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Abstract: Recently, a novel mechanism to address the hierarchy problem has been pro-

posed [1], where the hierarchy between weak scale physics and any putative ‘cutoff’ M is

translated into a parametrically large field excursion for the so-called relaxion field, driving

the Higgs mass to values much less than M through cosmological dynamics. In its simplest

incarnation, the relaxion mechanism requires nothing beyond the standard model other

than an axion (the relaxion field) and an inflaton. In this note, we critically re-examine

the requirements for successfully realizing the relaxion mechanism and point out that para-

metrically larger field excursions can be obtained for a given number of e-folds by simply

requiring that the background break exact de Sitter invariance. We discuss several corol-

laries of this observation, including the interplay between the upper bound on the scale M

and the order parameter ε associated with the breaking of dS symmetry, and entertain the

possibility that the relaxion could play the role of a curvaton. We find that a successful

realization of the mechanism is possible with as few as O(103) e-foldings, albeit with a

reduced cutoff M ∼ 106 GeV for a dark QCD axion and outline a minimal scenario that

can be made consistent with CMB observations.
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1 Introductory remarks

Interacting scalar fields are notoriously sensitive to the heaviest particles they couple to.

Since the discovery of the Higgs boson with a relatively light mass of 125 GeV [2, 3],

explanations that dynamically account for the apparent hierarchy between the electroweak

(EW) scale and any new physics that is presumed to complete the weak sector of the

standard model1 appear to be in tension with atomic physics and collider constraints

excepting rather tuned regions of parameter space. This has led to anthropic arguments

gaining currency as a plausible alternative, although as of yet no convincing solution to the

problem of how to define probabilities for observers and observables is available. Evidently,

novel solutions to the hierarchy problem that circumvent current low energy constraints

need no further justification.

Recently, the authors [1] have proposed a mechanism where the hierarchy between weak

scale physics and the new physics scale M is paraphrased into requiring a parametrically

large field excursion for a field that couples to the Higgs.2 In order to keep any new

hierarchies introduced by this new sector to be technically natural [4, 5], an obvious choice

would be for this field to be axion-like, hence a relaxion. The potential for the relaxion φ

coupled to the singlet component of the Higgs h := (H†H)1/2 is given by

V (φ, h) =
(
−M2 + gφ

)
h2 + gM2φ+ . . .+ Λ4(〈h〉) cos (φ/f) , (1.1)

1Such as low energy supersymmetry and large/ warped extra dimensions for completions that incorporate

gravity, and composite models for completions which become relevant at lower energies.
2For precursors in this direction, see [6–8].
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Figure 1. Schematic behaviour of the relaxion potential above and below φ = M2/g.

where the ellipses denote higher order terms3 in gφ, and 〈h〉 is the (φ dependent) vacuum

expectation value of the Higgs. The shape of the potential is shown schematically in figure 1.

We presume the relaxion to begin at very large field values φ � M2/g wherein the

Higgs has a naturally large (and positive) mass squared. The relaxion evolves under the

influence of the background cosmology which has to last long enough for φ to scan a

sufficient range in field space to eventually break EW symmetry at φ ∼M2/g. Primordial

inflation provides a natural context for this evolution to take place. As soon as the relaxion

expectation value drops below φ = M2/g, the Higgs starts to acquire a non-zero expectation

value and a periodic potential for φ is generated by instanton effects whose scale in the

EW vacuum is set by

Λ4 ∼ f2πm2
π, (1.2)

where fπ is the (non-perturbatively generated) pion decay constant and mπ is the pion

mass. Since m2
π grows linearly with the quark masses, this term grows in proportion to

〈h〉. Under the approximation that φ is slow rolling, it will get trapped in a local minimum

once the barriers induced by the instanton potential are large enough to compensate the

slope of the potential, which occurs when

Λ4 ∼ gM2f. (1.3)

Parameterising the prefactor of the periodic potential as Λ4(〈h〉) = Λ4〈h〉/v, where v =

246 GeV, it follows that
gM2f

f2πm
2
π

=
〈h〉
v
. (1.4)

Since small values of g are technically natural, 〈h〉v of order one can be obtained for very

large values of the cut-off M � v, by adjusting g accordingly.

Thus far we have taken the cosmological history of the model for granted. Obviously,

one could arrange initial conditions for φ such that it starts right above the region where

3The expansion is arranged in this way because it is technically natural for g to be small, since a discrete

shift symmetry is recovered in the limit where g vanishes. We will address the relevance of the higher order

terms in the next section.
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the square of the Higgs mass changes sign. However in that case one would merely be

trading the fine-tuning of the weak scale for a fine-tuning of initial conditions. For this

mechanism to naturally explain the weak scale, one has to instead demand that the field

has enough time to settle into the minimum from virtually any initial value φ0 which

satisfies −M2 + gφ0 > 0, in addition to requiring that the temperature be below the

scale Λ to guarantee that the instanton potential appears as the Higgs acquires a non-zero

expectation value. Consequently, naturalness forces us to require that the relaxion undergo

a minimum field excursion of ∆φ ∼ M2/g over the course of early universe evolution.

