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1 Introduction

An important investigation in AdS/CFT Duality involves Black Hole (BH) spacetimes,

or spacetimes with horizons [1–5]. The CFT dual in these cases is to be represented by

Large N field theories at finite temperature. The simplest example of such duality is the

Rindler version of AdS [6, 7] (also found as the massless topological Black Hole [8, 9]).

In this case, one has two complementary Rindler wedges of the AdS space and the dual

description is to be constructed in terms of a pair of decoupled CFT’s [10]. At finite

temperature, this system represents a system known as the “thermo-field double” [12–17].

There are general discussions in the literature concerning the question of how two decoupled

CFT’s are able to reconstruct a connected space-time of a black hole or even a Rindler-

AdS [18–20]. An application of this to gravity on noncommutative spaces was recently

developed in [21]. Arguments in favor of such a construction in the case of Rindler Gravity

were given in [6, 7], (see also [23]). In this work we will be considering generalized Higher

Spin [24–27] dualities [28, 29] in AdS4 which have been intensively studied during the last

few years [30–43]. They involve O(N) vector models at their critical points of which the

free theory is a particularly simple and tractable example. For pure AdS, it allows for a

complete reconstruction of the bulk theory with higher spin fields and to all orders in 1/N .

A direct map between CFT observables and bulk AdS fields was shown to be given in terms

of a bi-local composite field of the O(N) CFT [31, 38]. A study of this bi-local construction
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at finite temperature in the Thermo-field formulation was given recently in [43] with results

showing the characteristics of bulk black hole spacetimes. In this paper, we sharpen this

correspondence by giving a construction of Rindler-AdS Higher Spin Gravity. In this case

one has a pair of CFT’s on hyperbolic spaces that are to be quantized in the Thermo-field

scheme. In addition to presenting a more complete example of “domain duality” [23] and

the ability of reconstructing a connected spacetime, we clarify the stability of this system.

The instability of the quotient hyperbolic space case was studied in [44].

The content of this paper is as follows: in section 2, we review the appearance of

asymptotic Rindler-AdS spacetime as the massless limit of particular black holes (Topo-

logical Black Holes). We also give some relevant properties of this spacetime such as the

presence of “evanescent” modes [45] whose CFT reconstruction will be of particular inter-

est. In section 3, we discuss the quantization of the O(N) vector model on hyperbolic space

and its hamiltonian Thermo-field version. In section 4, we give details of our bi-local map

to Rindler-AdS bulk. Demonstration of “evanescent” modes given by this construction is

one application. Sect 5 is reserved for Conclusions regarding the more general questions

involving reconstruction of spacetime behind the horizon of BH [46–48].

2 Massless limit of AdS BH and Rindler-AdS

In this section, we review the static black hole solutions in asymptotically AdS spacetime

and their massless limit, mainly following the discussion of [8].

Asymptotically AdS space admits three kinds of the static back hole solutions. These

three solutions are characterized by the curvature of the horizons (transverse spacial coor-

dinates). For AdSd+1, the metric is explicitly given by

ds2 = −fk(r) dt2 +
dr2

fk(r)
+
r2

L2
dΣ2

k,d−1 , (2.1)

where

fk(r) =
r2

L2
− µ

rd−2
+ k . (2.2)

Here L denotes the AdS radius and µ is a deformation parameter, which is proportional

to the black hole mass. dΣ2
k,d−1 represents the metric of the (d − 1)-dimensional horizon

given by the unit metric of (Sd−1, Rd−1, Hd−1) for k = (+1, 0,−1) case respectively.

The positive horizon curvature solution (k = +1) is called “AdS-Schwarzschild” black

hole, the zero curvature solution (k = 0) is “AdS-Planar” black hole, and the negative

curvature (k = −1) is “AdS-Hyperbolic” black hole. The horizon location r+ is determined

by the larger solution of fk(r+) = 0. In the massless limit µ→ 0, each black hole solution

is reduced to the global, Poincare, and Rindler coordinates of AdS spacetime, respectively.

The temperature of these black holes is determined as

β =
4πL2r+

r2
+d+ k(d− 2)L2

. (2.3)

The boundary metric is given by taking r →∞. Therefore, one expects that each AdS

black hole solution is dual to CFT’s on R× Sd−1, R1,d−1, and R×Hd−1, respectively [8].

Hereafter, we set L = 1.
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In this paper, we are mainly interested in the four-dimensional Rindler-AdS coordinates

(this is sometimes called massless topological black hole), which is given as the k = −1

and µ = 0 case of (2.1). Note that for this case, the Rindler horizon location is given by

r+ = 1 and β = 2π, which agrees with the Unruh temperature. For our purpose, it’s more

convenient to use a Poincare-like radial coordinate ρ,1 defined by ρ = r−1, rather than the

global-like coordinate r. Then, our Rindler-AdS metric is defined by

ds2 =
1

ρ2

[
−(1− ρ2)dτ2 +

dρ2

1− ρ2
+
dx2 + dσ2

σ2

]
. (2.4)

The range of each coordinate is

−∞ < τ, x <∞ , 0 < ρ < 1 σ > 0 . (2.5)

Note that now the boundary is located at ρ = 0, while the Rindler horizon is at ρ = 1.

One of the important characters of the black hole background is the presence of the

so called “evanescent modes” [23, 45]. In [45], the authors described that the evanescent

modes exist in the AdS-Schwarzschild black hole background and in its infinite volume limit,

AdS-Planar black hole background. The existence of the evanescent modes in Rindler-

AdS background was suggested in the discussion of smearing function [22, 23], and in

appendix A, we will demonstrate the evanescent modes in this background from the point

of view of the effective potential.

Israel [12] described that observers in a spacetime limited by an event horizon detect a

thermal spectrum of particles. This discussion unifies the Hawking radiation [49] and the

Unruh effect [50] in the language of “thermofield dynamics” [11]. Namely, one can expand

the field only in the right wedge of the Kruskal coordinates (right Rindler wedge) for a

black hole background (Rindler spacetime) using the complete set of the eigenfunctions

of the Klein-Gordon equation with the right oscillator a(~k) and its hermitian conjugate.

