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Abstract: We use a recent on-shell method, developed in [1], to construct Bogomol’nyi

equations of the three-dimensional generalized Maxwell-Higgs model [2]. The resulting

Bogomol’nyi equations are parametrized by a constant C0 and they can be classified into

two types determined by the value of C0 = 0 and C0 6= 0. We identify that the Bogomol’nyi

equations obtained by Bazeia et al. [2] are of the (C0 = 0)-type Bogomol’nyi equations. We

show that the Bogomol’nyi equations of this type do not admit the Prasad-Sommerfield

limit in its spectrum. As a resolution, the vacuum energy must be lifted up by adding

some constant to the potential. Some possible solutions whose energy equal to the vacuum

are discussed briefly. The on-shell method also reveals a new (C0 6= 0)-type Bogomol’nyi

equations. This non-zero C0 is related to a non-trivial function fC0
defined as a difference

between energy density of the scalar potential term and of the gauge kinetic term. It turns

out that these Bogomol’nyi equations correspond to vortices with locally non-zero pressures,

while their average pressure P remain zero globally by the finite energy constraint.
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1 Introduction

Bogomolnyi method is a smart trick to reduce the second-order Euler-Lagrange equations

into the first-order, whose solitonic solutions possess minimum energies. For topologically

nontrivial field’s vacuum manifold the solutions are stable since at the boundary they map

each point in coordinate space with different global minimum of the potential.

So far the Bogomolnyi equations were derived by saturating the lower bound of the cor-

responding static energy (the so-called off-shell method, or known as Bomolnyi’s trick) [3].

This method may not always give the Bogomolnyi equations easily, especially when the

Lagrangian contains noncanonical terms, as in the case of k-defects [4–10]. Recently, two

of us proposed an alternative in obtaining the first-order equations by directly evaluating

the Euler-Lagrange equations, later dubbed the on-shell method [1]. This formalism re-

produces the known Bogomolnyi equations for kinks, vortices, and monopoles, as well as

Dirac-Born-Infeld (DBI) kinks and vortices. This is a novel result though still preliminary,

since it might enable us in constructing BPS (Bogomonlyi-Prasad-Sommerfield) states for

general defects. Not only it is interesting in its own right, but also these least-energy soli-

tonic solutions might have different properties from their canonical BPS counterparts. In

the context of cosmology this might shed a new light on the dynamics of defects.

Not long time ago one of us [2] studied topological vortices in the generalized Maxwell-

Higgs theory, whose dynamics are controlled by two positive functions in the Lagrangian,

G (|φ|) and w (|φ|). It was shown that, for several choices of G− and w−functions, there

exist BPS solutions with various topology and energies (that can be greater than the

canonical BPS tensions). Soon it was followed by the discovery of prescription for obtaining

– 1 –



J
H
E
P
0
2
(
2
0
1
6
)
1
1
7

their analytical BPS vortex solutions [11]. The similar study was also done on generalized

BPS monopoles [12–14].1

Here in this paper we look for something more modest by following a different route.

Our aim is twofold. First, we wish to improve the on-shell method so that it includes

noncanonical Lagrangian. Second, by applying it to the generalized Maxwell-Higgs theory

we try to construct set of auxiliary functions, along with their constraint equations, that

generate the corresponding Bogomol’nyi equations. It is expected that for arbitrarily pos-

itive functions G (|φ|) and w (|φ|) a large class of first-order Bogomolnyi equations (and

their solutions) can be obtained.

The effective one-dimensional Euler-Lagrange equations, equation (6) in the on-shell

method of [1], are difficult to get since the right hand side of the equations is only allowed

to depend on the parameter r and the fields φa. It was very fortunate that examples given

in [1] for the non-standard theory, which were the DBI defects, have not suffered from

this difficulty. However, it should not happen in general for any theory with non-standard

kinetic terms, such as the Generalized Maxwell-Higgs theory discussed in this article. Here,

we need to improve the on-shell method such that the right hand side of the effective Euler-

Lagrange equations are allowed to depend on first derivative of the fields φa. As a simple

case, let us consider a theory with the effective degree of freedom is given by φ, in which

the effective one dimensional Lagrangian L = L(r, φ, φ′) and the Euler-Lagrange equation

are given by

0 =
∂L
∂φ

− d

dr

(

∂L
∂φ′

)

0 = A(r, φ, φ′)− Br(r, φ, φ
′)− Bφ(r, φ, φ

′)φ′ − Bφ′(r, φ, φ′)φ′′

φ′′ =
1

Bφ′(r, φ, φ′)

(

A(r, φ, φ′)− Br(r, φ, φ
′)− Bφ(r, φ, φ

′)φ′
)

, (1.1)

where

A =
∂L
∂φ

, Bx =
∂

∂x

(

∂L
∂φ′

)

, x ≡
(

r, φ, φ′
)

. (1.2)

The Euler-Lagrange equation can be arranged into

φ′′ + f(r, φ, φ′)φ′ = 0. (1.3)

We then need to determine what would be the expected function of f(r, φ, φ′) provided

that the left hand side of (1.3) can be rewritten as

φ′′ + f(r, φ, φ′)φ′ =
1

h
(hφ′)′ + . . . , (1.4)

where h ≡ h(r, φ). Now, since h′ = ∂h
∂r + ∂h

∂φφ
′, it yields that the function f must be of

the form

f(r, φ, φ′) =
1

h

∂h

∂r
+

1

h

∂h

∂φ
φ′ + (non-linear terms in φ′). (1.5)

1These are rather remarkable results, since the search for analytic BPS vortex solutions has been no-

toriously difficult and so far has been futile, while the finding of BPS monopole solutions by Prasad and

Sommerfield was achieved only after several trials and errors [15]. It is the appearance of G and w functions

that, in spite of making the EoM appear more complicated, actually helps in obtaining the suitable solutions

that satisfy the boundary conditions.
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We keep the linear terms of f , in φ′, in the left hand side of (1.3) and move the non-

linear terms to the right hand side of (1.3). The Bogomol’nyi equation is then given by

h(r, φ)φ′ = X(φ), while the constraint equation is now

X ′

h
= g(r, φ, φ′), (1.6)

where g contains all remaining non-linear terms coming from f . Notice that upon substi-

tuting the Bogomol’nyi equation into (1.3), we can get back the form of effective Euler-

Lagrange equation as in the equation (6) of [1].

