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bCentre for High Energy Physics, Indian Institute of Science,

C.V. Raman Avenue, Bangalore 560012, India
cArnold Sommerfeld Center for Theoretical Physics,

Theresienstrasse 37, 80333 München, Germany
dMax-Planck-Institut für Physik,
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1 Introduction

N = 2 compactifications of heterotic string theory have proved to be good testing ground to

explore duality symmetries of string theory. One of the main motivations to explore these

compactifications is that these vacua have dual realization in terms of type II compacti-

fications on Calabi-Yau. Identifying dual pairs on the heterotic and type II side enables

highly non-trivial tests of dualities with N = 2 symmetry [1]. The simplest example of

such theories is the heterotic string theory compactified on K3×T 2. This theory was first

constructed in d = 6 in [2, 3]. An important observable for the test of duality in this theory

is the dependence of the one-loop corrections of gauge and gravitational coupling constants

on the vector multiplet moduli of the theory. The moduli dependence of these threshold

corrections are encoded in automorphic forms of the heterotic duality group [4–9].

Our goal in this paper is to first consider more general compactifications of the heterotic

string on (K3×T 2)/ZN , with N = 2, 3, 5, 7. ZN acts by a 1/N shift on one of the circles of

T 2 together with an action on the internal CFT describing the heterotic string theory on

K3. This freely acting orbifold of K3×T 2 was first studied on the type II side first as duals
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of CHL compactifications [10, 11] of the heterotic string [12–14]. We will call this orbifold,

the CHL orbifold ofK3. These compactifications of the heterotic string on the CHL orbifold

of K3 preserve N = 2 supersymmetry and the number of vector multiplets, but reduce the

the number of charged and un-charged hypermultiplets in the theory. They also affect the

vector multiplet moduli dependence of the one-loop corrections. The two main aspects of

these compactifications we study in this paper are the new supersymmetric index and the

gauge threshold corrections. We summarize the results obtained in the next few paragraphs.

The basic quantity from which one-loop thresholds of heterotic string on K3× T 2 are

obtained is the new supersymmetric index [7, 9, 15–18] which is defined as

Znew(q, q̄) =
1

η2(τ)
TrR

(
FeiπF qL0−

c
24 q̄L̄0−

c̄
24

)
. (1.1)

The trace in the above expression is taken over the Ramond sector in the internal CFT

with central charges (c, c̄) = (22, 9). Here F is the world sheet fermion number of the right

moving N = 2 supersymmetric internal CFT. For the standard embedding of the spin

connection into a SU(2) of one of the E8’s of the heterotic string, it was shown [7, 9] that

this index decomposes as

Znew(q, q̄) =
8

η12
Γ2,2(q, q̄)E4(q)×

E6(q)

η12
, (1.2)

=
8

η12
Γ2,2(q, q̄)E4(q)

[
θ2(τ)

6

η(τ)6
ZK3(q,−1) + q

1

4
θ3(τ)

6

η(τ)6
ZK3(q,−q1/2)

−q
1

4
θ4(τ)

6

η(τ)6
ZK3(q, q

1/2)

]
. (1.3)

Here E4, E6 refer to Eisenstein series of weight 4, 6 respectively, ZK3(q, z) is the elliptic

genus of the N = 4 conformal field theory of K3 and

Γ10,2

η10
=

1

η10
Γ2,2(q, q̄)E4(q) , (1.4)

is the partition function for the second E8 lattice along with the lattice from T 2. In [19],

it was shown that due to the factorization of the new supersymmetric index as given in

second equation of (1.3), the BPS states of the heterotic compactifications on K3×T 2 have

a decomposition in terms of representation of the Mathieu group M24. We will evaluate the

new supersymmetric index for heterotic compactifications of the CHL orbifolds of K3 and

show that new supersymmetric index is given by the same form as in (1.3) but now with

ZK3(q, z) replaced by the twisted elliptic genus of the CHL orbifolds ofK3. We will evaluate

the new supersymmetric index explicitly for the N = 2 CHL orbifold (K3 × T 2)/Z2 and

then generalize this for the other values of N using results of [20]. We then generalize the

observation of [19] and show that the BPS states for heterotic compactifications of the CHL

orbifolds ofK3 have a decomposition in terms of representations of the Mathieu groupM24.

Threshold corrections are important observables in string compactifications and there

has been a recent revival in studying properties of these observables mainly due to the work

of [21–24]. Let us examine the threshold corrections evaluated in K3×T 2 compactifications

– 2 –



J
H
E
P
0
2
(
2
0
1
6
)
0
5
6

which we will generalize in this work to CHL orbifolds of K3. For concreteness consider

the standard embedding in which the spin connection connection of K3 is equated to the

gauge connection. Starting from the E8 ×E8 theory compactifying on K3× T 2 at generic

points of the moduli space of T 2 results in E7×E8×U(1)4. Let the E8 which is broken to

E7 be referred to G′ and the second E8 be called as G. Let ∆G′(T, U, V ) and ∆G(T, U, V )

be the corresponding one-loop corrections to gauge coupling corrections. T, U refer to the

Kähler and complex structure moduli of the torus T 2 and V is the Wilson line modulus in

T 2. Then it was shown [25] that the difference in the thresholds is given by

∆G′(T, U, V )−∆G(T, U, V ) = −48 log
[
(det ImΩ)10 |Φ10(T, U, V )|2

]
, (1.5)

where

Ω =

(
U V

V T

)
, (1.6)

and Φ10(T, U, V ) is the unique cusp form of weight 10 transforming under the duality

group Sp(2,Z) ≃ SO(3, 2,Z). In [25], it was also shown that this difference in thresholds

was independent of the way K3 was realized and is also holds for non-standard embeddings.

In this paper, we evaluate the difference for heterotic compactifications on CHL orbifolds

of K3 and show that the difference in the threshold corrections for the two gauge groups

G,G′ is given by

∆(G, T, U, V )−∆(G′, T, U, V ) = −48 log
[
(det ImΩ)k |Φk(T, U, V )|2

]
, (1.7)

where Ωk is a weight k modular form transforming under subgroups of Sp(2,Z) with k

k =
24

N + 1
− 2 , (1.8)

where N = 2, 3, 5, 7 labels the various CHL orbifolds. This generalizes the observation

in [25]. Thus the gauge threshold corrections are automorphic forms under sub-groups of

the duality group of the parent un-orbifolded theory.

The cusp form Φ10 also makes its appearance in partition function of dyons in heterotic

on T 6, a theory which has N = 4 supersymmetry [26–29].1 This theory is related to type II

on K3×T 2 by string-string duality. In [20, 31, 32], it was shown that the partition function

of dyons for the CHL orbifolds of the heterotic preserving N = 4 supersymmetry are cap-

tured by Siegel modular forms of weight k transforming under subgroups of Sp(2,Z) with k

given by (1.8) for the various CHL orbifolds of the heterotic theory. These theories are re-

lated to type II on the CHL orbifold of K3 which has N = 4 supersymmetry. We show that

the modular forms Φk obtained for the difference of the thresholds in (1.7) are related by a

Sp(2,Z) transformation to the dyon partition function in CHL orbifolds. The relationship

between the difference in the thresholds of the non-abelian gauge groups of the N = 2 het-

erotic compactification to the dyon partition functions in the N = 4 heterotic is certainly

interesting and worth exploring further. We will comment on this relation in section 6.

1It was recently shown that certain BPS saturated amplitude in type II on K3 × T 2 also depends on

Φ10 [30].
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This paper is organized as follows. In section 2, we discuss the spectrum of heterotic

compactifications on the CHL orbifold (K3×T 2)/ZN and show that the orbifold preserves

the number of vectors but reduces the number of hypers. In section 3, we evaluate the new

supersymmetric index for compactifications on the CHL orbifold of K3. We will discuss

the case of N = 2 in detail for which we realize K3 as a Z2 orbifold. We then generalize the

results for the other values of N . In section 4, we show that the the new supersymmetric

index for these orbifolds contains representations of the Mathieu group M24. In section 5,

we evaluate the difference in the gauge corrections between the groups G and G′ and

show that it is captured by a modular form Φk transforming under subgroups of Sp(2,Z).

Section 6 contains our conclusions and discussions. Appendix A contains various identities

involving modular forms used to obtain our results. Appendix B contains details regarding

lattice sums and finally appendix C has the details of the calculations for the Z2 CHL

orbifold of K3.

2 Spectrum of heterotic on CHL orbifolds of K3

In this section we derive the spectrum on (K3× T 2)/ZN compactifications. Before we go

ahead, let us recall how these manifolds are constructed. The non-zero hodge numbers of

K3 are given by

h(0,0) = h(2,2) = h(0,2) = h(2,0) = 1, h(1,1) = 20. (2.1)

The Hodge numbers of T 2 are given by

h′00 = h′(1,0) = h′(0,1) = h′(1,1) = 1. (2.2)

To ensure N = 2 supersymmetry we need to preserve SU(2) holonomy. This implies that

the ZN acts freely [12]. The orbifold action must also preserve the holomorphic 2-forms on

K3 and the holomorphic 1-form on T 2. It is known that the ZN symmetry action on K3 al-

ways involves fixed points onK3 [33], therefore it should freely act on T 2. This action is just

a shift by a unit 1/N on one of the circles of T 2. Since the orbifold action involves both K3

and T 2 the compactifications on the CHL orbifold of K3 can not be thought of as obtained

from a N = 1 vacuum in d = 6. Thus (0, 0) and (2, 2) form are just the scalar form and the

volume form on K3 which are preserved under the action of ZN . Also the 1/N shift on the

circle does not project out any of the forms on T 2. Thus the orbifold acts only on the (1, 1)-

forms of K3. The number of such forms on K3 which are invariant are given by 2k with [20]

h(1,1) = 2k, k =
24

N + 1
− 2, for N = 2, 3, 5, 7. (2.3)

Among the (1, 1) forms which are not projected out is the Kähler form gkl̄. The Kähler

form, the (0, 2) and (2, 0) forms are self dual while the 2k−1 forms are anti-self dual. Thus

the Euler number of the orbifold along theK3 directions reduces to 2k+4. This information

of the CHL orbifold (K3×T 2)/ZN is sufficient to obtain the spectrum of massless modes in

d = 4. We generalize the method developed in [3] for K3 compactification of the heterotic

string. We will first discuss the states arising from compactifying the d = 10 graviton

multiplet and then we will examine the spectrum from the d = 10 Yang-Mills multiplet.
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Universal sector

We call the spectrum from the d = 10 graviton multiplet the universal sector. This multi-

plet consists of the following fields

R(10) = {GMN ,Ψ
(−)
M , BMN ,Ψ(+), ϕ}. (2.4)

Here GMN is the graviton, Ψ(−1) is a negative-chirality Majorana-Weyl gravitino, BMN

the anti-symmetric tensor and Ψ(+) is a positive-chirality Majorana-Weyl spinor. On di-

mensional reduction these fields should organize themselves to a N = 2 graviton multiplet,

vector multiplets and hypermultiplets in d = 4. The field content of these multiplets are

given by

R(4) = {gµν , ψ
i
µ, aµ}, i = 1, 2, (2.5)

V (4) = {Aµ, ψ
′i, φi},

H(4) = {χi, ϕa}, a = 1, · · · 4.

The N = 2 graviton multiplet in d = 4 consists of a graviton gµν , two Majorana gravitinos

ψi
µ, i = 1, 2, and the graviphoton aµ. The vector multiplet consists of the gauge field

Aµ, two Majorana spinors ψ′i and two real scalars φi. The hypermultiplet consists of two

Majorana spinors χi and 4 real scalars ϕa with a = 1 · · · 4. We will label the 4 non-compact

direction by µ, ν ∈ {0, 1, 2, 3}. The directions of the T 2 by r, s ∈ {4, 5} and the directions

of the K3 by m,n ∈ {6, 7, 8, 9}.

Let us first examine the bosonic fields under dimensional reduction. The d = 10

graviton reduces as Gµν = gµν(x) ⊗ 1 ⊗ 1 where 1 refers to the constant scalar form on

(K3 × T 2)/ZN . There are 2 vectors from Gµr = Aµ(x) ⊗ fr ⊗ 1 where fr refers to the 2

holomorphic 1-forms on T 2 which are unprojected by the orbifold. Similarly there are 2

vectors Bµr = Aµ(x)⊗ fr ⊗ 1. These 4 vectors arrange themselves into the single graviton

multiplet and 3 vector multiplets. Let us now count the total number of scalars, this will

determine the number of hypers. There are totally 4 scalars from the following components

of the metric in 10 dimensions G44, G55, G45, B45. Now consider the scalars arising from

the metric and the anti-symmetric tensor with indices along the K3 directions. The anti-

symmetric tensor reduces as Bmn = φ(x)⊗1⊗fmn where fmn are the harmonic 2-forms on

the CHL orbifold of K3. This results in 2k+2 scalars. To obtain massless scalars from the

metric we require solutions of the Lichnerowicz equation on the CHL orbifold of K3. These

are constructed as follows, let us use a, b̄ ∈ {1, 2} to refer to the two complex directions along

the CHL orbifold of K3. Then the zero modes from the metric are constructed as follows [3]

hab̄ = f ′

ab̄, (2.6)

hab = (ǫacf
′

bd̄ + ǫbcf
′

ad̄)g
d̄c,

hāb̄ = h∗ab.