Here, ~k denotes the necessary amount of quantum numbers which we need to distinguish

the eigenfunctions; we do not need a specific definition here. One can expand the field in

the same way in the left wedge using the left oscillator ã(~k) and its conjugate. Then, from

these two kinds of oscillators, one can construct a natural “thermal” vacuum. Now respect

to the thermal vacuum, the expectation value of any operator produces the correct thermal

ensemble average.

Based on this Israel’s description of the thermal nature of black holes, Maldacena [10]

proposed a two entangled CFT’s description of asymptotically AdS eternal black holes in

the context of the AdS/CFT correspondence. Namely, the Hartle-Hawking state in an

eternal big AdS-Schwarzschild black hole can be viewed from the entangled two CFT’s as

|Ψ〉 =
1√
Z(β)

∑
n

e−βEn/2|En〉1 ⊗ |En〉2 , (2.6)

1Usually, ρ is used for the global-like radial coordinate; however, in this paper we use it for the Poincare-

like coordinate. This unusual notation is because when we construct the bi-local map in section 4, we will

use z for the Poincare radial coordinate.
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where |En〉1 is the energy eigenstate of the “right boundary” CFT on R× Sd−1 and |En〉2
is for the left. The summation is taken over all energy eigenstates. Then, the Maldacena’s

proposal is that a state in the eternal AdS-Schwarzschild background is dual to the partic-

ularly entangled state (2.6) of the two copies of the boundary CFT’s. From the pair CFT’s

point of view β is a parameter to characterize “how much” the pair CFT’s are entangled

each other. On the other hand, in AdS point of view, this is the inverse temperature of

the black hole.

Following Maldacena’s conjecture, the authors of [6] proposed a dual description of

states in Rindler-AdS from the particularly entangled pair of CFT’s living on R ×Hd−1.

For this conjecture, one uses exactly the same expression of the entangled state as (2.6)

except for that β is now taken to be the Unruh temperature β = 2π. As in the regular

Rindler space (Rindler description of the Minkowski space) case, where we can obtain a

significant amount of insight about black hole physics, we would expect that this Rindler-

AdS/CFT correspondence is a very helpful example to study the nature of black hole

AdS/CFT correspondence. This also provides a specific example to investigate about

subregion dualities [23].

3 O(N) vector model on hyperbolic space

As a concrete example of the AdS/CFT correspondence, in this paper we employ the min-

imal bosonic higher spin and free O(N) vector model duality [28]. In this section, we

define the dual CFT of Rindler-AdS higher spin theory. It is also known that the dual

Vasiliev’s Higher Spin gravity possess a class of Black Hole type solutions [51]. Here we

clarify the relation between the hyperbolic and Rindler O(N) vector models and demon-

strate the stability in these models. We will present details of canonical quantization in

the Rindler spacetime in appendix B, which will be extensively used to discuss this Rindler

higher spin/vector model duality because this is more convenient than the vector model

on hyperbolic space.

Let us first define the corresponding CFT to the Rindler-AdS (2.4). By taking bound-

ary limit (ρ→ 0) of the Rindler-AdS metric, one obtains

ds2 = −dτ2 +
dx2 + dσ2

σ2
. (3.1)

Therefore, in [6, 7] it was suggested that Rindler-AdS is dual to the CFT on R×H2. For

our case, the vector model is defined by

S = −1

2

∫
dτdxdσ

√
−g
[
gµν∂µφ

H
i ∂νφ

H
i +

R

8
φHi φ

H
i

]
, (3.2)

where the metric is given in (3.1) and the Ricci scalar is R = −2. Explicitly, the action is

given by

S =
1

2

∫
dτdxdσ

[
1

σ2
(∂τφ

H
i )2 − (∂xφ

H
i )2 − (∂σφ

H
i )2 +

1

4σ2
φHi φ

H
i

]
. (3.3)
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The claim of [6, 7] is absolutely correct; however, it’s more convenient to move to the

Rindler coordinates rather than hyperbolic space. Namely, the theory is conformally invari-

ant and the metric (3.1) is by the Weyl transformation related to the regular Rindler metric

ds2 = −σ2 dτ2 + dx2 + dσ2 , (R = 0) . (3.4)

On this background, the O(N) vector model is given by

S = −1

2

∫
dτdxdσ

√
−g gµν∂µφRi ∂νφRi

=
1

2

∫
dτdxdσ

[
1

σ
(∂τφ

R
i )2 − σ(∂xφ

R
i )2 − σ(∂σφ

R
i )2

]
. (3.5)

One can see these two actions (3.3), (3.5) are related by a field redefinition

φHi =
√
σ φRi , (3.6)

up to the total derivative term.

Note that the hyperbolic action (3.3) looks effectively tachyonic and unstable. However,

one can see that this theory is not unstable just looking at the Rindler action (3.5).

We give a detail discussion of canonical quantization for the O(N) vector model in

Rindler spacetime in appendix B. Here, we give the most important results. Starting from

3d-Minkowski space ds2 = −dt2 + dx2 + dy2, the right Rindler wedge is constructed by the

following coordinate transformations{
t = σ sinh τ ,

y = σ cosh τ ,
(3.7)

which induces the regular Rindler metric (3.4). The regions of the new coordinates are

−∞ < τ <∞, σ > 0.

