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1 Introduction

The black hole information paradox [1] represents a long-standing challenge for any theory

of quantum gravity. Over the past few years, following its sharpening using quantum

information theory [2], it has become increasingly clear that in order to solve this paradox

there must be new physics at the black hole horizon. There are many arguments that lead

to the same conclusion, some focused on the experience of infalling observers [3–6] (see

also [7]), some based on the AdS-CFT correspondence [8, 9], and some based on quantizing

fields at the horizon [10].

A common approach is to replace the vacuum at the black hole horizon by nontrivial

structure that allows information to escape, thus preserving unitarity [11–15].1 However,

1There are also approaches that involve postulating nonlocal physics outside black hole horizons [16–18].
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attempts to construct structure at the horizon face three challenges. First, horizons are null

surfaces, and thus naive attempts to put structure there fail: massive objects fall through

the horizon, while massless fields dilute in a horizon-crossing time. Second, black holes

have entropy, so any structure replacing the horizon must have entropy large enough to

reproduce the Bekenstein-Hawking entropy of the black hole. Third, the size of a black hole

horizon increases as one increases Newton’s constant, GN , so that any kind of structure

that might replace it should also grow with GN in exactly the same way.

The most successful approach to constructing such structure, passing all of the above

tests, is the fuzzball programme in string theory [19–24]. In this programme one often

considers semi-classical microstates, which are well-described within supergravity. The

resulting supergravity solutions are known as “microstate geometries” or black hole solitons.

These microstate geometries have no horizon or singularities, but have nontrivial topology

supported by fluxes, such that the solutions have the mass and charges of a black hole.

For large supersymmetric black holes a very large number of such microstate geometries

have been constructed (see for example [12, 25–30]) and their entropy has been argued

to reproduce the growth with charges of the Bekenstein-Hawking entropy of the black

hole [31]. Similarly, one can also construct microstate geometries for extremal non-BPS

black holes by starting from almost-BPS multi-center solutions [32] and performing certain

duality transformations [33]. Thus, for extremal black holes, this programme has had

considerable success.

However, non-extremal black holes present a much greater challenge. To date there

exists only a handful of exact microstate solutions that have the mass and charges of non-

extremal black holes. The earliest-known examples are the solutions of Jejjala, Madden,

Ross and Titchener (JMaRT) [34] and their generalizations [35–37]. The JMaRT solutions

have more angular momentum than a physical black hole with the same mass and charges,

and hence in the decoupling limit correspond to CFT states that are far away from the

sector which dominates the black hole ensemble. In addition, these solutions have a single

topologically-nontrivial cycle, and the methods originally used to find these solutions do

not appear useful for constructing solutions with more complicated topologies.

Other smooth non-extremal geometries have been found by generalizing the known

systems describing extremal solutions, for example the running-Bolt solution [38] and its

multi-center generalization [39]. Unfortunately, it turns out that these solutions violate

the BPS bound and do not admit a spin structure [39, 40], and hence they are not good

candidates for describing black hole microstates. There is also a proposal for constructing

microstates of neutral black holes [41], which can be very long-lived, but do not appear to

be described by stationary supergravity solutions.

Besides the above exact solutions, there exists a proposal to build large classes of

microstate geometries for near-extremal black holes by placing negatively-charged probe

supertubes in supersymmetric solutions [42, 43]. The action of these supertubes has

metastable minima, but it has recently been shown that these solutions are classically

unstable to decay into supersymmetric microstates [44].

Given this state of affairs, it appears that the most promising direction towards building

smooth microstate geometries with the asymptotic mass and charges of non-extremal black
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holes is to construct multi-centered generalizations of the JMaRT solution and similar

solutions. The first step in this direction was the discovery, by two of the present authors,

of a partially-solvable system of differential equations that describes solutions with non-

extremal asymptotic structure, and includes the JMaRT solutions [45].

This system, described in detail in section 2, is built upon an auxiliary four-dimensional

Euclidean Maxwell-Einstein subsystem, similar to that of [46]. Thus, it allows one to start

from a known gravitational instanton with a set of desirable properties and to construct

solutions systematically. The four-dimensional instanton underlying the JMaRT solution

contains a two-dimensional surface, known as a bolt. It turns out that it is straightforward

to construct solutions with more topological cycles by starting from other instantons with

Gibbons-Hawking centers at a finite distance from the bolt. In principle this method can

be used to construct solutions with an arbitrary number of Gibbons-Hawking centers.

Our present goal is to construct black hole microstate geometries, which are asymptoti-

cally-flat solutions that have no horizons or closed timelike curves (CTCs) and are smooth

up to acceptable singularities.2 The purpose of this paper is to give a proof of principle

of the possibility of constructing multi-center generalizations of the JMaRT solutions, and

more generally, of constructing multi-bubble non-extremal black hole microstate geome-

tries. We do this by considering its simplest extension, obtained by adding to the bolt a

single Gibbons-Hawking center.

Our solution is the first smooth horizonless non-extremal black hole microstate ge-

ometry that has more than one topologically-nontrivial three-cycle. The solution has two

three-cycles: the first is the three-dimensional bolt already present in the JMaRT solution,

and the second extends between the bolt and the additional Gibbons-Hawking center, and

is supported by nontrivial flux.

In the JMaRT solutions, both angular momenta are over-rotating with respect to the

regime of parameters of the non-extremal (Cvetic-Youm) D1-D5-P black hole [47]. In our

solutions one angular momentum is within this bound, while the other exceeds it by a rather

small amount. Thus our construction represents a significant improvement in this respect.

We will discuss this in detail in due course. In the context of the fuzzball proposal, our

solutions should be viewed as describing atypical semi-classical microstates of non-extremal

D1-D5-P black holes in an ensemble in which the angular momenta are not fixed.

The structure of this paper is as follows. In section 2 we give a self-contained ex-

position of the system of [45] in its six-dimensional incarnation, describing solutions of

N = (1, 0) supergravity in six dimensions coupled to a single tensor multiplet, or of Type

IIB supergravity compactified on T 4 or K3. We further present a class of solutions to this

system, which in principle allows for an arbitrary number of Gibbons-Hawking centers to

be added to the JMaRT bolt. We then proceed in section 3 to perform a detailed analysis

of the asymptotic structure, smoothness and absence of CTCs for a solution with a single

2We emphasize the importance of constructing structure that replaces the black hole horizon using

smooth horizonless solutions, that can be described in a controllable way. Singular solutions can vastly

over-count the black hole entropy, and should therefore be discarded unless one can argue that they arise

as limits of smooth solutions, or that one understands the mechanism by which the singularity is resolved

in string theory. For further discussion, see [24].
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additional Gibbons-Hawking center. These requirements lead to a number of algebraic

constraints on the parameters of the solution, most of which can be solved explicitly, with

three polynomial constraints remaining as nontrivial conditions to be satisfied. In section 4,

we discuss the topology of the smooth solution and the fluxes supporting it, commenting

on the topology of solutions with more Gibbons-Hawking centers. In section 5 we solve

the three remaining polynomial constraints, and present an explicit set of parameters that

gives a smooth microstate geometry. Section 6 contains concluding remarks, and the two

appendices describe the relation of our six-dimensional ansatz to five- and four-dimensional

supergravity, and give the explicit expressions of the vector fields appearing in our solution.

2 The ansatz for six-dimensional supergravity

We work in six-dimensional N = (1, 0) supergravity, coupled to a single tensor multiplet.

The field content of this theory is the metric, a two-form potential B, and a scalar φ.

The theory is a consistent truncation of Type IIB supergravity compactified on T 4, and

also of the N = (2, 0) effective six-dimensional supergravity describing Type IIB string

theory compactified on K3. The two-form potential in six dimensions descends from the

IIB Ramond-Ramond two-form, while the scalar field e2φ can be viewed both as the dilaton

and the warp factor of the internal T 4/K3, since the two are equal in this truncation.

From a string theory point of view, our system describes a D1-D5-P bound state where

the D1-branes wrap a circle with coordinate y, and D5-branes wrapping the y circle and the

internal T 4/K3, and where the momentum charge P is along y. We consider the internal

four-dimensional space to be microscopic, while the y circle S1
y is macroscopic, and so our

six-dimensional asymptotics are R
4,1 × S1

y . The resulting effective string in six dimensions

carries both electric and magnetic charge with respect to B [48].

To construct non-supersymmetric solutions to this theory, we use the partially-solvable

system of differential equations discovered in [45], whose solutions automatically solve the

equations of motion of supergravity. This system was found by considering the three-

dimensional non-linear sigma model over a para-quaternionic symmetric space that one

obtains after dimensional reduction of N = (1, 0) supergravity in six dimensions along

one time-like and two space-like isometries. The relevant equations are given in terms of

the Ernst potentials underlying the solutions to an auxiliary Euclidean Maxwell-Einstein

subsystem (similar to other related systems [39, 46]), which we now discuss.

All solutions to the four-dimensional Euclidean Maxwell-Einstein equations with one

U(1) isometry can be described in terms of an SL(3)/GL(2) non-linear sigma model coupled

to Euclidean gravity in three dimensions, upon reduction along the isometry. The relevant

degrees of freedom are the four Ernst potentials E± and Φ±, which satisfy the equations

(E+ + E− + Φ+Φ−

)

∆E± = 2(∇E± + Φ∓∇Φ±)∇E± ,
(E+ + E− + Φ+Φ−

)

∆Φ± = 2(∇E± + Φ∓∇Φ±)∇Φ± . (2.1)

The potentials determine the three-dimensional Riemannian metric γij via

R(γ)ij =
(∂(iE+ + Φ−∂(iΦ+)(∂j)E− + Φ+∂j)Φ−)

(E+ + E− + Φ+Φ−)2
− ∂(iΦ+∂j)Φ−

E+ + E− + Φ+Φ−

. (2.2)
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The four-dimensional metric is then determined by the potential V and the vector σ, which

are given by

V −1 = E+ + E− + Φ+Φ− , ⋆dσ = V 2 (dE+ − dE− + Φ−dΦ+ − Φ+dΦ−) . (2.3)

This four-dimensional metric does not appear explicitly in our Minkowski-signature six-

dimensional metric, however it will be convenient to use V and σ in the following.

2.1 Six-dimensional metric

In the partially-solvable system of [45], the Einstein-frame metric takes the form

ds2 =
H3√
H1H2

(dy + A3)2 − W

H3

√
H1H2

(dt + k)2 +
√

H1H2

(

1

W
(dψ + w0)2 + γijdxidxj

)

,

(2.4)

where γij is the three-dimensional base of a solution to the Euclidean Maxwell-Einstein

equations, as described above. Note that we write the metric in a form natural for a

Kaluza-Klein reduction to five dimensions, where the relevant Kaluza-Klein vector field

is A3. The notation A3 is motivated by the fact that it is one of the three gauge fields

appearing symmetrically in the resulting five-dimensional theory. The vectors A3 and k

decompose as

A3 = A3
t (dt + ω) + α3 (dψ + w0) + w3 , k = ω +

µ

W
(dψ + w0) . (2.5)

The expressions for the scalar µ and the vectors ω, w0, w3 are given below, while the

expressions of A3
t and α3 are displayed in the next subsection in eqs. (2.19) and (2.20) to

emphasize the triality symmetry of the system.

