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1 Introduction

Recently there has been significant progress in our understanding of string interactions

for string theories in curved backgrounds which exhibit integrability. In our previous

paper [1] we formulated a set of functional equations for the (light-cone) String Field

Theory (SFT) three-string vertex for the case when the worldsheet theory is integrable.

The axioms per-se apply to the case when two of the strings are large (more precisely they

are decompactified) while the third string can be of an arbitrary finite size L. The axioms

depend in a nontrivial way on the size L. The decompactification limit corresponds to

cutting the string pants diagram (see figure 1) along one edge. Since the third string has a

finite size, the decompactification limit includes arbitrary number of wrapping corrections

w.r.t. L. This can be explicitly seen in the case of the pp-wave background geometry where

we have at our disposal an exact explicit solution for any value of L. Unfortunately we

do not have, for the moment, a solution in the most interesting case of the AdS5 × S5

geometry. This paper is a step in that direction.
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Figure 1. The SFT vertex and its decmpactified version.

In [2] a different approach was developed explicitly geared towards the computation

of OPE coefficients in N = 4 SYM. Here the string vertex was cut along three edges into

two hexagons. This corresponds to the decompactification limit of all three strings. In

this context, functional equations for the hexagon in AdS5 × S5 have been solved exactly.

The passage to finite volume incorporating wrapping effects involves, however, an iterative

prescription for gluing the hexagons together through integrating over an arbitrary number

of particles on the edges being glued. Thus wrapping effects are build on iteratively.

Recently there appeared some further nontrivial checks of this proposal [3, 4] and it was

even related [5] in the HHL (L = 0) case to diagonal finite volume form factors. This is

the structure which was conjectured in [6] and checked at weak coupling in [7].

In contrast, the finite L solution of the SFT vertex axioms should at once resum an

infinite set of wrapping corrections and thus should provide some helpful information for

the hexagon gluing procedure.

In this paper we would like to find the simplest possible solutions of the SFT vertex

axioms concentrating on exactly treating the L dependence. Of course any solution is given

up to some analogs of CDD factors which a-priori can also be L dependent (although the

equations that they satisfy do not contain L). So what we are aiming at is providing a

‘minimal’ L dependent solution. It will then remain an important problem whether this

solution is physical or whether it has to be suplemented by some additional CDD-like fac-

tors. A similar question will arise for solutions for relativistic interacting integrable QFT’s

(e.g. sinh-Gordon or the O(N) model on the decompactified pants diagram), which we will

briefly also mention. It would be very interesting to cross-check these simplest relativis-

tic solutions in some other way and to understand whether in that case any additional

CDD-like factors are in fact necessary. This would be important for our understanding

of the required analytical structure. Perhaps some integrable lattice realizations of these

integrable relativistic QFT’s might shed light on these issues.

The plan of this paper is as follows. In section 2 we will briefly review the String

Field Theory vertex axioms proposed in [1] and concentrate on the case of two particles

relevant for the present paper. Then we will review the structure of the pp-wave Neumann

coefficient in section 3 and consider the trivial relativistic solutions for sinh-Gordon and

O(N) in section 4. In the following section we will review the AdS5×S5 elliptic curve and

proceed to analyze and solve the relevant functional equations on the AdS5 × S5 torus.

Finally we will describe the pp-wave, weak coupling and large L limits of the obtained

solutions. We close the paper with a discussion and outlook.
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2 String field theory vertex axioms

The universal exponential part of the light cone string field theory vertex both in flat

spacetime and in the pp-wave geometry has the form

|V 〉 = exp

1

2

3∑
r,s=1

∑
n,m

N rs
nm a

+(r)
n a+(s)

m

 |0〉 . (2.1)

Here r and s labels the three strings in figure 1, a
+(r)
n are the corresponding creation

operators for excitations of mode number n on string #r, while the numerical coefficients

N rs
nm are the so-called Neumann coefficients. Physically they represent matrix elements of

the three string vertex with just two particles distributed among the three strings.

In the case of interacting worldsheet theory, we no longer expect the exponential

form (2.1) to hold, and a-priori we will expect to have independent amplitudes for any

number of particles:1

N
3|2;1
L3|L2;L1

(
θ1, . . . , θn

∣∣∣∣ θ′1, . . . , θ′m ; θ′′1 , . . . , θ
′′
l

)
. (2.2)

As argued in [1], we will consider the decompactified vertex with the strings #2 and #3

being infinite, and the string #1 being of size L (see figure 1).

N
3|2;1
∞|∞;L

(
θ1, . . . , θn

∣∣∣∣ θ′1, . . . , θ′m ; θ′′1 , . . . , θ
′′
l

)
. (2.3)

In this case the functional equations will only depend explicitly on the particles in strings

#2 and #3, so we can use a shorthand notation

N
3|2
•,L

(
θ1, . . . , θn

∣∣∣∣ θ′1, . . . , θ′m) (2.4)

where the • stands for a specific state on string #1: • ≡ {θ′′1 , . . . , θ′′l }.
In this paper we will restrict ourselves to amplitudes with just two particles. In analogy

to the Minkowski and pp-wave case we will use the term Neumann coefficients for them.

Without loss of generality we can take the two particles to be in the incoming string #3.

In the notation of [1], we have

N•,L(θ1, θ2)i1,i2 = N
3|2
•,L(θ1, θ2|∅)i1,i2 . (2.5)

Also on string #1 we will put the vacuum state2 • = ∅.

1Of course, there are some relations between the amplitudes with various numbers of particles, but we

do not expect them to be as simple as following from an exponential form of the vertex.
2The equations for a generic state on string #1 are identical but we expect a much more complicated

analytical structure with nontrivial additional CDD factors. We leave the investigation of these interesting

and important issues for future work.
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Two particle SFT vertex axioms. The axioms from [1] in the case of two particles

reduce to

N•,L(θ1, θ2)i1,i2 = Skli1i2(θ1, θ2)N•,L(θ2, θ1)l,k (2.6)

N•,L(θ1, θ2)i1,i2 = e−ip(θ1)LN•,L(θ2, θ1 − 2iπ)i2,i1 (2.7)

−iResθ′=θN•,L(θ′ + iπ, θ)̄i,i =
(

1− eip(θ)L
)
N•,L . (2.8)

From now on, we will normalize our formulas by setting N•,L = 1.