Here f ′

ab̄
refer to the 2k harmonic (1, 1)-forms on the CHL orbifold of K3. Note that ha,b

and hāb̄ vanish when f ′

ab̄
is the Kähler form. Therefore there are 3 × 2k − 2 solutions of

– 5 –
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the Lichnerowicz equation on the CHL orbifold of K3. This leads to 6k − 2 scalars from

the dimensional reduction of the metric with indices along the CHL orbifold of K3. The

10 dimensional dilaton reduces as ϕ = ϕ(x)⊗ 1⊗ 1 to give rise to a single scalar. Finally

the anti-symmetric tensor reduces as Bµν = bµν(x) × 1 × 1, but a anti-symmetric tensor

in d = 4 is equivalent to a scalar by hodge-duality. Adding all the scalars we get 8k + 6

scalars. Among these 6 scalars are needed to complete the 3 vector muliplets. The rest

of the scalars arrange themselves in to 2k hyper multiplets. To summarize we have the

following dimensional reduction of the graviton multiplet in d = 10.

R(10) → R(4) + 3V (4) + 2kH(4) . (2.7)

To complete the analysis let us verify that the fermions also arrange themselves into

these multiplets. Before we go ahead we need to recall some facts about index theory. There

is a one to one correspondence of solution of the massless Dirac equation on a 4 dimensional

complex manifold and the number of harmonic (0, p) forms [34, 35]. The (0, 0) form and

a (0, 2) form on the CHL orbifold of K3 results in two real Dirac zero modes which have

negative internal chirality [3]. Let us call these spinors Ω and ω. Consider the gravitino in

d = 10 it reduces to a Rarita-Schwinger field in d = 4 as the following 4 real gravitinos

Ψ(−)
µ = ψ(+)1

µ (x)⊗ ξ(+) ⊗ Ω(−), (2.8)

Ψ(−)
µ = ψ(−)1

µ (x)⊗ ξ(−) ⊗ Ω(−),

Ψ(−)
µ = ψ(+)2

µ (x)⊗ ξ(+) ⊗ ω(−),

Ψ(−)
µ = ψ(−)2

µ (x)⊗ ξ(+) ⊗ ω(−),

where ξ(±) are the constant spinors on T 2. The superscripts refer to the chirality. These 4

real spinors organize themselves as 2 Majorana Rarita-Schwinger fields ψi
µ in d = 4. These

form the superpartners in the graviton multiplet R(4). Now consider again the gravitino

in 10 dimensions and reduce it with the vector index along the T 2 directions, these result

in spinors in d = 4. Using the similar reduction as in (2.8) we can conclude that there are

2×2 = 4 Majorana spinors in d = 4. Finally reduce the d = 10 spinor Ψ(+) again on similar

lines as in (2.8) and we obtain 2 Majorana spinors in d = 4. Thus totally we have 6 Ma-

jorana spinors which form the superpartners of the 3 vectors multiplets. Now let us move

to the situation when the gravitino has indices along the CHL orbifold of K3. Now given

a harmonic (1, 1) form we can construct the following solutions to the Rarita-Schwinger

equations on the CHL orbifold of K3 [3].

ζa = f ′

ab̄Γ
b̄Ω(−), ζb̄ = f ′

ab̄Γ
aω(−). (2.9)

Here Γ’s are the internal γ-matrices and f ′ refer to the 2k (1, 1) forms. Again by reducing

the d = 10 gravitinos with a similar construction as in (2.8) but with the vector indices

of the gravitino along the CHL orbifold of K3 we obtain 2 × 2k = 4k Majorana spinors

in d = 4 which form the fermionic content in the 2k hyper multiplets. This completes

the analysis of the dimensional reduction of the graviton multiplet in 10 dimensions which

results in the fields given in (2.7). Thus we see that it is only the number of hypers in the

universal sector which is sensitive to the orbifolding.

– 6 –
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Gauge sector

Now let us examine the spectrum that arise from dimensional reduction of the Yang-Mills

multiplet in d = 10. The field content of this multiplet is given by

Y (10) = {AM ,Λ(−)}. (2.10)

The negative chirality Majorana fermions as well as the gauge bosons are in the adjoint

representation of E8⊗E8 transforming as (248,1)⊕ (1,248). This multiplet must decom-

pose to N = 2 vectors and hypers in d = 4. To obtain the number of vectors and hypers

we will use index theory to find the number of zero modes of fermions in the CHL orbifold

of K3. To preserve supersymmetry in d = 4 the spin connection must be set to equal to

the gauge connection. Let us consider the standard embedding in which the we take an

SU(2) out of the first E8 and set it equal to the spin connection on the CHL orbifold of

K3. As mentioned earlier the SU(2) holonomy of the spin connection is preserved by the

orbifolding procedure. This procedure breaks the E8 to a subgroup, let us consider the

maximal subgroup E7 ⊗ SU(2), in which the SU(2) of the gauge connection is set equal to

the SU(2) spin connection. Under the maximal subgroup E7⊗ SU(2)⊗E8, the Yang-Mills

multiplet decomposes as follows.

(248,1)⊕ (1,248) = (133,1,1)⊕ (1,3,1)⊕ (56,2,1)⊕ (1,1,248). (2.11)

On the left hand side of the above equation we have kept track of the quantum numbers

of E7, SU(2) and the second E8. Dimensional reduction of the d = 10 gauge bosons in

the (133,1,1) ⊕ (1,1,248) representation to d = 4 gives rise to gauge bosons in the

(133,1) ⊕ (1,248) representation of E7 ⊗ E8. The corresponding scalars in these vector

multiplets also arise in the dimensional reduction from the d = 10 gauge bosons with vector

indices along the T 2 directions. Now the fermionic super partners of these fields in the

vector multiplets arise as follows. Consider the fermions of Yang-Mills multiplet in d = 10

in the representation (133,1,1) ⊕ (1,1,248) , they are uncharged respect to the SU(2)

and therefore behave conventionally. That is for these fermions, we can use the two spin

1/2 zero modes on the CHL orbifold of K3 of negative chirality denoted by Ω, ω earlier to

to construct two Majorana fermions in d = 4 in the same representations. These are the

fermionic partners in the vector multiplets. Let us state the existence of the two spin 1/2

zeros modes as an index theorem. Essentially we have

Iγ·∇ = n
(−1)
1/2 − n

(+1)
1/2 =

1

(2k + 4)(8π2)

∫
Tr(R ∧R) = 2. (2.12)

Note that, we have normalized the integral by the Euler number of the CHL orbifold and

the integral is performed over the orbifold. n
(±1)
1/2 counts the number of massless spin 1/2

zero modes of the appropriate chirality.

Let us examine the fermions which are charged under the SU(2) in the decomposi-

tion (2.11). Since the corresponding gauge connection is identified to be the spin con-

nection, these fermions must arrange themselves into N = 2 hypers. First consider the

fermions which transform non-trivially under the SU(2). To obtain the number of fermions

– 7 –
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in d = 4 we need to use the index theorem of the Dirac operator on the of the CHL orbifold

of K3. Since these fermions are charged under the SU(2) we need the expression for the

twisted index, which is given by [36]

Irγ·∇ = n
(−1)
1/2 (r)− n

(+1)
1/2 (r), (2.13)

=
1

8π2

∫ (
r

(2k + 4)
Tr(R ∧R)− Trr(F ∧ F )

)
.

We label the representation of the fermions by its dimension, this is denoted by r and

the dimension of this representation is denoted by r. Note that just as in (2.12), we have

normalized the integral of the curvature term by the Euler number of the CHL orbifold

of K3. For k = 10, the expression reduces to that for K3. Setting the gauge connection

equal to the spin connection we obtain

Tr2(F ∧ F ) =
1

2
Tr(R ∧R) . (2.14)

The 1/2 is because the trace in the Tr(R ∧ R) is taken in the 4 of SU(4) which are two

doublets of SU(2). Now one can relate the trace in representation r to the trace in the

doublet by

Trr(F ∧ F ) =
1

6
r(r2 − 1)Tr2(F ∧ F ) . (2.15)

Substituting this relation in (2.13) and using the last equality in (2.12) we obtain

n
(−1)
1/2 (r)− n

(+1)
1/2 (r) = 2r −

1

3
(k + 2)r(r2 − 1) . (2.16)

Note that for the singlet r = 1, the expression shows that there exist two negative chirality

modes which was known by explicit construction as the spinors Ω(−1), ω(−1). Now each pair

of spin 1/2 zero modes given by the index (2.16) gives rise to a pair of Majorana fermions

in d = 4 which form the fermions in a single hypermultiplet. Thus the number of hypers

in the representation r of SU(2) in d = 4 from the gauge sector is given by

Nr

H =
1

6
(k + 2)r(r2 − 1)− r . (2.17)

Note that this is always an integer. Let us apply this formula to the fermions which

transform non-trivially under SU(2). Consider the doublets transforming as (56,2,1).

Using (2.17) we can conclude that there are k charged hypers in the (56,1) representation

of E7 × E8. Similarly consider the triplets (1,3,1) which lead to 4(k + 2) − 3 hypers

uncharged under the gauge group. From the above discussion we see that the Yang-Mills

multiplet in d = 10 results in the following multiplets in d = 4

Y (10) → V (4)[(133,1) + (1,248)] (2.18)

+H(4)[k(56,1) + (4(k + 2)− 3)(1,1)] .

Here we have also indicated the representations of E7⊗E8. As a simple check note that for

K3 we have k = 10 which results in the well known 10 charged hypers and 65 uncharged

– 8 –
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hypers [1]. The complete spectrum in d = 4 is given by

R(10) + Y (10) → R(4) + V (4)[3(1,1) + (133,1) + (1,128)] (2.19)

+H(4)[k(56,1) + (6k + 5)(1,1)] .

Thus, compactifications on the CHL orbifold of K3 change the number of the hypers.

It is important to note that these orbifolds involve the shift on S1 together with the

automorphism in K3 which reduces the number of (1, 1) forms. Therefore, they cannot

be thought of as a four manifold which implies this compactification cannot be lifted to 6

dimensions. Thus, the difference in the number of hypers and vectors is not constrained

by anomaly cancellation in d = 6.

Let us now discuss the generic spectrum of these models. The generic spectrum is

labeled by the number of uncharged hypers M and number of commuting U(1) denoted by

N . For the embedding of SU(2) we have considered the model is given by

(M,N) = (6k + 5, 19). (2.20)

We have listed this for the various (M,N) values of k corresponding to the CHL orbifold.

k = 10, (65, 19), (2.21)

k = 6, (41, 19),

k = 4, (29, 19),

k = 2, (17, 19),

k = 1, (11, 19).

For all of these models the unbroken gauge group is E7 ⊗ E8. In the dual type II theory

these models arise from Calabi-Yau compactifications with Hodge numbers (h(1,1), h(2,1)) =

(N − 1,M − 1) = (18, 6k + 4). CHL orbifolding of K3 just reduces the number of hypers.

Let us now consider compactifications in which a SU(n) with n = 3, 4, 5 of one of

the E8 is embedded in the spin connection. Doing so, breaks the E8 to E6, SO(10) and

SU(5) respectively. The number of uncharged hypers from the gravition multiplet remains

invariant and is given by 2k. A similar analysis shows that the number of uncharged hypers

from the Yang-Mills multiplet is given by the index

NH(singlets) = (2k + 4)n− (n2 − 1). (2.22)

Note that this expression reduces to 4(k+2)−3 for n = 2 as seen earlier in detail. Therefore

adding the 2k uncharged hypers from the universal sector, the total number of uncharged

hypers for these compactifications is given by 2k(n+ 1)− (n2 − 4n− 1). Thus the (M,N)

values for these models are

(M,N) = (2k[n+ 1]− [n2 − 4n− 1], 21− n). (2.23)

Again we see that it is only the number of hypers that are affected by k. These models

are the generalization of the ones considered in [1] for k = 10. Though the number of
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vectors are not affected by these compactifications, it will be clear from our analysis of the

threshold corrections that the duality group under which these models are invariant are

subgroups of the parent theory. For the rest of the paper we will restrict our study to the

case of the standard embedding when one of the E8 is broken to E7. However we expect

our results for the new supersymmetric index as well as the threshold corrections for the

CHL orbifolds will generalise with slight modifications to other gauge groups.

3 New supersymmetric index for CHL orbifolds of K3

In this section we evaluate the new supersymmetric index for the CHL orbifold of K3.

This index forms the basic ingredient for both gauge and gravitational threshold correc-

tions for the heterotic compactifications we considered in the previous section. The new

supersymmetric index is defined as2

Znew(q, q̄) =
1

η2(τ)
TrR

(
FeiπF qL0−

c
24 q̄L̄0−

c̄
24

)
. (3.1)

Here, the trace is taken over the internal CFT with central charge (c, c̃) = (22, 9). Note that

the left movers are bosonic while the right movers are supersymmetric. The right moving

internal CFT has a N = 2 superconformal symmetry. It admits a U(1) current which can

serve as the world sheet fermion number, we denote this as F . The subscript R refers to

the fact that we take the trace in the Ramond sector for the right movers. For the K3×T 2

compactifications, this index was evaluated in [7] using the Z2 orbifold realization of K3.

We will first generalise this computation for the CHL orbifold (K3× T 2)/Z2. Then using

observations from the explicit calculations done for the Z2 orbifold, we will generalise and

obtain the expression of the new supersymmetric index for the CHL orbifolds (K3×T 2)/ZN

with N = 3, 5, 7.