For multiple fields theory,2 generalization of the above procedures are more involved.

As such, for each field φa, the effective one dimensional Euler-Lagrange equations are

0 = Aa(r, φ, φ′)− Ba
r (r, φ, φ

′)−
∑

b

Ba
φb(r, φ, φ

′)φb′ −
∑

b

Ba
φb′(r, φ, φ

′)φb′′, (1.7)

φa′′=
1

Ba
φa′(r, φ, φ′)



Aa(r, φ, φ′)−Ba
r (r, φ, φ

′)−
∑

b 6=a

Ba
φb(r, φ, φ

′)φb′−
∑

b 6=a

Ba
φb′(r, φ, φ

′)φb′′



 ,

where

Aa =
∂L
∂φa

, Ba
x =

∂

∂x

(

∂L
∂φa′

)

, x ≡
(

r, φb, φb′
)

, b = 1, . . . , Nφ. (1.8)

One should notice that the Euler-Lagrange equations are linear in φ′′. Taking the same

procedures as in the case of a single field theory, we may write the Euler-Lagrange equation,

for each φa, as

φa′′ + fa(r, φ, φ′)φa′ = ga(r, φ, φ′) +
∑

b 6=a

kab(r, φ, φ
′)
[

φb′′ + f b(r, φ, φ′)φb′
]

, (1.9)

where f is linear function in φ′. To have the Bogomol’nyi equations, the function f b must

be of the form

f b(r, φ, φ′) =
1

hb
∂hb

∂r
+

1

hb

∑

c

∂hb

∂φc
φc′, c = 1, . . . , Nφ , (1.10)

where hb ≡ hb(r, φ). The Bogomol’nyi equations then are given by

hb(r, φ)φb′ = Xb(φ) (1.11)

and the constraint equations are

Xa′

ha
= ga(r, φ, φ′) +

∑

b 6=a

kab(r, φ, φ
′)
Xb′

hb
. (1.12)

As in [1], the topological charge can directly be obtained by inserting the Bogomol’nyi

equations into the energy functional. We shall obtain, in general,

dQ =
∑

a

F [Xa(φ)]φa′, (1.13)

2Here, we follow the conventions in [1] for Nφ−fields theory.
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where F [Xa(φ)] is a general functional of Xa(φ) whose form depends on the actual kinetic

form of the Lagrangian. In particular, for canonical case F [Xa(φ)] = Xa(φ). Its integral

becomes

EBPS =

∫

dQ,

= Q(r = ∞)−Q(r = 0). (1.14)

2 Generalized Maxwell-Higgs model

As an example of application of the prescription above, let us now consider a generalized

Maxwell-Higgs theory described by the following (1+2)-dimensional Lagrangian density [2]

LG = −1

4
G(|φ|)FµνF

µν + w(|φ|)|Dµφ|2 − V (|φ|) , (2.1)

where Fµν = ∂µAν − ∂νAµ, Dµφ = ∂µ + ieAµφ, and the Minkowskian metric is ηµν ≡
diag(+,−,−). Here, we take the gauge coupling e and the vacuum expectation value v of

the scalar field to be real and positive. The functions G (|φ|) and w (|φ|) are constrained

to be positive and depend explicitly only on the Higgs field amplitude, |φ|, but not on its

derivative.3 In this article, we will consider a static solitonic object, in particular topological

vortices, in which all the fields are static. Furthermore, we will consider the spatial part of

the action and write it in terms of the spherical coordinates.

We chose a temporal gauge A0 = 0 and the static fields ansatz

φ = v g(r)einθ, A = −a(r)− n

e r
θ̂ , (2.2)

where (r, θ) is the polar coordinates and n = ±1,±2, . . . is an integer winding number.

Notice that the Lagrangian is invariant under two-dimensional rotation and an abelian

gauge transformation, SO(2)×U(1). The ansatz for the Higgs field is chosen to be invariant

under subgroup of this symmetry which is the SO(2) rotational transformation with a

particular choice of U(1) gauge transformation, that cancels the two-dimensional rotation.

It is guaranteed that the solutions of the effective equations of motion, derived by using

this ansatz, are also the solutions of the full equation of motions [17].

Using these ansatz, the static energy, proportional to the static action, can be simply

written as

E = 2π

∫

dr r

(

G

2e2

(

1

r

da

dr

)2

+ v2w

(

(

dg

dr

)2

+
g2a2

r2

)

+ V

)

. (2.3)

The Euler-Lagrange equations, or equations of motion, derived from the above static

energy are

G
d2a

dr2
+

(

dG

dr
− G

r

)

da

dr
= 2e2v2g2aw, (2.4)

3The case for field-derivative-dependent functions will be addressed in the forthcoming publication.
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and

w

(

d2g

dr2
+

1

r

dg

dr
− a2g

r2

)

− 1

4v2

(

1

er

da

dr

)2 dG

dg
=

1

2v2
dV

dg
− 1

2

(

(

dg

dr

)2

− g2a2

r2

)

dw

dg
. (2.5)

The vacuum solution of the above theory (2.1) is related to the solution in which Aµ = 0

and φ = v. For the case of topological vortex, we consider the case in which v 6= 0. For

topological vortex solutions, we require the fields a and g to behave asymptotically, near

the origin and the boundary, as follows

a(r → 0) = n, g(r → 0) = 0,

a(r → ∞) = 0, g(r → ∞) = 1. (2.6)

How fast the functions a and g approaching their asymptotic values, namely the next

leading order terms, is determined by the Bogomol’nyi equations and the explicit form of

G, w, and V , with a condition the static energy (2.3) is finite.