In [1] (henceforth GKR) the authors implicitly considered the de Sitter (dS) limit of an

inflationary background wherein H(t) ≡ HI . In this case the relaxion rapidly settles onto

the attractor solution

φ(t) = φ0 −
gM2

3HI
(t− t0) → ∆φ = −gM

2

3H2
I

∆N , (1.5)

where the latter follows from the fact that the number of e-folds ∆N := log(a/a0) goes as

as ∆N = HI(t−t0) on a dS background. Therefore a field excursion |∆φ| &M2/g requires

∆N &
3H2

I

g2
, (1.6)

where we recall from (1.1) that g has dimensions of mass. Since ∆N is bounded from

below by a ratio of two largely independent scales, it should be immediately clear that N
can vastly exceed the minimum number of e-folds required to solve the horizon problem,

especially considering g is an a priori parametrically small quantity. Among the more

phenomenologically viable models considered in [1] anywhere between 1037 and 1067 e-

folds of inflation was required,4 admittedly a tall ask for any inflationary sector and most

likely reintroducing fine tuning issues into that sector.5

In the following section we will review the requirements of successfully realizing the

relaxion mechanism and in particular, we will critically re-examine the role played by the

symmetries of the background. The main result is that breaking exact de Sitter symmetry

parametrically reduces the required number of e-foldings for the relaxion to undergo the

requisite field excursion, greatly alleviating constraints on inflationary model building. In

situations where the order parameter6 associated with breaking dS symmetry — ε :=

4A simplified way to see this is as follows: the stopping condition for the relaxion can be written as

g/v ∼ (v/M)3, using Λ ∼ v and f = M . Furthermore HI ≥ M2/Mpl so that the inflaton dominates over

the relaxion energy density. Combining these constraints in (1.6) one finds ∆N & 10−32(M/v)10. Taking

M ∼ 109 GeV then for example one finds ∆N & 1038.
5One of the constraining requirements on inflation in the context of the relaxion mechanism is that it

does not permit eternal inflation (so as to preclude the possibility of reintroducing anthropic arguments).

From a model builders perspective, this is in tension with obtaining such a large number of e-folds, since

models that typically do so tend to be of the chaotic variety in an eternally inflating regime.
6Locally, de Sitter space possesses a time-like Killing vector. Inflationary cosmology is the result of

spontaneously breaking this symmetry by a slow rolling background, and the curvature perturbation on

constant inflaton slices relates to the Goldstone mode that non-linearly realizes this symmetry [9, 10]. The

slow roll parameter ε is an order parameter [11] in the precise sense that the action for the curvature

perturbation is an expansion in powers of ε and its derivatives, which becomes trivial in the limit that the

symmetry is restored.
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−Ḣ/H2 — is non-trivial, we will show that

∆N & log

(
1 + 2ε0

3H2
0

g2

) 1
2ε0

, (1.7)

where H0 = H(t0). In the limit 2ε0 → 0 the quantity in the parentheses is the very

definition of e3H
2
0/g

2
, cf. (1.6). An inflating background for which ε0 ∼ O(10−2) implies

∆N ∼ O(103) for a dark QCD relaxion for example, a far more manageable proposition

than requiring 1037 e-folds of exactly de Sitter inflation.7

The source of the parametric enhancement in field excursion once exact dS symmetry

is broken can be understood from the attractor solution for the relaxion, which we will

shortly derive as
dφ

dN
= −gM

2

3H2
0

e2ε0N+..., (1.8)

where the ellipses denote terms in the exponent that grow with the time variation of ε

(serving only to enhance the field excursion per e-fold for backgrounds where ε monotoni-

cally increases, as is always the case during slow roll inflation). Evidently, parametrically

more field excursion occurs on backgrounds that break dS symmetry with a larger value of

ε0. This parametric enhancement can be understood intuitively from the fact that de Sitter

space is a maximally symmetric spacetime upon which freely propagating fields will have

homogeneous attractor solutions that are uniformly sourced by the background geometry.

Breaking this maximal symmetry results in additional source terms from the background

on top of that already present in the effective potential of the field, enhancing the amount

of field excursion per e-folding. Although this additional sourcing is nominally a small

local correction, it integrates over many e-folds to substantially correct the bound (1.6)

into (1.7). Another way of intuitively understanding this parametric enhancement is to re-

alize that there is an obvious limit in which an infinite amount of field excursion is obtained

per e-fold — when the background asymptotes to Minkowski space. Breaking dS symmetry

merely allows one to interpolate between these maximally symmetric limiting cases, where

the field excursion per efold (for a fixed unit time scale g−1) is enhanced as per (1.8).

In the subsequent sections, we first re-examine the model requirements for getting

enough relaxion field excursion on a background that breaks dS symmetry. We then red-

erive the various constraints imposed by requiring a successful realization of the relaxion

mechanism, finding an interesting interplay between the order parameter ε and maximum

possible cutoff M . Furthermore, we find that accounting for corrections to the Hubble

factor during inflation obliges us to discard the inflaton as the source of the curvature

perturbations for regions of parameter space where ε0 & O(10−26), necessitating some

other method to generate them. The curvaton mechanism offers a plausibly (and techni-

cally) natural mechanism, for which we will audition the relaxion itself for the role. We

conclude by discussing various possible generalizations and cosmological aspects of the

relaxion mechanism.