Solving these axioms with nontrivial nondiagonal S-matrix does not seem a-priori

simple, however in the special case of two particles we can look for a solution of the form3

N•,L(θ1, θ2)i1,i2 ≡ N(θ1, θ2) · F (θ1, θ2)i1,i2 (2.9)

where F (θ1, θ2)i1,i2 satisfies the standard L-independent form-factor axioms4

F (θ1, θ2)i1,i2 = Skli1i2(θ1, θ2)F (θ2, θ1)l,k (2.10)

F (θ1, θ2)i1,i2 = F (θ2, θ1 − 2iπ)i2,i1 (2.11)

supplemented with the condition

F (θ + iπ, θ)k,i = δkī . (2.12)

Then it is easy to show that the two particle SFT axioms (2.6)–(2.8) will be satisfied

provided that the scalar N(θ1, θ2) satisfies the SFT vertex axioms for a noninteracting

theory i.e. with S = 1:

N(θ1, θ2) = N(θ2, θ1) (2.13)

N(θ1, θ2) = e−ip(θ1)LN(θ2, θ1 − 2πi) (2.14)

−iResθ′=θN(θ′ + iπ, θ) =
(

1− eip(θ)L
)
. (2.15)

For a relativistic theory, these are exactly the axioms satisfied by the (decompactified)

pp-wave Neumann coefficients which are explicitly known. Hence in the relativistic case

the problem of finding a solution of the vertex axioms with two particles only reduces to

finding ordinary form factors satisfying the additional condition (2.12).

The remaining freedom is a multiplication by a SFT analog of a CDD factor f(θ1, θ2)

which satisfies the simple equations

f(θ1, θ2) = f(θ2, θ1) f(θ1, θ2) = f(θ2, θ1 − 2πi) f(θ′ + iπ, θ) = 1 . (2.16)

3We assume this form for all particle types i including possible boundstates. However for solving for

N(θ1, θ2) one uses the explicit form of the dispersion relation. In this paper we only consider the case of

the same dispersion relation for the two particles and, in the case of AdS5 × S5, the dispersion relation of

the fundamental magnons.
4In the case when the scattering matrix has poles corresponding to boundstates the two particle form

factor Fi1,i2 satisfies the dynamical singularity axiom. This axiom expresses the one particle boundstate

form factor in terms of the two particle fundamental form factor and does not restrict the two particle form

factor itself. These boundstates have no effect on N .
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The goal of this paper is to solve the counterpart of (2.13)–(2.15) in the case of AdS5×
S5 kinematics, where the rapidities live on the appropriate covering space of the torus [8],

and the counterpart of the shift by iπ is a shift by a half-period of the corresponding

elliptic curve. For obvious reasons we will call the resulting functions kinematical Neumann

coefficients.

Before we proceed, we will discuss the generality of the decomposition (2.9). Suppose

that we have completed our goal and found the kinematical Neumann coefficient N(θ1, θ2)

satisfying (2.13)–(2.15). Now let us consider a completely general solution N•,L(θ1, θ2)i1,i2
of the two particle SFT axioms (2.6)–(2.8). We can form the ratio

F (θ1, θ2)i1,i2 ≡
N•,L(θ1, θ2)i1,i2

N(θ1, θ2)
(2.17)

where the denominator is the (assumed to be known) kinematical Neumann coefficient.

Then it is easy to see that the above ratio F (θ1, θ2)i1,i2 solves the classical form-factor

axioms which do not have any explicit dependence on L. Thus the decomposition (2.9) is

completely general.

However one has to keep in mind the possibility that the concrete form-factor solution

of equations (2.10)–(2.11) may also depend on L. This potential L dependence is not,

however, forced upon us by the equations. Thus our solution will provide a minimal L

dependent solution of the SFT axioms.

3 The pp-wave Neumann coefficient

Before addressing the case of the AdS5 × S5 kinematics, let us describe in some detail

the (decompactified) pp-wave Neumann coefficients. Their general structure will also form

a guiding principle for seeking a generalization to the full AdS5 × S5 kinematics, as of

course the pp-wave relativistic limit can be understood as a very specific corner in the full

AdS5 × S5 moduli space at strong coupling.

We are interested here in the N33(θ1, θ2) Neumann coefficient which we will denote

from now on as Npp-wave(θ1, θ2). It’s decompactified limit can be written in the following

form5 [1]

Npp-wave(θ1, θ2) ≡ N33(θ1, θ2) =
2π2

L
·

1 + tanh θ1
2 tanh θ2

2

M cosh θ1 +M cosh θ2︸ ︷︷ ︸
P (θ1,θ2)

n(θ1)n(θ2) (3.1)

which will be convenient for generalization to the AdS5 × S5 case. Let us first analyze the

P (θ1, θ2) factor. It implements for us the kinematical singularity (2.15). The denominator

has a very simple interpretation as a sum of the energies of the two particles. This will have

an obvious generalization to the full AdS5 × S5 context, however the drawback of such an

expression is that there is an additional spurious singularity at θ1 = −θ2 + iπ in addition

5Here we extracted a numerical factor for later convenience.
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to the correct kinematical singularity at θ1 = θ2 + iπ. The role of the tanh functions in the

numerator is exactly to cancel this spurious singularity in a minimal way:

P (θ1, θ2) =
1 + tanh θ1

2 tanh θ2
2

M cosh θ1 +M cosh θ2
=

1

cosh
θ1
2

1

cosh
θ2
2

· cosh θ1+θ2
2

2M cosh θ1−θ2
2 cosh θ1+θ2

2

. (3.2)

Since the residue of P at the kinematical pole is

− iResθ′=θP (θ′ + iπ, θ) =
2i

M sinh θ
(3.3)

and P (θ1, θ2) is symmetric and 2πi-periodic, the remaining axioms (2.13)–(2.15) become

n(θ + 2πi) = e−ip(θ)L n(θ) (3.4)

n(θ)n(θ + iπ) =
1

2i

L

2π2
M sinh θ

(
1− eip(θ)L

)
. (3.5)

The monodromy relation (3.4) in fact follows from (3.5), but it is convenient to first extract

a simple solution of (3.4) and then deal with a 2πi-periodic function satisfying a modified

version of (3.5). Namely we introduce

n(θ) = e−
θ
2π
p(θ)Lñ(θ) . (3.6)

Then ñ(θ) is 2πi-periodic and satisfies

ñ(θ) ñ(θ + iπ) = − L

2π2
M sinh θ sin

p(θ)L

2
. (3.7)