The ansatz is written in terms of three layers of functions. Firstly we have the four

Ernst potentials underlying a solution to the Euclidean Maxwell-Einstein equations. Sec-

ondly we have four functions La, Ka, for a = 1, 2, that solve certain linear equations in

the Maxwell-Einstein background. Thirdly we have two functions, L3, K3 that solve linear

equations in the same background, with sources quadratic in La, Ka. The set of functions

W , µ, HI (for I = 1, 2, 3) appearing in the metric and gauge fields are given in terms of

combinations of these 10 functions.

To write the ansatz, we split the index I = (a, 3), with a = 1, 2, and we introduce the

SO(1, 1) invariant metric3

ηab =

(

0 1

1 0

)

(2.6)

3This metric identifies the theory as the first in an infinite class of theories including n minimally coupled

tensor multiplets, for which a corresponding ansatz can be built using the expressions given in this section,

upon extending ηab to an SO(1, n) invariant metric.

– 5 –



J
H
E
P
0
2
(
2
0
1
6
)
0
7
3

and its inverse ηab. The functions W , µ, HI are then given by

W =
1

16
(L3)2 − 1

4
V K1K2K3 Φ− ,

Ha =
1

4
ηabL

b(L3 − V Φ−KcL
c) +

1

4
(V Φ−L1L2 − K3)Ka ,

H3 =
1

4
V (E− + Φ+Φ−)

(

(1 − V E+) K1K2 − E+L3
)

+
1

4
V E2

+Φ−K3 ,

µ = − W Φ+ − 1

16

(

2 (1 − V E+) K1K2 − E+L3
)

(K3 + V Φ−L1L2)

− 1

16
V

(

2 E+Φ−K3 − (E− + Φ+Φ−) L3
)

KaL
a . (2.7)

Similarly, the vector fields w0 and w3 which appear in the metric are determined from the

first-order equations:

⋆dw0 =
1

4
dL3 − 1

2
V Φ−KadLa − 1

2
V K3 Φ−dE+ +

1

2
V (L3 + V K1K2) Φ−dΦ+

+
1

4
K1K2 (dV + ⋆dσ) ,

⋆dw3 =
1

2
V

(

V −1dK3 − d(Φ−L1L2) + (Ka + Φ−La) dLa − La d(Ka + Φ−La) + 2 K3 dE+

)

− V (L3 + V K1K2) dΦ+ + 2 V L1L2 dΦ− +
1

2
(LaKa + Φ−L1L2) ⋆ dσ , (2.8)

while the vector field, ω, corresponding to the time fibration, is determined by

4 ⋆ dω = d
(

Φ+L3 − E+K3
)

+ V E−(KadLa − LadKa) − V Φ+Φ−d(KaL
a)

+ 2 V E−

(

K3 dE+ − (L3 + V K1K2)dΦ+

)

+ V KaL
a dE+

+ V E+Φ−d(L1L2) + V (Φ−dE+ − E+dΦ−)L1L2

− 2 V 2Φ+(dE− + Φ+dΦ−)K1K2 − E+(KaL
a + Φ−L1L2) ⋆ dσ . (2.9)

2.2 The matter fields

We next describe the ansatz for the matter content of the theory. Firstly, the scalar field,

which can be identified with the dilaton of the D1-D5 system, is given by

e2φ =
H1

H2
. (2.10)

The equation of motion for the two-form potential B,

d
(

e2φ ⋆6 H
)

= 0 , (2.11)

expressed in terms of the three-form field strength, H = dB, can be recast by introducing

the dual three-form field strength, H̃ = dB̃, as

eφ ⋆6 H + e−φH̃ = 0 . (2.12)

The dual three-form H̃ = dB̃ can be thought of as a magnetic dual to H, similar to

the dual vector field strengths appearing in four-dimensional theories. The two-form B

– 6 –
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can be identified with the Ramond-Ramond two-form potential of the D1-D5 system in

Type IIB supergravity on T 4/K3, whereas B̃ descends from the Ramond-Ramond 6-form

wrapping T 4/K3.

The two-form potentials B and B̃ can be expressed in terms of three-dimensional

quantities. We first introduce the scalars Aa
t , βa and αa, with the latter identified as two

of the three axions in the reduction to four dimensions. We then introduce the three-

dimensional one-forms va, wa and ba, which will be defined shortly. Finally, we define the

two-forms in three dimensions, Ωa, through

dΩa = va ∧ dw0 − ηabw
b ∧ dw3 + ba ∧ dω . (2.13)

In terms of these quantities, we have

B = A1
t (dy + w3) ∧ (dt + ω) + α1 (dy + w3) ∧ (dψ + w0) − β2 (dt + ω) ∧ (dψ + w0)

− w1 ∧ (dy + w3) + b2 ∧ (dt + ω) + v2 ∧ (dψ + w0) + Ω2 ,

B̃ = A2
t (dy + w3) ∧ (dt + ω) + α2 (dy + w3) ∧ (dψ + w0) − β1 (dt + ω) ∧ (dψ + w0)

− w2 ∧ (dy + w3) + b1 ∧ (dt + ω) + v1 ∧ (dψ + w0) + Ω1 . (2.14)

Note that the Ωa ensure that in H and H̃, the vectors wa, ba and va only appear through

the gauge-invariant quantities dwa, dba and dva. The Ωa vanish for axisymmetric solutions,

since all vector fields have components along the angular coordinate around the axis, im-

plying that their wedge products appearing in (2.13) vanish identically. We only construct

axisymmetric solutions in the current work, so we now set Ωa to zero.

The one-forms, wa, va, ba in (2.14) are determined in terms of the functions appearing

in the ansatz by solving the first-order equations

⋆dwa =
1

2
d

(

ηabKb − E+V (ηabKb + Φ−La)
)

+ E+V LadΦ−

− E+V 2 (ηabKb + Φ−La)(dE− + Φ+dΦ−) , (2.15)

⋆dba = V (ηab Φ−dLb + dKa) − ηab V LbdΦ− − (ηab Φ− Lb + Ka) ⋆ dσ , (2.16)

⋆dva = − 2 ηabL
b V dE− − V d

(

Φ+Ka − (E+ + E−)ηabL
b
)

+
(

Φ+Ka − (E+ + E−)ηabL
b
)

⋆ dσ . (2.17)

Their explicit form can be obtained straightforwardly for any given solution to the system.

The scalars βa are given by

β1 = − 1

2 H2

(

K3 + V (K1L1 − K2L2) − V Φ−L1L2
)

,

β2 = − 1

2 H1

(

K3 + V (K2L2 − K1L1) − V Φ−L1L2
)

. (2.18)

Finally, the electric components AI
t , of the five-dimensional vectors AI are given by

A1
t =

1

4 H1

(

L3 − 2 V Φ− K2L2
)

,

A2
t =

1

4 H2

(

L3 − 2 V Φ− K1L1
)

,

A3
t =

1

4 H3

(

(2 V E+ − 1)L3 + 2 (V E+ − 1) V K1K2 + 2 V K3Φ−E+

)

, (2.19)
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while the three axions are

α1 =
1

4 H1

(

V E−(K1L1 − K2L2) − Φ+L3 + E+ K3 − V
(

E+Φ−L1L2 − Φ+Φ−KaL
a
))

,

α2 =
1

4 H2

(

V E−(K2L2 − K1L1) − Φ+L3 + E+ K3 − V
(

E+Φ−L1L2 − Φ+Φ−KaL
a
))

.

α3 =
1

4 H3

(

(1 − 2 V E+)Φ+L3 + (1 − 2V Φ−Φ+)E+K3 + E+Φ−V L1L2

−(1 − V E+)(KaL
a − 2V Φ+K1K2)

)

. (2.20)

Note that in the above we have given the components A3
t and α3 of the gauge field A3

in (2.5), using a naming convention that highlights the triality that arises when the reduc-

tion to five- and four-dimensional supergravity is performed. In appendix A we give some

details on the dimensional reduction of this solution to lower dimensions.

This ansatz is rather complicated, but is solvable by construction. The equations of

motion satisfied by the Ernst potentials E±, Φ± and the Euclidean three-dimensional base

metric are displayed in (2.1)–(2.2). The six functions LI and KI solve a hierarchy of

linear equations defined by the Bianchi identities for the vectors dw0, dwI , dω, dva and dba
in (2.8), (2.9), (2.15), (2.16) and (2.17). Once these functions are obtained, the solution is

completely determined.

2.3 Multi-center solutions

We now turn to particular solutions to the system of the previous subsection. We first

choose a Euclidean Maxwell-Einstein base, which defines the three-dimensional base met-

ric and the Ernst potentials appearing throughout the system of equations. As mentioned

above, we will allow for extra poles in the Ernst potentials, describing Gibbons-Hawking-

like centers, however we take the three-dimensional metric to be that of Euclidean Kerr-

Newman throughout the paper. This ensures the absence of conical singularities in the

three-dimensional base metric. Such singularities are related to attractive net forces be-

tween the centers, which vanish in our ansatz.

It will be convenient to use spherical coordinates (r, θ, ϕ) in which the base metric

takes the form

γijdxidxj =
(

r2 − c2 + a2 sin2 θ
)

(

dr2

r2 − c2
+ dθ2

)

+
(

r2 − c2)

sin2 θ dϕ2 . (2.21)

We can also express the metric in Weyl coordinates, defined through4

r± =
√

ρ2 + (z ∓ c)2 , 2 r = r+ + r− , 2 c cos θ = r− − r+ , (2.22)

in terms of which

γijdxidxj =
r2 − c2 + a2 sin2 θ

r+r−
(dz2 + dρ2) + ρ2 dϕ2 . (2.23)

4Note that we have interchanged the definitions of r+ and r− with respect to those of [45]; in our

conventions r+ vanishes at the North Pole.
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The fact that we impose a particular three-dimensional base, rather than solving for it

through (2.2), implies additional restrictions on the Ernst potentials. We therefore consider

the following ansatz for these potentials,

E+ = − 1 +
2 (r + a cos θ)

r + a cos θ + m+ + H (r + a cos θ + 1
m−

(c2 − a2))
,

E− = 1 − 2 m−

r − a cos θ + m−
,

Φ+ =
1

e−

m+m− − (c2 − a2) + m− H
(

r + a cos θ + 1
m−

(c2 − a2)
)

r + a cos θ + m+ + H
(

r + a cos θ + 1
m−

(c2 − a2)
) ,

Φ− =
2 e−

r − a cos θ + m−
. (2.24)

It was shown in [45] that these potentials solve eqs. (2.1) and (2.2) provided that H is a

solution to the following equation on the base:

∆H =
2 (c2 − a2) (r − a cos θ + m−)

(r2 − c2 + a2 sin2 θ)
(

m−(r + a cos θ) + c2 − a2
)∇(r + a cos θ) · ∇H (2.25)

This is a linear equation which is straightforward to solve, and its solutions can be

superposed:

H = h +
∑

A

HA , (2.26)

where h is a constant. The functions HA have poles at additional centers that we denote

by xA. We will only consider axisymmetric solutions, for which the additional poles are

all on the rotation axis of the original Kerr-Newman solution, so that in Weyl coordinates

we have (zA, ρA) = (RA, 0). Then HA takes the form

HA =
8 nA

(RA − a)
(

r + a cos θ + c2−a2

m−

)

(RA − a)r + (a RA − c2) cos θ
√

(RA − r cos θ)2 + (r2 − c2) sin2 θ
, (2.27)

where nA are constants parametrizing the residue of the function V at the poles.