7Presumably, the reference [1] did not intend this limit, yet in neglecting corrections to background

quantities over many Hubble times one implicitly works in such a limit.

– 4 –



J
H
E
P
0
2
(
2
0
1
6
)
0
7
7

2 Cosmological relaxation revisited

The relaxion mechanism depends on the background cosmology in several crucial respects,

and so it pays to re-examine how one can satisfy all that is required of the relaxion field

in as general terms as possible. The primary requirement is for enough field excursion

to have been executed over the course of early universe evolution. An anxiety expressed

in [1] is that this apparently requires a very large number of e-folds (at least ∼ 1037

depending on the model construction). In what follows, we demonstrate that this is an

artefact of deriving various bounds without accounting for finite changes in the Hubble

factor during inflation. Incorporating these corrections greatly ameliorates the situation in

that φ executes a parametrically larger excursion on a quasi de Sitter background.

2.1 Field excursions and the breaking of dS symmetry

We recall that the most general potential for the relaxion φ coupled to the singlet component

of the Higgs h is given (above the EW phase transition) by

V (φ, h) =
(
−M2 + gφ

)
h2 + c1gM

2φ+ c2g
2φ2 + . . . (2.1)

where the ellipses denote higher order terms in gφ. Before the Higgs acquires a vev, the

equation of motion for the spatial zero mode of the relaxion on an FRW background is

given by

φ̈+ 3Hφ̇+ 2c2g
2φ = −gc1M2 . (2.2)

It is only in the regime where φ�M2/g that one can neglect the effective mass term in the

above relative to the constant driving term. Given that φ &M2/g for the majority of the

evolution of the relaxion, we clearly cannot avoid accounting for the former. Furthermore,

we note that under the field redefinition

φ = φ̄+ µ (2.3)

and the choice µ = −c1M2/(2c2g), we can redefine away the linear term completely to

arrive at the potential

V (φ, h) =

(
−M2

[
1 +

c1
2c2

]
+ gφ̄

)
h2 + c2g

2φ̄2 − c21
4c2

M4 + . . . (2.4)

highlighting the manner in which the relaxion mechanism now intertwines the hierarchy

problem with the bare cosmological constant problem.8 In the following however, we

simply posit the vanishing of c2 and set c1 = 1 for economy of discussion since we are

only interested in deriving order of magnitude bounds. We demonstrate the persistence of

the conclusions of this section accounting for higher order corrections to the potential in

the appendix.

Writing the FRW scale factor as a(t) := eN (t) and reparametrizing time so that N
is our new clock through the relation dN = Hdt, the equation of motion for a minimally

8Since we require the combined contributions to the cosmological constant including that which comes

from the inflaton sector to vanish (or be rendered gravitationally inert e.g. [12–15]) close to the EW vacuum.
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coupled (test)9 scalar field on an arbitrary FRW background with the potential V (φ) is

given by

φ′′ + (3− ε)φ′ +
V,φ
H2

= 0 , (2.5)

with primes denoting derivatives with respect to N and where by definition

ε(N ) = −H ′/H. (2.6)

The above can readily be integrated as

H(N ) = e−
∫N
0 ε(N ′) dN ′H0 , (2.7)

so that (2.5) becomes

φ′′ + (3− ε)φ′ +
V,φ
H2

0

e2
∫N
0 ε(N ) dN ′ = 0. (2.8)

We stress that the above expression is completely general. Given (2.1) with c2 = 0, c1 = 1

we find that on an arbitrary FRW background, the relaxion evolves according to

φ′′ + (3− ε)φ′ + M2g

H2
0

e2
∫N
0 ε(N ) dN ′ = 0. (2.9)

Given ε as a function of N we can readily integrate the above. The exact solution for the

attractor on an arbitrary background is given by

dφ

dN
= −M

2g

H2
0

e−3N e
∫N
0 ε(N ′)dN ′

∫ N
0

e3ze
∫ z
0 ε(N

′)dN ′dz (2.10)

so that in the case where ε is a (not necessarily small) constant ε0, we can immediately

conclude that
dφ

dN
= −M

2g e2N ε0

H2
0 (3 + ε0)

, (2.11)

which the limit where ε0 � 1 corresponds to the previously advertised expression (1.8).

Furthermore, we can integrate the above to find

φ = φ0 +
M2g

2ε0H2
0 (3 + ε0)

[
1− e2N ε0

]
. (2.12)

The expression (2.10) corresponds to the attractor solution, neglecting the irrelevant (ex-

ponentially) decaying mode. From the above, we can immediately justify our first claim

— that backgrounds that deviate from the de Sitter limit (ε0 → 0) effect parametrically

larger field excursions: ∣∣∣∣ dφdN
∣∣∣∣ & M2g

3H2
0

e2N ε0 , (2.13)

where the inequality arises from (2.10) so that as claimed, incorporating any time depen-

dence in ε (recalling that it is a positive, monotonically growing parameter during slow roll

inflation) serves only to further enhance the field excursion per e-fold (2.13).