There are many solutions to this equation, but once we require that the zeros lie on the

line <e(θ) = 0, the solution is given by

ñ(θ) =
1

Γ̃ML
2π

(θ + iπ)
≡ − L

2π2
M sinh θ sin

p(θ)L

2
· Γ̃ML

2π
(θ) (3.8)

where Γ̃ML
2π

(θ) is a new special functions introduced in [9] and slightly redefined in [1]. Let

us write directly a product representation for ñ(θ) denoting µ = ML/(2π)

ñ(θ) = e−µ cosh θ(γ+log µ
2e) · µ sinh θ ·

∞∏
n=1

√
n2 + µ2 − µ cosh θ

n
e
µ cosh θ

n . (3.9)

The product factors in the numerator ensure that all the nontrivial zeroes required by

the r.h.s. of (3.7) lie on the real line and that there are no zeroes on the line <e(θ) = π.

The prefactor, which does not have any pole or zero can be understood from the large L

asymptotics. Since for large µ

µ sinh θ·
∞∏
n=1

√
n2+µ2−µ cosh θ

n
e
µ cosh θ

n =−2eµ cosh θ(γ+log µ
2e)e

θ
2π
pL

√
µ

π
sin

pL

2
cosh

θ

2
+O(e−µ)

(3.10)
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the prefactor simply kills the exponentially large growth of n(θ). Observe also that in this

limit the monodromy of n(θ) is cancelled due to the appearance of the e
θ
2π
pL factor. Note,

however, that this asymptotics is only valid in the open interval =m(θ) ∈ (0, 2π) so for any

finite L, ñ(θ) remains a periodic function. We will return to this point later in section 9.

In the next section we will write the solutions for sinh-Gordon and O(N) model and

continue in the following section to introduce the covering space of the AdS5 × S5 torus,

describe some general features of function theory on the elliptic curve and then we will

proceed to generalize the structures and formulas encountered in the present section to the

fully general AdS5 × S5 case.

4 Interacting relativistic integrable QFT’s

Before we quote the relevant formulas let us first comment on the meaning of the solutions

of the SFT vertex axioms in the case of such relativistic integrable field theories like sinh-

Gordon or O(N) model which clearly do not form a consistent string theory. Indeed it

is important to note that the SFT vertex axioms from [1] do not require that. They

just describe the behaviour of an integrable quantum field theory on a two-dimensional

spacetime which has the geometry of the decompactified pants diagram as in figure 1

(right). Clearly we may put any quantum field theory on such a geometry and investigate

its properties. This is similar to the question of the spectrum of a QFT on a cylinder which

can be formulated for any QFT without any requirement of a string theory interpretation.

Let us note in passing that the question of determining what are the properties of

an integrable QFT which ensure that it can arise as a consistent string theory in some

gauge-fixing is currently completely unexplored.

From the discussion in section 2 it is clear that the minimal two-particle solutions of

the SFT vertex axioms of any relativistic integrable QFT will have its volume dependence

given by the pp-wave Neumann coefficient Npp-wave(θ1, θ2) given by equations (3.1), (3.6)

and (3.8). The remaining ingredient is an appropriately normalized minimal form factor

solution.

Thus for sinh-Gordon we have

N shG
min,L(θ1, θ2) = Npp-wave(θ1, θ2) · f

shG
min (θ1 − θ2)

f shG
min (iπ)

(4.1)

where f shG
min (θ) is the standard sinh-Gordon minimal form factor [10]

f shG
min (θ) = exp

{
4

∫
dt

t

sinh (tp) sinh (t(1− p))
cosh(t) sinh(2t)

sin2

(
t

π
(iπ − θ)

)}
(4.2)

where p is related to the sinh-Gordon coupling constant.

For the O(N) model we have to be slightly more careful and choose the minimal form

factor in the singlet channel. Thus we get

N
O(N)
min,L(θ1, θ2)i1i2 = Npp-wave(θ1, θ2) ·

f singlet
min (θ1 − θ2)

f singlet
min (iπ)

δi1i2 (4.3)

– 7 –
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where [11]

f singlet
min (θ) =

sinh θ

iπ − θ
exp

{
2

∫
dt

t sinh(t)

1− e−tν

1 + e−t
sin2

(
t

2π
(iπ − θ)

)}
(4.4)

and ν = 2
N−2 .

We give these formulas here explicitly as it would be very interesting to cross-check

them with some direct construction of these relativistic integrable QFT’s e.g. through some

integrable lattice discretization. This would be important as it would shed light on whether

such a minimal solution is indeed the physical one or whether one should also include some

more complicated CDD factors possibly with some additional L dependence.

5 The AdS5 × S5 elliptic curve

In [8] it was argued that a natural parametrization of the kinematics of a single excitation

of the AdS5 × S5 string is given by the universal covering of an appropriate, coupling

constant dependent elliptic curve (equivalently a torus).

Here we will review the relevant formulas as given in [12], modyfing their definition of

g by a factor of 2 in order to agree with

g2 =
λ

16π2
(5.1)

so that the dispersion relation is given by

E =

√
1 + 16g2 sin2 p

2
. (5.2)

The key quantities are x± satisfying

x+ +
1

x+
− x− − 1

x−
=
i

g

x+

x−
= eip . (5.3)

The modulus of the elliptic curve is k = −16g2, and we have

2ω1 = 4K(k) 2ω2 = 4iK(1− k)− 4K(k) (5.4)

where ω1 is related to the periodicity of momentum, while ω2 is the crossing half-period.

Let us also denote by w the relevant complex variable on the universal covering space of

the torus. Then we have6

E = dn(w, k) sin
p

2
= sn(w, k) p = 2 amw (5.5)

and

x± =
1

4g

(cnw

snw
± i
)
· (1 + dnw) . (5.6)

6k is given in the conventions of Mathematica. From now on we will often suppress giving k explicitly.

– 8 –
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Note that the worldsheet momentum p is not globally well defined on the complex plane.

This will lead to significant complications in solving the SFT vertex axioms which we will

discuss in the next section.

The definitions given above are very concise, however they partly obscure the natural

periodicity as p→ p+ 2π when w → w + ω1. Hence we expect that the physics should be

described by a torus with periods ω1 and 2ω2.