In terms of the Einstein-Maxwell theory, the Ernst potentials (2.24) describe the Wick

rotation of a Kerr-Newman black hole, when H = 0. In these coordinates, the horizon is

at r = c and remains a special locus in the full supergravity solution, as we will discuss

in section 3.2. The extra poles in H can be viewed as describing Gibbons-Hawking-type

centers, as can be verified by expanding the solution in their vicinity.

Given this base, one can solve the Bianchi identities for the vector fields dw0, dwI , dω,

dva and dba, given in (2.8), (2.9), and (2.15)–(2.17), to obtain the functions KI and LI . It

was shown in [45] that a particular solution to this system can be defined in terms of the
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Ernst potential themselves as

Ka = ηabq
b + (E+ + 1)ηabl

b ,

La = pa −
(

E+ + 1 − V −1
) la

Φ−

,

K3 =
(

E+ + 1 − V −1
)2 V

Φ−

l1l2 + p3 V −
(

l3

Φ−

− q3

)

(V (E+ + 1) − 1) ,

L3 = − laKa (V (E+ + 1) − 1) − (p3Φ− + q1q2) V +
(

l3 − q3 Φ−

)

V (E+ + 1) , (2.28)

where lI , pI and qI for I = {1, 2, 3} are integration constants. The pI and qI are related to

the asymptotic charges, while the la parametrize the asymptotic values of the dilaton (2.10)

and the gyy component of the metric.

The above equations specify the solution for all the supergravity fields. Note that we

have been able to write the entire solution in terms of the functions E+ and V appearing

in the Maxwell-Einstein instanton. This is an artifact of the solution (2.28) representing

a restricted ansatz and not the most general solution to the system. Furthermore, it will

turn out that this ansatz cannot be used to construct smooth solutions with more than

one additional Gibbons-Hawking center. Nevertheless, we will see in the following that it

includes smooth microstate geometries with two nontrivial three-cycles.

3 Regular solutions to the system

From now on we will focus on solutions in which the function H has a single pole. In order

to simplify the required manipulations, it is useful to make some gauge transformations

and coordinate transformations on the solution obtained by directly substituting (2.28) in

the relevant expressions.

Firstly and most importantly, we shift away various asymptotic constants from the

components of the metric and two-forms B and B̃, using diffeomorphisms and gauge trans-

formations respectively. Specifically, shifting the asymptotic values of the scalars αa, βa
and Aa

t to zero in (2.14) is equivalent to a gauge transformation on the two-forms, provided

that the vector fields are redefined as

wa → wa + Aa
t

∣

∣

∞
ω + αa

∣

∣

∞
w0 ,

va → va − βa
∣

∣

∞
ω + ηab αb

∣

∣

∞
w3 ,

ba → ba + ηab Ab
t

∣

∣

∞
w3 + βa

∣

∣

∞
w0 , (3.1)

where we denoted the asymptotic values of the scalars by
∣

∣

∞
. In addition, one may remove

the asymptotic constants of A3
t and α3 appearing in the Kaluza-Klein gauge field A3 in (2.5)

by a diffeomorphism mixing the coordinate y with t and ψ at infinity, provided one imposes

the redefinition

va → va + α3
∣

∣

∞
ηab wb ,

ba → ba + A3
t

∣

∣

∞
ηab wb ,

βa → βa + α3
∣

∣

∞
ηab Ab

t . (3.2)
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Finally, we shift away the constant values of ω, w3 and the wa at infinity by appropriate

mixing of the coordinates t, y with ϕ and a further gauge transformation on the two-forms

respectively, which do not induce any additional redefinitions. Henceforth, we assume that

the transformations (3.1) and (3.2) have been applied on all fields. The relevant asymptotic

constants appearing are not illuminating and play no role in the following, so we refrain

from giving them explicitly.

For later convenience we reparametrize the constant n1 appearing in H via (2.27) by

n1 = N
q1q2 . We also set the asymptotic constant h = −1, which is required for asymptotic

flatness as we will discuss next. Then the function H in (2.26) becomes

H = −1 +
8 N

q1q2(R − a)
(

r + a cos θ + c2−a2

m−

)

(R − a)r + (a R − c2) cos θ
√

(R − r cos θ)2 + (r2 − c2) sin2 θ
, (3.3)

where R denotes the distance along the positive z axis from the origin to the Gibbons-

Hawking center. With this normalization, N will turn out to be quantized as an integer

when we impose smoothness.

3.1 General requirements for asymptotic flatness and regularity

As we have discussed, to obtain a D1-D5-P black hole microstate geometry, we require

R
4,1 × S1 asymptotics, smoothness, and no closed timelike curves (CTCs). As found

in [45], for R
4,1 × S1 asymptotics, the parameters in (2.28) are given by

lI = 0 , h = −1 , e− =
1 + x

q3
,

p1 = −1 − m−

2 (1 + x)
q1q3 , p2 = −1 − m−

2 (1 + x)
q2q3 , p3 =

m−

2 (1 + x)
q1q2q3 ,

m+ =
1

m−
(c2 − a2) − 4

q1q2
(x − 1) − 8

q1q2
N , (3.4)

where x is a constant parametrizing e− that we introduce for convenience. The parameter

m− is also fixed:

m− =
1

4
(c2 − a2) q1q2 − q1 + q2

q1q2q3
(x2 − 1) − (1 + x)2

(q3)2
. (3.5)

We will mostly avoid using this explicit expression for ease of notation. With these choices,

the various functions behave asymptotically as

W =
1

r2
+ O(r−3) , HI =

1

r
+ O(r−2) , w0 = − cos θdϕ + O(r−1) ,

µ

W
=

−Jψ + Jϕ cos θ

8 r
+ O(r−2) , ω = −Jϕ sin2 θ

8 r
dϕ + O(r−2) , (3.6)

where Jψ and Jϕ stand respectively for the angular momenta along the directions ψ and

ϕ, and are given in (3.9) below. The coordinates y, ψ, ϕ are subject to the identifications

y ∼ y + 2πRy , ψ ∼ ψ + 4π , (ψ, ϕ) ∼ (ψ, ϕ) + (2π, 2π) , (3.7)

where Ry will be fixed in terms of other parameters in the solution in due course.
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Note that we set all lI = 0, whereas strictly speaking only l3 = 0 is required to ensure

that the spacetime be asymptotically R1,4 × S1. These additional conditions moreover

imply the dilaton e2φ and gyy to tend to 1 at asymptotic infinity. There is no loss of

generality in doing this, since we keep the radius of the y circle explicitly as Ry, and since

more general asymptotic values of e2φ can be obtained straightforwardly by an appropriate

rescaling.

Because the solution describes a microstate of a five-dimensional black hole, it is use-

ful to compute its five-dimensional asymptotic charges. The five dimensional solution

(obtained by reduction on the asymptotic circle) carries three total electric charges:

QI = 4
x2 − 1

qI+1qI+2
− (a2 − c2) qI+1qI+2 , (3.8)

where Qa for a = 1, 2 are defined in six dimensions as the asymptotic fluxes of the three-form

H and its dual H̃, as shown in section 4, and R 2
yQ3 represents the asymptotic momentum

along the y direction.

The five-dimensional ADM mass and the angular momenta along the remaining two

directions, ψ and φ, are given by5

MADM =
∑

I

EI ,

Jϕ = a

(

(a2 − c2) q1q2q3 + 4(x2 − 1)
∑

I

1

qI

)

+
16N(x + 1)

q1q2q3

(R2 − c2)

(R − a)2
,

Jψ = 2 x

(

(a2 − c2)
∑

I

qI + 4
x2 − 1

q1q2q3

)

, (3.9)

where the constants EI are given by6

EI = 4
x2 − 1

qI+1qI+2
+ (a2 − c2) qI+1qI+2 , (3.10)

and satisfy the conditions

E2
I = Q2

I + 16(x2 − 1) (a2 − c2) . (3.11)

Our solution has coordinate singularities at the bolt and the additional center at the

pole of H in (3.3). To ensure smoothness, we must therefore show that various functions

have poles of the usual type compatible with regularity of the full metric. We first an-

alyze the conditions for regularity away from such special points, postponing an explicit

discussion of these for the next subsection.

The determinant of the metric is

g = H1H2(r2 − c2 + a2 sin2 θ)2 sin2 θ (3.12)

5We have used the explicit expression for R that will come later in (3.22) to simplify the second factor

in Jϕ.
6Note the redefinition with a factor of 4 with respect to [45] in order for EI to coincide with the charges

in the BPS limit.
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and so away from special points, the functions H1 and H2 cannot go to zero or infinity.

Given their 1/r behaviour at infinity, as in (3.6), it follows that H1 and H2 must be strictly

positive and finite everywhere away from the special points.

To find the conditions for the absence of CTCs, we take the line element and complete

the squares successively in y, ψ, ϕ. The metric in these periodic directions must not have

negative eigenvalues, so the three diagonal terms must be non-negative.

After completing the squares in y and ψ, the line element then takes the form

ds2 =
H3√
H1H2

(dy + A3)2 +
H1H2H3 − µ2

WH3

√
H1H2

[

(dψ + w0) − Wµ

H1H2H3 − µ2
(dt + ω)

]2

+
√

H1H2

[

− W

H1H2H3 − µ2
(dt + ω)2 + γijdxidxj

]

. (3.13)

Firstly, considering the gyy component of the metric, we see that H3 must be positive.

Similarly, we see that from the prefactor of the ψ fiber combination that we require

H1H2H3 − µ2

W
≥ 0 . (3.14)

Finally, using the form of the 3D base metric (2.21) we complete the square on dϕ, obtaining

the prefactor

√

H1H2

[

− W

H1H2H3 − µ2
ω2
ϕ + (r2 − c2) sin2 θ

]

, (3.15)

which gives the condition

(r2 − c2) sin2 θ ≥ W

H1H2H3 − µ2
ω2
ϕ . (3.16)

Note that this implies that ω must vanish when the left-hand side is zero, or when

W/(H1H2H3 − µ2) has a pole. Using (3.6), one finds that (H1H2H3 − µ2)/W → 1/r

as r → ∞, so ω must vanish at r → ∞. All together, ω must vanish at r = c, at sin θ = 0,

and as r → ∞.