9We shall later enforce the consistency of this assumption by requiring that the relaxion energy density

be sub-dominant throughout.
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2.2 Cosmological bounds on the relaxion

Naturalness requirements imply that the relaxion mechanism cannot resort to fine tuning

of the initial conditions. In practice this means that we must ensure that the cosmological

evolution be such that the relaxion scans a sufficiently large field range as to make its

initial displacement immaterial.10 Therefore from (2.1) we infer that we must require the

total field excursion be such that |∆φ| = φ0 − φ &M2/g, so that the minimum number of

e-folds required is given by

∆Nmin & log

(
1 + 2ε0

3H2
0

g2

) 1
2ε0

(2.14)

which follows directly from (2.12). In the limit 2ε0 → 0 the right hand side of the above

uniformly converges to ∆N & 3H2
0/g

2 which was the original (formidable) bound uncovered

in [1]. Here and in the following we will assume that ε = ε0 is constant. Incorporating

the time variation of ε into our analysis only enhances (2.13), such that bounds obtained

using ε = ε0 are conservative. Very clearly, we see that allowing for the fact that the

background geometry breaks maximal symmetry logarithmically alleviates the number of

e-folds required to effect the requisite field excursion. For ε0 � g2/H2
0 , the required number

of e-folds simplifies to

∆Nmin &
1

2ε0
log

(
3H2

0

g2

)
, (2.15)

where in neglecting terms of order log(ε0)/ε0, (2.15) is a slightly stronger bound than (2.14).

One can also recast the constraint on the minimal number of e-folds required into an

upper bound on the Hubble scale Hf at the end of inflation. From the solution (2.7) we

find that

Hf = H0e
−ε0N , (2.16)

where N is now the total number of e-folds. This implies via (2.14) that

Hf .
H0(

1 + 6ε0
H2

0
g2

)1/2 ≈ g√
6ε0

, (2.17)

where the last expression again is valid for ε0 � g2/H2
0 .

The attractor solution for the relaxion (2.12) was derived under the assumption that

φ could be treated as a test field over the background sourced by inflation. For this to

consistently be true throughout the cosmological evolution, its energy density ρφ should

be negligible compared to the energy density in the inflation sector, which is given by

ρinf = 3H2M2
pl. Using ρφ = H2φ′2/2 + M2gφ, the result (2.12) and H(N ) = H0e

−ε0N

we find

ρφ =
g2M4

2H2
0 (3 + ε0)2

[
1 +

3

ε0

(
1− e2N ε0

)]
+ φ0M

2g . (2.18)

10On an expanding background, memory of the initial velocities are rapidly lost as the solution settles

onto an attractor trajectory within a few e-folds.
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Requiring that φ0 & 2M2/g, it follows that ρφ . 3H2M2
pl will always be true if11

M2

(
g2

2H2
0 ε0(3 + ε0)

+ 2

)
.

6gMpl√
2ε0(3 + ε0)

. (2.19)

The conditions (2.17) and (2.19) provide the strongest bounds on the model. GKR further

require that the field φ slow-rolls and that the evolution of φ is dominated by classical

fluctuations, and indeed those constraints are also easily satisfied here. More precisely,

∆φcl > ∆φquant implies gM2 > 3/(2π)H3. This can be satisfied by choosing H0 sufficiently

low, however since H now drops over time, this constraint will be satisfied eventually, and

furthermore it is not clear whether it is a necessary condition [1]. In addition the barriers

that eventually stop the rolling of φ (once the Higgs acquires a vev) will only develop if

H ≤ H0 < Λ, where the stopping condition Λ4 ∼ gM2f has to be satisfied.12

We will now consider different limits of (2.19). Note that during inflation we always

have ε0 < 1, by definition. The two cases that we can immediately distinguish are g2/H2
0 �

ε0, which includes the exact dS limit ε0 = 0, and g2/H2
0 � ε0, where the constraints (2.15)

and (2.17) simplify (and where the requisite number of e-folds is vastly reduced).

Consider first the case g2/H2
0 � ε0 which permits us to ignore the first term in the

left hand side of (2.19). We immediately find

M2 .
3√

2(3 + ε0)

gMpl√
ε0

. (2.20)

Utilizing the stopping condition Λ4 = gM3 (for simplicity we consider M = f), g can be

eliminated to obtain

M . ε
−1/10
0

(
Λ4Mpl

)1/5
. (2.21)

For ε0 ∼ 10−2, this implies M . 6 TeV for Λ = 1 GeV and M . 250 TeV for Λ = 100 GeV,

which is around the maximally allowed value for Λ in the GKR models. Provided the

axion decay constant f is commensurate with M , the bounds just derived are accurate up

to factors of order unity. The number of e-folds required for the scenario to work in this

context is then

∆N & 50 log

(
M6

Λ6

)
≈ 3× 103 , (2.22)

using H0 = Λ, i.e. the conservative (cf. footnote 12) maximal allowed value, and f = M

as before.