3.1 The Z2 orbifold

The N = 2 CHL orbifold of K3 admits the following simple orbifold realization. First, K3

is realized as a Z2 orbifold by the action g on a torus T 4, and then, the CHL orbifold of

K3 is obtained by the action of g′ given below.

g : (y4, y5, y6, y7, y8, y9) → (y4, y5,−y6,−y7,−y8,−y9), (3.2)

g′ : (y4, y5, y6, y7, y8, y9) → (y4 + π, y5, y6 + π, y7, y8, y9).

Here, the directions 4, 5 label the T 2 and the 6, 7, 8, 9 directions are the K3 directions. Note

that, the g′ action involves as shift of π along one of the circle of T 2. This is embedded in

the heterotic string by performing a shift of π along 2 of the directions of the E′
8 lattice3

i.e. there is a shift given by

XI → XI + (π, π, 0, 0, 0, 0, 0, 0), (3.3)

2We will use q, τ to refer to the modular parameter of the worldsheet, they are related by q = e2πiτ and

similarly q̄ = e−2πiτ̄ .
3The lattice in which the spin connection is embedded will be denoted by E′

8 or G′.
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where XI refer to the bosonic co-ordinates of the E′
8 lattice. If the action g′ is not imple-

mented the action of g together with the shift in (3.3) breaks E′
8 to E7. The presence of g′

ensures the CHL orbifolding. This shift in (3.3) is coupled to the g, g′ action as follows.

Znew(q, q̄) =


 1

η2(τ)

∑

a,b=0,1

Z(a,b)[E
′
8; q]×Z(a,b)[CHL; q, q̄]


×Z[E8; q]. (3.4)

Here, Z[E8; q] is the partition function of the second E8 lattice which is given by

Z[E8; q] =
E4

η8
. (3.5)

The Eisenstein series, E4, admits the following decomposition in terms of theta functions.

E4 =
1

2

(
θ82 + θ83 + θ84

)
. (3.6)

The partition function of the E′
8 which involves the following shifted lattice sum.

Z(a,b)[E
′
8; q] = 2

1

η8
e−2πi ab

n2 γ
2 ∑

λ∈Γ8+a
2
γ

e2πi
b
n
λ·γq

1

2
λ2

. (3.7)

The sum runs over all the lattice vectors λ of E8. The lattice shift γ for the Z2 case is

given by

γ = (1, 1, 0, 0, 0, 0, 0, 0), n = 2 . (3.8)

In appendix B we have evaluated the shifted lattice sum for various values of (a, b). This

result is given by

Z(0,0)[E
′
8; q] =

θ82 + θ83 + θ84
η8

, Z(0,1)[E
′
8; q] =

θ63θ
2
4 + θ64θ

2
3

η8
, (3.9)

Z(1,0)[E
′
8; q] =

θ62θ
2
3 + θ63θ

2
2

η8
, Z(0,1)[E

′
8; q] = −

θ62θ
2
4 − θ64θ

2
2

η8
.

What is now left, is to define the partition function over (K3 × T 2)/Z2 referred as

Z[CHL; q, q̄] in (3.4). For this we first define the lattice momenta on the T 2 which is

given by

1

2
p2R =

1

2T2U2
| −m1U +m2 + n1T + n2TU |2, (3.10)

1

2
p2L =

1

2
p2R +m1n1 +m2n2 .

The variables T, U refer to the complex structure and the Kähler moduli of the torus T 2.

Then the partition function can be written as

Z(a,b)[CHL; q, q̄] =
1

η2

∑

m1,m2,n1,n2

q
1

2
p2L q̄

1

2
p2RFm1,m2,n1,n2

(a, b; q), (3.11)
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where the 1/η2 factor arises due to the left moving bosonic oscillators where

Fm1,m2,n1,n2
(a, b; q) is independent of T, U and is given by

Fm1,m2,n1,n2
(a, b; q) =

1

2

1∑

r,s=0

Fm1,m2,n1,n2
(a, r, b, s; q), (3.12)

Fm1,m2,n1,n2
(a, r, b, s; q) = Trm1,m2,n1,n2;ga,g′r;RR

(
gbg′seiπ(F

T4
+FT2

)(F T 4

+ F T 2

)qL
′

0 q̄L̄
′

0

)
.

Here

L′
0 = L0 −

p2L
2
, L̄′

0 = L0 −
p2R
2
. (3.13)

The trace is taken over the subspace of Hilbert space carrying momentum (m1,m2) and

winding (n1, n2). The subscripts g, g
′ in the trace indicates that the trace should be taken in

the twisted section. The definition of L′
0, L̄

′
0 ensures that the partition function Fm1,m2,n1,n2

is independent of the T 2 moduli. Since the left moving bosonic oscillators on T 2 has been

taken into account in (3.11), the trace does not involve these oscillators. Note that if

one does not have the presence the insertions of the action of the Z2 element g′ which is

responsible for orbifolding K3 × T 2 , the coupling of the shifts in the E′
8 reduces to the

coupling of K3 realized as a involution of T 4 by the action of g. F T 4

is right moving world

sheet fermion number of the (0, 4) superconformal algebra of T 4. This U(1) is twice the

U(1) of the SU(2) present in the (0, 4) superconformal algebra. Finally F T 2

is the right

moving world sheet fermion number of the (0, 2) superconformal algebra of T 2. It can be

seen that among that unless the fermionic zero modes on T 2 are saturated the trace given

in the last line of (3.12) vanishes. Therefore we obtain

Fm1,m2,n1,n2
(a, r, b, s; q) = Trm1,m2,n1,n2;ga,g′r;RR

(
gbg′seiπ(F

T4
+FT2

)F T 2

qL
′

0 q̄L̄
′

0

)
. (3.14)

The detailed evaluation of the trace is provided in the appendix C. The result for the

various sectors are given by

Fm1,m2,n1,n2
(0, 0; q) = 0, (3.15)

Fm1,m2,n1,n2
(0, 1; q) =

{
−2 (1 + (−1)m1)

θ2
3
θ2
4

η4
for {m1,m2, n1, n2} ∈ Z,

0 for {m1,m2, n2} ∈ Z, {n1} ∈ Z+ 1
2 ,

Fm1,m2,n1,n2
(1, 0; q) =

{
2
θ2
2
θ2
3

η4
for {m1,m2, n1, n2} ∈ Z,

2
θ2
2
θ2
3

η4
for {m1,m2, n2} ∈ Z, {n1} ∈ Z+ 1

2 ,

Fm1,m2,n1,n2
(1, 1; q) =

{
−2

θ2
2
θ2
4

η4
for {m1,m2, n1, n2} ∈ Z,

−2(−1)m1
θ2
2
θ2
4

η4
for {m1,m2, n2} ∈ Z, {n1} ∈ Z+ 1

2 .

The contributions in which the winding n1 takes half integer values arise due to the twisted

sectors in the element g′. The contributions proportional to (−1)m1 arise due to the inser-

tions of the element g′ in the trace. Note that if one ignores the contributions where n1 takes

half integer values and the ones proportional to (−1)m1 , the result for the various sectors is
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proportional to that for K3 realized as a Z2 orbifold of T 2. The expressions in (3.15) can be

then be substituted in (3.11) to obtain the partition function on the CHL orbifold of K3.

Let us now use the results in (3.9) and (3.15) to obtain the new supersymmetric index

given in (3.4). Note that the dependence of the traces in (3.15) over the winding and

momenta is mild. One just needs to consider the case when n1 ∈ Z and n1 ∈ Z + 1
2

separately. Multiplying the various sectors and summing over the sectors we obtain

Z(2)
new(q, q̄) =

2E4

η12
×


 ∑

m1,m2,n1n2∈Z

q
p2
L
2 q̄

p2
R
2

(
−2

E6

η12
− (−1)m1

θ44θ
4
3(θ

4
4 + θ43)

η12

)
(3.16)

+
∑

m1,m2,n2∈Z,n1∈Z+
1

2

q
p2
L
2 q̄

p2
R
2

(
θ42
η12

{
θ43(θ

4
2 + θ43) + (−1)m1θ44(θ

4
2 − θ44)

})

 .

The superscript (2) refers to the fact that this is the index for the orbifold (K3× T 2)/Z2.

Here we have used the decomposition of E6 in terms of θ-functions which is given by

2E6 = −θ62(θ
4
3 + θ44)θ

2
2 + θ63(θ

4
4 − θ42)θ

2
3 + θ64(θ

4
2 + θ43)θ

2
4. (3.17)

Note that this is the generalization of the new supersymmetric index obtained for the

standard embedding in K3 × T 2 compactifications given in (1.3) for which we obtain the

just the term involving E6 in the first line (3.16). The result we have in (3.16) is the

expression for the new supersymmetric index for the compactifications on (K3× T 2)/Z2.

We will now discuss two equivalent ways of rewriting the expression in (3.16) which

are useful for the questions addressed in this paper.

Decomposition in terms of characters of D6. From the general arguments in [7], we

expect that the new supersymmetric index forK3×T 2 decomposes in terms of characters of

the sub-lattice D6 of E′
8. The coefficients in this decomposition can be written in terms of

the elliptic genus of the N = 4 superconformal field theory of the d = 4 compact manifold.

For K3 × T 2 compactifications, this decomposition of the new supersymmetric index is

given in (1.3). We will show that the new supersymmetric index for the (K3×T 2)/Z2 also

can be decomposed in terms of characters of D6 with coefficients as the twisted elliptic

genus of K3. Let us first define the twisted elliptic genus for the CHL orbifolds of K3. Let

g′ be the generator of the ZN action on K3 which results in the CHL orbifold. We define

the twisted elliptic genus of K3 as

F (r,s)(τ, z) =
1

N
TrK3

RR;g′r

(
(−1)F

K3+F̄K3

g′se2πizF
K3

qL0−c/24q̄L̄0−c/24
)
,

0 ≤ r, s,≤ (N − 1). (3.18)

where the trace is taken in the N = 4 super conformal field theory associated with K3 in

the g′r twisted Ramond sector. FK3 and F̄K3 denote the left and right world sheet fermion

number which can be written as the U(1) charges corresponding to the SU(2) R-symmetry

in this theory. The twisted elliptic genus for the various CHL orbifolds were provided
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in [20]. The results for the N = 2 CHL orbifold are given by

F (0,0)(τ, z) = 4

[
θ2(τ, z)

2

θ2(τ, 0)2
+

θ3(τ, z)
2

θ3(τ, 0)2
+

θ4(τ, z)
2

θ4(τ, 0)2

]
, (3.19)

F (0,1)(τ, z) = 4
θ2(τ, z)

2

θ2(τ, 0)2
, F (1,0)(τ, z) = 4

θ4(τ, z)
2

θ4(τ, 0)2
, F (1,0)(τ, z) = 4

θ3(τ, z)
2

θ3(τ, 0)2
.

Using these expressions for the twisted elliptic genus we can see that the new supersym-

metric index in (3.16) can be written as

Znew(q, q̄)
(2) =

2E4

η12
×


 ∑

m1,m2,n1n2∈Z

q
p2
L
2 q̄

p2
R
2

{
θ62
η6

(
F (0,0)

(
τ,

1

2

)
+ (−)m1F (0,1)

(
τ,

1

2

))

+ q1/4
θ63
η6

(
F (0,0)

(
τ,

1 + τ

2

)
+ (−)m1F (0,1)

(
τ,

1 + τ

2

))

−q1/4
θ64
η6

(
F (0,0)

(
τ,

τ

2

)
+ (−)m1F (0,1)

(
τ,

τ

2

))}

+
∑

m1,m2,n2∈Z,n1∈Z+1/2

q
p2
L
2 q̄

p2
R
2

{
θ62
η6

(
F (1,0)

(
τ,

1

2

)
+ (−)m1F (1,1)

(
τ,

1

2

))

+ q1/4
θ63
η6

(
F (1,0)

(
τ,

1 + τ

2

)
+ (−)m1F (1,1)

(
τ,

1 + τ

2

))

−q1/4
θ64
η6

(
F (1,0)

(
τ,

τ

2

)
+ (−)m1F (1,1)

(
τ,

τ

2

))}]
. (3.20)

Though the above expression is lengthy, the structure of the index is quite easy to decipher.

To see this, let us list the characters of the the D6 lattice. Consider the lattice in the

fermionic representation. Then we have the following partition functions for the various

sectors.

Z(D6;NS+; q) =
θ63
η6

, Z(D6;NS−, R; q) =
θ64
η6

, Z(D6;R; q) =
θ62
η6

. (3.21)

Here NS− refers to the Neveu-Schwarz sector with (−1)F inserted in the trace. F is

the worldsheet fermion number of these left moving fermions of the D6 lattice. R refers

to the Ramond sector. From (3.20) we note that the coefficients of these D6 partitions

functions are the twisted elliptic genus of Z2 CHL orbifold of K3. The contribution of

Z(D6;NS−, R; q) is weighted with −1. It is important to note that the new supersymmet-

ric index given in (3.16) was obtained by an explict calculation and it admitted a decomposi-

tion in the form given in (3.20). It is interesting that the structure seen for K3×T 2 by [7, 9]

in which the elliptic genus of the internal CFT plays the role in determining the new super-

symmetric index is generalized to the twisted elliptic genus for the CHL compactification.

Decomposition in terms of Eisenstein series. It is also useful to rewrite the new

supersymmetric index in (3.16) in another form to obtain the gauge threshold corrections.