To make this explicit, and also to use θ functions we will often work with the rescaled

complex variable

z =
w

ω1
(5.7)

and the elliptic curve will have the modular parameter

τ =
2ω2

ω1
. (5.8)

For compatibility with the mathematical definitions that we will be using later, we define

q = eiπτ . (5.9)

Let us now review the weak coupling and pp-wave limits of the above parametrization.

The weak coupling limit. In the weak coupling limit, the period ω1 → π, while ω2 →
i∞. The z coordinate becomes simply related to the worldsheet momentum

p(z) ∼ 2πz (5.10)

while the energy becomes

E(z) ∼ 1 + 8g2 sin2 πz . (5.11)

The pp-wave limit. At strong coupling the periods ω1, ω2 have the following expansion

ω1 ∼
log g + 4 log 2

2g
ω2 ∼

iπ

4g
. (5.12)

The second formula strongly suggests identifying the relativistic rapidity θ in the pp-wave

limit with

θ = 4gw = 4gω1z . (5.13)

Then the crossing transformation is θ → θ + iπ. One subtlety that one has to keep in

mind is that the pp-wave definition of the momentum p̃ differs from the standard one by

an appropriate rescaling

p̃ ≡ 2gp . (5.14)

Then indeed E →
√

1 + p̃2 and p̃ = sinh θ. Let us note that due to the behaviour of

ω1, after the rescaling (5.13) the edge of the torus related to momentum periodicity gets

pushed to infinity.

– 9 –
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6 Functional equations on the AdS torus

The functional equations for the kinematical Neumann coefficients for AdS5 × S5 are

given by

N(z1, z2) = N(z2, z1) (6.1)

N(z1, z2) = e−ip(z1)LN(z2, z1 − τ) (6.2)

−iResz′=z N
(
z′ +

τ

2
, z
)

=
(

1− eip(z)L
)
. (6.3)

We will supplement these equations with the requirement that the zeroes of N(z1, z2) lie

on the physical line (=m(z) = 0).

Despite their structural similarity with the relativistic equations, the highly rigid func-

tion theory on a torus leads to various stringent restrictions and puzzles. In particular the

worldsheet momentum p is not globally well defined on the complex plane. This has two

consequences. Firstly, the exponential factors eipL are much more heavily constrained than

in the relativistic case. Indeed they are well defined meromorphic functions only for inte-

ger L (for half integer L they are also meromorphic but on a larger torus with periodicity

z → z + 2). This property is indeed very natural from the gauge theory point of view as

the size of the string is always integer (or half-integer) as it is identified with the discrete

J charge.

This new feature of the AdS kinematics will also severly complicate solving the SFT

vertex monodromy axiom. Indeed a function of the form

econst·z·p(z) (6.4)

similar to the function e−
θ
2π
p(θ)L which was used in the relativistic case in (3.6) does not

make sense on the elliptic curve (or on its covering space) as it has branch cuts and is not

meromorphic.

Let us now turn to finding a solution of (6.1)–(6.3). Instead of directly attacking

the functional relations (6.1)–(6.3), we will try to follow the steps employed when solving

the functional relations in the pp-wave case, and decompose N(z1, z2) into some simpler

structures. Recall (3.1):

N33(θ1, θ2) =
2π2

L
·

1 + tanh θ1
2 tanh θ2

2

M cosh θ1 +M cosh θ2︸ ︷︷ ︸
P (θ1,θ2)

n(θ1)n(θ2) . (6.5)

We will look for a similar decomposition

N(z1, z2) =
2π2

L
· 1 + f(z1)f(z2)

E(z1) + E(z2)︸ ︷︷ ︸
P (z1,z2)

n(z1)n(z2) (6.6)

with the functions f(z) and n(z) to be determined.

– 10 –
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The function f(z). The key role of the numerator in P (z1, z2) is to cancel the unwanted

pole at z1 = −z2 + τ/2 in the denominator. Since we want the solution to reduce to the

pp-wave solution in the appropriate limit, we will make a shortcut and try to find a natural

elliptic generalization of tanh θ/2. The key properties of tanh θ/2 which are also necessary

to cancel that spurious pole amount to

f(z + τ/2) =
1

f(z)
f(−z) = −f(z) . (6.7)

Elliptic functions can be constructed in diverse ways. For later convenience we will

use the q-theta function θ0(z) defined through

θ0(z) = −ieiπ(z−
τ
4 )+iπ τ

12 · θ1(πz, eiπτ )

η(τ)
(6.8)

as a basic building block. This function obeys the properties:

θ0(z + 1) = θ0(z) (6.9)

θ0(z + τ) = −e−2πizθ0(z) (6.10)

θ0(τ − z) = θ0(z) (6.11)

θ0(−z) = −e−2πizθ0(z) . (6.12)

Its main property is that it has a single zero at z = 0. Thus it may be used to construct

elliptic functions by specifying the positions of their zeroes and poles. Indeed any elliptic

function can be written as

const · θ0(z − a1)θ0(z − a2) · . . . · θ0(z − an)

θ0(z − b1)θ0(z − b2) · . . . · θ0(z − bn)
(6.13)

with the constraint
∑n

i=1 ai =
∑n

i=1 bi for double periodicity. It is well known that the

elliptic functions have to have n ≥ 2.

The function f(z) thus has to have the following form

f(z) = C
θ0 (z) θ0 (z − z0)

θ0

(
z − τ

2

)
θ0

(
z − z0 + τ

2

) . (6.14)

In order for f(z)f(z + τ/2) = 1 to hold, C can be calculated to be

C = ∓eiπ(z0−
τ
2 ) . (6.15)

In the following we will pick the upper sign. In order for this function to be odd, z0 has to

be a half period. We have two possibilities:

z0 =
1

2
or z0 =

1 + τ

2
. (6.16)

Provisionally we will use the function with the first choice of z0 as it has no pole on the

physical line. Thus we set

f(z) = −iq−
1
2 ·

θ0 (z) θ0

(
z − 1

2

)
θ0

(
z − τ

2

)
θ0

(
z − 1

2 + τ
2

) . (6.17)

Both choices of z0 in (6.14), however, lead to functions which go over to tanh θ
2 in the

pp-wave limit as can be seen in figure 2.
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Figure 2. The functions f(z) with the two choices of z0 and tanh θ
2 for λ = 10000.

