D.4)
where we use the normalization
H,

(T(Pl; Zl)T(PQ; ZQ)> - CTW’ (D-5)

where C7 is the central charge. The term appearing in the conformal partial wave expansion

has an extra division by +/C'r,
Ayd 1
A = D.6
YT (d-1)84/Or (B-6)

D.2 (JJJ) and (JJT)

We now present the differential representation of the parity preserving three point functions
for (JJJ) and (JJT).
The parity preserving 3-point function for (J®J.J¢) in embedding space is
arViVaoVa + agH12V3 + asH13Va + agHoz Vi
d d d
(Pr2)2 (P13)2 (Pa3)?
where f“bc are the structure constants. Conservation imposes as = az = a4. The relation

to the parametrization found in [73], eq. (3.10), is a3 = a — 2b and as = —b. The Ward
identity further imposes that

(JUPy, Z1)J%(Py, Zo)J¢(P3, Z3)) = fab¢ , (D.7)

Sd(;a—i—b) =Cy, (DS)

We have labelled the OPE coeflicient b as A j;;. The correct differential operator that
reproduces (4.20) when acting on a scalar-scalar-current 3-point function is:

& 4Xy 7784 — dCy
(d—2)S, Sa(d —2)

Dy ;= (D12D222%2+D11D212%0— D12D2122’1) + D11D2222’1-

(D.9)

We now proceed to study (JJT'). Without loss of generality we can now restrict to the
case where J is a U(1) current. Conformal invariance and symmetry under 1 <> 2 implies
aViVaV2 + B(Hy3Va + Ho3Vi)Vs + yHioVE + nHi3Hog

(J(Pr; Z1)J (Py; Zo)T(P3; Z3)) = (Pra)t (Pr) o () 1)

(D.10)

Conservation implies

—a—df+ (2+d)y =0,
—28 42+ (2—d)n = 0. (D.11)
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The implications of conservation for (JJT') was first solved in [73], see egs. (3.11)—(3.14).
The relations between our parametrization and theirs is given by

n= 263 B = _207
b 4c

2 8
v=a— oo a:2a+b<1—d>—dc, (D.12)

where the parameters a and ¢ used to parametrize (JJT) are unrelated to those used in
(JJJ). Furthermore they solved the Ward identities to find

QSd(c + 6) =dCy. (D.13)

So (JJT) is fixed up to one OPE coefficient and C;. We labelled the OPE coefficient c¢ as
Aygr in the body of the paper. The required differential operator is then found to be

Cyd(d—2)
(d—1)Sq

C d?
)D11D22+ <2)\JJT + J) D195Doy =2y 7 Hy2 ZlL’l'

Dpr = [(”\JJT - S,(—d)
(D.14)

D.3 Differential operators for (T'1T) and (T'¢[T¢))

We will start by analyzing (I'T'T) in the standard basis and then the differential basis.
Restricting to parity-preserving correlators, the allowed tensor structures are

Q1 = V2V2V2,
Q2 = HpVPVaVs + Hi3Vi Vi Vs,
Q3 = Hi2V1Va V5,

Q4 = Hi12H13VoV3 + Hi2Ha3V1 V3,
Q5 = Hi3Ha3V1 Vs,

Qs = H122V32=

Q7 = HizV3 + Hy VY,

Qs = Hi2H13Hos.

The Hy9H13Ho3 structure is not linearly independent in three dimensions, as follows from
eq. (2.15). Above we only required symmetry under interchange between 1 <+ 2. We could
have also required symmetry under 2 <+ 3, but the above basis is simpler when comparing
the results to [73] where the latter symmetry was obscured.

The constraints of conservation were solved in [73] for general dimensions where they
parametrized the correlation function in terms of 8 variables: a, b, V', ¢, ¢, e, €, and f.
These parameters are unrelated to those appearing in the (JJJ) and (JJT) correlation
functions. Labelling the coefficients of @); by x;, the mapping between the bases is given by

x1 =8(c+e)+ f, Ty = —4(4b +¢€), x3 = 4(2c +e), (D.23)
x4 = —8V, x5 = 8b + 16a, xg = 2c, (D.24)
x7 =2, xg = 8a. (D.25)
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Conservation at P; or P, imposes that

1 1 — (¢4 1)z +2d
21 = 225 + 7 (d® + 24— 8)xs — Jd(2+ d)a7, w5 = (5 . ) 4 o (D.26)
2
ro9 = I3, T4 = I5, e = I, (D.27)

which is consistent with the conservation conditions found in [73].
Furthermore, they found that the Ward identity constraints are given by
(d—2)(d+3)a—2b—(d+1)c

= . D.2
454 d(d+2) Cr (D-28)

Imposing the Ward identity and using the degeneracy equation (2.15), we find in d = 3

405CT

=14 - — D.29

1 T rrT T ( )
75C

9 = T3 = 52)\TTT — 87TT7 (D30)
15C

Ty = X5 = 16)\TTT — T, (D.31)
4

T — X7 = _2)\TTT7 (D.32)

where Apprp = 2a — ¢. As expected, we find that in three dimensions the parity-even part
of (T'TT) has two linearly independent forms, which we parametrize with Apprp and Cp.