For this, note that we have the following identities between modular forms.

−(θ83θ
4
4 + θ84θ

4
3) = −

2

3
(E6 + 2E2(τ)E4) , (3.22)
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θ83θ
4
2 + θ82θ

4
3 = −

2

3

(
E6 − E2

(τ
2

)
E4

)
,

θ82θ
4
4 − θ82θ

4
4 = −

2

3

(
E6 − E2

(
τ + 1

2

)
E4

)
,

where4

EN (τ) =
12i

π(N − 1)
∂τ log

η(τ)

η(Nτ)
. (3.23)

The identities in (3.22) have been verified by performing a q-expansion which is detailed

in the appendix A. Substituting these identities in (3.16) we obtain the form

Z(2)
new(q, q̄)=−

2E4

η12
×


 ∑

m1,m2,n1n2∈Z

q
p2
L
2 q̄

p2
R
2

1

η12

{
2E6+(−1)m1

2

3
(E6+2E2(τ)E4)

}
(3.24)

+
∑

m1,m2,n2∈Z,
n1∈Z+ 1

2

q
p2
L
2 q̄

p2
R
2

2

3η12

{(
E6−E2

(
τ

2

)
E4

)
+(−1)m1

(
E6−E2

(
τ+1

2

)
E4

)}

 .

It is also instructive to derive the the expression in (3.24) for the new supersymmetric index

directly from from (3.20). For this we use the more general form for the twisted elliptic

genus of the N = 2 CHL orbifold of K3 from [20].

F (0,0)(τ, z) = 4A(τ, z), F (0,1)(τ, z) =
4

3
A(τ, z)−

2

3
B(τ, z)E(τ), (3.25)

F (1,0)(τ, z) =
4

3
A(τ, z)+

1

3
B(τ, z)E2

(
τ

2

)
, F (1,1)(τ, z) =

4

3
A(τ, z)+

1

3
B(τ, z)E2

(
τ + 1

2

)
,

where

A(τ, z) =
θ2(τ, z)

2

θ2(τ, 0)2
+

θ3(τ, z)
2

θ3(τ, 0)2
+

θ4(τ, z)
2

θ4(τ, 0)2
, B(τ, z) =

θ1(τ, z)
2

η6
. (3.26)

Substituting these forms for the twisted Elliptic genus in (3.20) it is easy to see that it

organizes into the form (3.24). To show this it is convenient to use the identities

A

(
τ,

1

2

)
=

(
θ44θ

2
2 + θ43θ

2
2

)

4η6
, B

(
τ,

1

2

)
=

θ22
η6

, (3.27)

A

(
τ,

τ

2

)
=

q−1/4
(
θ43θ

2
4 + θ42θ

2
4

)

4η6
, B

(
τ,

τ

2

)
= −

q−1/4θ24
η6

,

A

(
τ,

τ + 1

2

)
=

q−1/4
(
−θ44θ

2
3 + θ42θ

2
3

)

4η6
, B

(
τ,

τ + 1

2

)
=

q−1/4θ23
η6

.

Using these identities in (3.20) we obtain (3.24).

4The modular function EN was introduced in [20] where it was called EN .
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Modular invariance. The new supersymmetric index has the property that τ2Znew(τ, τ̄)

has to be an SL(2,Z) non-holomorphic modular form of weight −2. This is essentially

because it occurs in threshold integrals along with modular forms of weight 25 and the

integrand in any threshold integral has to be modular invariant. Let us now verify that

τ2Znew indeed transforms as a weight −2 modular form. For this, we need the following

transformation property of EN

EN (τ + 1) = EN (τ), EN (−1/τ) = −τ2
1

N
EN (τ/N). (3.28)

Using this property, it is easy to see that for the special case of N = 2 we have

E2

(
−

1

2τ

)
= −2τ2E2(τ), E2

(
−

1

2τ
+

1

2

)
= τ2E2

(
τ + 1

2

)
. (3.29)

Let us define the following lattice sums over T 2

Γ
(0,0)
2,2 (τ, τ̄) =

∑

m1,m2,n1,n2∈Z

q
p2
L
2 q̄

p2
R
2 , (3.30)

Γ
(0,1)
2,2 (τ, τ̄) =

∑

m1,m2,n1,n2∈Z

q
p2
L
2 q̄

p2
R
2 (−1)m1 ,

Γ
(1,0)
2,2 (τ, τ̄) =

∑

m1,m2,n2∈Z,
n1∈Z+ 1

2

q
p2
L
2 q̄

p2
R
2 ,

Γ
(1,1)
2,2 (τ, τ̄) =

∑

m1,m2,n2∈Z,
n1∈Z+

1

2

q̃
p2
L
2 q̄

p2
R
2 (−1)m1 .

From the expression for pL, pR given in (3.10) it is easy to see that under the shift τ → τ+1,

we obtain the following relations between the lattice sums

τ2Γ
(0,0)
2,2 (τ + 1, τ̄ + 1) = τ2Γ

(0,0)
2,2 (τ, τ̄), (3.31)

τ2Γ
(0,1)
2,2 (τ + 1, τ̄ + 1) = τ2Γ

(0,1)
2,2 (τ, τ̄),

τ2Γ
(1,0)
2,2 (τ + 1, τ̄ + 1) = τ2Γ

(1,1)
2,2 (τ, τ̄),

τ2Γ
(1,1)
2,2 (τ + 1, τ̄ + 1) = τ2Γ

(1,0)
2,2 (τ, τ̄).

Using Poisson resummation one can show that under the transformation τ → −1/τ the

following relations hold

(−1/τ)2 Γ
(0,0)
2,2 (−1/τ,−1/τ̄) = τ2Γ

(0,0)
2,2 (τ, τ̄), (3.32)

(−1/τ)2 Γ
(0,1)
2,2 (−1/τ,−1/τ̄) = τ2Γ

(1,0)
2,2 (τ, τ̄),

(−1/τ)2 Γ
(1,0)
2,2 (−1/τ,−1/τ̄) = τ2Γ

(0,1)
2,2 (τ, τ̄),

(−1/τ)2 Γ
(1,1)
2,2 (−1/τ,−1/τ̄) = τ2Γ

(1,1)
2,2 (τ, τ̄).

5This will be seen in section 5.
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Using the equations (3.28), (3.29), (3.31) and (3.32) it is easy to see that τ2Z
(2)
new where the

new supersymmetric index given in the form (3.24) is a modular form of weight −2. To

demonstrate this we have to also use the fact that η,E4, E6 are modular forms of weight

1/2, 4, 6 respectively. This result ensures that the result for the integrand in the threshold

corrections is modular invariant.

3.2 The ZN orbifold

From the explicit calculation and the discussions in the earlier section for the N = 2 CHL

orbifold of K3 it is easy to arrive at the expression for the new supersymmetric index for

the other values of N . To write down the expression for the index it is useful to define the

following

I
(r,s)
RR (q, q̄) =

∑

m1,m2,n2∈Z,
n1=Z+ r

N

q
p2
L
2 q̄

p2
R
2 e2πim1s/NF (r,s)

(
τ,

1

2

)
, (3.33)

I
(r,s)
(NS+)

(q, q̄) = q1/4
∑

m1,m2,n2∈Z,
n1=Z+ r

N

q
p2
L
2 q̄

p2
R
2 e2πim1s/NF (r,s)

(
τ,

τ + 1

2

)
,

I
(r,s)
(NS−)

(q, q̄) = −q1/4
∑

m1,m2,n2∈Z,
n1=Z+ r

N

q
p2
L
2 q̄

p2
R
2 e2πim1s/NF (r,s)

(
τ,

τ

2

)
,

for 0 ≤ r, s,≤ N − 1.

Here F (r,s)(τ, z) is the twisted elliptic genus of the CHL orbifold of K3 which is given

by [20]

F (0,0)(τ, z) =
8

N
A(τ, z), (3.34)

F (0,s)(τ, z) =
8

N(N + 1)
A(τ, z)−

2

N + 1
EN (τ)B(τ, z), for 1 ≤ s ≤ N − 1,

F (r,rk)(τ, z) =
8

N(N + 1)
A(τ, z) +

2

N(N + 1)
EN

(
τ + k

N

)
B(τ, z),

for 1 ≤ r ≤ N − 1, 0 ≤ k ≤ N − 1,

whereA(τ, z), B(τ, z) are defined in (3.26). Using these definitions, the new supersymmetric

index for the ZN CHL orbifold of K3 is given by

Z(N)
new(q, q̄) =

2E4

η12

N−1∑

r,s=0

[
θ62
η6

I
(r,s)
R +

θ63
η6

I
(r,s)
NS+ +

θ64
η6

I
(r,s)
NS−

]
. (3.35)

Substituting the expressions for the twisted elliptic genus from (3.34) and using the relations

in (3.27) we obtain the following expression for the new supersymmetric index in terms of

Eisenstein functions

Z(N)
new(q, q̄) = −

2E4

η12
× (3.36)
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 ∑

m1,m2,n2n2∈Z

q
p2
L
2 q̄

p2
R
2

1

η12

{
4

N
E6 +

(
N−1∑

s=1

e
2πism1

N

)(
4

N(N + 1)
E6 +

4

N + 1
EN (τ)E4

)}

+
N−1∑

r=1

∑

m1,m2,n2∈Z,
n1=Z+ r

N

q
p2
L
2 q̄

p2
R
2

N−1∑

k=0

e
2πirkm1

N

η12

{
4

N(N + 1)
E6 −

2

N(N + 1)
EN

(
τ + k

N

)
E4

}

 .

A simple check of the above formula is that it reduces to (3.24) for the N = 2 case. One

can re-write this expression by performing the sum over the phases wherever possible, but

it is convenient to keep the expression as it is. It can be shown that τ2Z
(N)
new(q, q̄) is a

modular form of weight −2 by generalizing the method discussed for the N = 2 case in

detail. Therefore the structure of the new elliptic index for CHL orbifolds of K3 is such

that the Eisenstein function E6 which occurs for the K3 is modified to the form given in

the curly brackets of the expression in (3.36).

Our analysis of the new supersymmetric index for heterotic compactification on the

CHL orbifolds of K3 was restricted to the case of the standard embedding when one of

the gauge groups of the heterotic is broken to E7. However we expect our observation that

the new supersymmetric index decomposes to sum over twisted elliptic genera of K3 will

be true for other embeddings and gauge groups. For the unorbifolded case, that fact the

elliptic genus of K3 determines the new supersymmetric index was explicitly shown by the

study of various cases in [9, 25]. We expect similar results to hold for the compactifications

considered in this paper and it will interesting to perform explicit checks for the various

gauge groups.

4 Mathieu moonshine

From the analysis of the new supersymmetric index for CHL orbifolds of K3 we have seen

that it is essentially determined by the twisted elliptic index of K3. This property is seen

in the expressions (3.24) for the N = 2 orbifold and (3.36) for other values of N . It is

known [37–40] that the twisted elliptic genus of K3 admits M24 symmetry. Therefore, it

must be possible to discover the M24 representations in the new supersymmetric index for

the CHL orbifolds of K3, just as it was done for the new supersymmetric index for K3

compactifications in [19].

Let us first recall how Mathieu moonshine — i.e. M24 representations — is seen in the

elliptic genus of K3. It is given by

ZK3(τ, z) = 8A(τ, z). (4.1)

Let us decompose the elliptic genus into the elliptic genera of the short and the long

representations of the N = 4 super conformal algebra. These are given by [41]

chh= 1

4
,l=0(τ, z) = −ieπiz

θ1(τ, z)

η(τ)3

∞∑

n=−∞

1

1− e2πi(nτ+z)
eπiτn(n+1)e2πi(n+

1

2
), (4.2)
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chh=n+ 1

4
,l= 1

2

(τ, z) = e2πiτ(n−
1

8
) θ1(τ, z)

2

η(τ)2
.