The function n(z). Let us now consider the analog of (3.3) which for the reader’s

convenience we repeat here

− iResθ′=θP (θ′ + iπ, θ) =
2i

M sinh θ
. (6.18)

It would be tempting to identify the expression M sinh θ in the residue with the momentum,

but on the elliptic curve this would be problematic, as the momentum is not a well defined

function. In fact it can be equivalently understood as E′(θ), which in contrast has a well

defined elliptic generalization. Since in the previous subsection we have already explicitly

defined P (z1, z2), of course we do not have any freedom here but we just have to compute

the appropriate residue. It is quite encouraging that E′(z) indeed appears in the exact

answer:

− iResz′=zP (z′ + τ/2, z) =
2i

E′(z)
. (6.19)

We are now left with the following functional equations for n(z):

n(z + τ) = e−ip(z)Ln(z) (6.20)

n(z)n(z + τ/2) =
LE′(z)

4π2i

(
1− eip(z)L

)
. (6.21)

Again the first equation is a direct consequence of the second one. For later convenience

let us give an expression for E′(z) in terms of the momenta:

E′(z) = −4g2ω1i
(
eip − e−ip

)
= 8g2 sin p . (6.22)

The relevant crossing equation for n(z) becomes then

n(z)n(z + τ/2) = −4g2L

π2
sin p sin

pL

2
e
ipL
2 . (6.23)

In this paper we will concentrate on the case of even L = 2n which is simpler than the

general case. Let us first construct an elliptic function GevL (z) which has the correct location
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of zeroes following from (6.21). Then we will concentrate on solving the monodromy

equation in the simplest possible setting. Similarly as in the pp-wave limit, we will require

all the zeroes (in the fundamental domain) to lie on the physical real axis.

It is natural to implement this condition by defining

GevL=2n(z) =

√
L

2

n−1∏
k=1

√
1 + 16g2 sin2 πk

L − E(z)

4g sin πk
L

. (6.24)

This function satisfies the following functional equation

GevL (z)GevL (z + τ/2) =
sin pL

2

sin p
. (6.25)

Let us now write n(z) as

n(z) =
2g
√
L

π
sin p GevL (z)hevL (z) . (6.26)

Then the remaining function hevL (z) will satisfy a very simple equation

hevL (z)hevL (z + τ/2) = e
ipL
2 (6.27)

leading to

hevL (z + τ) = e−ipLhevL (z) . (6.28)

This function will be the direct elliptic counterpart of e−
θ
2π
p(θ)L in the relativistic case,

however the analyticity properties in the ‘elliptic’ rapidity plane force the solution to be

much more complicated.

6.1 Elliptic Gamma function and the monodromy condition

In order to solve the monodromy functional equations we will need to use the so-called

elliptic Gamma function Γ(z, τ, σ). Its definition and main properties are discussed in [13].

It is the unique meromorphic solution of the difference equation

Γ(z + σ, τ, σ) = θ0(z, τ)Γ(z, τ, σ) (6.29)

such that i) Γ(z+ 1, τ, σ) = Γ(z, τ, σ), ii) Γ(z, τ, σ) is holomorphic on the upper half plane,

and it is normalized by iii) Γ((τ + σ)/2, τ, σ) = 1. It is given by an explicit product

representation

Γ(z, τ, σ) =

∞∏
j,k=0

1− e2πi((j+1)τ+(k+1)σ−z)

1− e2πi(jτ+kσ+z)
. (6.30)

In the fundamental domain there are no zeroes and the only poles are on the real line at

integer values of z. All other poles occur in the lower half plane. In the present paper we

will need just the special case with σ = τ , which we will denote by the shorthand notation

Γell(z) ≡ Γ(z, τ, τ) =

∞∏
k=0

(
1− e2πiτ(k+2)e−2πiz

1− e2πiτke2πiz

)k+1

. (6.31)

It satisfies

Γell(z + 1) = Γell(z) Γell(z + τ) = θ0(z)Γell(z) . (6.32)
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The monodromy condition. The function hevL (z) satisfies the following monodromy

condition

hevL (z + τ) = e−ipLhevL (z) . (6.33)

Let us first investigate the more elementary equation

H(z + τ) = e−ipH(z) . (6.34)

We can readily construct such a function using the elliptic Gamma functions Γell(z) once

we express e−ip in terms of the elementary θ0 functions:

e−ip = q
1
2 ·

θ0

(
z − 1

2 + τ
4

)
θ0

(
z − 1

2 −
3τ
4

)
θ2

0

(
z − 1

2 −
τ
4

) . (6.35)

Thus the function H(z) satisfying (6.34) can be given by

H(z) = ei
π
2
z ·

Γell

(
z − 1

2 + τ
4

)
Γell

(
z − 1

2 −
3τ
4

)
Γ2

ell

(
z − 1

2 −
τ
4

) . (6.36)

However due to the innocous looking leftover constant q
1
2 appearing in the expression for

e−ip, we are forced to include the exponential factor ei
π
2
z which violates the z → z + 1

periodicity. Indeed H(z) satisfies

H(z + 1) = iH(z) . (6.37)

Nevertheless for the case of even L which we are considering in the present paper we may

easily obtain a z → z + 1 periodic solution to (6.33). Let us take first L = 2. Then the

solution is

C · e−i
p(z)
2 H2(z)e−2ip(z) . (6.38)

The term e−ip/2 restores z → z + 1 periodicity, the other factor of e−2ip ensures that the

expression is real on the physical line =m(z) = 0, while the constant C = 1/(H(0)H(τ/2))

is enough to satisfy the remaining equation (6.27) for L = 2. The generalization to any

even L = 2n is now trivial:

hevL=2n(z) =
1

Hn(0)Hn(τ/2)
· e−i

p
2
ne−ipLH(z)L . (6.39)

This solves all the required equations and is real on the real axis. In the next section we

will put all these partial formulas together and explore some of the properties of the AdS

kinematical Neumann coefficient.