Note that in [52] the extra parameter was called t4. Our parametrization is related to

theirs by the relation Ay = %&—m)

We now need to find the mapping between the standard basis and the differential basis.
An over-complete differential basis symmetric under 1 <> 2 is given by:

W, = D? D3,527%, (D.34)
Ws = H12D11D22Z%2, ( )
W = Doy D3 Do X" + D19D3, Dy 277, (D.36)
Wi = Hia(Do1 DS + D12Doo X)), ( )
W5 = D13Da1 D11 D22 X572, (D.38)
Ws = H3,%2?, (D.39)
Wr = D3, D}, 57° + D}, D3, 507, ( )
Ws = H12D12D212%27 ( )
Wy = D3,D3, %57, (D.42)
Wio = D12D3, D11 S3" + Doy D2, Dgy 1. (D.43)

Although there are 10 possible differential operators, only the first 8 are required to express
(T'TT) in terms of differential operators acting on a scalar structure. That is, we can find
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an invertible matrix such that

8 8

Wi = Zaiij and QZ = Z(G_l)ijo- (D44)
J=1

J=1

The matrix (a’l)ij in general dimensions is given in appendix F. The differential represen-
tation of (T'T'T) is then given by

D= mia™)yWj. (D.45)
ij

Taking into account our normalization for (T'T), what appears in the conformal block
expansion is then ﬁDT.

Let us consider the 3-point functions (T¢O®) where O are double-twist states.
The two possible operators take the schematic form [T'¢],, = TW(@Q)”@C,1 ... 0g,_,¢ and
[ﬁ]nl = ea”ﬁTu,,(a%”aKagl ... 0y,_, ¢, with twists 2+2n and 342n respectively. Below we
will restrict to the n = 0 operators.

Starting with the parity even differential operators, the most general operator is
2,0 1,1 0,2
fDHYT + f2D1aD1 Sy + f3D3, 507 (D.46)

Imposing conservation yields

6/3 4fs

_ ’ A — D.47
h (Ag+L—2)(Ag+0—1) f2 Ay +0—1 (D.-47)
For the parity odd states, the differential operator has the form
A 1,0 A 50,1
tlDllDIEL —i—tQDlQDlEL . (D48)
Conservation implies
3t
th=—-—""—. D.49
P A - (D-49)

The t-channel left differential operators are constructed in the usual way by letting 2 <> 4
in the definition of the differential building blocks. The right differential operators are then
constructed from the left operators by letting 1 — 2 and 3 — 4. The end result is

6 25+2,0 4 11 90,2
DfT¢]o,z:<(A¢+5_ 2)(A¢+£— 1) (Dil) EL - A¢+£— 1D§4D§12L + (D§4) EL
6 4
Dt 222’0 _ Dt Dt 21,1 Dt 220,2
<(A¢+€—2)(A¢+€—1)( 22) > Ap+0—-1 23D+ (D3) ™ Xg |,
(D.50)
3 ~ 11,0 = 10,1 3 ~ 1,0 ~ 10,1
Dﬁm:(_ 7A¢+€f1DilDizL + D}, Dix} —T)HingQDizR + Dy DISE .

(D.51)
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E Charge 1-point function

In this appendix, we compute the charge flux 1-point function in general dimensions. The
charge flux 1-point function was defined in [51]. In a CFT with a non-Abelian global
symmetry G, we inject a unit amount of charge with a local perturbation eiJ;r at the origin,
where the “4” indicates that the operator carries charge +1 under a chosen U(1) C G.
The perturbation propagates and carries the charge away to infinity. A charge detector at
spatial infinity along the direction of a unit vector 77 will detect an integrated charge flux

oo = o (1+a( b - 1)) ©1)

The second piece integrates to zero and characterizes the asymmetry in the charge flux. as

given by

is a coeflicient determined by the microscopic theory. In this appendix, we determine as in
a free theory involving Ny Dirac fermions and Ny scalars transforming under the global
symmetry. These numbers are counted using the index of the representations [73],

Tr(t4%) = N,6%, Tr(tgthy) = Napo™. (E.2)
Our method is an extension of the appendix C of [70] to the case of spin-1 currents.

