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Abstract: The CMS experiment at the Large Hadron Collider has reported a 2.8σ excess

in the (2e)(2jets) channel around 2.1 TeV. Interpretation of this data is reconsidered in

terms of the production of a right-handed weak gauge boson, WR, of the left-right sym-

metric model and in an SO(10) grand unified theory abiding by the Extended Survival Hy-

pothesis. The left-right symmetric model can be consistent with this excess if (a) the heavy

right-handed neutrino has a mass near WR, or (b) if gL 6= gR, or (c) the right-handed CKM

matrix is nontrivial. Combinations of the above possibilities are also viable. A WR with a

mass in the TeV region if embedded in SO(10) is not compatible with gL = gR. Rather, it

implies 0.64 ≤ gR/gL ≤ 0.78. Further, a unique symmetry-breaking route — the order be-

ing left-right discrete symmetry breaking first, followed by SU(4)C and finally SU(2)R — to

the standard model is picked out. The L↔ R discrete symmetry has to be broken at around

1016 GeV. The grand unification scale is pushed to 1018 GeV making the detection of proton

decay in ongoing searches rather unlikely. The SU(4)C breaking scale can be at its allowed

lower limit of 106 GeV so that n− n̄ oscillation or flavour changing processes such as KL →
µe and Bd,s → µe may be detectable. The Higgs scalar multiplets responsible for SO(10)

symmetry breaking at various stages are uniquely identified so long as one adheres to a min-

imalist principle. We also remark, en passant, about a partially unified Pati-Salam model.

Keywords: GUT, Beyond Standard Model

ArXiv ePrint: 1509.03232

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP02(2016)023

mailto:gondogolegogol@gmail.com
mailto:biswa.brahmac@gmail.com
mailto:palitprof@gmail.com
http://arxiv.org/abs/1509.03232
http://dx.doi.org/10.1007/JHEP02(2016)023


J
H
E
P
0
2
(
2
0
1
6
)
0
2
3

Contents

1 Introduction 1

2 CMS WR search result and the left-right symmetric model 3

2.1 A WR signal? 4

3 SO(10) grand unification 6

3.1 Symmetry breaking 6

3.2 Scalar structure and the Extended Survival Hypothesis (ESH) 7

3.3 Renormalisation group equations 9

4 Low energy expectations from unification 10

4.1 Pati-Salam partial unification 10

4.2 Left-right symmetry and unification 11

5 The three routes of SO(10) symmetry breaking 12

5.1 The DRC route 12

5.2 The CDR route 12

5.3 The DCR route 14

6 SO(10) unification with MR ∼ O(TeV) 16

6.1 Pati-Salam partial unification for the maximum-step case 16

6.2 Coupling unification for the maximum-step case 16

6.3 The MD = MU case 17

6.4 Two-loop comparison 18

6.5 Additional scalars: two examples 19

7 Summary and conclusions 20

1 Introduction

The discovery of the Higgs boson at the Large Hadron Collider (LHC) at CERN is a major

milestone of the successes of the standard model (SM) of particle physics. Indeed, with

all the quarks and leptons and force carriers of the SM now detected and the source of

spontaneous symmetry breaking identified there is a well-deserved sense of satisfaction.

Nonetheless, there is a widely shared expectation that there is new physics which may be

around the corner and within striking range of the LHC. The shortcomings of the standard

model are well-known. There is no candidate for dark matter in the SM. The neutrino

is massless in the model but experiments indicate otherwise. At the same time the utter
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smallness of this mass is itself a mystery. Neither is there any explanation of the matter-

antimatter asymmetry seen in the Universe. Besides, the lightness of the Higgs boson

remains an enigma if there is no physics between the electroweak and Planck scales.

Of the several alternatives of beyond the standard model extensions, the one on which

we focus in this work is the left-right symmetric (LRS) model [1–5] and its embedding

within a grand unified theory (GUT). Here parity is a symmetry of the theory which is

spontaneously broken resulting in the observed left-handed weak interactions. The left-

right symmetric model is based on the gauge group SU(2)L × SU(2)R × U(1)B−L and has

a natural embedding in the SU(4)C ×SU(2)L×SU(2)R Pati-Salam model [2] which unifies

quarks and leptons in an SU(4)C symmetry. The Pati-Salam symmetry is a subgroup of

SO(10) [6, 7]. These extensions of the standard model provide avenues for the amelioration

of several of its shortcomings alluded to earlier.