Now consider the opposite limit, g2/(H2
0 ) � ε0. Here the second term on the l.h.s.

of (2.19) can be neglected, resulting in

M2 .
12√

2

(
√
ε0
H0

g

)
H0Mpl . (2.23)

11This bound follows from the resulting quadratic inequality for e2Nε, which will always be satisfied

provided the associated quadratic form have no real roots.
12Note that we only require H ≤ Λ before EW symmetry breaking, and H0 could be larger than Λ at

the beginning of inflation provided it eventually drops below Λ (cf. (2.16)). Although this is a reasonable

possibility that doesn’t introduce particularly severe tuning of the initial conditions, it is an extra ingredient

that we avoid for the sake of conservativeness.
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Figure 2. Left: upper bounds on M as function of ε0. The solid red (blue) contours correspond to

H0 = Λ = 1 GeV (100 GeV) respectively, the region consistent with (2.19) lies within the triangular

shapes. Dashed (dotted) lines correspond to H0 = 10−5Λ (H0 = 105Λ). Right: allowed region

for Λ = 100 GeV, with grey lines showing log10Nmin. The light (darker) orange shaded region

has TRH < TeV (TRH < 100 MeV), and we choose H0 such that H0 ≤ 3
√

Λ4/M is satisfied for

M ≤ 109 GeV. The parameter g is set everywhere by gM3 = Λ4. In the region to the right of the

vertical dashed line, a curvaton field is needed to satisfy (2.27).

The term in brackets is less than unity in the regime we are considering. Furthermore

using H ≤ H0 ≤ Λ, we find M2 � ΛMpl. This is the same constraint that GKR obtain,

however here we now see that a careful adjustment of H0 and ε0 (for a given g) is required

to actually saturate it. Inserting g = Λ4/M3 we find

M &
Λ4

√
ε0H2

0Mpl
. (2.24)

M is maximised when (2.21) and (2.24) intersect. Setting H0 = Λ this happens for ε0 =

(Λ/Mpl)
3. Figure 2 shows the constraint (2.19) in the ε0 −M plane for different choices of

Λ and H0. The scale M can be increased either by increasing Λ, which however in GKR is

bounded by Λ . 100 GeV, or by increasing H0, which is subject to the constraint H0 . Λ

(unless one allows for the (relatively mild) additional requirement that the dynamics be

such that H eventually falls below Λ as φ approaches M2/g). In the right figure we also

show log10Nmin for the Λ = 100 GeV case, which clearly highlights the correlation between

the achievable cut-off and the required number of e-folds. Here we have chosen H0 such

that gM2 > 3/(2π)H3
0 is satisfied everywhere in the allowed regions, such that the field

evolves classically throughout.

2.3 Observational constraints

Another constraint on the model comes from demanding successful reheating of the universe

after inflation. An upper estimate for the reheating temperature is TRH .
√
HfMpl. Big

– 9 –
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bang nucleosynthesis (BBN) puts an absolute lower bound of TR & 10–100 MeV. Successful

baryogenesis and dark matter production suggest TR &TeV, however specific models can

realise this also with a lower TRH . Eq. (2.17) gives an upper bound on Hf , which however

is always weaker than the constraints arising from (2.19).

Important constraints also arise from the inflaton sector from the dual requirement

that inflation never be in the eternally inflating regime,13 and that eventually, inflation

produces the observed amplitude of curvature perturbations. The first requirement implies

that quantum fluctuations always be subdominant to fluctuations arising from classical

rolling. That is
H

2π
. H−1|ψ̇| , (2.25)

where we denote the inflaton as ψ. This is simply the statement that the inflaton roll further

in one Hubble time than a characteristic stochastic field fluctuation (set by the temperature

associated with the de Sitter horizon TdS = H
2π in units where the Boltzmann constant

kB ≡ 1 [16]). Through the equivalent definition ε = ψ̇2

2M2
plH

2 , the above immediately implies

that throughout inflation,
H2

8π2M2
plε

. 1 . (2.26)

One can also recognize in the above that this is precisely the quantity that is inferred

through CMB observations as [17]:

H2
∗

8π2M2
plε∗
' 2.2× 10−9 , (2.27)

where starred quantities indicate that these are evaluated at the time some fixed comoving

scale (typically taken to correspond to COBE normalization at k = 2× 10−4 Mpc−1) exits

the horizon. The bound (2.26) is under most tension at the beginning of inflation. If one

demands that (2.27) is satisfied, it implies

H2
0

H2
∗
.

109

2.2

ε0
ε∗

.
109

2.2
. (2.28)

However at the same time it is important to note that, given the low inflation scale required

by the relaxion scenario H0 . Λ . v, the constraint (2.27) can only be satisfied by having

ε0 . ε∗ ∼ 10−30 − 10−26, reintroducing the fine-tuning problem in the inflaton sector that

we tried to avoid in the first place. Making things worse, while the amplitude of the CMB

anisotropies can be fit with such a tiny ε∗, the spectral tilt ns = 1 + 2η∗ − 6ε∗ ≈ 0.96 [17]

would then require η∗ ≈ −2 × 10−2, which is a highly non-trivial additional requirement

on the inflationary sector.