The solution for the equation of motion of the Rindler field with an appropriate nor-

malization is given by

φRi (τ, x, σ) =

∫ ∞
0

dω

∫ ∞
−∞

dk
[
bRi (ω, k) gRω,k(τ, x, σ) + bR†i (ω, k) gR∗ω,k(τ, x, σ)

]
, (3.8)

where

gRω,k(τ, x, σ) =
1

2π
√

2ω

2Kiω(|k|σ)

|Γ(iω)|
eikx−iωτ . (3.9)

From the action (3.5), the Hamiltonian is defined by

H =

∫
Σ
dσdx

σ

2

[
Π2
i + (∂σφi)

2 + (∂xφi)
2
]
, (3.10)

where Σ is a constant τ hypersurface, and Πi is the conjugate momentum defined by

Πi = σ−1∂τφi. Using the solution (3.8), one can rewrite the Hamiltonian in terms of the

right Rindler oscillators as

H =

∫
dωdk

ω

2

[
bRi (ω, k) bR†i (ω, k) + h.c.

]
. (3.11)

We give the detail of this calculation in appendix C.
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4 Bi-local mapping

In the collective field description of the higher spin/vector model duality, it was suggested

that the bulk AdS higher spin theory is completely reconstructed by the bi-local collective

field [37], which is in the canonical picture [38] defined by

Ψ(t; ~x1, ~x2) ≡
N∑
i=1

φi(t, ~x1)φi(t, ~x2) , (4.1)

where φi(t, ~x) is the free O(N) vector field. In the light cone gauge, the bi-local map be-

tween the pure AdS higher spin canonical variables and the bi-local collective Minkowski

CFT canonical variables was explicitly constructed in [31] by comparing the SO(2, 3)

global generators of the both theories. Similar construction was given in [38] for the

time-like frame.

In the thermofield dynamics description of the AdS black hole higher spin theory, it

was suggested in [43] to require for the gauge singlet state to be(
JRij + JLij

)
|Ψ〉 = 0 , (4.2)

where J
R(L)
ij is the O(N) gauge symmetry generator for the right (left) boundary CFT

vector model. This requirement implies that we have three kinds of the bi-local collective

oscillators

αRR(~p1, ~p2) =

N∑
i=1

bRi (~p1)bRi (~p2) ,

αLL(~p1, ~p2) =

N∑
i=1

bLi (~p1)bLi (~p2) ,

γRL(~p1, ~p2) =

N∑
i=1

bRi (~p1)bLi (~p2) , (4.3)

where b
R(L)
i (~p) are the oscillators of the right (left) boundary vector model. In the previous

study [43] it was demonstrated that the linearized Large N dynamics for these three (cou-

pled) bi-locals leads to higher spin fields in asymptotically AdS spacetime. It was crucially

noted that the mixed bi-local field γ plays a central role in the construction: it secures the

connectedness of the gravitational spacetime.

4.1 Transformation from Poincare to Rindler-AdS coordinates

It is well known that AdSd+1 space can be embedded into (d + 2)-dimensional flat space.

For AdS4 case, it is described by a hypersurface

− (X0)2 + (X1)2 + (X2)2 + (X3)2 − (X5)2 = −1 , (4.4)

in R(2,3) space.

– 6 –
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The Poincare coordinates (t, x, y, z) are achieved by the following parametrization of

the embedding space:

X0 =
t

z
, X1 =

y

z
, X2 =

x

z
,

X3 =
1

2z

[
~x 2 + z2 − t2 − 1

]
, X5 =

1

2z

[
~x 2 + z2 − t2 + 1

]
, (4.5)

where ~x = (x, y). This parametrization induces the Poincare metric

ds2 =
1

z2

[
− dt2 + dx2 + dy2 + dz2

]
. (4.6)

On the other hand, the right Rindler-AdS wedge (τ, x, σ, ρ) is constructed by

X0 =

√
1− ρ2

ρ
sinh τ , X1 =

√
1− ρ2

ρ
cosh τ , X2 =

x

ρσ
,

X3 =
1

2ρσ

[
x2 + σ2 − 1

]
, X5 =

1

2ρσ

[
x2 + σ2 + 1

]
, (4.7)

which induces the Rindler-AdS metric (2.4).

By equating (4.5) to (4.7), one can find explicit transformations from one to the other.

The transformations from the Poincare coordinates (t, x, y, z) to the right Rindler-AdS

coordinates (τ, x, σ, ρ) are

τ = tanh−1

(
t

y

)
, x = x , σ =

√
−t2 + y2 + z2 , ρ =

z√
−t2 + y2 + z2

. (4.8)

The transformations from the right Rindler-AdS coordinates to the Poincare coordinates are

t = σ
√

1− ρ2 sinh τ , x = x , y = σ
√

1− ρ2 cosh τ , z = ρ σ . (4.9)

Now that we know the explicit transformations between the Poincare and the right

Rindler coordinates, we can also write down the transformations in the momentum spaces.

In this paper, we use the first-quantized particle picture. In that case, the momentum is

just derivatives of its coordinates, so by chain rule, the Rindler momenta are related to the

Poincare momenta. Therefore, we find

pτ = y pt − t py ,
px = px ,

pσ =
(−t pt + y py + z pz)√
−t2 + y2 + z2

,

pρ =

[
z (t pt − y py)
−t2 + y2

+ pz
]√
−t2 + y2 + z2 . (4.10)

The inverse transformations are also given by

pt =
1

σ
√

1− ρ2

[
pτ cosh τ + (σ pσ − ρ pρ)(1− ρ2) sinh τ

]
,

px = px ,

py =
1

σ
√

1− ρ2

[
pτ sinh τ + (σ pσ − ρ pρ)(1− ρ2) cosh τ

]
,

pz = ρ pσ +

(
1− ρ2

σ

)
pρ . (4.11)
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From these results, one can check that the canonical commutation relations for the

Rindler coordinates

− [ τ, pτ ] = [x, px] = [σ, pσ] = [ ρ, pρ] = 1 , (4.12)

are actually satisfied, provided that

− [ t, p0] = [x, px] = [ y, py] = [ z, pz] = 1 , (4.13)

and vice versa. We can also check that the remaining commutators vanish. Therefore,

these transformations between the Poincare and Rindler coordinates are indeed canonical

transformations.