The tell-tale signature of the LRS model would be observation of the WR. At the LHC

the CMS collaboration has searched for the on-shell production of a right-handed charged

gauge boson [8] using the process:1

pp→WR → 2j + ll . (1.1)

In the above l stands for a charged lepton, and j represents a hadronic jet.

The CMS collaboration has examined the implication of its findings in the context of

a left-right symmetric model where the left and right gauge couplings are equal (gL = gR)

and also the WR coupling to a charged lepton, l, and its associated right-handed neutrino,

Nl, is diagonal with no leptonic mixing,2 (i.e., VNll = 1). In the l = e channel the data

shows a 2.8σ excess near 2.1 TeV. Also, regions in the MNl −MWR
plane disfavoured by

the data, within an LRS theory with gL = gR, have been exhibited. After production, the

WR decays through WR → lNl in the first stage. An associated signal of this process will

be a peak at MNl in one of the ljj invariant mass combinations. CMS has not observed

the latter. One possibility may be that the produced Nl has a substantial coupling to the

τ -lepton [13, 14] — VNlτ is not small. Here we keep MNl as a parameter of the model.

Within the LRS model there is room to admit the possibility of gL 6= gR. Interpretation

of the CMS result in the presence of such a coupling asymmetry has also been taken up [15–

17] keeping MNl = MWR
/2 and the implications for grand unification and baryogenesis

explored. In [15, 16] the coupling parameter VNll is also allowed to deviate from unity.

Other interpretations of the excess have also appeared, for example, in [13–20].

In a left-right symmetric model emerging from a grand unified theory, such as SO(10),

one has a discrete symmetry SU(2)L ↔ SU(2)R — referred to as D-parity [21, 22] — which

sets gL = gR. Both D-parity and SU(2)R are broken during the descent of the GUT to the

standard model, the first making the coupling constants unequal and the second resulting

in a massive WR. The possibility that the energy scale of breaking of D-parity is different

from that of SU(2)R breaking is admissible and well-examined [23]. The difference between

these scales and the particle content of the theory controls the extent to which gL 6= gR.

1Earlier searches at the LHC for the WR can be found in [9–12].
2The existence of three right-handed neutrinos — Ne, Nµ and Nτ — is acknowledged.
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In this work we consider the different options of SO(10) symmetry breaking. It is shown

that a lightWR goes hand-in-hand with the breaking of D-parity at a scale around 1016 GeV,

immediately excluding the possibility of gL = gR. D-parity breaking at such an energy is

usually considered a desirable feature for getting rid of unwanted topological defects such

as domain walls [24] and accounting for the baryon asymmetry of the Universe [25]. The

other symmetries that are broken in the passage to the standard model are the SU(4)C and

SU(2)R of the Pati-Salam (PS) model. The stepwise breaking of these symmetries and the

order of their energy scales have many variants. There are also a variety of options for the

scalar multiplets which are used to trigger the spontaneous symmetry breaking at the differ-

ent stages. We take a minimalist position of (a) not including any scalar fields beyond the

ones that are essential for symmetry breaking, and also (b) impose the Extended Survival

Hypothesis (ESH) corresponding to minimal fine-tuning to keep no light extra scalars. With

these twin requirements we observe that only a single symmetry-breaking route — the one

in which the order of symmetry breaking is first D-parity, then SU(4)C , and finally SU(2)R
— can accommodate a light MWR

. We find that one must have 0.64 ≤ gR/gL ≤ 0.78.

The paper is divided as follows. In the following section we give details of the CMS

result [8] which are relevant for our discussion within the context of the left-right symmetric

model. In the next section we elaborate on the GUT symmetry-breaking chains, the

extended survival hypothesis for light scalars, and coupling constant evolution relations.

Next we briefly note the implications of coupling constant unification within the Pati-Salam

and SO(10) models. The results which emerge for the different routes of descent of SO(10)

to the SM are presented in the next two sections. We end with our conclusions.