7 The kinematical AdS5 × S5 Neumann coefficient

Let us now collect together the relevant formulas. The resulting expression is an exact

solution of the AdS axioms for the kinematical Neumann coefficient (6.1)–(6.3) for any

even value of L = 2n. The solution is of course valid for any value of the gauge theory

coupling constant. We have

N(z1, z2) =
2π2

L
· 1 + f(z1)f(z2)

E(z1) + E(z2)
n(z1)n(z2) (7.1)
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where

f(z) = −iq−
1
2 ·

θ0 (z) θ0

(
z − 1

2

)
θ0

(
z − τ

2

)
θ0

(
z − 1

2 + τ
2

) (7.2)

while n(z) is composed of two pieces

n(z) =
2g
√
L

π
sin p GevL (z)hevL (z) (7.3)

with GevL (z) being an elliptic function ensuring the correct positions of zeroes as required

by the kinematical singularity axiom

GevL=2n(z) =

√
L

2

n−1∏
k=1

√
1 + 16g2 sin2 πk

L − E(z)

4g sin πk
L

(7.4)

while hevL (z) implements the correct monodromy under the shift z → z + τ

hevL=2n(z) =
1

Hn(0)Hn(τ/2)
· e−i

p
2
ne−ipLH(z)L (7.5)

with

H(z) = ei
π
2
z ·

Γell

(
z − 1

2 + τ
4

)
Γell

(
z − 1

2 −
3τ
4

)
Γ2

ell

(
z − 1

2 −
τ
4

) . (7.6)

An extension of this construction to odd L (and possibly half-integer ones) would require

a modification of (7.4). A further complication is that the functions eipL/2 would no longer

be periodic under z → z + 1 but would pick up a minus sign. It is not completely clear

whether a similar violation of periodicity would be physically acceptable or not. We leave

therefore these issues for future work. In the following we will discuss the singularitites of

the kinematical Neumann coefficient and its pp-wave, weak coupling and large L limits.

7.1 Singularity structure

Let us now analyze the singularity structure of the solution N(z, z′) as a function of z

keeping z′ fixed.

From the definition of the elliptic Gamma function we see that the potential zeroes

and poles of hevL=2n(z) can occur only for the points

z1 =
1

2
+
τ

4
z2 =

1

2
+

3τ

4
(7.7)

in the ‘fundamental’ domain (which we define here as the set 0 ≤ <e(z) < 1, 0 ≤ =m(z) <

τ). These points represent the poles and zeroes of e−ip and thus represent infinite (complex)

momentum thus having singularities there is quite natural.

The function hevL=2n(z) has a pole of order n at z1 and a zero of order 3n at z2. The

fact that the number of poles and zeroes does not balance is not a contradiction as this

function has nontrivial monodromy in the τ direction and thus is not elliptic. The poles

of GevL (z) just follow from the poles of the energy E(z) which has first order poles both at

z1 and z2. Consequently GevL (z) has poles of order n− 1 both at z1 and at z2. It also has
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2n− 2 zeroes on the real axis (within the ‘fundamental’ domain). Thus the product of the

two functions has a pole of order 2n−1 at z1 and a zero of order 2n+ 1 at z2. Finally sin p

has poles of order 2 both at z1 and at z2 and zeroes at z = 0, 1/2, τ/2, 1/2 + τ/2. Of these

zeroes the first two on the real axis are expected, while we will have to track the ones at

z = τ/2, 1/2 + τ/2.

Therefore n(z) has a pole of order 2n + 1 at z1, a zero of order 2n − 1 at z2 and two

single zeroes at z = τ/2, 1/2 + τ/2 apart from the expected set of real zeroes.

It remains to analyze the singularities of the L independent piece

1 + f(z)f(z′)

E(z) + E(z′)

as a function of z (keeping z′ fixed). Generically we would expect this function to be

an elliptic function of order 4, but since by construction f(z) was choosen to cancel the

unphysical pole at z = −z′+τ/2 it is a function of order 3. This function has the kinematical

pole at z = z′ + τ/2, the remaining two first order poles are at z = τ/2, 1/2 + τ/2 which

exactly cancel with the complex zeros of n(z). This cancellation is a nice consistency check

of this solution. All the zeroes are of first order. Two of them are at z1 and z2, while the

last one is at z = z′ + 1/2 + τ/2.

Putting all these considerations together, we see that the solution N(z, z′) has a pole

of order L at z1, a zero of order L at z2, a first order pole at z = z′ + τ/2 (the kinematical

pole), a set of zeroes on the real axis and an additional zero at z = z′+1/2+ τ/2. It would

be interesting to understand the meaning of this additional zero.

Let us just mention in passing that if we define

Nreg(z, z′) ≡ N(z, z′) eip(z)L/2eip(z
′)L/2 (7.8)

we can get rid of any zeroes and poles at z1 and z2 altogether.

7.2 The pp-wave limit

In order to study the pp-wave limit, we have to take g →∞ together with L→∞ keeping

fixed

p̃ = 2gp L̃ =
L

2g
. (7.9)

Then, as mentioned earlier, the dispersion relation becomes E =
√

1 + p̃2 and the rela-

tivistic rapidity is linked with the z coordinate on the torus through

θ = 4gω1z . (7.10)

Taking this limit analytically on the kinematical Neumann coefficient is rather involved and

we did not carry it out in full but we performed a numerical check. However let us comment

first on some partial analytical results which indicate that the various functions which we

introduced like the elliptic function GevL (z) and the hevL=2n(z) containing the elliptic Gamma

function are in fact strongly interrelated.
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Figure 3. The pp-wave Neumann coefficient Npp-wave(θ1 = 0.2, θ2) for L̃ = 0.25 together with its

asymptotic part (neglecting wrapping) and the full AdS5×S5 kinematical Neumann coefficient for

g = 100 and L = 50 (which corresponds to L̃ = 0.25).

Using the properties of the elliptic Gamma function in [13] one can obtain the pp-wave

limit of hevL=2n(z):

hevL (z)→ e−
1
2π
L̃ θ sinh θ · e

1+4 log 2+log g
2π

L̃ cosh θ . (7.11)

The first term is exactly the relativistic monodromy function used in (3.6). The second

term, however, involves already a part of the exponential factor in (3.9), but due to the

log g in the exponent, this function does not really have a pp-wave limit. It turns out

that only when multiplied by GevL (z), the log g term apparently cancels and we have a

well defined pp-wave limit of the complete expression. We checked this numerically (see

figure 3). There we compare the full AdS5 × S5 answer with the pp-wave expression in

the far from asymptotic regime where wrapping is important and the full pp-wave exact

expression (3.9) is needed.