3 Bogomol’nyi equations

In order to obtain the Bogomol’nyi equations, following the prescription in section 1, we

rewrite the Euler-Lagrange equations into

r

G

d

dr

(

G

r

da

dr

)

=
2

G
e2v2g2aw, (3.1)

and

1

rw1/2

d

dr

(

rw1/2dg

dr

)

=
1

4wv2e2G2

(

G

r

da

dr

)2

+
a2g

r2
+

1

2v2
dV

dg
+

g2a2

2r2w

dw

dg
. (3.2)

The first term on the right hand side of equation (3.2) contains first derivative of field a,

a′(r). It can be turned into a non-derivative fields dependence by using the Bogomol’nyi

equations as we will show later in detail. Now, let us introduce some auxiliary fields into

the Euler-Lagrange equations as follows

r
d

dr

(

G

r

da

dr
−X

)

+ r
dX

dr
= 2e2v2g2aw, (3.3)

and

w1/2

r

d

dr

(

rw1/2dg

dr
−Y

)

+
w1/2

r

dY

dr
=

1

4v2e2G2

(

G

r

da

dr

)2 dG

dg
+

a2wg

r2
+

1

2v2
dV

dg
+

g2a2

2r2
dw

dg
,

(3.4)

where X and Y are the auxiliary functions that depend only on the fields a and g, but not

their derivatives, and do not depend explicitly on r. From these equations, we can extract

the Bogomol’nyi equations which are

G

r

da

dr
−X = 0 (3.5)
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and

rw1/2dg

dr
− Y = 0. (3.6)

The Bogomol’nyi equations are complimented by the constraint equations

r
dX

dr
= 2e2v2g2aw, (3.7)

and
w1/2

r

dY

dr
=

X2

4v2e2G2

dG

dg
+

a2wg

r2
+

1

2v2
dV

dg
+

g2a2

2r2
dw

dg
. (3.8)

Notice that we have substituted the first term on the right hand side of the constraint equa-

tion (3.8) by using the Bogomol’nyi equation (3.5). Substituting further the Bogomol’nyi

equations into the constraint equations yields

∂X

∂g

Y

rw1/2
+

∂X

∂a

rX

G
=

2

r
e2v2g2aw, (3.9)

and

∂Y

∂g

Y

rw1/2
+

∂Y

∂a

rX

G
=

r

w1/2

(

X2

4v2e2G2

dG

dg
+

a2wg

r2
+

1

2v2
dV

dg
+

g2a2

2r2
dw

dg

)

. (3.10)

Next, we solve those constraint equations by dividing each of them into terms that

depend on the explicit power of r. Solving those terms independently, this process yields

several equations:

∂X

∂a
= 0,

∂X

∂g

Y

w1/2
= 2e2v2g2aw, (3.11)

∂Y

∂g
Y = a2wg +

g2a2

2

dw

dg
,

∂Y

∂a

X

G
=

X2

4v2e2G2w1/2

dG

dg
+

1

2v2w1/2

dV

dg
. (3.12)

The problem is now reduced to finding the auxiliary functions, X and Y , which solve the

above (constraint) equations. The first equation in (3.11) implies that X is independent of

a. The general solution for Y can be obtained by solving the first equation in (3.12) which

is given by Y 2(g, a) = a2g2w + C0(a), where C0 is an arbitrary function of a. However,

for nontrivial solutions, the second equation in (3.11) restricts the function C0 ∝ a2. In

general, we may write the solution for Y to be Y 2(g, a) = a2
(

g2w + C0

)

, where now C0 is

just a constant. Since the first equation in (3.11) givesX ≡ X(g), all the auxiliary functions

are essentially separable functions. Writing all the auxiliary functions to be separable,

X(g, a) = Xg(g)Xa(a), Y (g, a) = Yg(g)Ya(a), (3.13)

without loss of generality we can take Xa = 1, Ya = a, and Y 2
g = g2w + C0. Using

Yg = ±
√

g2w + C0, we obtain from the second equation in (3.11)

Xg = ±e2v2

(

2

∫

dg
g2w3/2

√

g2w + C0

+ C1

)

, (3.14)
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where C1 is an integration constant. Therefore we obtain that the Bogomol’nyi equa-

tion (3.5) depends on functions w and G, while the Bogomol’nyi equation (3.6) depends

only on function w.

It will be useful later to define functions

R(g) =
Xg

G
, S(g) =

Yg

w1/2
. (3.15)

Using the previously obtained functions: Xg and Yg, we are left with only one constraint

equation, the second equation in (3.6), which in terms of functions S and R is simply

written as

V ′ = 2v2wRS − R2

2e2
G′. (3.16)

From now on, we will use ′ ≡ ∂
∂g if it is not defined explicitly. The Bogomol’nyi equations

can simply be rewritten as follows:

r
dg

dr
= a S,

1

r

da

dr
= R. (3.17)

So, we can say that the equations in (3.15) generate the Bogomol’nyi equations in (3.17)

for the generalized Maxwell-Higgs model (2.1) once we fix the functions: w and G, and

the constants: C0 and C1, while the constraint equation (3.16) determines the form of

potential V once we know all these functions and constants. At first sight, the constraint

equation (3.16) is different from the standard one obtained in [2] which, in our conventions,

can be written as
(
√

G V

2

)′

= ev2wg. (3.18)

However, we will show later in the next section that the constraint equation (3.18) of [2] is

a particular case of our constraint equation (3.16).