Then we have

ZK3(τ, z) = 24chh= 1

4
,l=0(τ, z) +

∞∑

n=0

A(1)
n chh=n+ 1

4
,l= 1

2

(τ, z). (4.3)

where the first few values of A
(1)
n are given by

A(1)
n = −2, 90, 462, 1540, 4554, 11592, . . . (4.4)

These coefficients are either the dimensions or the sums of dimensions of the irreducible

representations of the group M24 [42]. The generalization of this observation to the twisted

elliptic genus of K3 was done in [37, 38, 40]. Let us first discuss the N = 2 CHL orbifold

of K3. Consider the twisted elliptic index

2F (0,1)(τ, z) =
8

3
A(τ, z)−

4

3
B(τ, z)E2(τ). (4.5)

This admits the following decomposition in terms of N = 4 Virasoro characters

2F (0,1)(τ, z) = 8chh= 1

4
,l=0(τ, z) +

∞∑

n=0

A(2)
n chh=n+ 1

4
,l= 1

2

(τ, z). (4.6)

Where the coefficient 8 is the twisted Euler number of K which is given by

χN =
24

N + 1
, N = 2, 3, 5, 7. (4.7)

In (4.6) the first few values of A
(2)
n are given by

A(2)
n = −2, −6, 14, −28, 42, −56, 86, −138, . . . (4.8)

These coefficients can be identified with McKay-Thompson series constructed out of trace

of the element g corresponding to the Z2 involution of K3 embedded in M24. From the

structure of the new supersymmetric index in (3.20) and (3.24) the new supersymmetric

index in the (0, 1) sector given by

G(2)(q) = −
4

3

[
E6 + 2E2(τ)E4

η12

]
. (4.9)

We have multiplied by a factor of 2 to agree with the normalizations of the twisted elliptic

genus of K3 used in [37]. Then the new supersymmetric index in the (0, 1) sector admits

the following decomposition

G(2)(q) = 8gh= 1

4
,l=0(τ) +

∞∑

n=0

A(2)
n gh=n+ 1

4
,l= 1

2

(τ), (4.10)
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where

gh= 1

4
,l=0(τ)=

θ62
η6

chh= 1

4
,l=0

(
τ,

1

2

)
+ q1/4

θ63
η6

chh= 1

4
,l=0

(
τ,

1 + τ

2

)
− q1/4

θ64
η6

chh= 1

4
,l=0

(
τ,

τ

2

)
,

gh= 1

4
,l=0(τ)=

θ62
η6

chh= 1

4
,l= l

2

(
τ,

1

2

)
+q1/4

θ63
η6

chh= 1

4
,l=0

(
τ,

1+τ

2

)
−q1/4

θ64
η6

chh= 1

4
,l=0

(
τ,

τ

2

)
. (4.11)

The g’s are products of characters of D6 and N = 4 Virasoro characters. G(2) given in (4.9)

is the generalization of

G(1)(q) = −2
E6

η12
(4.12)

which is the new supersymmetric index for K3 compactifications. Substituting the expres-

sions for g’s from (4.11) into (4.10) and using (4.9) we can solve for the coefficients A
(2)
n . We

have checked using Mathematica that the first 8 coefficients fall into the McKay-Thompson

series for the Z2 involution embedded in M24 given in (4.8).

Let us now proceed with the analysis for other values of N . From (3.36) we see that

the new supersymmetric index in the (0, 1) sector is given by

G(N)(q) =
−N

η12

[
4

N(N + 1)
E6 +

4

N + 1
EN (τ)E4

]
. (4.13)

Here we have multiplied a factor of N to agree with the normalizations of the twisted

elliptic genus of K3 in [37]. Let us write G(N) as

G(N)(q) = χNgh= 1

4
,l=0(τ) +

∞∑

n=0

A(N)
n gh=n+ 1

4
,l= 1

2

(τ). (4.14)

By equating (4.14) and (4.13) we can solve for the coefficients A
(N)
n .6 The first few coeffi-

cients are given by

A(3)
n = −2, 0, −6, 10, 0, −18, 20, 0, . . . ,

A(5)
n = −2, 0, 2, 0, −6, 2, 0, 6 , . . . ,

A(7)
n = −2, −1, 0, 0, 4, 0, −2, 2, . . . . (4.15)

These are the coefficients of the McKay-Thompson series for the ZN automorphism of K3

embedded in M24.
7 The appearance of this series is expected once we have demonstrated

that the new supersymmetric index can be decomposed into the twisted elliptic genus of

K3. The explicit evaluation of the coefficients serves as a simple consistency check of our

calculations. It is also presented to establish the identity in (4.14) independently which

can be of use for future reference. Thus the BPS states in these compactifications have a

decomposition in terms of the coefficients of the McKay-Thompson series.

As we have seen explicitly, for the N = 2 case, the new supersymmetric index in the

(1, 0) twisted sector is related to that of the (0, 1) sector by the modular transformation τ →

6A Mathematica routine was used for this.
7Compare table 1 of [37].
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−1/τ . This is also true for other values of N . This implies that the new supersymmetric

index in these sectors must also contain the modular transformed version of the McKay-

Thompson series. It will be interesting to show this explicitly. There are 26 McKay-

Thompson series corresponding to the 26 conjugacy classes of M24. It will be interesting to

to construct and study the properties of the the new supersymmetric index corresponding

to remaining classes. The twisted elliptic genera of K3 for each of these classes have been

constructed in [37–40]8 which will be a good starting point for this study.

5 Gauge threshold corrections

In this section, we will evaluate the one-loop threshold corrections for each of the two

unbroken gauge groups E7 and E8 as a function of the Kähler and complex structure

moduli and the Wilson line modulus on T 2 for the heterotic compactifications on CHL

orbifolds of K3. To begin we will recall the evaluation of the threshold integrals for the

gauge couplings of heterotic on K3× T 2. We then proceed to generalize to the case of the

Z2 CHL orbifold and then present the results for the ZN orbifold with N = 3, 5, 7. We

will show that the difference in the threshold integrals of the two unbroken gauge groups

reduces to Siegel modular forms associated with dyon partition functions in N = 4 string

compactifications studied in [20].

5.1 Thresholds in K3 × T
2

Let us first discuss the situation without the Wilson line turned on. The moduli dependence

of the one-loop running of the gauge group is given by

∆G(T, U) =

∫

F

d2τ

τ2
(BG − b(G)) , (5.1)

where B is a trace over the internal Hilbert space which is defined as

BG(τ, τ̄) =
1

η2
TrR

{
FeiπF qL0−

c
24̃̄ qL̃0−

c̃
24

(
Q2(G)−

1

8πτ2

)}
, (5.2)

where Q is the charge of the lattice vectors. The coefficient b(G) is the one-loop beta

function which is present to ensure that the integral is well-defined in the limit τ2 → ∞.

Since we will be interested only in the moduli dependence, this coefficient will not play a

crucial role in our analysis. Note that B is closely related to the new supersymmetric index.

In fact the term proportional to 1/8πτ2 is the new supersymmetric index. The easiest way

to determine the term with the charge insertion Q2(G) is to consider the action of q∂q on

the partition function of the appropriate lattice sum so that τ2B is modular invariant. The

integral in (5.1) is carried out over the fundamental domain.

Let us recall how to evaluate the one-loop threshold integrands for the groups E7 and

E8 for the K3× T 2 compactifications. For group E8, the integrand is given by

B
(1)
E8

(τ τ̄) = −2Γ2,2(q, q̄)
1

η24

(
αGq∂qE4 −

1

8πτ2

)
4E6. (5.3)

8See [43] for an earlier explicit construction of the twisted elliptic genus for the N = 4 orbifold.
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Here we have supressed the moduli dependence of B which arises due to the lattice sum on

T 2 given by Γ2,2. Note that, this is essentially an operation on the new supersymmetric

index for these compactifications which is given in (1.2). The charge insertion of the E8

lattice is obtained by the action of q∂q on the lattice sum E4(q). The coefficient αG is

determined by demanding τ2B is modular invariant. To determine this coefficient consider

the following identity due to Ramanujan

q∂qE4 =
1

3
(E2E4 − E6). (5.4)

Substituting this identity in (5.3) we obtain

B
(1)
E8

(τ τ̄) = −8Γ2,2(q, q̄)
1

η24

{(
αG

3
E2 −

1

8πτ2

)
E4E6 −

αG

3
E2

6

}
. (5.5)

It is now clear that choosing αG = 1
8 ensures the the quasi-modular form E2 occurs in the

combination

Ẽ2 = E2 −
3

πτ2
. (5.6)

which transforms as a good modular form of weight 2. Therefore the threshold integrand

for the gauge group E8 is given by

B
(1)
E8

(τ, τ̄) = −
1

3
Γ2,2(q, q̄)

1

η24

{(
E2 −

3

πτ2

)
E4E6 − E2

6

}
. (5.7)

Similarly the threshold integrand for the group E7 is obtained by evaluating

B
(1)
E7

(τ, τ̄) = −8Γ2,2(q, q̄)
1

η24

(
αG′q∂qE6 −

1

8πτ2

)
E4. (5.8)

Now we have the Ramanujan identity

q∂qE6 =
1

2
(E2E6 − E2

4). (5.9)

This identity together with modular invariance determines αG′ = 1/12 . Thus the threshold

integrand for the gauge group E7 is given by

B
(1)
E7

(τ, τ̄) = −
1

3
Γ2,2(q, q̄)

1

η24

{(
E2 −

3

πτ2

)
E4E6 − E3

4

}
. (5.10)

Finally consider the difference in the threshold integrands for the gauge groups in (5.7)

and (5.10). We obtain

B
(1)
E7

− B
(1)
E8

=
1

3η24
Γ2,2

(
E3

4 − E2
6

)
, (5.11)

= 576Γ2,2.

To obtain the second line we have used the identity

E3
4 − E2

6 = 1728η24. (5.12)
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Therefore the threshold integral reduces to the trivial integral over the fundamental domain

of just the lattice sum which is given by

∆
(1)
E7

(T, U)−∆
(1)
E8

(T, U) = 576

∫

F

d2τ

τ2
(Γ2,2 − 1). (5.13)

The constant (−1) can be obtained by carefully keeping track of the constants b(G) in the

threshold integrand (5.1). Essentially the (−1) serves to regulate the integral as τ2 → ∞.

This integral was done by [4] and the result reduces to the product of the Dedekind η

functions.

∆
(1)
E7

(T, U)−∆
(1)
E8

(T, U) = −48 log(T 12
2 U12

2 |η(T )η(U)|48). (5.14)

Here we are ignoring moduli independent constants. T2, U2 are the imaginary parts of the

the T, U moduli of the torus T 2. Note that the normalization of the thresholds used in

this paper involves a division by the beta function compared to standard normalizations

in the literature. This is keep uniformity in the discussion when we evaluate the difference

in thresholds as well as when we turn to the CHL orbifolds.

Wilson line V 6= 0. Let us now repeat this exercise with the Wilson line V on the

torus T 2 turned on. The Wilson line can be embedded either in the gauge group E8 or

E7. We will take the Wilson line to be embedded in E8.
9 The procedure to evaluate gauge

thresholds with the Wilson line was given in [9]. Here we out line the steps. Due to the

presence of the Wilson line, the lattice sum over T 2 is enhanced to Γ3,2 which is given by

Γ3,2 =
∑

m1,m2,n1,n2,b

q
p2
L
2 q̄

p2
R
2 . (5.15)

where

p2R
2

=
1

4 detImΩ

∣∣−m1U +m2 + n1T + n2(TU − V 2) + bV
∣∣2 , (5.16)

p2L
2

=
p2R
2

+m1n1 +m2n2 +
1

4
b2.

and

Ω =

(
U V

V T

)
. (5.17)

Thus the lattice sum over T 2 is characterized by the five charges (m1,m2, n1, n2, b). The

new supersymmetric index with the Wilson line is then determined by first re-writing the

lattice sum over E8 in terms of a Jacobi form of index 1 given by

E4,1(τ, z) =
1

2

[
θ2(τ, z)

2θ62 + θ3(τ, z)
2θ63 + θ4(τ, z)

2θ64
]
. (5.18)

Note that E4,1(τ, 0) = E4(q), essentially we have decomposed the E8 lattice into D6 and

D2 and introduced a chemical potential for the charges in the D2 sub-lattice. This breaks

9The discussion can be generalized when the Wilson line is embedded in E7, with the same results.
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the gauge group E8 down to SO(12) × U(1) we will refer to this group as G. We then

decompose this Jacobi form of index one into SU(2) characters as follows

E4,1(τ, z) = Eeven
4,1 (q)θeven(τ, z) + Eodd

4,1 (q)θodd(τ, z). (5.19)

where

θeven(τ, z) = θ3(2τ, 2z), θodd(τ, z) = θ2(2τ, 2z). (5.20)

This decomposition can be performed using the relations

θ21(τ, z) = θ2(2τ, 0)θ3(2τ, 2z)− θ3(2τ, 0)θ2(2τ, 2z), (5.21)

θ22(τ, z) = θ2(2τ, 0)θ3(2τ, 2z) + θ3(2τ, 0)θ2(2τ, 2z),

θ23(τ, z) = θ3(2τ, 0)θ3(2τ, 2z) + θ2(2τ, 0)θ2(2τ, 2z),

θ24(τ, z) = θ3(2τ, 0)θ3(2τ, 2z)− θ2(2τ, 0)θ2(2τ, 2z).

Using these relations we get

Eeven
4,1 (q) =

1

2

(
θ2(2τ, 0)θ

6
2 + θ3(2τ, 0)θ

6
3 + θ3(2τ, 0)θ

6
4

)
, (5.22)

Eodd
4,1 (q) =

1

2

(
θ3(2τ, 0)θ

6
2 + θ2(2τ, 0)θ

6
3 − θ2(2τ, 0)θ

6
4

)
.

Note that the even and odd parts depend only on the modular parameter τ . Finally the

modified new supersymmetric index in the presence of the Wilson line is written as

Z(1)
new(q, q̄) = −8

E6

η24




∑

m1,m2,n1,n2∈Z,
b∈2Z

q
p2
L
2 q̄

p2
R
2 Eeven

4,1 (q) +
∑

m1,m2,n1,n2∈Z,
b∈2Z+1

q
p2
L
2 q̄

p2
R
2 Eodd

4,1 (q)


 .