4.2 SO(2, 3) generators

In [38], the AdS4 global symmetry generators are given in terms of the Poincare coordinates

and its momenta at t = 0. By using the coordinate transformations (4.9), one can rewrite

these generators in the right Rindler coordinates. First note that t = 0 corresponds to

τ = 0. Therefore the transformations are now

t = 0 , x = x , y = σ
√

1− ρ2 , z = ρ σ , (4.14)

and

pt =
pτ

σ
√

1−ρ2
, px = px , py =

√
1−ρ2

σ
(σpσ−ρpρ) , pz = ρpσ+

(
1− ρ2

σ

)
pρ . (4.15)

Hence the generators of the right wedge are

P̂ 0
Rads =

√
(px)2 + (pσ)2 +

(
1− ρ2

σ2

)
(pρ)2 , (4.16)

P̂ 1
Rads = px , (4.17)

P̂ 2
Rads =

√
1− ρ2

σ
(σ pσ − ρ pρ) , (4.18)

Ĵ01
Rads = −x P̂ 0

Rads −
√

1− ρ2 (σ pσ − ρ pρ)
[
ρ σ pσ + (1− ρ2)pρ

]
pθ

σ2(px)2 + (1− ρ2)(σ pσ − ρ pρ)2
, (4.19)

Ĵ12
Rads =

x
√

1− ρ2

σ
(σ pσ − ρ pρ)− σ

√
1− ρ2 px , (4.20)

Ĵ20
Rads = σ

√
1− ρ2 P̂ 0

Rads −
σ px

[
ρ σ pσ + (1− ρ2)pρ

]
pθ

σ2(px)2 + (1− ρ2)(σ pσ − ρ pρ)2
, (4.21)

D̂Rads = x px + σ pσ , (4.22)

K̂0
Rads = −1

2
(x2 + σ2)P̂ 0

Rads −
2σ
[
ρ σ pσ + (1− ρ2)pρ

]
Ĵ12

Rads p
θ + σ2 (pθ)2 P̂ 0

Rads

2
[
σ2(px)2 + (1− ρ2)(σ pσ − ρ pρ)2

] , (4.23)

K̂1
Rads = −1

2
(x2 + σ2)px + xD̂Rads +

2σ2ρ
√

1−ρ2(σpσ−ρpρ)P̂ 0
Radsp

θ + σ2px(pθ)2

2
[
σ2(px)2 + (1− ρ2)(σpσ − ρpρ)2

] , (4.24)

K̂2
Rads = − 1

2σ

√
1− ρ2 (x2 + σ2)(σ pσ − ρ pρ) + σ

√
1− ρ2 D̂Rads

−
2σ3ρ px P̂ 0

Rads p
θ − σ

√
1− ρ2 (σ pσ − ρ pρ) (pθ)2

2
[
σ2(px)2 + (1− ρ2)(σ pσ − ρ pρ)2

] . (4.25)
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There generators also satisfy the SO(2, 3) algebra. In the same way, one can also construct

the generators in the left Rindler wedge.

Next, we would like to construct the SO(2, 3) bi-local conformal generators. The

SO(2, 3) generators of the conformal symmetry in 3d Minkowski space (t, x, y) are well

known. When t = 0 (τ = 0), the transformations from 3d Minkowski to the right

Minkowski-Rindler wedge are given by

x = x , y = σ , px = px , py = pσ . (4.26)

This is just a trivial change of naming of the coordinates. Anyway, now one can construct

the generators in the right Minkowski-Rindler wedge from the Minkowski ones. Then, one

can easily construct the bi-local generators as

p̂ 0
RRcft =

√
(px1)2 + (pσ1 )2 +

√
(px2)2 + (pσ2 )2 , (4.27)

p̂ 1
RRcft = px1 + px2 , (4.28)

p̂ 2
RRcft = pσ1 + pσ2 , (4.29)

ĵ
01
RRcft = −x1

√
(px1)2 + (pσ1 )2 − x2

√
(px2)2 + (pσ2 )2 , (4.30)

ĵ
12
RRcft = x1 p

σ
1 + x2 p

σ
2 − σ1 p

x
1 − σ2 p

x
2 , (4.31)

ĵ
20
RRcft = σ1

√
(px1)2 + (pσ1 )2 + σ2

√
(px2)2 + (pσ2 )2 , (4.32)

d̂RRcft = x1 p
x
1 + x2 p

x
2 + σ1 p

σ
1 + σ2 p

σ
2 , (4.33)

k̂
0

RRcft = −1

2
(x2

1 + σ2
1)
√

(px1)2 + (pσ1 )2 − 1

2
(x2

2 + σ2
2)
√

(px2)2 + (pσ2 )2 , (4.34)

k̂
1

RRcft = x1(x1 p
x
1 + σ1 p

σ
1 ) + x2(x2 p

x
2 + σ2 p

σ
2 )− 1

2
(x2

1 + σ2
1) px1 −

1

2
(x2

2 + σ2
2) px2 , (4.35)

k̂
2

RRcft = σ1(x1 p
x
1 + σ1 p

σ
1 ) + σ2(x2 p

x
2 + σ2 p

σ
2 )− 1

2
(x2

1 + σ2
1) pσ1 −

1

2
(x2

2 + σ2
2) pσ2 . (4.36)

The left generators are also constructed in the same way.