3.1 Bogomol’nyi equations for C0 = 0

In this subsection, we consider a particular type of equations, which we call (C0 = 0)-type

Bogomol’nyi equations. This type of equations is provided by taking C0 = 0, for which we

obtain S = ±q and

Xg = ±e2v2
(∫

d(g2) w + C1

)

. (3.19)

It is tempted to expect from the above integral that w ≡ w(g2) which happens to be the

case in all Bogomol’nyi equations of [2]. One can also check that all functions of w,G, and

V in each Bogomol’nyi equations of [2] are solutions to the constraint equation (3.16). In

this case, the Bogomol’nyi equations can be simply written as

r
dg

dr
= ±a g, (3.20)

1

r

da

dr
= ±e2v2

G

(∫

d(g2) w + C1

)

, (3.21)
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and the constraint equation (3.16) now becomes

V ′ = ±2v2wRg − R2

2e2
G′. (3.22)

Using the fact that X ′
g = (RG)′ = ±2e2v2gw, the constraint equation can be rewritten as

V ′ =
1

e2
R(GR)′ − R2

2e2
G′ =

R2

2e2
G′ +

RG

e2
R′. (3.23)

The solution to this differential equation is

V =
1

2e2
R2G+ constant =

e2v4

2G

(∫

d(g2)w + C1

)2

+ constant. (3.24)

Here, this constant can actually be set to zero by shifting the potential V in the action.

Furthermore, we will see later that by imposing a condition that the energy of the vortex to

be finite, this constant is forced to be zero. In this case, it turns out that the potential (3.24)

also solves the constraint equation (3.18), and thus it is the same as the constraint equation

in [2]. The potentials obtained in [2] can be derived simply by using the constraint (3.24)

with a particular choice of the functions and parameters:

(a). Standard Maxwell-Higgs model

G = 1; w = 1; C1 = −1 −→ V = e2v4

2 (1− g2)2.

(b). G = (g2+3)2

g2
; w = 2(g2 + 1); C1 = −3 −→ V = g2 e

2v4

2 (1− g2)2.

(c). G = (g2 + 1)2; w = 2g2; C1 = −1 −→ V = e2v4

2 (1− g2)2.

(d). G = k2

2e2v2g2
; w = 1; C1 = −1 −→ V = e4v6

k2
g2(1− g2)2.

Restricting to the vanishing constant in the constraint (3.24), the BPS equations can

be simply written as

r
dg

dr
= ±a g, (3.25)

1

r

da

dr
= ±e

√

2V

G
. (3.26)

These Bogomol’nyi equations are also called BPS equations in which the solutions to these

equations correspond to BPS vortices.

Flat potential. A slight advantage of our constraint equation (3.23) is that the potential

V can be safely taken to be zero. Unlike the one in [2], or equation (3.18), setting V = 0

will not give us a solution. In the limit of the coupling at which the potential V = 0, also

known as Prasad-Sommerfield limit [15], the solution for G is given by

G = C2
2e

4v4
(∫

d(g2) w + C1

)2

−→ C2
2R

2G = 1, (3.27)
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where C2 is an non-zero integration constant related to the non-zero constant in (3.24).

Although the constraint (3.18) is not suitable for the case of V = 0, the solution (3.27) can

actually be obtained from it by setting the potential to be constant V = 1
2e2C2

2

. This is

related to the fact, as we will discuss in the next section, that the finiteness energy requires

a shift in the potential by a constant. Nevertheless, the Bogomol’nyi, or to be precise BPS,

equations now become

dg

dr
= ±ag

r
,

da

dr
= ± r

C2

√
G
. (3.28)

Here, the function G depends on the function w and the constants (C1 and C2). We present

some of the examples, with C2 = 1, as follows

• w = 1; C1 = −1 −→ G = e4v4(g2 − 1)2.

• w = 2g2; C1 = −1 −→ G = e4v4(g4 − 1)2.

• w = 2(g2 + 1); C1 = −3 −→ G = e4v4(g2 − 1)2(g2 + 3)2.

Later, we will find that all of the above examples turn out to give infinite energy. This

can be seen due to the presence of singularity of the corresponding BPS equations near

the boundary. As an example, consider the configuration (c) above in which w = 2(g2+1)

and C1 = −3 gives G = e4v4(g2 − 1)2(g2 + 3)2. The BPS equations are

g′ = ±ag

r
,

a′ = ± r

e2v2 (g2 − 1) (g2 + 3)
. (3.29)

The second equation blows up at infinity, since g(r → ∞) → 1. On the other hand, there

should be many possibilities of G(g) such that it satisfies the boundary conditions. For

example, we can take

G =
e4v4

(1− g2)2
. (3.30)

This can be obtained by taking4

w =
1

(1− g2)2
, C1 = 0. (3.31)

It is amusing that the combination of G and w above, when inserted into the equa-

tions (3.28), produces precisely the equations for ordinary BPS Maxwell-Higgs vortices

(up to some overall constants),

g′ = ±ag

r
,

a

r
= ±

(

1− g2
)

e2ν2
. (3.32)

4This choice opens up a possibility that G and w can take up rational-form functions.
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Since we know that BPS vortices exist, so do these flat potential BPS generalized Maxwell-

Higgs vortices. However, there is a subtlety here that the functions w and G now can be

singular near the boundary, or g → 1.