In view of the fact that the regularity conditions are given explicitly in terms of the

values of the various vector fields, we present the explicit form of these fields throughout the

solution in appendix B. These were obtained by using the expressions (2.28) in the relevant

ansatze (2.8), (2.9), (2.15) for the vector fields and imposing the redefinitions (3.1)–(3.2)

above. All values of vector fields appearing below should be understood to be obtained

from the expressions in the appendix, upon taking the appropriate limits.

3.2 Regular nuts and bolts

Given the complexity of the explicit solution, we proceed in two steps. Firstly we investi-

gate the solution analytically around the special points, and secondly we analyze explicit

examples of the parameters, to show that it is possible to obtain everywhere smooth so-

lutions. The explicit examples will be discussed in section 5; we now begin the analytic

investigation.
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The special points are characterized by the loci where some of the three U(1) isometries

of the solution, corresponding to the Killing vectors ∂y, ∂ψ and ∂ϕ, degenerate. The local

geometry around such loci can be made regular upon imposing appropriate conditions on

the metric, so that they can be viewed as smooth origins of certain subspaces. In order

to study these special regions, we consider a time-like slice of the full six-dimensional

metric (2.4) and a Killing vector, K, assumed to be a linear combination of the three U(1)

isometries above.

Following [49], the locus K2 = 0 describes a set of fixed points of the isometry, which

can be characterized by considering the action of the isometry on the tangent space at the

given point. This action is generated by ∇aKb ≡ ∇[aKb] which, assuming it is nontrivial,

must have rank two or four in five Euclidean dimensions.

When ∇aKb has rank four, there will be a one-dimensional subspace that is invariant

under the action of the U(1) isometry K. The locus K2 = 0 is an isolated point in the

remaining four directions, so that the local geometry is that of (a smooth discrete quotient

of) R4 ×S1, near the origin of R4. We call this a nut, as it is the straightforward uplift on a

circle of a standard nut in four Euclidean dimensions [49]. Note, however, that there exist

smooth discrete quotients of R4×S1 where the orbifold singularity present in R
4 is resolved

in the total space. This is precisely what happens at the special points of our solution.

Similarly, when ∇aKb has rank two, there will be a three-dimensional subspace that is

invariant under the action of the U(1) isometry K. Then ∇aKb only acts nontrivially on a

two-dimensional subspace of the tangent space at the fixed point, so that the local geometry

is that of a product of R2 times a three-dimensional invariant compact submanifold. We

call this a bolt, after the corresponding rank-two fixed point appearing in four Euclidean

dimensions [49]. In this paper, we will only deal with simply-connected three-cycles, so

that the local geometry near the bolt is a smooth discrete quotient of R2 × S3, but other

possibilities, for example S2 × S1, may also exist.

Note that the notion of a bolt introduced above is based on whether this locus is a fixed

point of a single U(1) isometry, without any reference to possible additional isometries. It

is common to distinguish the U(1) isometries that define the structure of a solution from

accidental isometries that may occur in more restricted classes of solutions. For example,

a general Gibbons-Hawking instanton with N nuts only admits one U(1) isometry. It is

only when all centers lie on the same axis that the solution admits an extra U(1) isometry;

this then defines fixed loci between the centers which are bolts in the sense defined above.

However, it is common terminology not to refer to these as bolts, since they are an artifact

of the additional U(1) isometry. This is a general feature of axisymmetric solutions that

have a flat three-dimensional base metric, and which generally admit non-axisymmetric

generalizations. Those include for instance the supersymmetric limit of the JMaRT so-

lution, for a = c [50, 51], whose three-dimensional base metric is flat [52]. Therefore we

will not refer to its S3 bubble as a bolt. On the contrary, when the bolt locus is defined

at a conical singularity of the three-dimensional base metric, the two singular behaviors

compensate each other to define a regular four or five-dimensional Euclidean metric and

the degenerating U(1) isometry is absolutely essential in describing the local geometry. In

practice, one only calls a bolt a degenerate locus that is in the second category.
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The existence of such a bolt is a general feature of gravitational instantons originating

from non-extremal black hole solutions by analytic continuation to Euclidean signature.

The Killing horizon is by definition a codimension-two surface where the norm of the

Killing vector vanishes, such that after analytic continuation it leads to the singular lo-

cus of an isometry — a bolt — provided the original black hole had a nontrivial surface

gravity. The three-dimensional base metric we use is that of a Euclidean non-extremal

Kerr-Newman black hole, described by the Ernst potentials (2.24) for H = 0. Thus the so-

lutions described in this paper admit a Killing vector with a nontrivial bolt homeomorphic

to (the discrete quotient of) a three-sphere at r = c. This is the case irrespectively of the

number and positions of the extra poles of the function H. To our knowledge, all known

microstate geometries corresponding to non-extremal black holes contain a bolt which is

similarly associated with a Euclidean Maxwell-Einstein base; it would be interesting to

understand whether this feature is necessary or sufficient for general microstate geometries

to correspond to non-extremal black holes.

For the metric (2.4), the relevant vector field KB collapsing on the bolt is of the type

KB = Ry∂y + (m + n)∂ψ − (m − n)∂ϕ , (3.17)

where Ry is the radius of the y circle and m and n are integers. For constant H this bolt

is the unique cycle of the solution and, as was shown in [45], the solution reduces to the

JMaRT solution [34].

In addition, we find that two linear combinations of the three U(1) isometries collapse

at the two poles of the bolt and at the Gibbons-Hawking center located at the pole of H.

Thus all three special points of our solutions are nuts. We now proceed to discuss in turn

the geometry near the nuts and the bolt.

3.3 Geometry at the Gibbons-Hawking center

The Gibbons-Hawking center is located at r1 = 0 in the coordinates

r1 =
√

(R − r cos θ)2 + (r2 − c2) sin2 θ , cos θ1 =
r cos θ − R

r1
. (3.18)

The limits of the functions W and HI are

W =
N2

r 2
1

+ O(r −1
1 ) , HI = hEI

N

r1
+ O(r 0

1 ) , (3.19)

where we define the constants

hEI ≡
(

1 − 2 (x + 1)

R − a

1

qI+1qI+2

)

, (3.20)

which must all be strictly positive. Given the behavior in (3.19), the absence of closed-

time-like curves requires from (3.14) and (3.16) that

µ

W

∣

∣

∣

∣

r1=0

= 0 , ω
∣

∣

r1=0
= 0. (3.21)
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Each of these two conditions independently determines the distance R from the origin to

the Gibbons-Hawking center,

R = a +
16 (x + 1)2

(a2 − c2) (q1q2q3)2 + 4 (q1q2 + q2q3 + q3q1) (x + 1)2
. (3.22)

The remaining vector fields in the metric all appear in the combinations

(

dψ + w0)|r1=0 = dψ + (N(1 − cos θ1) − 1)dϕ ,
(

dy + α3(dψ + w0) + w3
)

|r1=0 = dy −
(

(a2 − c2)q1q2q3

4(x + 1)
+

x + 1

q3

)

(dψ − dϕ) . (3.23)

The second vector field is manifestly well-defined in the new coordinate

yE = y −
(

(a2 − c2)q1q2q3

2(x + 1)
+ 2

x + 1

q3

)

ψ − ϕ

2
, (3.24)

whereas the first is discontinuous.

In these coordinates, considering the spacelike slice given by dt = 0, the metric (2.4)

becomes

ds2 =
hE3

√

hE1 hE2

dy 2
E (3.25)

+ N
√

hE1 hE2

[

r1

(

d

(

ψ − ϕ

N

)

+ (1 − cos θ1)dϕ

)2

+
dr2

1

r1
+ r1(dθ2

1 + sin2 θ1dϕ2)

]

.

Focusing temporarily on the second line in this metric, we recognize a Gibbons-Hawking

self-dual metric. If (ψ − ϕ) had period 4πN , this four-dimensional factor would simply be

flat R
4, with ψ−ϕ

N
being the appropriately normalized Hopf fibre coordinate on S3. Note

that at infinity we have the identification y ∼ y + 2πRy at fixed ψ, ϕ. Thus in order for

(ψ−ϕ) → (ψ−ϕ)+4πN at fixed yE to be a closed orbit, in the change of coordinates (3.24)

we require

− N

(

(a2 − c2)q1q2q3

2(x + 1)
+ 2

x + 1

q3

)

= N3Ry (3.26)

for some integer N3.

Next, the periodicity of the ψ and φ coordinates at infinity (3.7) means that the actual

periodicity of (ψ − ϕ) is 4π rather than 4πN , and the resulting space can be thought of as

arising via a Z|N | orbifold action7 on the smooth space described above. The Z|N | quotient

acts on both ψ and yE as

ψ → ψ + 4π , yE → yE +
2πN3

N
Ry , (3.27)

and therefore the quotient is smooth provided N3 and N are relative primes. More generally

the Euclidean base space has an orbifold singularity of degree gcd(N, N3).

7We often use the term ‘orbifold’ in the physics sense, to denote a discrete quotient of a manifold. If the

quotient results in no singularities, we denote it as a ‘smooth orbifold’.
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3.4 Geometry at the bolt

The smoothness conditions at the bolt (r = c) are generalizations of those discussed in [45]

and in JMaRT [34]. At the bolt, the functions W , HI behave as

W
∣

∣

B
=

ŴB(θ)

sin4 θ
, HI

∣

∣

B
=

ĤB
I (θ)

sin2 θ
, µ

∣

∣

B
=

µ̂B(θ)

sin2 θ
, (3.28)

where we explicitly factor out the powers of sin θ which diverge at the poles of the bolt.

The ŴB, ĤB
I and µ̂B are regular functions of θ on the bolt, whose explicit expressions

are not very illuminating. Similarly, it is straightforward to compute that the gauge field

components αI and AI
t are also regular functions at the bolt.

Turning to the vector fields, we consider the timelike fibration of the metric on the

bolt, noting that (3.22) automatically ensures that the vector field ω is single-valued on

the bolt. One may then compute the value of this field at r = c, to find

ω
∣

∣

B
=

a2 − c2

8 a

(

2
∑

J

qJ − c q1q2q3
)

− 4

(

c
∑

I

qI+1qI+2 − 2

)

x2 − 1

8 a q1q2q3
(3.29)

+

[

16 − (a + c)

(

(a2 − c2)
(q1q2q3)2

(x + 1)2
+ 4

∑

I

qI+1qI+2

)]

(R − c) (x + 1) N

8 a q1q2q3 (R − a)
,

which must vanish in order to avoid Dirac-Misner string singularities. Moreover, the func-

tion µ/W vanishes at the poles of the bolt due to (3.28), so that the full vector field, k,

vanishes on the symmetry axis. For N = 0, the condition that (3.29) be equal to zero

reduces to the regularity constraint one gets in the JMaRT solution. In the following we

will assume that (3.29) vanishes, although it is preferable not to solve it explicitly yet. In

practice we allow ourselves to define all quantities modulo terms proportional to ω
∣

∣

B
, that

will eventually vanish once the constraint is solved explicitly.