(5.23)

Here pL, pR contain the Kähler, complex structure and the Wilson line moduli dependence

of the T 2. A similar procedure can be carried out when the Wilson line is embedded in the

unbroken group E7. In this situation the Jacobi form E6,1 given by

E6,1(τ, z) =
1

2

(
−θ62(θ

4
3 + θ44)θ

2
2(τ, z) + θ63(θ

4
4 − θ42)θ

2
3(τ, z) + θ64(θ

4
2 + θ43)θ

2
4(τ, z)

)
. (5.24)

must be decomposed into its even and odd parts. The coupling of the lattice sum Γ3,2 to

the even and odd parts of E4,1 in (5.23) is compactly denoted as

Z(1)
new(q, q̄) = −8

E6

η24
E4,1 ⊗ Γ3,2(q, q̄). (5.25)

Now we move to evaluating the integrand BG in the gauge thresholds with the Wilson

line. Let us evaluate the threshold integrand for the group E8 first. To determine the

coefficient of the αG in the action q∂q we need the following identity analogous to (5.4)

which is given in [44, 45]

q∂qE
even,odd
4,1 =

7

24

(
E2E

even,odd
4,1 − Eeven,odd

6,1

)
. (5.26)
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For completeness we also provide the identity which is required if the Wilson line is em-

bedded in E7

q∂qE
even,odd
6,1 =

11

24

(
E2E

even,odd
6,1 − Eeven,odd

4,1 E4

)
. (5.27)

From (5.26) it is easy to see that to preserve modular invariance we need αG = 1/7.

Therefore we obtain

B
(1)
G (τ, τ̄) = −

1

3

1

η24

{(
E2 −

3

πτ2

)
E4,1E6 − E6,1E6

}
⊗ Γ3,2(q, q̄). (5.28)

The threshold integrand BG′ for group E7 is given by

B
(1)
G′ (τ, τ̄) = −

1

3

1

η24

{(
E2 −

3

πτ2

)
E4,1E6 − E2

4E4,1

}
⊗ Γ3,2(q, q̄). (5.29)

Let us now take the difference between threshold corrections corresponding to the two

gauge groups. We obtain

∆
(1)
G′ (T, U, V )−∆

(1)
G (T, U, V ) =

∫

F

d2τ

τ2

1

3η24
(
E2

4E4,1 − E6E6,1

)
⊗ Γ3,2(q, q̄). (5.30)

Here we have ignored the constant term in the integrand which can be determined by

examining the behaviour of the integrand as τ2 → ∞. The combination of the Eisenstein

series which occurs in the (5.30) can be identified with the elliptic genus of K3 due to the

following identities

1

η24
[
E2

4E4,1(τ, z)− E6E6,1(τ, z)
]
= 72ZK3(τ, z) = 576A(τ, z), (5.31)

1

η24

[
E2

4E
even,odd
4,1 − E6E

even,odd
6,1

]
= 72Zeven,odd

K3 = 576Aeven,odd.

where ZK3(τ, z) = 8A(τ, z) is the elliptic genus of K3. The integral in (5.30) can be

performed [46] and it results in

∆
(1)
G′ (T, U, V )−∆

(1)
G (T, U, V ) = −48log

[
(detImΩ)10|Φ10(T, U, V )|2

]
. (5.32)

where Φ10(T, U, V ) is the unique cusp modular form of weight 10 under Sp(2,Z) which is

also known as the Igusa cusp form. The observation that the difference in thresholds of

the two gauge groups results in the Igusa cusp form was made in [25]. It is also important

to note that the duality symmetry SO(3, 2) present classically in heterotic on K3 × T 2 is

broken to Sp(2,Z) due to this quantum correction.

The modular form Φ10(T, U, V ) also determines the degeneracies of 1/4 BPS dyons in

heterotic string theories compactified on T 6 or equivalently type II theories on K3 × T 2.

Note that these theories are N = 4 string vacua while we have evaluated the threshold

correction (5.32), in heterotic compactified on K3×T 2 which has N = 2 supersymmetry. It

is also interesting that the difference in thresholds is in fact sensitive only the elliptic genus

of K3. In the next subsections we will generalize this property of the gauge thresholds to

heterotic compactified on the CHL orbifolds of K3.
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5.2 Thresholds in the Z2 orbifold

Let us first evaluate the threshold integrands without the Wilson line turned on for the

Z2 orbifold of K3. As we have seen in the previous subsection, the most suitable form

of the new supersymmetric index for this task is the expression in (3.24) in terms of the

Eisenstein series. Let us write in a compact form using the lattice sums defined in (3.30).

Z(2)
new(q, q̄) = −2

E4

η24

[
Γ
(0,0)
2,2 2E6 + Γ

(0,1)
2,2

2

3
(E6 + 2E2(τ))E4) (5.33)

+Γ
(1,0)
2,2

2

3

(
E6 − E2

(
τ

2

)
E4

)
+ Γ

(1,1)
2,2

2

3

(
E6 − E2

(
τ + 1

2

)
E4

)]
.

As discussed in the earlier subsection, the insertion of Q2 in the construction of the in-

tegrand B in (5.2) is done by the action of αGq∂q with αG = 1/8 and αG′ = 1/12 when

the derivative acts on the lattice partition function E4 and E6 respectively. This ensures

modular invariance of the resulting integrand. Let us first evaluate the threshold integral

for the gauge group E8. For this, αGq∂q acts only on the first E4 in (5.33). This results in

B
(2)
E8

(q, q̄) = −
2

24η24
(Ẽ2E4 − E6)

[
Γ
(0,0)
2,2 2E6 + Γ

(0,1)
2,2

2

3
(E6 + 2E2(τ))E4) (5.34)

+Γ
(1,0)
2,2

2

3

(
E6 − E2

(
τ

2

)
E4

)
+ Γ

(1,1)
2,2

2

3

(
E6 − E2

(
τ + 1

2

)
E4

)]
.

where Ẽ2 is given by (5.6). Similarly the gauge threshold integrand for the E7 gauge group

is given by

B
(2)
E7

(q, q̄) = −
2E4

24η24

[
Γ
(0,0)
2,2 2(Ê2E6 − E2

4) + Γ
(0,1)
2,2

2

3
(Ê2E6 − E2

4 + 2E2(τ))(Ê2E4 − E6)

+Γ
(1,0)
2,2

2

3

(
Ê2E6 − E2

4 − E2

(
τ

2

)
(Ê2E4 − E6)

)

+Γ
(1,1)
2,2

2

3

(
Ê2E6 − E2

4 − E2

(
τ + 1

2

)
(Ê2E4 − E6)

)]
. (5.35)

Now upon taking the difference in the threshold integrands we obtain

B
(2)
E7

− B
(2)
E8

= 144

[
2Γ

(0,0)
2,2 +

2

3
Γ
(0,1)
2,2 +

2

3
Γ
(1,0)
2,2 +

2

3
Γ
(1,1)
2,2

]
. (5.36)

The modular integral with these difference can be performed using the methods in [20].

The difference in the gauge thresholds is given by

∆
(2)
E7

−∆
(2)
E8

= −48 log
{
T 8
2U

8
2 |η(T )η(2T )|

16|η(U)η(2U)|16
}
. (5.37)

Wilson line V 6= 0. Let us turn on the Wilson line with values in the gauge group

E8. To write down the modification in the new supersymmetric index it is convenient to

introduce the Lattice sums with the Wilson lines. Let us define

Γ
(0,0)even
3,2 =

∑

m1,m2,n1,n2∈Z,
b∈2Z

q
p2
L
2 q̄

p2
R
2 , Γ

(0,0)odd
3,2 =

∑

m1,m2,n1,n2∈Z,
b∈2Z+1

q
p2
L
2 q̄

p2
R
2 , (5.38)
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Γ
(0,1)even
3,2 =

∑

m1,m2,n1,n2∈Z,
b∈2Z

q
p2
L
2 q̄

p2
R
2 (−1)m1 , Γ

(0,1)odd
3,2 =

∑

m1,m2,n1,n2∈Z,
b∈2Z

q
p2
L
2 q̄

p2
R
2 (−1)m1 ,

Γ
(1,0)even
3,2 =

∑

m1,m2,n2∈Z,
n1∈Z+

1

2
, b∈2Z

q
p2
L
2 q̄

p2
R
2 , Γ

(1,0)odd
3,2 =

∑

m1,m2,n2∈Z,
n1∈Z+

1

2
, b∈2Z+1

q
p2
L
2 q̄

p2
R
2 ,

Γ
(1,1)even
3,2 =

∑

m1,m2,n2∈Z,
n1∈Z+

1

2
, b∈2Z

q
p2
L
2 q̄

p2
R
2 (−1)m1 , Γ

(1,1)odd
3,2 =

∑

m1,m2,n2∈Z,
n1∈Z+

1

2
, b∈2Z+1

q
p2
L
2 q̄

p2
R
2 (−1)m1 ,

where pR, pL are the lattice momenta with the Wilson line given in (5.16). The new

supersymmetric index with Wilson line in the E8 gauge group is given by

Z(2)
new = −2

E4,1

η24
⊗

[
Γ
(0,0)
3,2 2E6 + Γ

(0,1)
3,2

2

3
(E6 + 2E2(τ))E4) (5.39)

+Γ
(1,0)
3,2

2

3

(
E6 − E2

(
τ

2

)
E4

)
+ Γ

(1,1)
3,2

2

3

(
E6 − E2

(
τ + 1

2

)
E4

)]
.

Note here the product ⊗ refers to the fact that the even/odd part of the E4,1 multiplies

the even/odd part of the various lattice sums as explained in the earlier subsection. The

threshold integrand for the gauge group E8 broken down to G is given by

B
(2)
G (q, q̄) = −

2

24η24
(Ẽ2E4,1 − E6,1)⊗

[
Γ
(0,0)
3,2 2E6 + Γ

(0,1)
3,2

2

3
(E6 + 2E2(τ))E4)

+Γ
(1,0)
3,2

2

3

(
E6 − E2

(
τ

2

)
E4

)
+ Γ

(1,1)
3,2

2

3

(
E6 − E2

(
τ + 1

2

)
E4

)]
. (5.40)

To obtain this note that the insertion of Q2 to obtain the threshold integrand is realized

by αGq∂q acting on E4,1 with αG = 1
7 . The threshold integrand for the gauge group E7 is

given by

B
(2)
G′ (q, q̄) = −

2E4,1

24η24
⊗

[
Γ
(0,0)
3,2 2(Ê2E6 − E2

4) + Γ
(0,1)
3,2

2

3
(Ê2E6 − E2

4 + 2E2(τ))(Ê2E4 − E6)

+Γ
(1,0)
3,2

2

3

(
Ê2E6 − E2

4 − E2

(
τ

2

)
(Ê2E4 − E6)

)

+Γ
(1,1)
3,2

2

3

(
Ê2E6 − E2

4 − E2

(
τ + 1

2

)
(Ê2E4 − E6)

)]
. (5.41)

Taking the difference in the threshold integrands given in (5.40) and (5.41) we obtain

B
(2)
G′ − B

(2)
G =

1

12η12

{
2Γ

(0,0)
3,2 ⊗ (E4,1E

2
4 − E6,1E6) (5.42)

+
2

3
Γ
(0,1)
3,2 ⊗

[
(E4,1E

2
4 − E6,1E6) + 2E2(τ)(E4,1E6 − E6,1E4)

]

+
2

3
Γ
(1,0)
3,2 ⊗

[
(E4,1E

2
4 − E6,1E6)− E2

(
τ

2

)
(E4,1E6 − E6,1E4)

]

+
2

3
Γ
(1,1)
3,2 ⊗

[
(E4,1E

2
4 − E6,1E6)− E2

(
τ + 1

2

)
(E4,1E6 − E6,1E4)

]}
.
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We now use the identity in (5.31) as well as the following identity verified in appendix A

1

η24
(E4,1(τ, z)E6 − E6,1(τ, z)E4) = −144

θ1(τ, z)
2

η6
= −144B(τ, z), (5.43)

1

η24

(
Eeven,odd

4,1 E6 − Eeven,odd
6,1 E4

)
= −144

(θ21)
even,odd

η6
= −144Beven,odd.

Substituting the identities (5.31) and (5.43) we obtain

B
(2)
G′ − B

(2)
G = 24

{
Γ
(0,0)
3,2 ⊗ 4A+ Γ

(0,1)
3,2 ⊗

[
4

3
A−

2

3
BE2(τ)

]
(5.44)

+Γ
(1,0)
3,2 ⊗

[
4

3
A+

1

3
BE2

(
τ

2

)]
+ Γ

(1,1)
3,2 ⊗

[
4

3
A+

1

3
BE2

(
τ + 1

2

)]}
.

On comparing the twisted elliptic genus for the N = 2 CHL orbifold of K3 given in (3.25)

we can rewrite the above equation as

B
(2)
G′ − B

(2)
G = 24

{
Γ
(0,0)
3,2 ⊗ F (0,0) + Γ

(0,1)
3,2 ⊗ F (0,1) + Γ

(1,0)
3,2 ⊗ F (1,0) + Γ

(1,1)
3,2 ⊗ F (1,1)

}
.

(5.45)

This is precisely the integrand in the modular integral to obtain the Siegel modular form

Φ6(Ω) of weight 6. Using the result of the integration in [20], we obtain

∆
(2)
G′ (U, T, V )−∆

(2)
G (U, T, V ) = −48 log

[
(det ImΩ)6|Φ6(U, T, V )|2

]
. (5.46)

The Siegel modular form, Φ6(T, U, V ), transforms as a weight 6 form under a subgroup

of Sp(2,Z). This subgroup is explicitly discussed in [20].10 The appearance of the Φ6 in

the threshold calculation here shows that the duality group of this compactification is a

subgroup of Sp(2,Z). Just as in the case of heterotic string on K3×T 2, the modular form

Φ6 is also related to the partition function of 1/4 BPS dyons in on type II theory on the

CHL orbifold of K3. This theory has N = 4 supersymmetry, it is dual to the original CHL

compactifications of heterotic studied in [10]. Let Φ̃6 be the generating function of dyons

in this theory, then the modular form Φ6 is related to Φ̃6 in (5.46) by the following Sp(2,Z)

transformation.