2 CMS WR search result and the left-right symmetric model

The results of the CMS collaboration for the search for a WR-boson that we use [8] are

based on the LHC run at
√
s = 8 TeV with an integrated luminosity of 19.7 fb−1. The

focus is on the production of a WR which then decays to a charged lepton (l) and a

right-handed heavy neutrino (Nl), both of which are on-shell. The Nl undergoes a three-

body decay to a charged lepton (l) and a pair of quarks which manifest as hadronic jets

(2j), the process being mediated by a WR. CMS examines the (2l)(2j) data within the

framework of an LRS model with gL = gR and presents exclusion regions in the MWR
−MNl

plane.3 Interpreting the four-object final state mass as that of a WR CMS presents, in the

supplementary material of [8], the 95% CL exclusion limits for the observed and expected

σ(pp → WR) × BR(WR → lljj) ≡ σBR as functions of MWR
for several MNl . From the

data [8] one finds that in the electron channel, irrespective of the value of r =
MNe
MWR

, σBRO

(observed) exceeds twice the expected exclusion limit (σBRE) for 1.8 . MWR
. 2.4 TeV.

This excess is about ∼ 2.8σ around 2.1 TeV. Though not large enough for a firm conclusion,

this can be taken as a tentative hint for a WR, and if this is correct, one can expect

confirmation in the new run of the LHC at
√
s = 13 TeV. The CMS collaboration notes

that this excess is not consistent with the LRS model with gL = gR, r = 0.5 and no leptonic

3An alternate explanation of the excess in the data could be in terms of a charged Higgs boson of the

LRS model.
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Figure 1. Feynman diagram of the process under discussion with the right-handed CKM-like

mixing matrix taken in a general, non-diagonal, form. The CMS excess corresponds to lα = lβ = e.

mixing. As we stress later, relaxing these conditions — e.g., r = 0.5 — can make the results

agree with the left-right symmetric model. No such excess is seen in the (2µ)(2j) mode.

2.1 A WR signal?

Figure 1 shows the Feynman diagram for WR production and its decay in the channels

under consideration [26]. Note that the production of the WR will be suppressed compared

to that of a left-handed W boson of the same mass by a factor η2, where η = (gR/gL).

The contribution from this diagram is determined by S2 where S ≡ η|VNee|2. Neglecting

the masses of the final state quarks and the charged lepton, the branching ratio of the

three-body decay of Ne, which we have calculated, is proportional to (1 − r2)2(2 + r2),

where, as noted earlier, r = MNe/MWR
. A clinching evidence of this process would then

be a peak in the (2e)(2j) invariant mass at MWR
— for which there is already a hint —

along with another around MNe in the invariant mass of one of the two e(2j) combinations

in every event. The absence of the latter in the data could be indicative of more than

one NR state being involved and further the coupling of these neutrinos to a τ -lepton with

non-negligible strength [13, 14, 27]. Subsequent leptonic decays of the τ would mimic a

dilepton signal but with two missed neutrinos washing out the expected e(2j) peak.

It has to be borne in mind that the excess seen in the (2e)(2j) mode is not matched

in the (2µ)(2j) data. This would have to be interpreted as an indication that the right-

handed neutrino associated with the muon, Nµ, is significantly heavier than Ne and so its

production in WR-decay suffers a large kinematic suppression. Further, the coupling of Ne

to µ has to be small, i.e., |VNeµ| � 1.

Interpretation of the excess in terms of Ne, a Majorana neutrino, would lead to the

expectation of roughly an equal number of like-sign and unlike-sign dilepton events. There

are fourteen events in the excess region in the CMS data in the (2e)(2j) channel, of which

only one has charged leptons of the same sign. In a similar analysis by the ATLAS col-

laboration no like-sign events are found [28]. One way around this is to assume that two

degenerate right-handed neutrinos together form a pseudo-Dirac state in which case the

like-sign events are suppressed [18].