The vectors w0 and w3 are discontinuous on the symmetry axis at the poles of the

bolt. We consider therefore separately their value at the bolt (meaning in the limit r → c)

and their expression on the symmetry axis near the poles of the bolt. The values at the

bolt are

w0
∣

∣

B
=

c

a
x +

(

1 +
c

a

)

(R − c)

(R − a)
N ,

wI
∣

∣

B
=

1

a q1q2q3

[

1

2
(a2 − c2)q1q2q3qI −

(

c qI
∑

J 6=I

qJ − 2

)

(x2 − 1)

+

(

4 − (a + c) qI
∑

J 6=I

qJ
)

(R − c) (x + 1) N

(R − a)

]

, (3.30)

and the values on the symmetry axis near the poles of the bolt are

w0
∣

∣

θ=π, r>c
= 1 ,

wI
∣

∣

θ=π, r>c
= 0 ,

w0
∣

∣

θ=0, c<r<R
= 2N − 1 ,

wI
∣

∣

θ=0, c<r<R
= 2N

(

(a2 − c2)q1q2q3

4(x + 1)
+

x + 1

qI

)

.
(3.31)
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To interpret the discontinuities at (r = c, cos θ = ±1) we turn to the six-dimensional

metric (2.4), in which both w0 and w3 appear explicitly. Considering a spacelike slice,

dt = 0, we find the following expression for the metric at the bolt

ds2
∣

∣

bolt
=

ĤB
3

√

ĤB
1 ĤB

2

(

dy + α3 (dψ + w0|B) + w3|B
)2

+
ĤB

1 ĤB
2 ĤB

3 − µ̂ 2
B sin2 θ

ĤB
3

√

ĤB
1 ĤB

2 ŴB

sin2 θ
(

dψ + w0|B
)2

+
√

ĤB
1 ĤB

2

[

a2

(

dr2

r2 − c2
+ dθ2

)

+ (r2 − c2) dϕ2

]

. (3.32)

At the poles of the bolt (i.e. cos θ = ±1), the second line in the above equation vanishes.

Thus the only dependence of the metric on the vector field dψ + w0 is through the vector

dy + α3(dψ + w0) + w3, which must be continuous at the poles. Provided that (3.29)

vanishes, the (single-valued) limits of α3 at the two poles satisfy

α3
∣

∣

(r=c,cos θ=±1)
= −

w3
∣

∣

B
− w3

∣

∣

cos θ=±1, c<r<R

w0
∣

∣

B
− w0

∣

∣

cos θ=±1, c<r<R

, (3.33)

and therefore the vector field is indeed continuous at the two poles.

The existence of a well-defined Killing vector KB defining the bolt requires the quan-

tization of some of the parameters. To see this, it is convenient to introduce coordinates

φ−, rB, ψ−, ϕ− in which the metric is manifestly well-defined on an open set excluding the

North Pole θ = 0:

y = Ry φ− , r = c +
1

2c
r 2
B ,

ϕ = ϕ− − (m − n) φ− , ψ = ψ− − ϕ− + (m + n) φ− , (3.34)

where m, n are the quantities appearing in the Killing vector (3.17) that degenerates at

the bolt, which becomes KB = ∂φ− . For compatibility of the periodicities, m and n must

be integers. The quantities a/c and x are determined in terms of these integers as

a

c
= m − n , x +

(a + c)(R − c)

c (R − a)
N =

a

c
w0
ϕ

∣

∣

B
= m + n . (3.35)

In addition, the radius of the y circle Ry is fixed to

Ry =
a

c
w3
ϕ

∣

∣

B
=

1

c q1q2q3

(

1

2
(a2 − c2)q1q2(q3)2 +

(

2 − c q3(q1 + q2)
)

(x2 − 1)

+

(

4 − (a + c) q3(q1 + q2)

)

(R − c) (x + 1) N

(R − a)

)

. (3.36)

Given this value of Ry, we observe that the constraint (3.26) is a nontrivial constraint on

the integers N and N3.
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The metric in the vicinity of the bolt then reduces to

ds2
∣

∣

bolt
=





ĤB
3

√

ĤB
1 ĤB

2





(

Ry

m − n
dϕ− + α3

(

dψ− +
2n

m − n
dϕ−

))2

+
ĤB

1 ĤB
2 ĤB

3 − µ̂ 2
B sin2 θ

ŴBĤB
3

√

ĤB
1 ĤB

2

sin2 θ

(

dψ− +
2n

m − n
dϕ−

)2

+
√

ĤB
1 ĤB

2 a2

(

dr 2
B + r 2

Bdφ−
2

c2
+ dθ2

)

. (3.37)

The radial coordinate rB and the 2π-periodic coordinate φ− therefore parametrize R2 in

radial coordinates, and the bolt metric is well-defined at a generic value of θ.

Geometry at the poles of the bolt. As mentioned earlier, the poles of the bolt are

nuts. At the nuts, two U(1) isometries collapse. In particular, the additional degenerate

isometry at the South Pole θ = π follows from the fact that

α3
∣

∣

r=c,θ=π
= −Ry

2n
(3.38)

with Ry given by (3.36). This means that the additional degenerate isometry is along

ϕ− and the leading dependence of the metric on dϕ− as written in (3.37) vanishes (the

subleading terms will appear in (3.41) below). One then finds that in the neighbourhood

of the South Pole, the geometry is the one of a regular Gibbons-Hawking nut times S1, so

the space is locally S1 × R
4. To see this, we use the coordinates

r =
1

2

(

r− +
√

r 2
− − 4cr− cos θ− + 4c2

)

, cos θ =
1

2c

(

r− −
√

r 2
− − 4cr− cos θ− + 4c2

)

,

(3.39)

and the constants

h−
I =

2 (x + 1) − (a + c) qI+1qI+2

8 c qI+1qI+2

[

2 (x + 2N − 1) − (a − c) qI+1qI+2 +
4 (a − c) N

R − a

]

,

(3.40)

in terms of which the metric (with dt = 0) in the neighborhood of r− = 0 reduces to

ds2
∣

∣

r−=0
=

h−
3

√

h−
1 h−

2

(

Ry

2n
dψ−

)2

(3.41)

+
√

h−
1 h−

2

(

1

r−
dr 2

− + r−

(

dθ 2
− + 2(1 − cos θ−)dφ−

2 + 2(1 + cos θ−)dϕ−
2
))

.

This is manifestly a local product of R4 with an S1 along dψ−, which remains finite in

this limit.

In order to study the metric near the North Pole at θ = 0, one needs to change to

a coordinate system that is regular there, unlike the coordinates in (3.34). We therefore

change to spatial coordinates (φ+, ψ+, rB, θ, ϕ+), where

y = Ry(φ+ +N3ϕ+) , ψ = ψ+ +(1−2N)ϕ+ +(m+n)φ+ , ϕ = ϕ+ −(m−n)φ+ , (3.42)
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with rB defined in the same way as in (3.34) and m, n still given by (3.35). This gives

(

dy + α3 (dψ + w0) + w3)

∣

∣

∣

r=c,θ=0
=

1 + (m − n)N3

−2m + 2(m − n)N
Rydψ+ , (3.43)

and the degenerate isometry at the North Pole is associated to ϕ+.

In these coordinates, if φ+ is identified with period 2π, then rB, φ+ define polar coor-

dinates on R
2. To examine the periodicities more closely, note that the change of coordi-

nates (3.42) is not unimodular, and its inverse is

φ+ =

y
Ry

− N3ϕ

1 + (m − n) N3
, ϕ+ = ϕ +

(m − n)
(

y
Ry

− N3ϕ
)

1 + (m − n) N3
,

ψ+ = ψ + (2 N − 1)ϕ − 2
(m − (m − n) N)

(

y
Ry

− N3ϕ
)

1 + (m − n) N3
. (3.44)

We observe that ψ+ has period 4π, and that ϕ+ has period 2π. The periodicity of y induces

the identification

(φ+, ψ+, ϕ+) ∼ (φ+, ψ+, ϕ+) + 2π

(

1

1 + (m−n)N3
, −2(m − (m − n)N)

1 + (m−n)N3
,

(m − n)

1 + (m−n)N3

)

(3.45)

and we see that φ+ ∼ φ+ + 2π is contained in the full lattice of identifications. Since

m − n and 1 + (m − n)N3 are relatively prime for any integer N3, the quotient is smooth

at a generic point of the bolt, consistently with the fact that the metric was manifestly

regular in the coordinates (3.34). However, the coordinate ϕ+ degenerates at the North

Pole, and the orbifold action is only free at this point if m − (m − n)N and 1 + (m − n)N3

are relative primes.

To examine the geometry at the North Pole, consider the coordinate change

r =
1

2

(

r+ +
√

r 2
+ + 4cr+ cos θ+ + 4c2

)

, cos θ =
1

2c

(

√

r 2
+ + 4cr+ cos θ+ + 4c2 − r+

)

.

(3.46)

We introduce the constants

h+
I =

2 (x + 1) + (a − c) qI+1qI+2

8 c qI+1qI+2

(

2 (x + 2N − 1) + (a + c) qI+1qI+2 − 4 (a + c) N

R − a

)

,

(3.47)

in terms of which the metric (with dt = 0) then reduces at r+ → 0 to

ds2
∣

∣

r+=0
=

h+
3

√

h+
1 h+

2

(

(1 + (m − n)N3)Ry

2m − 2(m − n)N
dψ+

)2

(3.48)

+
√

h+
1 h+

2

(

1

r+
dr 2

+ + r+
(

dθ 2
+ + 2(1 + cos θ+)dφ+

2 + 2(1 − cos θ+)dϕ+
2)

)

.

Thus, similarly to the South Pole, the geometry at the North Pole is the product of a circle

(parametrized by ψ+) and a Gibbons-Hawking nut, with an orbifold action on S1 × R
4 of

order 1 + (m − n)N3 given by eq. (3.45).

– 20 –



J
H
E
P
0
2
(
2
0
1
6
)
0
7
3

4 Topology and fluxes of the solutions

In this section we discuss the topology and fluxes of our solutions. Before discussing the

topology directly, we first examine the two-form potentials B and B̃ near each of the nut

centers xA. We then discuss the two homology 3-cycles of the solution, and give explicit

expressions for the fluxes associated to these two 3-cycles.

4.1 Two-form potentials at the nut centers

We have seen in the last section that in the vicinity of each nut center xA (i.e. the South

Pole x− at r− = 0, the North Pole x+ at r+ = 0 and the extremal center xE at r1 = 0),

the 5-dimensional Riemannian base space is locally a smooth discrete quotient of S1 ×R
4,

with the respective center as the origin of R4 in adapted coordinates.

In spherical coordinates, a regular 2-form on R
4 vanishes at the origin. In our solution,

a regular 2-form must similarly reduce at each of the xA to its component along time

and the S1 that remains finite at that center. We have checked explicitly that the two-

form potentials B and B̃ evaluated at each center xA admit constant components in the

base generated by dt, dy, dψ, dϕ by the wedge product. It follows that one can define a

gauge transformation such as to cancel the potential at the required point. The relevant

expressions at each center are rather long and not illuminating, so we refrain from displaying

them. However, the difference of the values of the two-form at the centers carry information

about the fluxes, as we now discuss in some detail.