An alternative mechanism to generate the CMB anisotropies is required in the param-

eter space to the right of the dashed vertical line in figure 2, if for example we want to

keep ε0 ∼ 10−2. A plausiblecandidate for such a mechanism is offered by the curvaton

scenario [18, 19], which can be engineered to be technically natural for example by having

13So as not to re-introduce a mechanism for anthropic selection, as per the requirements of [1].
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other axions play the role of the curvaton [20–22] (see however [23] for concerns about ax-

ion over production during reheating). They are merely required to be light, energetically

sub-dominant during inflation, uncoupled (or weakly coupled) to anything other than the

radiation bath into which it subsequently decays, and have a mass mσ around the minimum

of its potential such that Hr � mσ where Hr is the Hubble factor during post-inflationary

radiation domination. The spectral index generated by the curvaton is given by

ns − 1 = −2ε∗ + 2
(Vσσ)∗
3H2
∗
. (2.29)

To obtain a Gaussian spectrum the curvaton has to be sufficiently displaced from its local

minimum (σ = 0) at the time when the observed CMB modes cross the horizon, i.e.

σ∗ � H∗, and furthermore that the curvaton energy density is sub-dominant to radiation

immediately prior to its decay and that the decay occurs over a small window relative to a

Hubble time [18, 19]. The amplitude of the power spectrum of the curvature perturbations

sourced by the curvaton in the regime where H∗ � σ∗ is given by

∆R ≈ κ2
H2
∗

π2σ2∗
' 2.2× 10−9 , (2.30)

where κ is the fraction of the curvaton energy density relative to radiation density just

before it decays in the radiation dominated epoch [18, 19]. We wish to emphasize in the

context of (2.29) that in general ε∗ ≥ ε0 and that the precise predictions of the curvaton

scenario supplemented with the relaxion mechanism will also depend on the details of the

inflaton sector. However it should be clear that provided inflation can also be arranged to

be technically natural, it should be possible to supplement the relaxion mechanism with

an additional axionic curvaton sector preserving naturalness and simultaneously fitting

to CMB observations. Taken together, this gives a minimal realization of the relaxion

mechanism which is in agreement with current cosmological data. The even more minimal

possibility that the relaxion itself plays the role of the curvaton is explored in the appendix.

We conclude this particular subsection by noting that thus far, we have only considered

inflating backgrounds, i.e. ε� 1. Given that our analysis was completely general, one could

have also asked whether φ can roll into its minimum during ordinary radiation or matter

dominated expansion. Those phases are characterised by a(t) = t2/3 for matter domination

and a(t) = t1/2 for radiation domination, corresponding to ε = 3/2 and ε = 2, respectively.

The constraints on the parameter space in this case simply follow from (2.17) and (2.21)

and are Hf . g and M . (Λ4Mpl)
1/5. A priori these scenarios don’t seem to be much more

constrained than those with ε ∼ 10−2. Hence for models where Λ can be increased above

the weak scale like the CHAIN scenario [24], this possibility should also be explored. In

this context the proposal of [25], namely to use a hidden sector with a larger temperature

as an alternative to an inflationary background for the relaxion, is noteworthy.

2.4 Concrete models

In the above discussion we have not explicitly specified which realisation of the relaxion

mechanism is being considered. The QCD scenario of GKR is not viable due to predicting
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a too large strong CP angle, and the modified version to fix this problem requires g ∼
10−30 GeV, such that only scenarios with tiny ε0 will be viable, due to the combination of

the reheating constraint TRH ∼
√
HfMpl & TBBN with Hf . g/

√
6ε0 from (2.17).

Instead the model with an additional strongly coupled dark sector is potentially viable

over a larger range of values of ε0. There the scale Λ is set by Λ4 = 4πf3πyỹ〈h〉2/mL, where

fπ is the dark sector pion decay constant, y and ỹ are additional Yukawa couplings and

mL is the mass of a new fermion which is of order of the weak scale. Taking all parameters

near the weak scale, Λ ≈ 100 GeV is possible.

Supplementing this scenario with a curvaton we can arrive at a minimal scenario that

is compatible with observations. Choosing the curvaton mass sufficiently small we get

ns − 1 ≈ 2ε∗ ≈ 2ε0, which agrees with observations for ε0 ≈ 10−2, and amplitude of

perturbations, can easily be matched to the observed value. This scenario allows M of

order few hundred TeV, while being consistent with CMB observations. A more elaborate

inflationary sector seems to be required to further increase the cut-off scale, while remaining

in agreement with observations.

As mentioned above, in [24] a variation of the relaxion mechanism, the CHAIN mecha-

nism, was presented which works even for Λ ∼M ∼ 109 GeV. This is achieved by modifying

the stopping condition to ε′v2 = gM , where ε′ is a new small (technically natural) parame-

ter (and we take f ∼M), which is constrained by ε′2 . v2/M2. Preforming the same steps

leading to (2.21), we find

M . ε
−1/10
0

(
v4Mpl

)1/5
, (2.31)

where we have eliminated ε′ using ε′ = v2/M2. Since v2 is again the weak scale here, we

find the same parametric behaviour as in the GKR scenario, namely that exceptionally

small values of ε0 are required to increase the cutoff beyond (v4Mpl)
1/5 ∼ 106 GeV. In

practice the constraints on the scenario of [24] are probably stronger, since there is an

additional scalar field which also slow rolls and for which similar constraints as for φ have

to be satisfied.