8 Weak coupling limit

In this section we analyze the weak coupling limit (g → 0) of the kinematical Neumann

coefficient and connect it to a decompactified spin chain calculation. In this limit the real

period of the torus, ω1 goes to π, while the imaginary one diverges as ω2 → i∞. This

makes the domains, related for finite g by crossing, disconnected at weak coupling. Since

the spin chain calculation gives nonvanishing result only for the kinematics when there

is one incoming particle in string #3 and one outgoing particle in string #2 we have to

continue analytically the kinematical Neumann coefficient to describe this process

N23(z′, z) ≡ e−ip(z′)
L
2 N

(
z′ +

τ

2
, z
)

(8.1)

before taking the weak coupling limit [1]. Using the functional relations

n(z) =
1

n
(
z + τ

2

) LE′(z)

4π2i
(1− eip(z)L) ; f

(
z +

τ

2

)
=

1

f(z)
(8.2)
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we transform the required quantity into:

N
(
z′ +

τ

2
, z
)

=
E′(z)

2i

1 +
f(z′+ τ

2 )
f(z+ τ

2 )

E(z)− E(z′)

n
(
z′ + τ

2

)
n
(
z + τ

2

) (1− eipL) . (8.3)

In evaluating its weak coupling limit we note that the elliptic nome goes to zero, q → 0,

and the theta functions simplify to trigonometric functions. In particular we find that

f
(
z′ + τ

2

)
f
(
z + τ

2

) =
sin 2πz

sin 2πz′
=

sin p

sin p′
(8.4)

where in the second equality we used that at weak coupling p = 2πz. Consequently in this

limit we also have

E(z) = 1 + 8g2 sin2 πz + . . . and E′(z) = 8g2 sin p+ . . . (8.5)

which allows us to evaluate the weak coupling limit of the L-independent prefactor.

Let us now turn to analyze

n
(
z′ + τ

2

)
n
(
z + τ

2

) =
sin p′

sin p

GevL
(
z′ + τ

2

)
GevL

(
z + τ

2

) hevL (z′ + τ
2

)
hevL
(
z + τ

2

) . (8.6)

Firstly we see that

GevL
(
z′ + τ

2

)
GevL

(
z + τ

2

) =

n−1∏
k=1

√
1 + 16g2 sin2 πk

L + E(z′)√
1 + 16g2 sin2 πk

L + E(z)
= 1 + . . . (8.7)

The small q limit of the elliptic gamma function comes from the first factor in the product

Γell(z) =

∞∏
k=0

(
1− q2(k+2)e−2iπz

1− q2ke2iπz

)k+1

=
1

(1− e2iπz)
+ . . . (8.8)

whenever =m(z) > −τ . This implies

H
(
z +

τ

2

)
= q

1
4 ei

π
2
zΓell

(
z − 1

2 + 3τ
4

)
Γell

(
z − 1

2 −
τ
4

)
Γell

(
z − 1

2 + τ
4

)2 = q
3
4 e−i

3π
2
z + . . . (8.9)

and leads to
n
(
z′ + τ

2

)
n
(
z + τ

2

) =
sin p′

sin p

e2iπp′n

e2iπpn
=

sin p′

sin p
ei
L
2

(p′−p) . (8.10)

Putting everything together we obtain

N
(
z′ +

τ

2
, z
)

=
π

i
cot

p′ − p
2

ei
L
2

(p′−p)(1− eipL) . (8.11)

This implies for the weak coupling limit of the amplitude N23(z′, z):

N23(z′, z) = π
1 + ei(p

′−p)

1− ei(p′−p)
· (1− eipL) · e−i

pL
2 . (8.12)

In the following we compare this result to an infinite volume spin-chain calculation.
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8.1 Decompactifed spin chain calculation

In the weak coupling limit the Neumann coefficients are expected to be related to the tree

level 3pt functions of the dual gauge theory. To calculate these 3pt functions one has to

diagonalize the 1-loop dilatation operator and evaluate the overlap of its eigenstates in the

decompactified geometry shown on figure 4. This is equivalent to a decompactified spin

chain calculation. Figure 4 depicts the geometry in which the decompactified string #3

splits into the decompactified string #2 and the finite string #1. We assume that we have

one particle for string #3 with momentum p and one particle for string #2 with momentum

p′, and the vacuum for string #1. In the language of gauge theory this setting translates

into three operators, Oi, for i = 1, 2, 3 as follows: for O3 we take an infinitely long operator

built up from one single X and infinitely many Z scalar operators. The coordinate space

eigenstate of the dilatation operator can be parameterized by its momentum p:

|O3〉 =
∑
n∈Z

eipn|n〉, (8.13)

where |n〉 is of the form . . . ZZZXZZZ . . . and the operator X is located at position n.7

The operator we take for O2 is in the conjugate sector to O3, it contains infinitely many

Z̄ and one single X̄. Finally for the third operator we take O1 = Tr(Z̄L), whose state is

〈O1| = L〈0|. To implement the right geometry we split O2 as

〈O2| =
∑

n′≤−L
2

e−ip
′(n′+L

2 )〈n′|+
∑
n′>L

2

e−ip
′(n′−L2 )〈n′| (8.14)

and insert O1 in the middle. This basis is very similar to the one, which was used to

calculate the decompactified Neumann coefficients in [1]. In calculating the overlap (〈O2|⊗
〈O1|)|O3〉 we note that at tree level the nontrivial contractions are 〈n′|n〉 = δn,n′ . This

implies

(〈O2| ⊗ 〈O1|)|O3〉 = e−ip
′ L
2

∑
n≤−L

2

ei(p−p
′)n + eip

′ L
2

∑
n>L

2

ei(p−p
′)n

=
1

1− ei(p′−p)
· (1− eipL) · e−ip

L
2 . (8.15)

The above equation is very similar to the one obtained from the weak coupling limit of

the AdS5×S5 kinematical Neumann coefficient (8.12), except the factor 1 + ei(p
′−p) which,

however, satisfies the AdS version of the CDD axioms8 (2.16). The appearance of such an

additional factor is very natural as we factored out the S-matrix dependent ordinary two

particle form factor (2.9), which varies from sector to sector. Here, however we calculated

only the one related to the su(2) sector.

7This state is normalized to δ function in p.
8The CDD equations were written for two incoming particles so again we have to cross back. In particular

this will change 1 + ei(p
′−p) to 1 + e−i(p

′+p).
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1 22

3

L

2

L

2
−

identify

Figure 4. The geometry of the spin chain calculation. The world sheet of string #3 is replaced

with an infinite spin chain, which splits into the infinite spin chain of string #2 and the periodic

spin chain of size L replacing string #1.