Consider an open set, UA, including the center xA and excluding the others, on which

the regular 2-form potentials B(A), B̃(A), are defined as

B(A) ≡ B
∣

∣

UA
− B

∣

∣

A
, B̃(A) ≡ B̃

∣

∣

UA
− B̃

∣

∣

A
, (4.1)

where B|A is B evaluated at xA, which defines a constant gauge transformation implement-

ing (4.1). On the intersection UAB ≡ UA ∩ UB, the two representatives are by construction

patched modulo a gauge transformation

B(A)
∣

∣

UAB
− B(B)

∣

∣

UAB
= B

∣

∣

B
−B

∣

∣

A
, (4.2)

and similarly for B̃. Explicitly, we find the following gauge transformations for the pullback

of the 2-form, B, on a time-like slice dt = 0:

2
(

B
∣

∣

E
− B

∣

∣

N

)

= F2

(

−N3 dϕ ∧ dψ − 1

Ry
(2 N − 1) dϕ ∧ dy − 1

Ry
dψ ∧ dy

)

,

2
(

B
∣

∣

N
− B

∣

∣

S

)

= (Q2 + N3 F2)

(

dϕ ∧ dψ − m + n

Ry
dϕ ∧ dy − m − n

Ry
dψ ∧ dy

)

, (4.3)

while the corresponding expressions for B̃ follow by exchanging the indices 1 ↔ 2 in all

expressions. Here Qa are the total electric charges at asymptotic infinity (3.8) and Fa
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define the fluxes

ηabFb =
(a − c) (R − c)

4c (R − 2a − c)

((a + c) q1q3 − 2 (1 + x)) ((a + c) q2q3 − 2 (1 + x))

(a − c) q1q2q3 + 2 (1 + x)qa

×
(

(a2 − c2)

x + 1
q1q2q3 + 2 (a + c) (q1 + q2) + 4

x − 1

q3

)

. (4.4)

Note that the expressions of the gauge transformations become rather simple if we consider

the coordinates at the extremal center (3.24) and the South Pole (3.34). Introducing ψE as

the coordinate in which the metric component dψ + w0 is well-defined on the axis between

the North Pole and the extremal center, we obtain

2
(

B
∣

∣

E
− B

∣

∣

N

)

= F2
1

Ry
dyE ∧ dψE ≡ F2

1

Ry
dyE ∧ (

dψ + (2N − 1)dϕ
)

,

2
(

B
∣

∣

N
− B

∣

∣

S

)

= (Q2 + N3 F2) dϕ− ∧ dψ− . (4.5)

4.2 Topology of the solutions

We observe that only two linearly independent two-forms with integer coefficients appear

in (4.3) and (4.5). This is a consequence of the presence of two inequivalent homology 3-

cycles on any time-like slice of the solution. One can derive this fact from the Mayer-Vietoris

sequence for the connected union of three spaces which are (smooth discrete quotients of)

S1 × R
4. We define the five-dimensional Riemannian space Mn through the recursive

connected union (here ∼= denotes “homeomorphic to”):

Mn+1
∼= Mn ∪ S1 × R

4 , Mn ∩ S1 × R
4 ∼= S1 × S1 × R

2 , M0
∼= S1 × R

4 , (4.6)

with the requirement that Mn is simply connected for n ≥ 1. Note indeed that the

Riemannian base space of the solutions we describe in this paper are by construction

simply connected because there is a basis in which each of the U(1) isometries admits at

least one fixed point.

The JMaRT solution is homeomorphic to M1, where the two S1 × R
4 open sets are

centered at the poles of the bolt, and a regular section of the bolt is indeed diffeomorphic

to S1 × S1 × R
2, with the circles parametrized by ψ−, ϕ−. The bolt itself then defines a

nontrivial 3-cycle, which can be viewed as a retraction of the S3 present in the asymptotic

R1,4 × S1 region. For the union (4.6), the Mayer-Vietoris sequence yields

· · · → Hk(S
1 × S1) → Hk(Mn) ⊕ Hk(S

1) → Hk(Mn+1) → Hk−1(S1 × S1) → · · · (4.7)

Setting n = 0 we find for the JMaRT solution M1 the sequence

0 → H3(M1) → Z → 0 → H2(M1) → Z
2 → Z ⊕ Z → 0 , (4.8)

implying that H3(M1) = Z and H2(M1) is trivial, so one indeed finds that M1
∼= R

2 ×S3,

and we recover the nontrivial three-cycle of the JMaRT solution.

To analyze our solution, note that the effect of the pole in the function HA in (2.27) is to

add an extra nut which is locally diffeomorphic to a smooth discrete quotient of S1 × R
4.
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It then follows that the solution displayed in this paper is homologically equivalent to

M2 in (4.6), obtained by one more recursion. The homology of our solution can thus be

computed by the above Mayer-Vietoris sequence with n = 1, which reads

0 → Z → H3(M2) → Z → 0 → H2(M2) → Z
2 → Z → 0 , (4.9)

and implies that H3(M2) = Z
2, while H2(M2) = Z. Thus our solution includes two

inequivalent homology 3-cycles and one homology 2-cycle. Note that the details of the

smooth discrete quotient of S1 × R
4 do not play any role in this construction.

The Mayer-Vietoris sequence exhibits the isomorphism between the homology 3-cycles

relating to centers xA, and the S1 × S1 homology 2-cycle of the intersection UAB, given by

the restriction of the 3-cycle to the intersection. This isomorphism is dual to the isomor-

phism relating the cohomology representative 3-form H, and the gauge transformation (4.2)

patching B on UAB.

A similar analysis to the above can be performed in the five-dimensional bubbling black

hole microstate solutions [12, 25–30], where one can find that each additional Gibbons-

Hawking center gives rise to an additional two-cycle.

4.3 Fluxes on the 3-cycles

One fundamental 3-cycle, Σ∞, is defined as the retraction of the asymptotic S3 to the

interior, as for the 3-cycle in the JMaRT solution. In our solution, it can be described as a

surface with dy = 0 and considering some path in r, θ coordinates from the South Pole to

the Gibbons-Hawking center. Given that the intersections UAB of the three open sets are

nontrivial, one would in principle need to consider a partition of unity in order to define the

integrals for the fluxes. We avoid that by introducing a cellular complex {CS , CE , CSE}
such that

CS ⊂ US , CE ⊂ UE , CS ∩ CE
∼= ∅ , CSE ≡ CS ∩ CE , (4.10)

with

US ∪ UE ∼= CS ∪ CE ∪ CSE , CSE
∼= ∂CS ∩ USE ∼= ∂CE ∩ USE , (4.11)

so that one may replace US , UE by CS , CE in all considerations, but with their intersection

being retracted to the co-dimension one boundary CSE . The integral of the three-form can

then straightforwardly be computed as

1

4π2

∫

Σ∞

H =
1

4π2

(

∫

Σ∞∩CS

dB(S) +

∫

Σ∞∩CE

dB(E)

)

=
1

4π2

∫

Σ∞∩CSE

(

B(S) − B(E)
)

=
1

4π2

∫

Σ∞∩CSE

(

B
∣

∣

E
− B

∣

∣

S

)

=
1

8π2
Q2

∫

dϕ ∧ dψ = Q2 , (4.12)

which gives the D5-brane charge. By construction, the integral of H̃ on the same cycle

gives the D1-brane charge Q1.
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The second fundamental 3-cycle Σ1 can be defined in exactly the same way as the

bubble linking the North Pole to the Gibbons-Hawking center on the axis while wrapping

ψE and yE and with ϕ kept constant. One then computes the flux as

1

4π2

∫

Σ1

H =
1

4π2

(

∫

Σ1∩CN

dB(N) +

∫

Σ1∩CE

dB(E)

)

=
1

4π2

∫

Σ1∩CNE

(

B
∣

∣

E
− B

∣

∣

N

)

= F2 , (4.13)

with F2 defined in (4.4), and similarly one finds that the flux of H̃ over Σ1 is given by F1.

Dirac quantization therefore implies that the Fa are quantized fluxes in appropriate units.

The integral of the three-form field strength over any cycle is a linear combination of

Q2 and F2 with integer coefficients; this is ensured by (4.3). In particular, on the bolt itself

(at r = c and dy = 0) one obtains

1

4π2

∫

ΣB

H = Q2 + N3F2 . (4.14)

A similar expression holds for the integral of H̃.

The charges Q1 and Q2 are quantized in string theory as follows. Taking a T 4 com-

pactification of type IIB for concreteness, we consider n1 D1-branes wrapped on the y-circle

S1
y , and n5 D5-branes wrapped on T 4 ×S1

y . Then denoting the volume of the T 4 at infinity

by (2π)4V and the string coupling by gs, the supergravity charges take the standard form

(see e.g. [53])

Q1 =
gsn1α′3

V
, Q2 = gsn5α′ . (4.15)

The flux F1 is quantized in the same way as the D1 charge, and similarly the flux F2 is

quantized in the same way as the D5 charge.

We thus observe the familiar story that these solitonic solutions are supported by

fluxes, as discussed in [40] and also by [54–56]. It would be interesting to verify explicitly

that the Komar-type integral defining the mass of our solution can be decomposed using the

intersection form of the Euclidean base space, as discussed in [54]. In addition, one could

examine the analogous formulae for the angular momenta as Komar-type integrals. We

anticipate that this could be used to show that flux quantization implies angular momentum

quantization in the appropriate units.

5 Explicit examples of smooth solutions

We now present explicit examples of smooth solutions of the type described in the previous

two sections. While most of the regularity and smoothness constraints have been imposed

analytically above, there remain three regularity conditions to be solved.

The first of the remaining regularity conditions is the condition that ω vanish at the

bolt, ω
∣

∣

B
= 0, where ω

∣

∣

B
is given in eq. (3.29). Our second constraint comes from the

regularity condition at the bolt, which relates x to m + n, given in eq. (3.35). The third

constraint is that (3.26) must be solved by some integer N3.

A priori, one would wish to fix the integer N3 first and solve for the remaining param-

eters, however the constraints cannot be solved analytically in terms of N3 and the other
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integer parameters m, n, N . Therefore we take a different approach: we first solve for N3

in terms of the other parameters, and then verify that the parameter space allows examples

where N3 is an integer.

To simplify the three constraints, we use the second condition (3.35) to eliminate N

from ω
∣

∣

B
in favour of m, n and x. Conveniently, this happens to also eliminate R from

ω
∣

∣

B
. The first regularity condition then becomes

(a2 − c2)q1q2q3
(

2
∑

J

qJ − c q1q2q3
)

− 4

(

c
∑

I

qI+1qI+2 − 2

)

(x2 − 1)

=

[

16 − (a + c)

(

(a2 − c2)
(q1q2q3)2

(x + 1)2
+ 4

∑

I

qI+1qI+2

)]

(x + 1)
(

x − (m + n)
)

(m − n + 1)
, (5.1)

where we retain a in some places for ease of notation, but it should be understood that a

takes the value (m − n)c from (3.35).