Φ6(U, T, V ) = T−6Φ̃6

(
U −

V 2

T
,−

1

T
,
V

T

)
. (5.47)

5.3 Thresholds in the ZN orbifold

In this subsection we generalize the calculation of the gauge one loop thresholds to the ZN

orbifold for N = 3, 5, 7. Since we have discussed the case for N = 2 in detail we will directly

present the results for the threshold with Wilson line embedded in the unbroken gauge

group E8. Again to present the results it is convenient to define the following lattice sums.

Γ
(0,s)even
3,2 =

∑

m1,m2,n1,n2∈Z,
b∈2Z

q
p2
L
2 q̄

p2
R
2 e

2πism1
N , Γ

(0,s)odd
3,2 =

∑

m1,m2,n1,n2∈Z,
b∈2Z+1

q
p2
L
2 q̄

p2
R
2 e

2πism1
N , (5.48)

10See below equation (3.20) of [20].
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Γ
(r,rk)even
3,2 =

∑

m1,m2,n2∈Z,
n1∈Z+

r
N
, b∈2Z

q
p2
L
2 q̄

p2
R
2 e

2πirkm1
N , Γ

(r,rk)odd
3,2 =

∑

m1,m2,n2,∈Z,
n1∈Z+

r
N
, b∈2Z+1

q
p2
L
2 q̄

p2
R
2 e

2πirkm1
N .

From the expression for the new supersymmetric index in (3.36), it is easy to generalize

for the situation with the Wilson line embedded in the E8 gauge group. This is given by

Z(N)
new = −2

E4,1

η24
⊗

{
Γ
(0,0)
3,2

4

N
E6 +

N−1∑

s=1

Γ
(0,s)
3,2

[
4

N(N + 1)
E6 +

4

N + 1
EN (τ)E4

]

+

N−1∑

r=1,k=0

Γ
(r,rk)
3,2

[
4

N(N + 1)
E6 −

2

N(N + 1)
EN

(
τ + k

N

)
E4

]
 . (5.49)

Again, using the same manipulations to evaluate the difference in the threshold integrands

for the two gauge groups, we obtain

B
(N)
G′ −B

(N)
G = 24

{
Γ
(0,0)
3,2 ⊗

8

N
A+

N−1∑

s=1

Γ
(0,s)
3,2 ⊗

[
8

N(N + 1)
A−

2

N(N + 1)
EN (τ)B

]

+
N−1∑

r=1,k=0

Γ
(r,rk)
3,2 ⊗

[
8

N(N + 1)
A+

2

N(N + 1)
EN

(
τ + k

N

)
B

]
 . (5.50)

Now using the expressions for the twisted elliptic genus for the CHL orbifold of K3 given

in (3.34) we can recast the above expression as

B
(N)
G′ − B

(N)
G = 24

N−1∑

r,s=0

Γ(r,s ⊗ F (r,s). (5.51)

The integral of this function over the fundamental domain has been performed in [20].

The result of this integral is

∆
(N)
G′ (U, T, V )−∆

(N)
G (U, T, V ) = −48 log[(det ImΩ)k|Φk(U, T, V )|2]. (5.52)

Here Φk is the Siegel modular form of weight k transforming according to a subgroup of

Sp(2,Z). This modular form is related to Φ̃k the generating function for 1/4 BPS dyons

in type II theory compactified on the CHL orbifold of K3 by the Sp(2,Z) transformation

Φk(U, T, V ) = T−kΦ̃k

(
U −

V 2

T
,−

1

T
,
V

T

)
. (5.53)

We have thus demonstrated that the moduli dependence in the difference in the gauge

thresholds for heterotic string compactified on the CHL orbifold of K3 are captured by

Siegel modular forms Φk of weight k = 24
(N+1) − 2. These are related to the modular

forms which are generating functions for 1/4 BPS states in N = 4 string theories obtained

by compactifying type II theories on the CHL orbifold of K3. We would like to again

emphasise that our analysis was done only for the standard embedding in which one of the

E8 of the heterotic was broken to E7. However we expect the difference in gauge thresholds

will still be determined by the Siegel modular form Φk. For the unorbifolded case this was

explicitly demonstrated in [25] by considering various embeddings and gauge groups.
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6 Conclusions

We have introduced N = 2 string theories constructed by compactifying heterotic string

theories on CHL orbifolds ofK3 . These generalize the well studied example of the heterotic

string compactified on K3×T 2. The CHL orbifolding reduces the number of hypers in the

resulting N = 2 theory and preserves the vectors in the theory. These models do not have

a lift to 6 dimensions since the orbifolding involves a shift on one of the circles of T 2. We

evaluated the new supersymmetric index for these compactifications and showed that it

admits an expansion in terms of the McKay-Thompson series of the group M24 associated

with the ZN automorphism used to construct the CHL orbifold.

We then studied the moduli dependence of one-loop corrections to the gauge couplings

in the CHL orbifolds of K3. We showed that the moduli dependence of the difference

in the gauge thresholds is captured by Siegel modular forms closely related to partition

function of 1/4 BPS dyons in N = 4 string theories. These Siegel modular forms transform

under sub-groups of Sp(2,Z) which shows that the CHL orfbifolding reduces the duality

symmetry of the original K3 compactification to a subgroup of Sp(2,Z).

It will be interesting to evaluate gravitational thresholds in these theories to see if these

also admit a nice structure seen for the gauge thresholds. Another direction to explore is

generalize the observations of this paper to examples involving different embeddings with

other gauge groups. A simple example to study is the compactification in the heterotic

string which will lead to the Siegel modular which captured degeneracies of dyons in type

II N = 4 constructed in [47]. Another generalization is to consider compactifications in

heterotic based on the new classes of twisted elliptic genera ofK3 constructed in [37, 38, 40].

We observed that the difference in integrands of the gauge thresholds reduces to the

twisted elliptic genus of K3 for the CHL orbifold. This points to the fact that the difference

in the thresholds is essentially sensitive only to a supersymmetric index of the internal

CFT. It will be interesting to prove this in general. A similar phenomenon was observed

by [48, 49], in which the authors evaluated the difference in thresholds in compactifications

of heterotic which completely break supersymmetry. They noticed that the difference

in thresholds is purely a holomorphic function in the modular parameter indicative of a

supersymmetric index.

Another direction worth exploring is the N = 2 string duality between heterotic string

theory compactified on these CHL orbifolds of K3 and the appropriate Calabi-Yau on the

type II side. Since the CHL orbifolds reduce the number of hypers, the appropriate Calabi-

Yau should have the reduced Hodge number h2,1 = 6k + 4. It is interesting to study what

symmetry action on the Calabi-Yau reproduces this Hodge number. In this context it will

be also important to study the one-loop threshold corrections to gravitational couplings in

these models. Note that the modular forms Φk obtained in the difference of thresholds of

the CHL compactifications in this paper factorize in the V → 0 limit as [20]

lim
V→0

Φk(U, T, V ) ∼ V 2(η(T )η(NT ))k+2(η(U)η(NU))k+2. (6.1)

It is also interesting to investigate if the difference in thresholds have other degeneration

limits for discrete values of V as seen in [48, 49].11 This degeneration should correspond

11We thank Ioannis Florakis for raising this point.
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to charged states becoming massless since it corresponds to a logarithmic singularity in

the one-loop threshold. It will be interesting to explore this phenomenon on the dual

Calabi-Yau compactification in type II.
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A Theta functions and Eisenstein series

Our notations for the the Jacobi theta functions are summarized in the following expansion

θ1(τ, z) =
∑

n∈Z

exp

[
iπ

(
n+

1

2

)2

τ + 2πi

(
n+

1

2

)(
z +

1

2

)]
, (A.1)

θ2(τ, z) =
∑

n∈Z

exp

[
iπ

(
n+

1

2

)2

τ + 2πi

(
n+

1

2

)
z

]
,

θ3(τ, z) =
∑

n∈Z

exp
[
iπn2τ + 2πinz

]
,

θ4(τ, z) =
∑

n∈Z

exp

[
iπn2τ + 2πin

(
z +

1

2

)]
.

When there is no ambiguity we will use the following notation for theta functions at the

origin

θ2(τ, 0) = θ2(q) = θ2, θ3(τ, 0) = θ3(q) = θ3, θ4(τ, 0) = θ4(q) = θ4. (A.2)

The Dedekind η function is defined by the product

η(τ) = q
1

24

∞∏

n=1

(1− qn), (A.3)

where q = e2πiτ . It is also useful to present the infinite product representation of the theta

functions at the origin

θ2(τ)

η(τ)
= q

1

12

∞∏

n=1

(1 + qn)(1 + qn−1), (A.4)
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θ3(τ)

η(τ)
= q−

1

24

∞∏

n=1

(1 + qn−
1

2 )(1 + qn−
1

2 ),

θ2(τ)

η(τ)
= q−

1

24

∞∏

n=1

(1− qn−
1

2 )(1− qn−
1

2 ).

One identity of theta functions which we repeatedly use is triple product identity

θ2θ3θ4 = 2η3. (A.5)

Finally we will also use the following shift properties of the theta functions.

θ4

(
τ, z +

1

2

)
= θ3(τ, z), θ1

(
τ, z +

π

2

)
= θ2(τ, z), (A.6)

θ2

(
τ, z +

1

2

)
= −θ1(τ, z), θ3

(
τ, z +

1

2

)
= θ4(τ, z),

θ4

(
τ, z +

τ

2

)
= ie−

πiτ
4

−iπzθ1(τ, z), θ1

(
τ, z +

τ

2

)
= ie−

πiτ
4

−iπzθ4(τ, z),

θ2

(
τ, z +

τ

2

)
= e−

πiτ
4

−iπzθ3(τ, z), θ3

(
τ, z +

τ

2

)
= e−

πiτ
4

−iπzθ4(τ, z).

The Eisenstein series E2 is a quasi-modular form whose series expansion is given by

E2(q) = 1− 24
∞∑

n=1

σ1(n)q
n. (A.7)

where σ1(n) is the sum of positive integral divisors of n. The combination

Ẽ2 = E2 −
3

πτ2
, (A.8)

transforms as a good modular form of weight 2. The Eisenstein series E4 and E6 are related

to the theta functions by the well known identities

E4 =
1

2

(
θ82 + θ83 + θ84

)
, (A.9)

E6 =
1

2

[
−θ62(θ

4
3 + θ44)θ

2
2 + θ63(θ

4
4 − θ42)θ

2
3 + θ64(θ

4
2 + θ43)θ

2
4

]
.

We will also require the modular form EN by

EN (τ) =
12i

π(N − 1)
∂τ log

η(τ)

η(Nτ)
. (A.10)

Under modular transformations it behaves as

EN (τ + 1) = EN , EN (−1/τ) = −τ2
1

N
EN (τ/N). (A.11)

The relations given in (3.22) involving θ functions Eisenstein series and the E function is

used to write the new supersymmetric in terms of the Eisenstein series. We have established
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these identities by performing q expansions in Mathematica, we have listed out the first

few terms

−(θ83θ
4
4 + θ84θ

4
3) = −

2

3
(E6 + 2E2(τ)E4) (A.12)

= 2 + 16q − 496q2 + 3904q3 − 16880q4 + 50016q5 − 121024q6 + · · · ,

θ83θ
4
2 + θ82θ

4
3 = −

2

3

(
E6 − E2

(τ
2

)
E4

)
(A.13)

= 16q1/2 + 512q + 3904q3/2 + 16384q2 + 50016q5/2 + 124928q3 + · · · ,

θ82θ
4
4 − θ82θ

4
4 = −

2

3

(
E6 − E2

(
τ + 1

2

)
E4

)
(A.14)

= 16q1/2 − 512q + 3904q3/2 − 16384q2 + 50016q5/2 − 124928q3 + · · · .

Finally we establish the identities in (5.31) and (5.43). First recall that the Jacobi

forms of index 1 admit a even odd decomposition given by

f(τ, z) = f even(τ)θeven + fodd(τ)θodd, (A.15)

where

f even =
∑

N≡0(4)

c(N)qN/4 fodd =
∑

N≡−1(4)

c(N)qN/4, (A.16)

and

θeven(τ, z) = θ3(2τ, 2z), θodd(τ, z) = θ2(2τ, 2z). (A.17)

It is clear that E4,1(τ, z) and E6,1(τ, z) defined in (5.18) and (5.24) admit this decomposition

using the identities given in (5.21). From these we find that

Eeven
4,1 = θ73(2τ) + 7θ33(2τ)θ

4
2(2τ),

Eodd
4,1 = θ72(2τ) + 7θ32(2τ)θ

4
3(2τ). (A.18)

while for E6,1 it is

Eeven
6,1 = θ113 (2τ)− 11 θ82(2τ)θ

3
3(2τ)− 22 θ42(2τ)θ

7
3(2τ),

Eodd
6,1 = θ112 (2τ)− 11 θ83(2τ)θ

3
2(2τ)− 22 θ43(2τ)θ

7
2(2τ). (A.19)

From (A.16) we see that q expansions of the ‘even’ and ‘odd’ parts of the Jacobi forms are

different therefore we can introduce the notation [9] in which we combine these expansions

f̂(τ) = f even(τ) + fodd(τ). (A.20)

Then we establish (5.31) and (5.43 by performing the q expansions in Mathematica which

are given by

8

(
θ̂22
θ22

+
θ̂23
θ23

+
θ̂24
θ24

)
=

1

72

E2
4Ê4,1 − E6Ê6,1

η24
(A.21)

=
2

q1/4
+ 20− 128q3/4 + 216q − 1026q7/4 + 1616q2 − 5504q11/4 + 8032q3 + · · · ,
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and

−2
θ̂21
η6

=
1

72

E6Ê4,1 − E4Ê6,1

η24
(A.22)

=
2

q1/4
− 4 + 16q3/4 − 24q + 78q7/4 − 112q2 + 304q11/4 − 416q3 + · · · .