4.3 Bi-local map for the Rindler-AdS

In [38], the momentum space bi-local map from the Minkowski bi-local space (t;x1, y1;

x2, y2) whose metric is

ds2 = −dt2 + dx2 + dy2 , (4.37)

to the AdS4 higher spin Poincare coordinate (t, x, y, z; θ) with the metric

ds2 =
1

z2

[
− dt2 + dx2 + dy2 + dz2

]
, (4.38)

is given by

pt = |~p1|+ |~p2| ,
px = px1 + px2 ,

py = py1 + py2 ,

pz =
√

2 |~p1||~p2| − 2 ~p1 · ~p2 ,

θ = arctan

(
2 ( px2 p

y
1 − p

y
2 p

x
1 )

(|~p2| − |~p1|) pz

)
, (4.39)
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where ~p1 = (px1 , p
y
1), ~p2 = (px2 , p

y
2). The induced coordinate transformations are

x =
|~p1|x1 + |~p2|x2√

(pz)2 + (~p)2
− pypzpθ

(~p)2
√

(pz)2 + (~p)2
,

y =
|~p1|y1 + |~p2|y2√

(pz)2 + (~p)2
+

pxpzpθ

(~p)2
√

(pz)2 + (~p)2
,

z =
(~x1 − ~x2) · (|~p2|~p1 − |~p1|~p2)

pz(|~p1|+ |~p2|)
,

pθ = (x2 − x1)
√
|~p1||~p2| cos

(
ϕ1 + ϕ2

2

)
+ (y2 − y1)

√
|~p1||~p2| sin

(
ϕ1 + ϕ2

2

)
, (4.40)

where ~x1 = (x1, y1), ~x2 = (x2, y2).

By using the transformations (4.14) (4.15) and (4.26), one can construct the bi-local

maps from 3d bi-local regular Rindler space (τ ;x1, σ1;x2, σ2) whose metric is

ds2 = −σ2dτ2 + dx2 + dσ2 , (4.41)

to the Rindler-AdS space (τ, x, σ, ρ; θ) with the metric

ds2 =
1

ρ2

[
−(1− ρ2)dτ2 +

dρ2

1− ρ2
+
dx2 + dσ2

σ2

]
, (4.42)

as

pτ = σ
√

1− ρ2 (|~p1|+ |~p2|) ,
px = px1 + px2 ,

pσ = ρ
√

2|~p1||~p2| − 2 ~p1 · ~p2 +
√

1− ρ2 (pσ1 + pσ2 ) ,

pρ = σ
√

2|~p1||~p2| − 2 ~p1 · ~p2 −
σρ√
1− ρ2

(pσ1 + pσ2 ) ,

θ = arctan

(
2 ( px2 p

σ
1 − pσ2 px1 )

(|~p2| − |~p1|)
√

2|~p1||~p2| − 2 ~p1 · ~p2

)
, (4.43)

and

x =
|~p1|x1 + |~p2|x2

|~p1|+ |~p2|
−

(pσ1 + pσ2 )
√

2|~p1||~p2| − 2 ~p1 · ~p2 p
θ

(|~p1|+ |~p2|) [(px1 + px2)2 + (pσ1 + pσ2 )2]
,

σ =
z

ρ
,

ρ =

(
1 +

y2

z2

)− 1
2

,

pθ = (x2 − x1)
√
|~p1||~p2| cos

(
ϕ1 + ϕ2

2

)
+ (σ2 − σ1)

√
|~p1||~p2| sin

(
ϕ1 + ϕ2

2

)
, (4.44)
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where we have defined ~x1 = (x1, σ1), ~x2 = (x2, σ2), ~p1 = (px1 , p
σ
1 ), ~p2 = (px2 , p

σ
2 ), ϕ1 =

arctan(
pσ1
px1

), ϕ2 = arctan(
pσ2
px2

), and y and z are functions of the bi-local regular Rindler

canonical variables

y =
|~p1|σ1 + |~p2|σ2

|~p1|+ |~p2|
−

(px1 + px2)
√

2|~p1||~p2| − 2 ~p1 · ~p2 p
θ

(|~p1|+ |~p2|) [(px1 + px2)2 + (pσ1 + pσ2 )2]
,

z =
(~x1 − ~x2) · (|~p2|~p1 − |~p1|~p2)

(|~p1|+ |~p2|)
√

2|~p1||~p2| − 2 ~p1 · ~p2

. (4.45)

The Rindler-AdS momenta induced by the bi-local map (4.43) indeed satisfy the

Rindler-AdS on-shell condition

0 = gµν∂µ∂ν = − (pτ )2

σ2(1− ρ2)
+

(
1− ρ2

σ2

)
(pρ)2 + (px)2 + (pσ)2 . (4.46)

One can also check that the bi-local map (4.43), (4.44) actually maps the right Rindler-AdS

generators (4.16)–(4.25) to the RR bi-local CFT generators (4.27)–(4.36). Furthermore,

the induced Rindler-AdS canonical valuables satisfy the canonical commutation relations

[x , px] = [σ , pσ] = [ρ , pρ] = [θ , pθ] = 1 , (4.47)

with the other commutators vanishing, as a consequence of the bi-local commutator

relations

[x1 , p
x
1 ] = [x2 , p

x
2 ] = [σ1 , p

σ
1 ] = [σ2 , p

σ
2 ] = 1 , (4.48)

and others vanish.

Now let us consider the bi-local oscillators defined in (4.3). The diagonal oscillators

α†RR, α†LL create states with the following momenta

α†RR(~p1, ~p2) : pτ = σ
√

1− ρ2
(
|~p1|+ |~p2|

)
,

px = px1 + px2 ,

pσ = ρ
√

2 |~p1||~p2| − 2 ~p1 · ~p2 +
√

1− ρ2 (pσ1 + pσ2 ) ,

pρ = σ
√

2 |~p1||~p2| − 2 ~p1 · ~p2 −
σρ√
1− ρ2

(pσ1 + pσ2 )

= 2σ
√
|~p1||~p2| sin

(
ϕ1 − ϕ2

2

)
− σρ√

1− ρ2
(pσ1 + pσ2 ) , (4.49)

and

α†LL(~p1, ~p2) : pτ = −σ
√

1− ρ2
(
|~p1|+ |~p2|

)
,

px = −px1 − px2 ,

pσ = ρ
√

2 |~p1||~p2| − 2 ~p1 · ~p2 −
√

1− ρ2 (pσ1 + pσ2 ) ,

pρ = σ
√

2 |~p1||~p2| − 2 ~p1 · ~p2 +
σρ√
1− ρ2

(pσ1 + pσ2 )

= 2σ
√
|~p1||~p2| sin

(
ϕ1 − ϕ2

2

)
+

σρ√
1− ρ2

(pσ1 + pσ2 ) . (4.50)
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For these diagonal oscillators, the both terms on the right-hand side of pρ are real.