In free theories, as has the following general form:

c1Ns + coNgy
Cy '

This follows from the definition of the charge correlator, since the three point function

ag = (ES)

(JJJ) in a free theory is linear in Ny and Ng. The C; in the denominator comes from
normalizing the charge correlator with the two point function (J.J) [73]:

1 Ny d
Cr=— (25 4 Ny2ls) E.4
J S§<d—2+ @ 2) (E-4)
Note that the v matrixes are L%J X L%J in d dimensions. We argue that in a theory of

free bosons it is impossible to create two particles propagating back to back perpendicular
to the direction of the current, so that the charge correlator has to vanish at n - e = 0.
We create a state with J;~ and consider the matrix element (p, —pl|e - J*|0), where (p, —p|
denotes a two particle state with p; = 0. Under a reflection of the first axis, J1+ — _J1+
and p — p. Therefore the matrix element vanishes because the operator is antisymmetric
but the state is symmetric under this reflection. A similar argument indicates that the
fermion charge 1-point function should vanish when e and n are parallel.
This fixes

1d—1 ola) d—1
_ 1 __sadmd E.
AT a2y T T a2 (E:5)
so consequently we find
i N, — Ng2lz)
ag = (d—1) (E.6)

N, + (d—2)Ng2l2]
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36Ny
8N4+ N5 *
given in [51]. We also see in general dimensions that if we have an equal number of on-shell

Setting d = 4, we obtain as = 3— This matches with the result in 4 dimensions
bosonic and fermionic degrees of freedom in a representation, ao vanishes and the result is
a uniform distribution.

Setting d = 3, we see that the charge is always positive if do lies between the free field
theory values in 3 dimensions. In a theory with only scalars charged under the relevant
global symmetry, there is a zero at § = m/2 and if there are only charged fermions there is
a zero at 0 =0, 7.

We can rewrite this in terms of the coefficients C'y and A;;; that parameterize (J.J.J).
In a free theory, we have:

N N Ngr2l4/2] (E.7)
JJJ — 3 3 ) .
2(d - 2)S3 3
J = 2 2 .
We then obtain
- d—1 254
Gy = —— (2d—3—Ajy=2(d—1)). (E.9)
d—2 Cy
If we require (Q(7)) to be non-negative for all 77, then
Cy Cy
o SAas < o (E.10)
25y Sy
For d = 3, this agrees with (4.23).
F Other technical details
Here we will collect some other formulas referenced in the body of the text.
F.1 Change of basis for (T'TT)
In general dimensions the matrix (a=1);; is given by
_ 1 1—h 1 1 _ 2 1 1 1
—2nh*—3n3+h  —2n%—3n3+h —2ht—h34h2 h(2h2+h—1) —2h4¥—3n3+h  2n242h  4ah¥—6n34+2h2  h(2h2+h—1)
h+3 h(h+2)+5 2(h+2) 2 2(h+3) 1 _ h+4 :
—2h*—3n3+h  h(h+1)2(2h—1) h2(2h2+h—1) —2h3—h2+h —2h4 —3n3+h h2+h 4ht—6n3+2n2 —2n3—h2+h
0 Ll - 0 —1 0 L 0 1
2{1,—4;1,21 2h—41h2 12h 2h714+}712
0 T Tk 0 T 0 I 0 “h-onZ
h(h+2)+3 —h345h249h+11 _ h(h+3)+4  _ (h—1)(h+3) h(h+2)45 11 h42 h(h+2)45 5
h(h+1)2(2h—1) —4h%—6hr3+2h h2(2h24h—1)  2h(2h24+h—1) h(h+1)2(2h—1) 2R h+1 2T _3r341h2Z  2n(2h24+h—1)
0 0 0 0 0 1 0 0
2(h+3)  4(h+43) 2h+8 0 8 0 h243h44 4
h(2h2+h—1) h(2h2+h—1) h2—2n3 h(2h24+h—1) 2h4 —3n3 11?2 h—2h2
0 (h—1) 0 1—h2 0 h—1 0 h241
h—2h2 h—2h2 h h—2h2
(F.1)

where h = % and the matrix maps the differential basis W; (egs. (D.35)—(D.42)) to the
standard basis Q; (egs. (D.15)—(D.22)).
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F.2 SU(N) adjoint crossing matrix

The matrix M used in the crossing symmetry equation for four SU(NV) adjoints is given by

M = (F.2)
1 2N 2(N—2)(N+2) (N—2)(N+2) (N—3)N? N2(N+3)
(N—-D)(N+1) (N—-1)(N+1) (N—-)N(N+1) (N—-D)(N+1) (N—D)Z(N+1) (N-1)(N+1)2
1 1 (N=2)(N+2) 0 _N-3_ __N+3
2N 2 2N? 2(N-1) 2(N+1)
N N2 N2— N (N—3)N3 N3(N+3)
2(N—=2)(N+2) 2(N—2)(N+2) 2(N—-2)(N+2) (N—=2)(N+2) 2(N—-2)2(N-1)(N+2) 2(N—2)(N+1)(N+2)2
1 0 _2 1 __(N-3)N __ Ny [
2 N 2 2(N-2)(N-1) 2(N+1)(N+2)
1 1 _ N42 _ N+2 N2-N+42 N+3
4 2 2N AN 4(N-2)(N-1) 4(N+1)
1 1 N—2 -2 N-3 N2+ N+42
4 T2 2 T AN 4(N—=1) 4(NF+1)(N+2)

in the basis r = (I,Adja JAdjs , (S, A)g @ (A,9)a, (A, A)s, (S, 5’)8).
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