B Lattice sums

In this appendix we provide the details of evaluating the lattice sum over the shifted lattice

E′
8 defined by

P(a,b) = e−2πi ab

n2 γ
2 ∑

λ∈Γ8+a
2
γ

e2πi
b
n
λ·γq

1

2
λ2

. (B.1)

The sum runs over all the lattice vectors λ of E8. The lattice shift γ of the Z2 orbifold is

given by

γ = (1, 1, 06). (B.2)

Before we proceed let us recall that the roots of E8 are given by

112 root vectors of D8 : (. . . ,±1, . . . ,±1, . . . ),

128 8-dimensional vectors :

(
±
1

2
,±

1

2
,±

1

2
, . . .

)
.

Here the ‘. . . ’ in the 112 root vectors of D8 represent zeros. The lattice vectors are then

of two types.

λA = (n1, n2, · · · , n8),

λB =

(
n1 +

1

2
, · · · , n8 +

1

2

)
, (B.3)

with the constraint
8∑

i=1

ni = even integer. (B.4)

Let us now perform the lattice sum without any shifts. This is the (0, 0) sector.

P(0,0) =
∑

λA

q
1

2
λA·λA +

∑

λB

q
1

2
λB ·λB . (B.5)

We can impose the constraint via an extra factor

1

2
(1 + eiπ

∑
ni) =

{
1 if

∑
i ni = even integer

0 otherwise.

This results in

P(0,0) =
1

2

8∏

i=1

∑

ni∈Z

eiπτn
2
i +

1

2

8∏

i=1

∑

ni∈Z

eiπn
2
i eiπτni
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+
1

2

8∏

i=1

∑

ni∈Z

eiπτ(ni+
1

2
)2 +

1

2

8∏

i=1

∑

ni∈Z

eiπτ(ni+
1

2
)2eiπ(ni+

1

2
), (B.6)

which can be written in terms of the Jacobi θ-functions as

P(0,0) =
1

2

[
θ83 + θ84 + θ82 + θ81

]
. (B.7)

The last term is zero. Hence the final expression for the lattice sum is

P(0,0) =
1

2

[
θ82 + θ83 + θ84

]
. (B.8)

For the case (a, b) = (0, 1). The weight vectors are the same as (B.3). To evaluate the

phase we use the shift in (B.2) and the weight vectors to get

λA · γ = n1 + n2, λB · γ =

(
n1 +

1

2

)
+

(
n2 +

1

2

)
. (B.9)

The lattice sum is

P(0,1) =
1

2

6∏

i=1

∑

ni∈Z

eπiτn
2
i

2∏

i=1

∑

ni∈Z

eπiτn
2
i eπini +

1

2

6∏

i=1

∑

ni∈Z

eπiτn
2
i

2∏

i=1

∑

ni∈Z

eπiτn
2
i e2πini

+
1

2

6∏

i=1

∑

ni∈Z

eπiτ(ni+
1

2
)2

2∏

i=1

∑

ni∈Z

eπiτ(ni+
1

2
)2eπi(ni+

1

2
)

+
1

2

6∏

i=1

∑

ni∈Z

eπiτ(ni+
1

2
)2

2∏

i=1

∑

ni∈Z

eπiτ(ni+
1

2
)2e2πi(ni+

1

2
),

=
1

2

[
θ63θ

2
4 + θ64θ

2
3 + θ62θ

2
1 − θ22θ

6
1

]
=

1

2

[
θ63θ

2
4 + θ64θ

2
3

]
. (B.10)

For (a, b) = (1, 0), the weight vectors are

λ′
A = (n1 +

1

2
, n2 +

1

2
, n3, n4 · · · , n8),

λ′
B =

(
n1 + 1, n2 + 1, n3 +

1

2
, · · · , n8 +

1

2

)
. (B.11)

The lattice sum is then

P(1,0) =
1

2

2∏

i=1

∑

ni∈Z

eiπτ(ni+
1

2
)2

6∏

i=1

∑

ni∈Z

eiπτn
2
i +

1

2

2∏

i=1

∑

ni∈Z

eiπτ(ni+
1

2
)2eiπni

6∏

i=1

∑

ni∈Z

eiπτn
2
i eiπni

+
1

2

2∏

i=1

∑

ni∈Z

eiπτn
2
i

6∏

i=1

∑

ni∈Z

eiπτ(ni+
1

2
)2 +

1

2

2∏

i=1

∑

ni∈Z

eiπτn
2
i eiπni

6∏

i=1

∑

ni∈Z

eiπτ(ni+
1

2
)2eiπni ,

=
1

2

[
θ63θ

2
2 + θ62θ

2
3 − θ64θ

2
1 − θ61θ

2
4

]
=

1

2

[
θ63θ

2
2 + θ62θ

2
3

]
. (B.12)

Finally for (a, b) = (1, 1) the weight vectors are same as the ones in equation (B.11).

In addition we also have the extra phase since b 6= 0. Here

λ′
A · γ =

(
n1 +

1

2

)
+

(
n2 +

1

2

)
λ′
B · γ = n1 + n2 (B.13)
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So the lattice sum in this case is given by

−P(1,1) =
1

2

2∏

i=1

∑

ni∈Z

eπiτ(ni+
1

2
)2+πi(ni+

1

2
)

6∏

i=1

∑

ni∈Z

eπin
2
i

+
1

2

2∏

i=1

∑

ni∈Z

eπiτ(ni+
1

2
)2+πini+πi(ni+

1

2
)

6∏

i=1

∑

ni∈Z

eπin
2
i+πini

+
1

2

2∏

i=1

∑

ni∈Z

eπiτn
2
i eπini

6∏

i=1

∑

ni∈Z

eπiτ(ni+
1

2
)2

+
1

2

2∏

i=1

∑

ni∈Z

eπiτn
2
i+πini+πini

6∏

i=1

∑

ni∈Z

eπiτ(ni+
1

2
)2+πi(ni+

1

2
),

=
1

2

[
θ63θ

2
1 − θ64θ

2
2 + θ62θ

2
4 − θ61θ

2
3

]
=

1

2

[
θ62θ

2
4 − θ64θ

2
2

]
. (B.14)

Note that is the case where there are corrections due to the shift and factors present due

to the even integer constraint and the extra phase. The overall negative sign is due to the

overall phase in the definition (B.1).

C Details for the Z2 orbifold

This appendix provides the details of the evaluation of the following trace

Fm1,m2,n1,n2
(a, r, b, s; q) = Trm1,m2,n1,n2;gag′r;RR

(
gbg′seiπ(F

T4
+FT2

)F T 2

qL
′

0 q̄L̄
′

0

)
. (C.1)

The orbifold action g and g′ is defined in (3.2). We label the various sectors in terms of only

the action of g. The action of g′ is summed over in each of these sectors. Also in the above

trace the bosonic oscillators in the holomorphic direction of the T 2 is not included since

it is has already been included in (3.11). Due to the presence of the fermionic zero modes

associated with T 4 which is along the 6, 7, 8, 9 direction the trace vanishes for a = 0, b = 0

irrespective of the values of r and s. Therefore we have

Fm1,m2,n1,n2
(0, r, 0, s; q) = 0. (C.2)

Therefore from the definition of F in (3.12) we see that this implies

Fm1,m2,n1,n2
(0, 0; q) = 0. (C.3)

Now let us move to the (0, 1) sector. We have the following

Fm1,m2,n1,n2
(0, 0, 1, 0; q) = −4

1

[q
1

24

∏
∞

n=1(1 + qn)]4
(C.4)

= −4
θ23θ

2
4

η4
.

In the above equation the factor 4 arises from the anti-holomorphic fermion zero modes

associated with the T 4. The bosonic and the fermionic oscillators in the anti-holomorphic

– 36 –



J
H
E
P
0
2
(
2
0
1
6
)
0
5
6

sector cancel. What is left behind are the 4 bosonic oscillators in the holomorphic sector.

The action of g on these oscillators reverses the sign. We have used the product represen-

tation of the θ2 and then triple product identity in (A.5) to arrive at (C.4). The over all

negative sign is associated with the action ofg on the vacuum. This choice of the action of

g on the vacuum ensures the final result is modular invariant. Next we have

Fm1,m2,n1,n2
(0, 0, 1, 1; q) = −(−1)m14

θ23θ
2
4

η4
. (C.5)

The only difference in this trace from that of (C.4) is the insertion of g′ in the trace. This

picks up the factor (−1)m1 on the state carrying m1 units of momentum along the circle

y4. Now the following traces vanish

Fm1,m2,n1,n2
(0, 1, 1, 0; q) = Fm1,m2,n1,n2

(0, 1, 1, 1; q) = 0. (C.6)

This is because in this sector the winding numbers along y6 is half integer moded and

the action of g as well as gg′ reverses the sign of these modes and therefore they do not

contribute in the trace. Thus we have

Fm1,m2,n1,n2
(0, 1; q) =

{
−2 (1 + (−1)m1)

θ2
3
θ2
4

η4
for {m1,m2, n1, n2} ∈ Z,

0 for {m1,m2, n2} ∈ Z, {n1} ∈ Z+ 1
2 .

(C.7)

For the twisted (1, 0) sector we have

Fm1,m2,n1,n2
(1, 0, 0, 0; q) = 16

1

[q−
1

48

∏
∞

n=1(1− qn−1/2)]4
, (C.8)

= 4
θ22θ

2
3

η4
.

Here the factor of 16 in the first line is due to the 16 twisted sectors localized at the 16

fixed points of T 4 at ym = 0, π for m = 6, 7, 8, 9. To arrive at the second line we have used

the product representation of θ4 and the identity (A.5). Again the bosonic and fermionic

oscillators in the anti-holomorphic sector cancel leaving behind the bosonic oscillators in

the holomorphic sector. These oscillators are half integer modded since they belong to the

twisted sector. Now

Fm1,m2,n1,n2
(1, 0, 0, 1; q) = 0. (C.9)

This is because the action of g′ exchanges the fixed points pairwise, the twisted sector

states are off diagonal and therefore the trace vanishes.

Fm1,m2,n1,n2
(1, 1, 0, 0; q) = 4

θ22θ
2
3

η4
. (C.10)

Here the states twisted by gg′ are now labelled by the fixed points y6 = π
2 ,

3π
2 , ym = 0, π for

m = 7, 8, 9. The rest of the analysis to obtain the above equation is same as that in (C.8),

but note that here the winding n1 ∈ Z+ 1
2 due to the twisting by g′. Finally

Fm1,m2,n1,n2
(1, 1, 0, 1; q) = 0. (C.11)
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This is because the action of the g′ insertion exchanges the fixed points and the elements

are off diagonal in the trace. In summary the contributions in this sector are

Fm1,m2,n1,n2
(1, 0; q) =

{
2
θ2
2
θ2
3

η4
for {m1,m2, n1, n2} ∈ Z,

2
θ2
2
θ2
3

η4
for {m1,m2, n2} ∈ Z, {n1} ∈ Z+ 1

2 .
(C.12)

Lets now look at the (1, 1) sector. We have

Fm1,m2,n1,n2
(1, 0, 1, 0; q) = −16

1

[q−
1

48

∏
∞

n=1(1− qn−1/2)]4
, (C.13)

= −4
θ22θ

2
4

η4
.

Again due to the arguments mentioned earlier, it is only the bosonic oscillators in the T 4 di-

rections which contribute. The 16 in the first line is due to the presence of the 16 fixed point

and the negative sign is because the action of g on the vacuum gives a negative sign. Now

Fm1,m2,n1,n2
(1, 0, 1, 1; q) = 0. (C.14)

This is because the insertion of gg′ in the trace exchanges the fixed points pair wise and

therefore the elements are off diagonal in the trace. Again due to the same reason of the

elements being off diagonal we have

Fm1,m2,n1,n2
(1, 1, 1, 0; q) = 0. (C.15)

Note here the due to twisted by g′ the states are at y6 = π
2 ,

3π
2 , ym = 0, π for m = 7, 8, 9.

Finally

Fm1,m2,n1,n2
(1, 1, 1, 1; q) = −4(−1)m1

θ22θ
2
4

η4
. (C.16)

Here the analysis is same as in the case of (C.13). The (−1)m1 occurs due to the presence

g′ in the trace. Also n1 ∈ Z + 1
2 since the states are twisted by g′. To summarize this

sector results in

Fm1,m2,n1,n2
(1, 1; q) =

{
−2

θ2
2
θ2
4

η4
for {m1,m2, n1, n2} ∈ Z,

−2(−1)m1
θ2
2
θ2
4

η4
for {m1,m2, n2} ∈ Z, {n1} ∈ Z+ 1

2 .
(C.17)
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