3.2 Bogomol’nyi equations for C0 6= 0

For a general case, we can rewrite the constraint equation (3.16) in terms of R and S as

follows

V ′ =
R2

e2

(

S2

g2
− 1

2

)

G′ +
RG

e2
S2

g2
R′. (3.33)

Unlike the (C0 = 0)-type case, the right hand side of the constraint equation above is more

complicated and it is very difficult to write it as a total derivative of some functions and

hence difficult to find the solution. However, we may try to follow what we did as in the

(C0 = 0)-type case and write the constraint (3.33) simply as

2e2V ′ =
(

R2G2
)

(

1

G

)′

+
S2

g2G

(

R2G2
)′
. (3.34)

To have a total derivative, we are tempted to identify

1

G
+ C3 =

S2

g2
1

G
, (3.35)

where C3 is just a constant which we can just add to the constraint equation above by

shifting
(

1
G

)′ →
(

1
G + C3

)′
. The value of C3 needs to be non-zero otherwise it would not

be consistent with C0 6= 0 since S2 = g2. With this identification, we obtain that

G =
1

g2w

C0

C3
. (3.36)

This is consistent with the (C0 = 0)-type Bogomol’nyi equations, in which we have to

take C3 = 0 in order for G to be non-trivial. However, this is a little bit peculiar because

G-dependence of w is in contradiction with the (C0 = 0)-type Bogomol’nyi equations. We

might expect that G is still independent of w, or arbitrary, for more general case in which

the constant C0 can be non-zero. It turns out that this solution can not lead to the finite

energy solution as discussed in the next section.

Although the constraint equation (3.33) does not seem to have a solution, let us write

explicitly the Bogomol’nyi equations:

dg

dr
= ±a

r

√

g2w + C0

w
, (3.37)

da

dr
= ±e2v2

r

G

(

2

∫

dg
g2w3/2

√

g2w + C0

+ C1

)

. (3.38)

The solutions to these Bogomol’nyi equations correspond to, what we call, the (C0 6= 0)-

type BPS vortices. Even if we are able to find solutions for the constraint equation (3.33),

it is not guaranteed that those solutions will have finite energy. We will see later that there

are some possibilities in which the solutions to the constraint equation (3.33) would give a

finite energy.
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4 Static energy

The static energy can be rewritten into a nicer form by substituting Bogomol’nyi equa-

tions (3.17) into the energy density (2.3),

EBPS = 2π

∫ ((

GR

2e2
+

V

R

)

da+
v2wa

S

(

S2 + g2
)

dg

)

. (4.1)

The terms inside the parenthesis of the integral formula of (4.1) depends on functions a

and g. Therefore we may define a function Q ≡ 2πa
(

GR
2e2

+ V
R

)

such that ESol =
∫

dQ,

with a condition

V ′ = v2w(S2 + g2)
R

S
− R2

2e2
G′ +

(

V

R
− RG

2e2

)

R′. (4.2)

Substituting this equation into the constraint (3.33) yields

(

RG

2
− e2V

R

)

R′ = e2v2
wR

S
(g2 − S2), (4.3)

or it can also be written as
(

e2V

G
− R2

2

)

G′ = 2e2v2
g2w

RS

(

e2V

G
− R2

2

S2

g2

)

. (4.4)

Now let us see if the vortices have finite energy using the Derrick’s Theorem [16, 17].

We can write the scaled static energy of (2.3) to be

E(λ) = λ2Egauge + Escalar +
1

λ2
Epot,

Egauge =

∫

d2x
G

2e2r2

(

da

dr

)2

, Epot =

∫

d2x V,

Escalar =

∫

d2x

(

v2w

(

dg

dr

)2

+ v2a2g2
w

r2

)

, (4.5)

where 0 < λ < ∞ is the scale factor. There is a stationary point if we vary the E(λ)

over λ at which is finite and positive. It means there are some vortices with finite energy.

Furthermore, the virial theorem requires Egauge = Epot. Consider a simple case which both

energy densities are equal pointwise. After substituting the Bogomol’nyi equations (3.17),

it yields that

V =
R2G

2e2
, (4.6)

Substituting this into the equation (4.3), or (4.4), implies that S2 = g2, or it means C0 = 0.

Therefore if we assume that the energy can be written as an integral over a form dQ then

the (C0 6= 0)-type vortices will have infinite energy. Even if we do not use this assumption

and just use the equation (4.6), we can show that

V ′ = −R2

2e2
G′ + 2v2g2w

R

S
(4.7)
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by taking a first derivative of the equation (4.6) over g and using the Bogomol’nyi equa-

tions (3.17). This is equal to the constraint (3.33) providing that S2 = g2, which also

concludes that C0 = 0. Therefore we may ignore the (C0 6= 0)-type Bogomol’nyi equations

as they are not physical since their energy is infinite.

4.1 Finite energy for C0 = 0

Notice that the requirement for the energy of the solution to be finite, for the point wise

case, forces us to set the constant in (3.24) to be zero. In this case, the static energy (2.3)

can be simplified to

EBPS = 2π

∫

dr r

(

GR

e2
1

r

da

dr
± 2v2w

ga

r

dg

dr

)

,

= 2π

∫ (

GR

e2
da± 2v2wag dg

)

. (4.8)

Recalling that (RG)′ = ±2e2v2gw, we can obtain the aforementioned function Q = 2πGR
e2

a.