In figure 2 we place the excess observed by CMS in this channel — the shaded region

in the MWR
− r plane — in comparison with the LRS model predictions. This excess is

maximum along the vertical line. The expectations from the Left-Right Symmetric model

(σBRT ) depend on S2 = η2|VNe|4 and r = MNe/MWR
. The dashed curves in the figure,

identified by the values of S, trace the points in the (r−MWR
) plane for which the LRS ex-
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Figure 2. The shaded region demarcates the range of MWR
for which the CMS data exceed twice

the SM expectation. The maximum excess is on the vertical straight line. The curves parametrised

by S ≡ η|VNee|2 denote the (r,MWR
) contours for which the prediction of the LRS model is

compatible with the observation.

pectations equal σBRO. To put the plot in context note that CMS has stressed [8] that with

η = 1 and VNe = 1 — i.e., S = 1 — the LRS model signal for r = 0.5 is inconsistent with

the excess. This is borne out from figure 2 which indicates that for the S = 1 contour, the

MWR
corresponding to r = 0.5 lies outside the excess region. Consistency of the excess in

the data with the LRS model can be accomplished in three ways. Firstly, if r = MNe/MWR

is larger than 0.5 the LRS model signal will be reduced. Indeed, with r > 0.75 the LRS

model is consistent with the excess even with S = 1. Alternatively, if η or VNe is less than

unity, then too the signal will be less, the suppression being determined by S2. In figure 2 it

can be seen that for r = 0.5 the excess is consistent with the model for 0.3 . S . 0.6. The

upper limit has been pointed out in [15–17]. What we essentially find is that there are large

sets of values of r, η and VNe for which the LRS expectation is consistent with the excess.

Figure 2 contains information in a somewhat condensed form. In the spirit of the path

chosen by the CMS collaboration, we use the exclusion data and plot in the left panel of

figure 3 σBRE (red dotted curve) and σBRO (blue dashed curve) as functions of MWR

for the fixed value of r = 0.8. The prediction of the LRS model with η = gR/gL = 1

and VNee = 1 is the black solid straight line. Also shown are the ±50% (green, dark) and

±100% (yellow, light) bands of the expected cross section. In the inset the same results are

presented but for r = 0.5. Notice that for r = 0.8 the LRS model expectation passes right

through the maximum of the excess while for r = 0.5 it entirely misses the excess region.

The right panel of figure 3 utilises a complementary way of displaying the region in the

LRS model parameter space consistent with the result. Here the area in the η−VNee plane

that fits the CMS excess region is shown shaded for two values of r = 0.8 (violet, dark)

and 0.5 (green, light). Note that there is an overlap region. It is worth stressing that, as
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Figure 3. Left: the CMS data compared with the LRS model predictions for r = 0.8 keeping

gR/gL =1 and VNe = 1. Inset: r = 0.5. Right: η and VNe that fits the excess in the CMS data for

r = 0.5 and r=0.8. Only the region between the two vertical lines is permitted in SO(10) GUTs.

in the left panel, for r = 0.8 the model is consistent with the data even for η = 1 and VNee
= 1. For r = 0.5 a suppression through the factor S = η|VNe|2 is required to bring the

model in harmony with the data. If the WR with a mass O(TeV) arises from the SO(10)

GUT model we discuss below then η must lie within the two vertical lines.

3 SO(10) grand unification

SO(10) is an attractive candidate for a unified theory [6, 7] as it is the simplest Lie group

which includes all the SM fermions and a right-handed neutrino of one generation in a

single irreducible representation. We do not include any exotic fermions in the model and

deal with three generations.

There are a vast number of models characterised by different intermediate symmetries

which have SO(10) as the unifying group. In that respect SO(10) is more of an umbrella

term, incorporating these different models with alternate symmetry-breaking routes, scalar

structures, and physics consequences. What is important for this work is that SO(10) has

the Pati-Salam symmetry (GPS) as a subgroup4 and includes the discrete D-parity [21, 22]

which enforces left-right parity, gL = gR. The Left-Right Symmetric group is embedded

in GPS . Thus, having reviewed the CMS result in terms of the LRS model, both with and

without left-right parity, the obvious next step is to look at it through the lenses of the

Pati-Salam partial unified and SO(10) grand unified theories.

In this section we summarize the features of SO(10) GUTs which are relevant for our

subsequent discussions. We consider the non-supersymmetric version of this theory.

3.1 Symmetry breaking

The different ways in which SO(10) GUT can step-wise break to the SM are graphically

represented in figure 4. The intermediate energy scales of various stages of symmetry

4SO(10) can break into GSM through two distinct routes, one through an intermediate SU(5) with no left-

right symmetry and another through the PS stage. A longer proton decay lifetime τp than predicted by mini-

mal SU(5) and the ease of incorporation of seesaw neutrino masses give the second option a slight preference.
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Symmetry SO(10) D-Parity SU(4)C SU(2)R U(1)R×U(1)B−L SU(2)L×U(1)Y

Breaking Scale MU MD MC MR M0 MZ

Table 1. The different scales at which subgroups of SO(10) get broken.