In the CHAIN scenario the criterion for the instanton potential to be present is easy to

satisfy even in an ordinary radiation or matter dominated universe, only requiring T .M ,

or equivalently H0 .M2/Mpl, since the barriers now appear at the scale M . Therefore it

seems possible that the CHAIN relaxation happens during a radiation or matter dominated

period of the early universe. If this is not followed by a period of inflation, one then faces

the problem that different Hubble patches of the visible universe will have different (but

similar) values of v2, due to quantum spreading of the relaxion [1, 24]. Any scenario where

there is no inflation after the relaxion stops evolving, or where the end of inflation coincides

with the relaxion settling in a local minimum, will have to address this issue.

3 Concluding remarks

In paraphrasing the electro-weak hierarchy into a super cut-off field excursion for the relax-

ion, the GKR mechanism plausibly addresses the hierarchy problem in a technically natural

manner. One of the drawbacks of the original scenario was the astronomical number of
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e-folds apparently required of the inflationary sector (no less than ∼ 1037 e-folds depending

on the model construction) in order to effect enough field excursion for the relaxion. In

this note, we uncovered how incorporating corrections to background quantities over many

Hubble times alleviates the required number of e-folds in situations where the background

breaks dS symmetry. We observed an interesting interplay between the order parameter ε

associated with breaking dS symmetry and the maximum cutoff M attainable in a given

construction. In comparison with the findings of [1], we find that one can reduce the re-

quired number of e-folds down to order 103 for a dark QCD axion with Λ = 100 GeV, at

the expense of having to lower the cutoff to M . 3 × 105 GeV. The cutoff increases with

ε
−1/10
0 while the number of e-folds scales as 1/ε0, therefore increasing M by an order of

magnitude increases the required number of e-folds by a factor 1010.

An additional price paid for lowering the number of e-folds is that the inflaton can no

longer be the source of the observed density perturbations for a large region of parameter

space. This situation is apparently no worse than in [1] where although the amplitude

of the perturbations can be fit, ns appears to be much closer to unity than allowed by

data. We instead propose the curvaton mechanism as viable source of the density pertur-

bations, which for ε0 ∼ 10−2 can be made to fit both the amplitude and spectrum of the

CMB anisotropies. One preserves technical naturalness by default if the curvaton is also

an axionic degree of freedom and provides a minimal framework to be in agreement with

astrophysical observations. As we show in the appendix, the relaxion itself can plausibly

play the role of the curvaton at the expense of introducing fine tuning of initial condi-

tions. Devising a technically natural inflaton plus curvaton sector remains a task for future

investigations.

Models with a dark QCD near or below the weak scale seem to be preferred for the

minimal relaxion mechanism to work, and a question that arises immediately in this context

is why the scale of the dark sector should be close to the weak scale. One possibility to

dynamically connect the scales is provided by approximate infrared fixed points in the

running of the gauge couplings [26]. This construction requires additional states in the few

TeV range, which could also serve as portals to allow entropy transfer from the dark QCD

to the visible sector. Possible collider signatures in that case include displaced decays of

dark mesons or glueballs [27–29], emerging jets [30], or other typical signatures of hidden

valley models [31], depending on the exact mass scales involved. Since the new states in the

hidden sector can not decouple without spoiling the relaxion mechanism (unless additional

relaxion fields are introduced [24]), a careful study of the expected collider signals and the

effects on electroweak precision observables would be valuable.

Another interesting aspect concerns the cosmology of these models. Besides the obvious

task of constructing viable (and natural) inflationary backgrounds, the generation of the

observed baryon asymmetry becomes a relevant problem now. Presumably a reheating

temperature below Λ is preferred to prevent the relaxion from evolving after the end of

inflation. Cold baryogenesis [32–35] is an obvious candidate mechanism for producing an

asymmetry in this environment, and it would be interesting to determine whether it can

be implemented without introducing new fine tuning problems.
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A Field redefinitions and higher order corrections

The relaxion potential as introduced in [1] is an expansion in powers of (gφ/M2), where

M is the scale that characterizes the UV completion of the theory. Therefore, the full

potential can be written as

V (φ) = M4
∑

cn

(
gφ

M2

)n
. (A.1)

For small field values this is clearly dominated by the linear term, however the relaxion

mechanism can only be considered compatible with naturalness if we allow for field excur-

sions ∆φ &M2/g, in which case all terms in the potential could become equally important.

To see that the linear term accurately captures the dynamics over a field range approxi-

mating ∆φ ∼ M2/g, it is useful to expand the field around the EW symmetry breaking

field value M2/g as φ = M2/g + σ, since we are interested in the dynamics of φ near that

point. The potential for σ then becomes

V (σ) = c′0 + c′1gM
2σ +O(g2σ2) , (A.2)

where now the higher order terms are negligible (since σ < M2/g) and where c′0 contributes

to the bare cosmological constant and c′1 =
∑

n ncn. We are therefore justified in only

considering the linear term for the evolution of φ in the region we are interested in, namely

near φ = M2/g. The higher order terms in the potential can be absorbed in a redefinition

of g and M2. We note that requiring that
∑

n ncn be finite is readily conceivable if the UV

completion describes weakly coupled dynamics of the putative UV degrees of freedom.