Therefore, these oscillators create only propagating modes, and cannot create evanescent

modes, which characterized by an imaginary radial-direction momentum, anywhere in bulk

Rindler-AdS space.

Next, we consider the off-diagonal oscillators γ†RL. This oscillator creates states with

γ†RL(~p1, ~p2) : pτ = σ
√

1− ρ2
(
|~p1| − |~p2|

)
,

px = px1 − px2 ,

pσ = ρ
√

2 ~p1 · ~p2 − 2 |~p1||~p2| +
√

1− ρ2 (pσ1 − pσ2 ) ,

pρ = σ
√

2 ~p1 · ~p2 − 2 |~p1||~p2| −
σρ√
1− ρ2

(pσ1 − pσ2 )

= 2iσ
√
|~p1||~p2| sin

(
ϕ1 − ϕ2

2

)
− σρ√

1− ρ2
(pσ1 − pσ2 ) . (4.51)

Here, in the right-hand side of pρ, the first term is imaginary and the second term takes

in general complex value. Thus, this state has exponentially growing amplitude, which we

can identify as an evanescent mode.

Next we discuss “quasinormal modes”, which represents energy dissipation of a per-

turbed event horizon. In [9], the authors showed that in four and higher dimensional

Rindler-AdS space (massless topological black hole), quasinormal modes exist and the so-

lutions can be exactly obtainable. The quasinormal frequency takes complex value. In

fact, we can see the bi-local map is able to produce complex valued frequencies as we will

see below. The frequency ω is a conjugate valuable of τ ; therefore, ω = pτ . Rearranging

the bi-local map for pτ , one can obtain

α†RR(~p1, ~p2) : ω = y
(
|~p1|+ |~p2|

)
, (4.52)

α†LL(~p1, ~p2) : ω = −y
(
|~p1|+ |~p2|

)
, (4.53)

γ†RL(~p1, ~p2) : ω = y
(
|~p1| − |~p2|

)
, (4.54)

where y is a bi-local parameter which is given in (4.45). For α†RR and α†LL, the parameter

y is always real; hence the frequency produced by α†RR or α†LL is always real. On the other

hand, for γ†RL, the second term of the right-hand side of y is imaginary; therefore, along with

the first term, the parameter y can take a complex value. Thus, we conclude that γ†RL is able

to produce complex valued frequencies which contain quasinormal modes, while α†RR and

α†LL produce only real valued frequencies corresponding to propagating modes. The origin

of this complex frequency is obviously the coordinate dependence part of the bi-local map

for ω. This coordinate mixing does not happen in the pure AdS case [31, 38]; therefore,

we obtain only real valued frequencies for the pure AdS background. The coordinate

dependence part (
√

1− ρ2) of the bi-local map for ω implies the presence of the event

horizon (ρ = 1); this agrees with the physical meaning of the quasinormal modes.

Finally, we also note that, if we have only the diagonal oscillators α†RR, α†LL, the bi-

loacl map for the Rindler-AdS coordinates (4.44) can produce only outside of the horizon
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0 < ρ < 1. However, the entangled oscillator γ†RL can naturally produce the inside of the

horizon ρ > 1, because for the mode created by this oscillator, the parameter z has a pure

imaginary value.

5 Conclusion

In this work we have presented a further study of the Thermo-field CFT duality in the case

of O(N) vector field theories. It was shown that the thermofield system provides the degrees

of freedom for a complete reconstruction of all-spin fields in the gravitational Rindler-AdS

spacetime background. The stability of the O(N) vector model CFT on hyperbolic space is

clarified. Most significantly we have proved a map from a set of bi-locals to the connected

Rindler-AdS spacetime. This specific construction also provides implications of the very

interesting question of reconstructing bulk observables behind the horizon. A central role

is played in the mixed set of bi-local observables representing singlet contractions between

the left and right CFT’s. Their inclusion is natural in the diagonal O(N) singlet collective

description, but we note that they would not be included in the standard “doubling” of

single trace CFT observables.
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A Evanescent modes in Rindler-AdS

Even though the existence of the evanescent modes in Rindler-AdS background was sug-

gested in the discussion of smearing function [22, 23], in this section, we demonstrate

the evanescent modes in this background from the point of view of the effective potential

as in [45].

The equation of motion for a minimally coupled scalar field

∂µ
(√
−g gµν∂νΦ

)
=
√
−gm2Φ , (A.1)

for this background (2.4) is explicitly given by

− 1

1− ρ2
∂2
τΦ + ρ2∂ρ

(
1− ρ2

ρ2
∂ρΦ

)
+ σ2

(
∂2
x Φ + ∂2

σ Φ
)

=
m2

ρ2
Φ . (A.2)

The solution for the τ and x directions are plane waves, so we use

Φ(τ, x, σ, ρ) = e−iωτ−ikxxΦ(σ, ρ) . (A.3)

Then, the equation of motion for Φ(σ, ρ) is

ω2

1− ρ2
Φ + ρ2∂ρ

(
1− ρ2

ρ2
∂ρΦ

)
+ σ2

(
∂2
σ − k2

x

)
Φ =

m2

ρ2
Φ . (A.4)
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The σ-direction solution is given by the modified Bessel function of the second kind as

Φ(σ, ρ) = σ
1
2Kiν(|kx|σ) Φ(ρ) , (A.5)

which satisfies

σ2
(
∂2
σ − k2

x

)
Φ(σ, z) = −ν̄2 Φ(σ, ρ) , (A.6)

where ν is a free parameter which takes a real value, and ν̄ =
√

1
4 + ν2. Thus, finally one

obtains the ρ-direction equation of motion(
ω2

1− ρ2
− ν̄2 − m2

ρ2

)
Φ(ρ) + ρ2∂ρ

(
1− ρ2

ρ2
∂ρΦ(ρ)

)
= 0 . (A.7)

By excluding the boundary behavior of the field Φ(ρ) = ρ u(ρ), the radical direction

equation is rewritten as

(1− ρ2) ∂2
ρ u− 2ρ ∂ρ u+

(
ω2

1− ρ2
− ν̄2

)
u = 0 , (A.8)

where we have used m2 = −2. Moving to the tortoise coordinate dρ∗ = dρ
(1−ρ2)

, (i.e.