We next eliminate R from the second condition (3.35), using (3.22). The second

condition then becomes

x − (m + n) + (m − n + 1)N =

c N
(

(m − n)2 − 1
) (a2 − c2) (q1q2q3)2 + 4 (q1q2 + q2q3 + q3q1) (x + 1)2

16 (x + 1)2
. (5.2)

We thus have two polynomial constraints on the parameter space, (5.1) and (5.2), which we

choose to solve for the variables q3 and x. To solve these two polynomials simultaneously

for q3, we take the resultant with respect to q3, which (after removing overall factors) gives

a quartic in x depending on c, m, n, q1, q2, N . The full quartic would take more than a

page to write out, and is not particularly illuminating, so we do not reproduce it here.

In the limit N → 0, this quartic has a double root at x = m + n and another double

root. We focus on the two roots which tend to the JMaRT value m+n in the N → 0 limit.

We thus obtain x in terms of c, m, n, q1, q2, N ; since this is a solution to a complicated

quartic, the answer obtained is algebraically very complex.

Next, the constraint (5.1) is quadratic in q3, enabling us to solve for q3 as a function

of c, m, n, q1, q2, N , x. We again select the root which joins smoothly to the JMaRT

solution.

Given the algebraic complexity involved, we investigate the regularity of the solution

by scanning the parameter space numerically, as follows. The dimensionful parameter c

merely sets the scale of the system, so we work in units of c. Using the first two conditions,

specifying values for m, n, q1, q2, N determines in turn x, then q3. Then R is determined

from (3.22) and N3 is given by the third regularity condition (3.26). Given such a set of

parameters, we examine the remaining regularity conditions that away from the special

points HI are positive and finite, and that eqs. (3.14) and (3.16) are satisfied.

Next, we investigate whether the parameter space allows N3 to be an integer. To do

so, we first find a region of parameter space that satisfies all other regularity checks, and

we then tune one of the parameters to make N3 come within some desired precision of an

integer value.
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As discussed around (3.27) and (3.45), the geometry will be free of orbifold singularities

if gcd(N, N3) = 1 and gcd(m − (m − n)N, 1 + (m − n)N3) = 1. We now describe such an

example, which is completely smooth.

From our numerical investigations, we did not find any smooth solutions with |N | ≤ 3,

however for N = −4 we found a region of parameter space that allows regular solutions.

In this region it appears that N3 can be tuned to be as close as desired to the quantized

value N3 = 3; we find a region in which N3 is within 10−8 of this value, both above and

below the quantized value.

A representative example of a solution is given by:

m = 3 , n = 1 , N = −4 , q2 = 0.5 c− 1
2 , q1 = 0.672558 c− 1

2 (5.3)

where N3 = 3 ± 10−8 has been approximately quantized by tuning q1.

This solution is well-behaved everywhere: both the orbifold actions (3.27) and (3.45)

are smooth quotients. In addition to being smooth at the special points, away from these

points it satisfies the regularity conditions discussed in section 3.1.

Let us now describe some of the properties of the solution. The regime of small pa-

rameters qI corresponds to the regime of large supergravity charges QI . Ultimately QI

should be thought of as macroscopic, but in our example we have kept the numbers rela-

tively modest in units of c for convenience. Rounding smaller quantities to three significant

figures and larger quantities to integers, the values of some quantities of interest in this

solution are:

x = 62.3 , q3 = 12.8 c− 1
2 , R = 2.25 c , Ry = 13.3 c

1
2 ,

Q1 = 2392 c , Q2 = 1767 c , Q3 = 46156 c , MADM = 50408 c , (5.4)

F1 = −482 c , F2 = −364 c , Jψ = 452034 c
3
2 , Jϕ = 53503 c

3
2 .

Comparing to the regularity bound on angular momenta for a black hole carrying the

charges QI and the mass MADM, we find that the angular momentum Jϕ is below the

regularity bound, while Jψ is slightly over-rotating. To understand this, note that the

behavior of the solution at infinity is determined by the charges QI and the constants

EI (3.10), which by (3.11) are themselves determined by the charges and the ADM mass.

A formal black hole solution with the same charges, angular momenta and mass would

have an entropy SBH = SL + SR, where [57, 58]

(

SL

2π

)2

=
1

8

(√
(E1+Q1)(E2+Q2)(E3+Q3) +

∑

I

√
(EI+QI)(EI+1−QI+1)(EI+2−QI+2)

)2
− J 2

ψ ,

(

SR

2π

)2

=
1

8

(√
(E1−Q1)(E2−Q2)(E3−Q3) +

∑

I

√
(EI−QI)(EI+1+QI+1)(EI+2+QI+2)

)2
− J 2

ϕ . (5.5)

In the BPS limit, EI → QI , and the above formula reduces to the familiar BMPV cosmic
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censorship bound [59]. Using the expressions derived in section 3.1, one obtains

(

SL

2π

)2

= −4

(

(a2 − c2)(q1 + q2 + q3) + 4
x2 − 1

q1q2q3

)2

,

(

SR

2π

)2

= −
(

c

(

(a2 − c2)q1q2q3 + 4
∑

I

x2 − 1

qI

)

+
16N(x + 1)(R2 − c2)

q1q2q3(R − a)2

)2

−32(a − c)(x + 1)N(R2 − c2)

q1q2q3(R − a)2

(

(a2 − c2)q1q2q3 + 4
∑

I

x2 − 1

qI

)

. (5.6)

Therefore the solutions described in this paper necessarily have Jψ exceeding the cosmic

censorship bound, whereas Jϕ can possibly preserve the bound for a negative N . In our

example Jϕ is below the regularity bound and SR = 499712 c
3
2 , whereas Jψ exceeds the

regularity bound by a rather small amount,

J 2
ϕ

J 2
ϕ + (SR

2π )2
≈ 0.31 ,

J 2
ψ

J 2
ψ + (SL

2π )2
≈ 1 +

1

622
. (5.7)

Note moreover that eq. (5.6) is only valid within the specific solution (2.28) discussed in

this paper, and is not a general property of solutions to the partially solvable system defined

on the Maxwell-Einstein instanton background (2.24). Within our understanding, there is

no reason to believe that the over-rotation is a general property of solutions to the system.

The over-rotation is to be expected; it is a feature which is also present in the JMaRT

solutions, and one may expect that adding a single center in a simple way would not change

this fact. Note nonetheless that the JMaRT solutions have the two angular momenta

exceeding the regularity bound, so that the addition of an extra Gibbons-Hawking center

is an improvement in this respect. In addition, we observe that the ADM mass is above

but quite close to the BPS bound
∑

I QI = 50315 c.

The ergoregion of the six-dimensional solution is larger than the scales of the charges

QI , and extends until around r = 11554 c. By contrast, the would-be ergoregion of the five-

dimensional solution obtained upon reduction along the y fiber is much smaller, extending

to around r = 169 c; this is consistent with the fact that one regularity bound is satisfied,

and the other violated only weakly. The difference can be traced to the fact that the

momentum charge in the y direction Q3 is significantly larger than the D1 and D5 charges

Q1 and Q2. As a result there is no AdS3 throat in this example solution; this would require

Q3 ≪ √
Q1Q2.8

6 Discussion

In this paper we have constructed solutions to six-dimensional N = (1, 0) supergravity

coupled to a tensor multiplet that are the first non-extremal smooth horizonless solutions

containing both a bolt and an additional Gibbons-Hawking center. This center lies at a

8In the JMaRT solutions, the regime of parameters where Q3 is larger than Q1 and Q2 is not in the

decoupling regime, and there is no AdS3 × S3 throat for the same reason.
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fixed distance from the bolt, giving rise to two inequivalent 3-cycles supported by three-

form flux. These solutions are generalizations of the JMaRT solutions [34], and reduce to

them upon removing the additional Gibbons-Hawking center.

Our solutions have an asymptotic structure similar to that of non-extremal black holes

in five dimensions, albeit with one of the two angular momenta exceeding the regularity

bound for black holes. The fact that Jϕ is under-rotating and that Jψ is over-rotating only

by a very small amount is a significant improvement compared to the JMaRT solutions, for

which both angular momenta are over-rotating. In the context of the fuzzball proposal, our

solutions should be viewed as describing atypical semi-classical microstates of non-extremal

D1-D5-P black holes.

At the level of the system of equations, there does not appear to be anything to

indicate that this atypicality should be a general feature of all solutions to this system.

Rather, it is a common feature of explicitly-constructible microstate geometries that their

fluxes tend to produce angular momenta larger than those of black holes, so to have Jϕ
under-rotating in this solution is a noteworthy feature. For supersymmetric multi-center

solutions involving Nc Gibbons-Hawking centers, the ratio between the square of Jψ and

the product of the charges has been estimated to be equal to one plus corrections of order

1/N2
c [60]. In our solution the equivalent correction is approximately 1/622. One can think

of the bolt as corresponding to two Gibbons-Hawking centers, so in some sense our solution

can be thought of as having three centers, and thus the amount of over-rotation appears

remarkably small.

In the future one would of course like to make the further improvement of obtaining

solutions that have both angular momenta within the black hole regime. The only known

way to do this is to consider specific multi-center solutions in which one can tune the fluxes

in order to make the distance between the centers arbitrarily small [12, 61]. One refers to

these solutions as scaling solutions [62]. Such microstate geometries play an important role

in the fuzzball proposal, as they naturally admit an arbitrary long throat, and have been

argued [12] to be dual to typical states of the D1-D5 orbifold CFT [63].

It is an exciting possibility that there may also exist a scaling regime for solutions

far from the BPS limit, and indeed far from extremality. In this case there would not be

an AdS throat, and the relevant physical parameter should be the redshift between the

locus of the centers and the asymptotic region, which could possibly be tuned to become

arbitrary large as the centers approach each other in the supergravity approximation.

To obtain scaling non-extremal solutions, the first necessary ingredient is of course to

add more centers, and in this paper we have given a proof of principle that this can be

done. Our solutions are not however in the scaling regime, and have a large ergoregion

which is not contained inside an AdS3 × S3 throat. Earlier experience with BPS solutions

suggests that it is difficult to construct axisymmetric scaling solutions with less than four

centers [12, 64]. Since our solution can be thought of as having three centers, if we had

found scaling behavior it would have been surprising.

In principle, it is straightforward to use our methods to construct solutions with an

arbitrary number of centers, despite the complexity of the relevant equations. To obtain our

solutions, we worked in a restricted ansatz which explicitly disallows interaction between
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the extremal centers. We expect that, upon turning on such interactions, one can obtain

solutions with enough Gibbons-Hawking centers to allow for a scaling behavior in the sense

described above. In the near-BPS limit, we expect that it should be possible to obtain a

large AdS3 × S3 throat encompassing all centers and any ergoregion.