Now, the static energy is simply written as

EBPS = Q(r → ∞)−Q(r → 0). (4.9)

Using formula (3.19), it yields5

EBPS =

∣

∣

∣

∣

2πv2n

(

lim
r→0

∫

w d(g2) + C1

)∣

∣

∣

∣

. (4.12)

Here, we have assumed that Q(r → ∞) = 0 and hence GR(r → ∞) = O(r0). In another

words, we assume that GR is not singular near the boundary. This can be shown to be

satisfied in general by writing GR =
√
2e2V G, using the equation (4.6). Recalling that

near the boundary, the potential V approaches the vacuum solution, in which V = 0,

then it only requires that G(r → ∞) = O(r0). The finiteness of energy also requires

limr→0

∫

w d(g2), or
√
V G(r → 0), to be finite. Since all these functions (w,G and V ) are

functions of g, we may rewrite it as
∫

w d(g2)
∣

∣

g=0
, or

√
V G(g = 0), to be finite.

The static energy can be proportional to the topological charge QTop = 2πv2|n| as
such EBPS = CQQTop, where CQ ≥ 0. In the case of CQ = 1, we obtain that

lim
r→0

∫

w d(g2) + C1 = ±1, (4.13)

5Notice that for any polynomial w-function, w(g) ∼ gm with m ≥ 0, the limr→0

∫

w d(g2) always yields

zero. In this case the topological charge is solely determined by the constant C1. On the other hand, we

can also easily construct a rational w-function, say

w =
1

(g2 + 1)2
. (4.10)

This function is positive and regular at the origin, whose (indefinite) integral gives
∫

w d(g2) = −
1

(g2 + 1)
. (4.11)

The limit then yields -1. In this particular case, the charge would depend on (C1 − 1).
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which means the static energy equal to the standard vortex. For example for w = 1, we

have C1 = ±1. In the list of examples in 3.1, the (a), (c), and (d) are of this type. If

CQ > 1 then the static energy is higher than the standard vortex, EBPS > QTop, and they

are determined by
∣

∣

∣

∣

lim
r→0

∫

w d(g2) + C1

∣

∣

∣

∣

> 1. (4.14)

The example (b) in 3.1 is in this type in which the static energy EBPS = 3QTop. There are

also some interesting Bogomol’nyi equations in which CQ < 1, or EBPS < QTop, and the

condition is given by
∣

∣

∣

∣

lim
r→0

∫

w d(g2) + C1

∣

∣

∣

∣

< 1. (4.15)

The most interesting of one is when CQ = 0, or EBPS = 0, with a condition

C1 = − lim
r→0

∫

w d(g2). (4.16)

This raises a question, do Bogomol’nyi solutions with zero energy exist? A rigorous answer

needs a rigorous proof. In this paper we do not attempt to answer it. We just note that if

we choose the following set of functions and parameter

w = 2g2 − 1, G = 1, C1 = 0, (4.17)

we can end up with the following Bogomolnyi equation

a′

r
= ±e2ν2g2

(

1− g2
)

, (4.18)

whose potential is V = e2ν4

2 g4
(

1− g2
)2
, an S0 surrounded by an S1 vacuum topology. The

equation satisfies both regularity at the origin and finiteness of energy. Due to the vacuum

manifold, this is an example of nontopological soliton discussed in [2, 18].6

Flat potential. As we mentioned previously, finiteness in the static energy requires the

constant in the constraint equation (3.24) to be zero, or 2e2V = R2G. Taking V = 0 is not

possible in this case and might cause the resulting energy to be infinite. Nevertheless, let

us just ignore the requirement for finite energy and allow the potential V = 0. The static

energy in this case can be written as

EBPS = 2π

∫ (

RG

2e2
da± 2v2wag dg

)

,

=

∫

dQ− π

e2

∫

RG da. (4.20)

6For Bogomol’nyi topological solitons we need potential whose vacuum manifold is nontrivial. For

example if w = 1 then it yields C1 = 0. Now we can set G = g4/(1− g2)2 such that the theory still has the

standard symmetry breaking Higgs potential V = 1

2
e2v4(1 − g2)2. However these functions do not satisfy

the near origin condition for the Bogomol’nyi equation;

a′

r
= ±e2ν2

(

1− g2
)2

g2
(4.19)

is singular at the origin.

– 13 –



J
H
E
P
0
2
(
2
0
1
6
)
1
1
7

Substituting the BPS equations (3.28), we obtain

EBPS =
2π

e2 |C2|
a
√
G
∣

∣

∣

r→∞

r=0
− lim

r→∞

π

2e2C2
2

r2. (4.21)

Indeed, we find that the static energy is infinite which comes from the last term on the

right hand of equation (4.21). This infinity can be removed by adding a positive constant

potential to the action.7 The positive constant potential needed to cancel this infinity is

equal to the potential computed using equation (4.6) with a given solution for G is (3.27).

Therefore if we take the potential to be non-zero constant in the first place, we will have no

problem in taking the finite energy equation (4.6), and thus the static energy will be finite.

The first term on the right hand side of equation (4.21)depends on a
√
G at the bound-

aries. As we mentioned previously, there is a subtlety in function G if we impose regularity

on the Bogomol’nyi equations (3.28). To have Bogomol’nyi equations (3.28) that respect

appropriate boundary conditions, G ∼
(

1− g2
)−2m

, for some positive integer m. Although

G is infinite near the boundary, by taking appropriate leading order of function a as such

it is going to zero faster than 1/
√
G, we could obtain the static energy which is

EBPS =
∣

∣

∣
2πv2n lim

r→0
a
√
G
∣

∣

∣
. (4.22)

For our case in equation (3.32), it yields

EBPS =

∣

∣

∣

∣

2πv2n

C2

∣

∣

∣

∣

. (4.23)

It is interesting that the arbitrary choice of C2 results in different value of EBPS.