ρ∗ = 1
2 log

(
1+ρ
1−ρ

)
), we can obtain a Schrödinger-like equation,

d2u(ρ∗)

dρ2
∗

+
(
ω2 − V (ρ∗)

)
u(ρ∗) = 0 , (A.9)

where the effective potential V (ρ∗) is given by

V (ρ∗) =
ν̄2

cosh2(ρ∗)
. (A.10)

In the tortoise coordinate ρ∗, the AdS boundary is located at ρ∗ = 0, while the Rindler-

horizon is at ρ∗ = ∞. The effective potential becomes zero near horizon ρ∗ → ∞ (see

figure 1). This potential shape is very similar to the case of a large black hole discussed

in [45]. Therefore, such modes with ω = 0 are allowed to exist in the near horizon region

and these modes are indeed evanescent modes. One can verify this statement immediately

seeing the WKB approximation solution of the equation (A.9)

u(ρ∗) ∼ exp

(∫ ∞
ρ∗

dρ′∗
√
V (ρ′∗)− ω2

)
. (A.11)

We are interested in the most evanescent mode ω2 = 0. In this case, the integrand is

real function; therefore, the solution is exponentially growing in the radical direction.

Actually, using the original coordinate ρ and integrating the exponent, one finds u(ρ) ∼
exp[ν̄ sin−1(ρ)]. Hence, this is evanescent mode.
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Figure 1. The ratio of the effective potential for Rindler-AdS, V (ρ∗) with ν̄2. On the boundary

(ρ∗ = 0), ω2 ≥ ν̄2; therefore, only propagating modes are permitted. On the other hand, near

the horizon region (ρ∗ →∞), the effective potential becomes zero. Accordingly, evanescent modes

(ω2 ∼ 0) are allowed to exist.

B Canonical quantization of Rindler O(N) vector model

In this appendix, we give a detail discussion of the canonical quantization for the O(N)

vector model in the Rindler spacetime.

From the Rindler action (3.5), the Klein-Gordon equation of motion explicitly reads

− (∂2
τφ

R
i ) + σ∂σφ

R
i + σ2∂2

σ φ
R
i + σ2∂2

x φ
R
i = 0 . (B.1)

Since the solution for the τ and x directions are just place-wave, we employ the following

ansatz for the solution of the equation.

gRω,k(τ, x, σ) =
1

2π
√

2ω
vR(ω, k, σ) eikx−iωτ . (B.2)

Plugging this ansatz into the equation, we obtain

∂2
σ̃ v

R +
1

σ̃
∂σ̃ v

R +

(
ω2

σ̃2
− 1

)
vR = 0 , (B.3)

where σ̃ = |k|σ.

This equation is the modified Bessel equation and the solution is given by the modified

Bessel function:

vR(ω, k, σ) ∝ Kiω(|k|σ) , (B.4)

which is defined by

Kiω(x) =
π

2 sinh(πω)

[
Iiω(x)− I−iω(x)

]
, (B.5)

and

Iiω(x) =

∞∑
n=0

1

n! Γ(iω + n+ 1)

(x
2

)2n+iω
. (B.6)

Hence, with an appropriate normalization, the general solution is

φRi (τ, x, σ) =

∫ ∞
0

dω

∫ ∞
−∞

dk
[
bRi (ω, k) gRω,k(τ, x, σ) + bR†i (ω, k) gR∗ω,k(τ, x, σ)

]
, (B.7)
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where

gRω,k(τ, x, σ) =
1

2π
√

2ω

2Kiω(|k|σ)

|Γ(iω)|
eikx−iωτ . (B.8)

The normalization of the solution is adjusted by using the Klein-Gordon inner product,

which is defined by

(φ1, φ2)KG = −i
∫

Σ
dσdx

√
−g
g00

[
φ∗1∂τφ2 − φ2∂τφ

∗
1

]
, (B.9)

where Σ is a constant τ hypersurface. This definition has the following identity.

(φ2 , φ1)KG = −(φ∗1 , φ
∗
2)KG = (φ1 , φ2)∗KG . (B.10)

First, note that the orthonormal relation of the modified Bessel function is given by [52]∫ ∞
0

dσ

σ
Kiω(σ)K−iω′(σ) =

π

2
|Γ(iω)|2 δ(ω − ω′) . (B.11)

By using this, one can compute∫
Σ
dσdx

√
−g
g00

[
gRω,k(τ, σ, x) gR∗ω′,k′(τ, σ, x)

]
= − 1

2ω
δ(ω − ω′)δ(k − k′) . (B.12)

Thus, the solution is orthonormalized in terms of the Klein-Gordon inner product as

(gRω,k, g
R
ω′,k′)KG = δ(ω − ω′)δ(k − k′) , (B.13)

(gR∗ω,k, g
R
ω′,k′)KG = 0 . (B.14)

Therefore, now the oscillators are written in terms of the Klein-Gordon inner product as

bRi (ω, k) = (gRω,k, φi)KG

=

∫
dσdx

[
i gR∗ω,k(τ, σ, x) Πi(τ, σ, x) +

ω

σ
φi(τ, σ, x) gR∗ω,k(τ, σ, x)

]
, (B.15)

where Πi is the conjugate momentum defined by Πi = σ−1∂τφi. Also one finds

bR†i (ω, k) = (φi , g
R
ω,k)KG

=

∫
dσdx

[ ω
σ
φi(τ, σ, x) gRω,k(τ, σ, x)− i gRω,k(τ, σ, x) Πi(τ, σ, x)