It is an important problem to understand the stability of our solutions and their possi-

ble microscopic interpretation. It is well-known that the JMaRT solutions are unstable to

decay via ergoregion emission [65]. In the decoupling limit, the solutions are near-BPS and

have large AdS3 ×S3 regions, so the instability can then be studied holographically. In this

limit the ergoregion is deep inside the throat, and in the dual CFT the ergoregion emission

is naturally interpreted as the Hawking radiation emitted by the dual CFT states [66–68].

Until recently, the dual states had been known for only a subset of parameters of the full

JMaRT solutions, however recently the dual CFT states of the most general JMaRT so-

lutions have been identified [69], and the emission spectrum and rate have been found to

match between gravity and CFT for all parameters. While our present solutions do not

appear to have standard AdS3 × S3 throats, they do have ergoregions, and thus one may

also expect them to decay via ergoregion emission. It would be interesting to investigate

the corresponding decay rate and emission spectrum.

There has been recent work which constructs JMaRT solutions using inverse scattering

techniques [70]. These methods also offer the prospect of building multi-center generaliza-

tions of JMaRT, and may provide a complementary line of enquiry to that described here.

Looking further to the future, it would be interesting to investigate the relationship

between our results and an interesting recent proposal involving long-string degrees of

freedom at the inner horizon of non-extremal black holes [71, 72]. More generally, it would

be interesting to gain further insight into how large a subset of the degrees of freedom of

non-extremal black holes can be described within supergravity.

Our construction of non-extremal multi-bubble microstate geometries represents a

long-sought-after technical advance, which we anticipate will enable the construction of

many more non-extremal solitonic supergravity solutions involving topological cycles sup-

ported by flux, and thereby provide a deeper understanding of the quantum physics of

non-extremal black holes.
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A Relation to the 5D and 4D ansatze

In this appendix we give a few comments on the reduction of the system solving six di-

mensional N = (1, 0) supergravity described in section 2 to five and four dimensional

supergravity with eight supercharges.

Upon reduction on the circle parametrized by y in (2.4), one obtains N = 1 supergrav-

ity in five dimensions, coupled to two vector multiplets. There are three gauge fields in the

theory, with one belonging in the supergravity multiplet, appearing completely symmetri-

cally in the action. One is the Kaluza-Klein gauge field, A3 in (2.4), while the other two

arise by reduction of the two dual two-forms, B and B̃ as

B = (dy + A3) ∧ A1 + B2 ,

B̃ = (dy + A3) ∧ A2 + B1 . (A.1)

Here, the two-form fields Ba are dual to the field strengths of the Aa in five dimensions, i.e.

(

H 2
1

H2H3

)

2
3

⋆5 F 1 = dB1 + A2 ∧ F 3 ,

(

H 2
2

H1H3

)

2
3

⋆5 F 2 = dB2 + A1 ∧ F 3 , (A.2)

which follows from the six dimensional equation of motion (2.12). With these definitions,

one finds that the gauge fields are given by

AI = AI
t (dt + ω) + αI (dψ + w0) + wI , (A.3)

for I = {1, 2, 3} and the components AI
t , αI and wI are given by (2.19)–(2.20) and (2.8).

The further reduction along the isometry described by the angle ψ in (2.4) leads to

four dimensional N = 2 supergravity coupled to three vector multiplets. Now, there are

four gauge fields, AΛ, for Λ = {0, I} = {0, 1, 2, 3}, with one belonging to the supergravity

multiplet. The reduction of the particular system of equations studied in this paper from

five to four dimensions was briefly discussed in the appendix of [45], so we focus on the

direct translation of the four dimensional quantities into the six dimensional quantities of

section 2.

The metric in four dimensions takes the form

ds2
4 = −e2U (dt + ω)2 + e−2Uγijdxidxj ,

e−4U = W −1
(

H1H2H3 − µ2
)

, (A.4)

while the gauge fields and their electromagnetic duals are given by

AΛ = ζΛ(dt + ω) + dwΛ , AΛ = ζΛ(dt + ω) + dvΛ . (A.5)
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Here, the dwΛ are given by (2.8) and (2.15), while the two of the dual dvΛ are given

in (2.17), with the remaining ones

⋆dv0 = 2 V (Φ+dE− − E−dΦ+) + 2 E−Φ+ ⋆ dσ ,

⋆dv3 = V (E−dE+ − E+dE−) − E+E− ⋆ dσ , (A.6)

being automatically conserved due to the Ernst equations. The four-dimensional complex

scalars are given by

zI = αI + i
e−2U

HI
, (A.7)

where the axions αI are given in (2.20).

In view of (2.14), it is straightforward to lift any solution of four dimensional super-

gravity to six dimensions, once the fields dba, βa, Aa
t are given in terms of four dimensional

quantities. The scalars Aa
t are given by

ζ0 = −e4Uµ , AI
t = ζI + αI ζ0 , (A.8)

where we also give the timelike component of the Kaluza-Klein gauge field A3 and the

function µ in (2.4) in terms of the ζ’s. The remaining six dimensional quantities are

given by

db1 +
H 2

1 W

H1H2H3 − µ2
∗3 dα1 = ζ0dv1 + ζ1dw0 − ζ3dw2 − ζ2dw3 +

(

ζ0ζ1 − ζ3ζ2
)

dω ,

db2 +
H 2

2 W

H1H2H3 − µ2
∗3 dα2 = ζ0dv2 + ζ2dw0 − ζ3dw1 − ζ1dw3 +

(

ζ0ζ2 − ζ3ζ1
)

dω , (A.9)

and

β1 = −(ζ1 + a2ζ3) , β2 = −(ζ2 + a1ζ3) . (A.10)

Conversely, one may invert (A.8)–(A.10) to obtain the four dimensional scalars ζΛ, ζ1, ζ2,

without the need to pass through the five dimensional theory. For completeness, we give

the final two components of the ζΛ:

ζ3 =
1

4
V E−

(

E2
+(K3 + V Φ−L1L2 + V KaL

a) + 2 Φ+ K1K2

−E+(Φ+L3 + KaL
a + 2 V Φ+K1K2)

)

,

ζ0 =
1

2
V E−

(

Φ+ (Φ+L3 − E+K3) − Φ+(1 + V E+) KaL
a + 2 V Φ2

+K1K2

+E+ (2 − V Φ− Φ+) L1L2
)

. (A.11)
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B Expressions for vector fields

The explicit expressions for the vector fields are given in terms of the conserved vector

currents used in the construction of the solution in [45]. The relevant basis is given by

J0 =
dr

r2 − c2 + a2 sin2 θ
+

2 a2 cos θ (cos θ dr − r d cos θ)

(r2 − c2 + a2 sin2 θ)2
,

J1 =
d cos θ

r2 − c2 + a2 sin2 θ
+

2 r (cos θ dr − r d cos θ)

(r2 − c2 + a2 sin2 θ)2
,

J2 =
cos θ dr − r d cos θ

(r2 − c2 + a2 sin2 θ)2
,

J3 = dH +
c2 − a2

m−

dH (r − a cos θ + m−) − H d(r − a cos θ)

r2 − c2 + a2 sin2 θ

+ 2 a
c2 − a2

m−
H (r − a cos θ + m−)

cos θ dr − r d cos θ
(

r2 − c2 + a2 sin2 θ
)2 ,

J4 =
dH (

r + a cos θ + c2−a2

m−

)

+ H d(r + a cos θ)

r2 − c2 + a2 sin2 θ

+ 2 a H
(

r + a cos θ +
c2 − a2

m−

)

cos θ dr − r d cos θ
(

r2 − c2 + a2 sin2 θ
)2 , (B.1)

which define the associated vector fields through Jג = ⋆dWג, as

W0 = − (r2 − c2) cos θ

r2 − c2 + a2 sin2 θ
dϕ ,

W1 =
r sin2 θ

r2 − c2 + a2 sin2 θ
dϕ ,

W2 =
1

2

sin2 θ

r2 − c2 + a2 sin2 θ
dϕ ,

W3 = Hc2 − a2

m−

(

cos θ + a sin2 θ
r − a cos θ + m−

r2 − c2 + a2 sin2 θ

)

dϕ

+
∑

A

HA

(

a + r cos θ −
(R 2

A − c2)(r + a cos θ + c2−a2

m−
)

(RA − a)r + (aRA − c2) cos θ

)

dϕ ,

W4 = H
(a sin2 θ

(

r + a cos θ + c2−a2

m−

)

r2 − c2 + a2 sin2 θ
− cos θ

)

dϕ

+
∑

A

HA

r2 − c2 cos2 θ + c2−a2

m−
(r − RA cos θ)

(RA − a)r + (aRA − c2) cos θ
dϕ . (B.2)

We therefore give the relevant coefficients for each of the vector fields, employing a five-

component vector notation, so that the vectors given below should be contracted with the
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vector (W0, W1, W2, W3, W4 ):

w0 =
1

4

































e−(p3 + 2q3) − m−(laq
a + l3) + 1

2q1q2(m+ − m−)

−a e−(p3 + 2q3) + a m−(laq
a + l3) + 1

2a q1q2(m− + m+)

−2 a (a2 − c2) (laq
a + l3) − a q1q2(a2 − c2)

−2 a e−m+p3 + a m−m+q1q2

−1
2q1q2

1
2 m−q1q2 − e−p3

































, (B.3)

w1 =
1

4



























−2 e−p1 − q1(m− + m+)

−2 a e−p1 − a q1(m− − m+)

2 a q1
(

a2 − c2 + m−m+
)

+ 4 a e−m+p1

q1

2 e−p1 + m−q1



























, (B.4)

w3 =
1

4













































1
e−

(a2 − c2 − m2
−) (laq

a + l3)

−2 e−p1p2 + (m+ − m−)(paq
a + p3) − 2 m−q3

a
e−

(a2 − c2 − m2
−) (laq

a + l3)

+2 a e−p1p2 + a (m− + m+)(paq
a + p3) + 2 a m−q3

4 a m−

e−
(a2 − c2) (laq

a + l3) − 2 a (a2 − c2 − m−m+) (paq
a + p3)

+4 a q3 (a2 − c2) − 4 a e−m+p1p2

−paq
a − p3

2 e−p1p2 + m−(paq
a + p3)













































, (B.5)

ω =
1

8













































1
e−

(a2 − c2 − m2
−) (laq

a + l3) + 1
e−

(a2 − c2 + m−m+) q1q2

+2 e−p1p2 + (m+ + m−)(paq
a + p3) + 2 m−q3

− a
e−

(a2 − c2 + m2
−) (laq

a + l3) − a
e−

(a2 − c2 + m−m+) q1q2

+2 a e−p1p2 − a (m+ − m−)(paq
a + p3) + 2 a m−q3

2 a (a2 − c2 + m−m+) (−paq
a + p3) − 2 am−

e−
(a2 − c2 + m−m+) q1q2

+4 a q3 (a2 − c2) + 4 a e−m+p1p2

−paq
a − p3 − m−

e−
q1q2

−2 e−p1p2 + m−(−paq
a + p3) − m2

−

e−
q1q2













































. (B.6)
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