4.2 Finite energy for C0 6= 0

From the previous discussion, it is clear that the finite energy equation (4.6) strongly

restricts the constant C0 = 0. Therefore the Bogomol’nyi equations for C0 6= 0 would not

give a finite static energy of the vortex. However, we should recall that the equation (4.6)

is not a general result of the Derrick’s theorem, followed by the virial theorem. There is

more general result of the virial theorem in which the finiteness of energy requires

∫ ∞

0
dr r

(

R2G

2e2
− V

)

= 0, (4.24)

such that the integrand is non-zero pointwise. Up to now, we do not know how to substitute

the definite integral equation (4.24) into the constraint equation (3.16). What we can do

is we can try to rewrite the constraint equation (3.16) to be the following

(

V − R2G

2e2

)′

=
C0R

e2g2w
(RG)′ . (4.25)

7Since we do not, at the moment, couple the theory with gravity, adding a constant potential does not

change the physics.
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Using (RG)′ = 2e2v2g2w/S, it can be simplified further to

(

V − R2G

2e2

)′

= 2C0v
2R

S
. (4.26)

One can see that if C0 = 0 then the left hand side of equation (4.26) must be some constant.

However, if this constant is non-zero then the integral equation (4.24) can not be satisfied.

Therefore the constant must be zero and indeed it is consistent with the finite energy

equation (4.6). Now, if C0 6= 0 then the left hand side of equation (4.26) must be some

function. Suppose we define

fC0
(g) ≡ V − R2G

2e2
(4.27)

is a function solely depends on g, with f(C0=0) ≡ f0 = 0. To have a finite energy, using

equation (4.24), this function must satisfy

∫ ∞

0
dr rfC0

(g(r)) = 0. (4.28)

In general, the function fC0
can only be zero or a non-trivial function satisfied (4.28) which

corresponds to the (C0 = 0)- or (C0 6= 0)-type Bogomol’nyi equations, respectively.

There are many solutions for fC0
, in terms of variabel r, that satisfy the condi-

tion (4.28). As an example is given by the special Laguerre functions with the following

integral [19]

∫ ∞

0
dr r e−rLn(r) = 0, Ln(r) = er

dn

drn
(

rne−r
)

, (4.29)

where Ln is the Laguerre functions for n > 1. Substituting the function fC0
, in terms of

r, into the constrain equation (4.26), and exploiting the Bogomol’nyi equations (3.17), it

yields solution for a as follows

a2 =
1

C0v2

∫

dr r2f ′
C0
(r) + Ca, (4.30)

where now ′ ≡ d
dr and Ca is an integration constant. However, it is not obvious that

any function of fC0
, which satisfies (4.28), would be a good solution for a with boundary

conditions (2.6). Finding a suitable function for fC0
(r), that satisfy the boundary condi-

tions (2.6), might give us the explicit form of functions w(g) and later also G(g). This will

be investigated further for the future work.

Using the BPS equations (3.17) and equation (4.27), the static energy (4.1) can be

written as

EBPS = 2π

∫ (

GR

e2
da+

v2wa

S

(

2g2 +
C0

w

)

dg +
fC0

R
da

)

. (4.31)

We can neglect the last term since it gives zero contribution due to integral equation (4.28).

Using (GR)′ = 2e2v2g2w/S, the first two terms can be combined, and so the static energy
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is simplified to8

EBPS =

∫

dQ+ 2πC0

∫

dg
v2a

S
=

∫

dQ+ 2πC0v
2

∫

dr
a2

r
. (4.32)

It shows that the static energy can not be written simply in terms of functionQ. One can see

that the static energy of (C0 6= 0)-type vortices above has an additional term in its formula

compared to the static energy of (C0 = 0)-type vortices. The boundary conditions (2.6)

would lead the last term of (4.32) to (logarithmic) infinity since the integrand is singular

at the origin. To attain finite energy vortices, for C0 > 0, then one may need to modify

the boundary conditions (2.6), in particular to allow a boundary condition a(0) = 0, since

the first term of (4.32) is always positive,

∫

dQ = 2π

∫

dr
(

G R2 + 2v2a2g2w
)

r > 0. (4.33)

However, we are not in favor of changing the topology of the solutions, and thus we avoid

changing the boundary conditions (2.6). On the other hand taking C0 < 0 would lead to

negative infinity, but one may expect that there is a positive infinity contribution coming

from the first term of (4.32) that could cancel it.9 However, there is a subtlety here. One

must carefully chose the function w and the value of C0 < 0 such that g2w + C0 ≥ 0

every where. Nevertheless, the finiteness and positiveness of static energy of (C0 6= 0)-type

vortices demand a more profound analysis and they are beyond the scope of this article.

Energy-Momentum Tensor of the Generalized Maxwell-Higgs model is given by

Tµν = −G FµαF
α
ν + w

(

DµφDνφ+DµφDνφ
)

− ηµνL. (4.34)

In Cartesian coordinates, the energy-momentum tensor components are

Txx =
G

e2r2

(

da

dr

)2

+ 2υ2w

(

(

dg

dr

)2

cos2 θ +
a2g2

r2
sin2 θ

)

+ L, (4.35)

Tyy =
G

e2r2

(

da

dr

)2

+ 2υ2w

(

(

dg

dr

)2

sin2 θ +
a2g2

r2
cos2 θ

)

+ L, (4.36)

Txy = v2w sin(2θ)

(

(

dg

dr

)2

− a2g2

r2

)

. (4.37)

It is easy to check that the (C0 = 0)-type Bogomol’nyi equations leads to BPS vortices with

zero shear stress, Txy = 0, while the (C0 6= 0)-type Bogomol’nyi equations leads to BPS

vortices with non-zero shear stress. In polar coordinates, the energy-momentum tensor

8The presence of additional term in the energy which can not be written as a total derivative, and

furthermore it diverges, make it difficult to realize the supersymmetric extension of these (C0 6= 0)-type