]
. (B.16)

From these expressions, one can compute the commutation relations between the modes

by requiring the canonical commutation relation of the field,
[
φi(τ, σ, x) , Πj(τ, σ, x)

]
=

i δij δ(σ − σ′)δ(x− x′) as[
bRi (ω, k) , bR†j (ω′, k′)

]
= δijδ(ω − ω′) δ(k − k′) . (B.17)
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C Hamiltonian of Rindler vector model

In this appendix, we give a derivation for the Hamiltonian (3.11). Here, we take τ = 0

hypersurface for Σ. The kinetic term is computed as follows.∫
τ=0

dσdxσΠ2
i =

∫
τ=0

dσ

σ

∫
dωdω′dkdk′

√
ωω′

π

×
[
− bRi (ω, k) bRi (ω′, k′)

Kiω(|k|σ)Kiω′(|k′|σ)

|Γ(iω)| |Γ(iω′)|
δ(k + k′)

+ bRi (ω, k) bR†i (ω′, k′)
Kiω(|k|σ)K−iω′(|k′|σ)

|Γ(iω)| |Γ(−iω′)|
δ(k − k′)

+ bR†i (ω, k) bRi (ω′, k′)
K−iω(|k|σ)Kiω′(|k′|σ)

|Γ(−iω)| |Γ(iω′)|
δ(k − k′)

− bR†i (ω, k) bR†i (ω′, k′)
K−iω(|k|σ)K−iω′(|k′|σ)

|Γ(−iω)| |Γ(−iω′)|
δ(k + k′)

]
=

∫
dωdk

ω

2

[
bRi (ω, k) bR†i (ω, k) + bR†i (ω, k) bRi (ω, k)

]
, (C.1)

where we have used the orthonormal relation of the modified Bessel function (B.11), and

δ(ω + ω′) = 0 because ω, ω′ > 0.

By similar ways, one can also find∫
τ=0

dσdxσ (∂xφi)
2 =

∫
dωdω′dk

π
√
ωω′

[
− F2(ω, ω′)

|Γ(iω)| |Γ(iω′)|
bRi (ω, k) bRi (ω′,−k)

+
F2(ω,−ω′)

|Γ(iω)| |Γ(−iω′)|
bRi (ω, k) bR†i (ω′, k)

+
F2(−ω, ω′)

|Γ(−iω)| |Γ(iω′)|
bR†i (ω, k) bRi (ω′, k)

− F2(−ω,−ω′)
|Γ(−iω)| |Γ(−iω′)|

bR†i (ω, k) bR†i (ω′,−k)

]
, (C.2)

and∫
τ=0

dσdxσ (∂σφ)2 =

∫
dωdω′dk

π
√
ωω′

[
F3(ω, ω′)

|Γ(iω)| |Γ(iω′)|
bRi (ω, k) bRi (ω′,−k)

+
F3(ω,−ω′)

|Γ(iω)| |Γ(−iω′)|
bRi (ω, k) bR†i (ω′, k)

+
F3(−ω, ω′)

|Γ(−iω)| |Γ(iω′)|
bR†i (ω, k) bRi (ω′, k)

+
F3(−ω,−ω′)

|Γ(−iω)| |Γ(−iω′)|
bR†i (ω, k) bR†i (ω′,−k)

]
, (C.3)

where

F2(ω, ω′) =

∫ ∞
0

dσ σKiω(σ)Kiω′(σ) ,

F3(ω, ω′) =

∫ ∞
0

dσ σ
(
∂σKiω(σ)

)(
∂σKiω′(σ)

)
. (C.4)
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Explicit computation of F2, F3 is given in the following. There is a nice formula about

orthogonality relation of the modified Bessel function Kν(x) [53]∫ ∞
0

dxx−λKµ(ax)Kν(bx) =
2−2−λa−ν+λ−1bν

Γ(1− λ)
Γ

(
1− λ+ µ+ ν

2

)
Γ

(
1− λ− µ+ ν

2

)
× Γ

(
1− λ+ µ− ν

2

)
Γ

(
1− λ− µ− ν

2

)
× F

(
1− λ+ µ+ ν

2
,

1− λ− µ+ ν

2
; 1− λ; 1− b2

a2

)
,

for Re(a+ b) > 0, Re(λ) < 1− |Re(µ)| − |Re(ν)| . (C.5)

By using this formula, one can compute

F2(ω, ω′) =
1

2
Γ
(

1 +
i

2
(ω + ω′)

)
Γ
(

1 +
i

2
(ω − ω′)

)
Γ
(

1− i

2
(ω − ω′)

)
Γ
(

1− i

2
(ω + ω′)

)
=

π2(ω2 − ω′2)

4[cosh(πω)− cosh(πω′)]
. (C.6)

Also

F3(ω, ω′) =
1

8

[
Γ
( iω + iω′

2

)
Γ
(2 + iω − iω′

2

)
Γ
(2− iω + iω′

2

)
Γ
(4− iω − iω′

2

)
+ Γ

(2 + iω + iω′

2

)
Γ
( iω − iω′

2

)
Γ
(4− iω + iω′

2

)
Γ
(2− iω − iω′

2

)
+ Γ

(2 + iω + iω′

2

)
Γ
(4 + iω − iω′

2

)
Γ
(−iω + iω′

2

)
Γ
(2− iω − iω′

2

)
+ Γ

(4 + iω + iω′

2

)
Γ
(2 + iω − iω′

2

)
Γ
(2− iω + iω′

2

)
Γ
(−iω − iω′

2

)]
= − π2(ω2 − ω′2)

4[cosh(πω)− cosh(πω′)]
. (C.7)

Hence, the Hamiltonian is

H =

∫
dωdk

ω

2

[
bRi (ω, k) bR†i (ω, k) + bR†i (ω, k) bRi (ω, k)

]
. (C.8)

Note that the contributions from F2 and F3 exactly cancel in bRbR†, bR†bR terms.
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