9 The large L limit

It is also interesting to analyze the kinematical Neumann coefficient in the limit of large L

keeping the remaining variables like the gauge coupling or the momenta at generic values.

A distinctive feature of the exact pp-wave solution which was emphasized in [1] is that in

the large L limit the Neumann coefficient N33(θ, θ′) looses monodromy. This has to be

understood in the following sense. The exact function n(θ) satisfies

n(θ + 2πi) = e−ip(θ)L n(θ) . (9.1)

However if we first take the large L asymptotics (cf. (3.10), which is valid for =m(θ) ∈
(0, 2π)), we get

nas(θ + 2πi) = −nas(θ) . (9.2)

This can be reformulated as the statement that

lim
ε→0+

lim
L→∞

n(θ + 2πi− iε)
n(θ + iε)

= −1 (9.3)

while if we take the limit ε→ 0+ first, we get of course

lim
ε→0+

n(θ + 2πi− iε)
n(θ + iε)

= e−ip(θ)L (9.4)

for real θ.

We will now establish that a similar property holds for the AdS kinematical Neumann

coefficient. Recall the structure of the corresponding quantity

n(z) =
2g
√
L

π
sin p GevL (z)hevL (z) . (9.5)
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Since hevL (z) is essentially just the Lth power of a combination of the L-independent elliptic

Gamma functions, its asymptotic limit is trivial and its asymptotic monodromy coincides

with the normal one i.e.
hevL (z + τ − ετ)

hevL (z + ετ)
→ e−ipL (9.6)

for real z. We thus have to show that the corresponding ratio of GevL (z) has the opposite

monodromy
GevL (z + τ − ετ)

GevL (z + ετ)
→ eipL (9.7)

when we first take L large.

Let us focus on checking this condition when z is real and belongs to the interval

z ∈ (0, 1/2). Then for points slightly above the real axis we have E(z + ε̃τ) = E(z) + iε

with both ε̃ and ε positive. Similarly we will have E(z + τ − ε̃τ) = E(z) − iε. Thus the

ratio (9.7) becomes

n−1∏
k=1

√
1 + 16g2 sin2 πk

L − E + iε√
1 + 16g2 sin2 πk

L − E − iε
(9.8)

and L = 2n. Let us transform the product into an exponent of a sum of logarithms and

take the large L limit by rewriting the discrete sum as an integral.9 We get

exp

{
L

2

∫ 1

0
log

(√
1 + 16g2 sin2 πy

2
− E + iε

)
− log

(√
1 + 16g2 sin2 πy

2
− E − iε

)
dy

}
.

(9.9)

Now we have to be careful concerning the sign of the argument of the logarithm. When

y < y∗ ≡
2

π
arcsin

1

4g

√
E2 − 1 (9.10)

the argument is negative and we deal essentially with the discontinuity across the branch

cut which is 2iπ. Thus we get

exp

{
L

2
· 2iπ · y∗

}
. (9.11)

However using the dispersion relation E =
√

1 + 16g2 sin2 p/2 we see that y∗ = p/π. This

gives finally

eipL (9.12)

which exactly cancels (9.6).

10 Conclusions

The String Field Theory (SFT) vertex axioms for AdS5 × S5 are very challenging to solve

for two reasons. Firstly, they incorporate a nondiagonal S-matrix which even for the case of

ordinary relativistic form factors severly complicates their solution. Secondly, they involve

9This would be the leading term in a finite Poisson resummation. We will not control subleading terms

so we will not determine order 1 terms in the monodromy (like the −1 in the asymptotic pp-wave case).
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the dependence on the size of the third closed string L which leads to the incorporation

of all order multiple wrapping effects w.r.t. this parameter. This is in contrast to the

hexagon approach where the question of wrapping is dealt with iteratively on top of an

exact asymptotic solution. On the other hand, the possibility of handling analytically an

infinite set of wrapping corrections at once is very appealing.

In this paper we have analyzed the two-particle SFT vertex axioms and found that

one can factor out the complicated dependence on the dynamical S-matrix into an L-

independent form factor10 and a piece that satisfies the L-dependent axioms but with

S = 1. We refer to this solution as the ‘kinematical Neumann coefficient’. By definition

this solution includes an infinite set of wrapping corrections w.r.t. L which are necessary

to solve the SFT vertex axioms. Of course, one can conceive adding some additional L

dependence in a form of an analog of a CDD factor, but since L does not appear in the

CDD equations this is not enforced by any equations. So in this sense the ‘kinematical

Neumann coefficient’ is a minimal solution as far as wrapping is concerned.

In this paper we have constructed explicitly the kinematical Neumann coefficient in

the case of AdS5×S5 kinematics for any even L and any value of the gauge theory coupling

constant. We have verified that this expression has the correct pp-wave limit and that it

reduces to the spin chain answer (up to an L-independent CDD factor). In addition we

have analyzed the large L limit and verified that it obeys analogous properties to the known

pp-wave solution namely the apparent cancelation of monodromy in the physical strip.

It would be very interesting to solve the form factor equations in AdS5×S5 in order to

obtain a complete expression. Also it is important to understand whether any CDD factors

are necessary for a physical solution. Especially whether any additional wrapping effects

would have to be included in the CDD factors. We hope that this question could also be

addressed in the simpler relativistic setting where there exist integrable lattice realizations

of some theories. To facilitate that we quote the complete solutions of the two-particle

SFT vertex axioms for the sinh-Gordon and O(N) model.

The weak coupling analogue of the string vertex is the spin vertex. In [17, 18] the

authors constructed the finite volume (size) spin vertex for all sectors at leading order.

It would be interesting to investigate the decompactification limit of the vertex, which

corresponds to our geometry and see how the vertex factorizes into a kinematical and a

form factor part. This leading order calculation could be extended to higher loops by

relating the higher order long-ranged spin chains to inhomogenous spin chains [19] or by

using the separation of variables basis [16]. However, to directly compare the spin vertex

of [17] with the string vertex one would have to include in the former the contribution of

Bethe wave functions of the external states. A comparision has so far been done only in

the pp-wave limit [20].

Finally we hope that the exact treatment of multiple wrapping corrections in the

kinematical Neumann coefficient formula will be helpful for the treatment of wrapping in

the hexagon approach.

10Its determination still remains as an outstanding open problem. See [14, 15] for details.
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