BPS vortices.
9Recall that the function R here depends on C0 which may give infinity proportional to C0 to the first

term of (4.32).
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components are

Trr = cos2 θ Txx + sin2 θ Tyy + sin(2θ) Txy, (4.38)

Tθθ = r2
(

sin2 θ Txx + cos2 θ Tyy − sin(2θ) Txy

)

, (4.39)

Trθ =
r

2
sin(2θ) (Tyy − Txx) + r cos(2θ) Txy. (4.40)

One can check that Trθ is automatically zero, Trθ = 0. The pressures in polar coordinates

can be explicitly written as

Trr = v2w

(

(

dg

dr

)2

− a2g2

r2

)

+
G

2e2r2

(

da

dr

)2

− V, (4.41)

Tθθ = r2

(

−v2w

(

(

dg

dr

)2

− a2g2

r2

)

+
G

2e2r2

(

da

dr

)2

− V

)

. (4.42)

For the case of (C0 = 0)-type, using BPS equations (3.25) and (3.26), the pressures are

simply zero, while the (C0 6= 0)-type case, the pressures are non-zero:

Trr = v2C0
a2

r2
− fC0

, (4.43)

Tθθ = −r2
(

v2C0
a2

r2
+ fC0

)

. (4.44)

Moreover we define the average pressure

P =
Px + Py

2
≡ Txx + Tyy

2
=

G

2e2r2

(

da

dr

)2

− V . (4.45)

In what follows, we implement the “stability condition” [2], Px = Py = 0, from which we get

Px − Py = 0 → dg

dr
= ±ag

r
, (4.46)

Px + Py = 0 → B ≡ 1

e r

da

dr
= ±

√

2V

G
, (4.47)

i.e., the BPS equations of the general model (2.1). Here, once Px = Py = 0, one concludes

that also P = 0, see (4.45). One can also simply extract these BPS equations by imposing

the “stability condition” in polar coordinates, Trr = Tθθ = 0. Suppose we do not take the

“stability condition” in the first place and rewrite the average pressure as

P = −fC0
(r). (4.48)

As we mentioned before, the function fC0
is related to the parameter C0 through the

equation (4.26). Thus we may conclude that this “stability condition”, f0 = 0, corresponds

to the (C0 = 0)-type Bogomol’nyi equations. On the other hand the non-trivial function of

fC0
satisfied (4.28), or non-zero average pressure P, corresponds to the new (C0 6= 0)-type

Bogomol’nyi equations.
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5 Summary

The main purpose of this article is to show how the on-shell method, developed in [1],

can be used to find the Bogomol’nyi equations of the generalized Maxwell-Higgs theory

in three-dimensional spacetime [2]. In particular, we improved the on-shell method to

allow the terms in the equations of motion, that would later be identified as the constraint

equations, to depend on derivative of the fields. The improvement is necessary to tackle a

particular type of theory such as the one considered in this article. This might opens some

possibilities to further improvements and modifications of the on-shell method in obtaining

the Bogomol’nyi equations of the other non-standard theories.

In the case of the generalized Maxwell-Higgs theory considered here, we found that

the Bogomol’nyi equations can be classified into two types which are parametrized by a

constant C0. The first type is for C0 = 0 in which we obtained the standard Bogomol’nyi

equations as in [2, 11]. An advantage of using the on-shell method is that we obtained the

constraint equation (3.23) that can be applied for the case of zero potential. Although it

turns out that the resulting energy is infinite, we were able to show that the static energy

could be finite by adding an appropriate non-zero constant to the potential. We also

discussed possibilities for the existence of vortices with the energy is equal to the vacuum.

From what we know, this has not been discussed in the literature so far and it might be

interesting to study the physical properties of this vortices compared to the vacuum.

The second new type Bogomol’nyi equations, that we found here, is when we take

C0 6= 0. These equations are relatively new, although they can be obtained non-trivially

using the standard off-shell, or Hamiltonian, method or sometimes called Bogomol’nyi’s

trick. It turned out that these equations are related to the difference between the energy

density of potential term of the scalar field and kinetic term of the gauge field which is

given by a non-trivial function fC0
. If the function fC0

is a constant then the requirement

for finite energy vortex forces this constant to be zero, f0 = 0, and hence gives us back the

Bogomol’nyi equations of the first type, C0 = 0. The requirement for finite energy vortex

on the Bogomol’nyi equations of the second type, C0 6= 0, restrict further the non-trivial

function fC0
such that its integral over whole two-dimensional space is zero, see (4.28).

Here, we do not attempt to find the explicit expressions of the Bogomol’nyi equations of

the second type since they will be discussed in the future work. However, we were able to

show the solution for a in terms of fC0
given by equation (4.30). It was also shown that

the finite energy of the (C0 6= 0)-type vortices, without changing the topology of solutions

near the boundary, can only be achieved for C0 < 0 and requires some fine tunning on

parameters of the theory in order for the energy (4.32) to be finite. This rises a doubt

whether the finite energy configurations do exist or not. To resolve this, one may try to

couple the theory with gravity as in the case of BPS Skyrmions [21] in order for the energy

to be finite.

A new feature of the (C0 6= 0)-type Bogomol’nyi equations is that they correspond

to BPS vortices with non-zero pressures, and even non-zero shear stress. It would be

interesting to study the thermodynamics properties of these non-BPS vortices.10 With

10The thermodynamical properties of Skyrmion have been studied in [20] for (3 + 1)-dimension theory.
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non-zero energy- and pressures-density, one can study further about the equation of state in

the generalized Maxwell-Higss model and this may have important applications in physics.

As an example is the applications of BPS Skyrmion in neutron star and QCD [21, 22].11
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