B The relaxion as a curvaton

We had previously observed that for backgrounds for with ε & O(10−34), the curvature per-

turbations have to be generated by some mechanism other than the standard inflationary

one. The curvaton mechanism offers a viable candidate, and it is natural to ask whether

the relaxion could play the part of the curvaton.

As detailed in [18, 19], the curvaton mechanism relies upon an effectively light spec-

tator field during inflation (which acquires a close to scale invariant spectrum by default),

which begins to oscillate around the minimum of its potential during radiation domina-

tion (i.e. after reheating). In order for a scale invariant, Gaussian spectrum of curvature
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perturbations to be generated14 three conditions have to be satisfied: i) the Hubble factor

during radiation domination be such that Hr < mσ so that the relaxion be able to oscillate

around its minimum; ii) that as the modes that we observe in the CMB exited the horizon,

H∗ � σ∗ so that the perturbations δσ/σ∗ remain weakly coupled (i.e. Gaussian) and iii)

that the curvaton be coupled to the radiative degrees of freedom at tree level so that it can

subsequently decay efficiently [18].

The last condition is trivially satisfied since the relaxion by definition couples to gauge

bosons (be they in visible or dark sectors). The first condition neccessitates that in addition

to inflation ending before the relaxion finds its minimum, that EW symmetry breaking

occurs before BBN, and that necessarily for the barriers to have formed in the first place,

Tr =
√
MplHr . Λ . (B.1)

This can be shown to impose a tuning of initial conditions for φ0 such that ∆φ0/(M
2/g) is

specified to percent level precision, evidently the price to pay for not having to introduce

additional degrees of freedom. Furthermore we require that at this time Hr . mσ so that

the relaxion can oscillate around its minimum. That this is plausible can immediately be

inferred from the fact that once EW symmetry breaking has been effected, fluctuations of

the relaxion around its metastable minimum (parametrized as φ = M2/g+σ) will have an

effective mass of

m2
σ ∼

Λ4

f2
∼ gM , (B.2)

which follows directly from (1.1) when 〈h〉 = v and the relation (1.3) presuming the natural

value for the axion decay constant f ∼ M . Given that the implied curvaton mass ranges

from m2
σ = 10−6 GeV if the relaxion is the QCD axion (Λ = 1 GeV) or m2

σ = 10−2 GeV

if it is a dark QCD axion (Λ = 100 GeV), we see immediately that this is far above the

upper bound on Hr set by (B.1) Hr . Λ2/Mpl ∼ 10−14–10−18 GeV. Hence we conclude that

efficient conversion of the isocurvature perturbations is possible in the radiation dominated

phase with the relaxion as the curvaton.

The requirement that H∗/σ∗ � 1 during inflation ensures that the subsequent curva-

ture perturbations will be close to Gaussian [18] consistently allows for the amplitude for

the power spectrum (2.30) to be fit to observations as

∆R ≈ κ2
H2
∗

π2σ2∗
' 2.2× 10−9 , (B.3)

where κ is the fraction of the curvaton energy density to radiation immediately prior to

its decay. Since we require H . Λ throughout inflation, we see that H∗ � σ∗ if Λ � σ∗.

From (2.21) we see that for ε0 ∼ 10−2–10−20 a dark QCD axion Λ = 102 GeV implies

that M2/g ∼ 1018 GeV, and that since 0 ≤ σ ≤ M2/g, the condition H∗ ≤ Λ � σ

is satisfied for almost all of the permissible field range. In order to ensure the correct

14This generation occurs via isocurvature perturbations (corresponding to the curvaton) sourcing curva-

ture perturbations through the presence of non-adiabatic pressure perturbations during radiation domina-

tion. Consequently, the spectral properties of the curvaton spectrum imprint onto the curvature perturba-

tion as the curvaton decays.
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normalization (B.3) requires however that whatever the scales H∗ and σ∗ during inflation,

κ has to have the precise value (during radiation domination) such that (B.3) is satisfied.

This can only be viewed as another source of tuning in addition to the tuning of initial

conditions required by satsifying (B.1) throughout. As discussed in [36], this mechanism

is further constrained by the fact that unless an additional mechanism halts the relaxion

immediately as it encounters its first local minimum, σ∗ is expected to be at least of order

f since this is the field displacement in the relaxion potential equivalent to the energy

displacement implicit in the formulae above. This means that since

∆R ≈ κ2
H2
∗

π2σ2∗
.
κ2

π2
Λ2

f2
, (B.4)

one has yet further fine tuning of initial conditions (now in the inflaton sector) such that

the COBE pivot scale we see in the CMB must have exited the horizon when the right hand

side above is of the right order. As discussed below (2.21) for low scale cut-off models (with

ε ∼ 10−2) Λ/f ∼ 10−3 one can plausibly accomplish this with enough tuning of parameters

and initial conditions, however this rapidly becomes impossible for models with very high

cut-offs (i.e. very close to dS, cf. (2.21)).
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