Figure 4. Symmetry breaking routes of SO(10) distinguished by the order of breaking of SU(2)R,

SU(4)C , and D-parity. The scalar multiplets responsible for symmetry breaking at every stage have

been indicated. Only the DCR (red solid) route can accommodate the light WR scanario.

breaking will be denoted according to table 1. Among these, MD ≥ MR ≥ M0 > MZ

always. In order to systematically study the different ways in which SO(10) can descend

to the SM, we first classify them into routes based on the order of symmetry breaking.

We will call the route with MC ≥ MD ≥ MR, CDR (Green, Dashed), the one with

MD ≥MC ≥MR, DCR (Red, Solid), and another, DRC (Blue, Dotted), with MD ≥MR ≥
MC . Thus there are three alternate routes with a maximum number of four intermediate

stages. Among the intermediate stages the first and the last, namely, SU(4)C × (SU(2)L×
SU(2)R)D (≡ G422D) and SU(3)C ×U(1)B−L × SU(2)L ×U(1)R (≡ G3121), are common to

all routes. The other possible intermediate symmetries, in this notation, are G422, G421,

G3122D, and G3122 (see figure 4). All models of SO(10) symmetry breaking (symmetry-

breaking chains) are thus defined by the route it belongs to and the Higgs multiplets that

it includes. Figure 4 shows the maximum-step chains (chains with maximum number of

intermediate symmetries) of each route. Other chains are essentially subcases of these

with multiple symmetries breaking at the same scale. This can be achieved if multiple

Higgs sub-multiplets gain vacuum expectation value (vev) at the same scale or if a single

sub-multiplet breaks more than one symmetry.

3.2 Scalar structure and the Extended Survival Hypothesis (ESH)

The gauge bosons in the model and their masses are determined by the symmetry group

and its sequential breaking to the SM. The fermions come in three generations in each of

which there are the SM quarks and leptons and a right-handed neutrino. Thus it is only

the scalar sector which retains a degree of flexibility.

The generation of quark and lepton masses requires a 10 of SO(10) while the see-saw

mechanism for neutrino masses relies on a 126. Their decompositions under the PS group

– 7 –
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are:5

10 = [1, 2, 2] + [6, 1, 1] , (3.1)

and

126 = [6, 1, 1] + [15, 2, 2] + [10, 3, 1] + [10, 1, 3] . (3.2)

These scalars also have important roles in gauge symmetry breakings. The vev of the 10,

which is O(MZ), breaks the standard model SU(2)L × U(1)Y symmetry while the 126 is

responsible for the breaking of U(1)B−L ×U(1)R at the scale M0.

In a grand unified theory masses of fermions in the same multiplet are related. In

particular, the 10 of SO(10) implies Md = M †l , where Md is the mass matrix of d-type

quarks and Ml that of the charged leptons. Though these relations are valid only at the

scale of unification and at lower energies corrections have to be included, even then they are

not in consistency with the measured masses. One way to address this issue is to invoke a

[15,2,2] submultiplet which is present in the 126 and the 120 of SO(10) to bring the masses

closer to their actual values [29, 30].

Two other SO(10) representations which turn out to be useful for symmetry breaking

and whose submultiplet structure will be important are the 45 and 210. Under the PS

group they consist of:

45 = [15, 1, 1] + [6, 2, 2] + [1, 3, 1] + [1, 1, 3] , (3.3)

210 = [1, 1, 1] + [15, 1, 1] + [6, 2, 2] + [15, 3, 1] + [15, 1, 3] + [10, 2, 2] + [10, 2, 2] . (3.4)

Even using these limited SO(10) multiplets,6 there remains a variety of options for

the scalar submultiplets that can be used for the different stages of symmetry breaking

indicated in figure 4. They affect the unification and intermediate energy scales through

their role in the evolution of gauge couplings. We make two restrictions: (a) Only renor-

malisable terms will be kept in the SO(10)-symmetric lagrangian,7 and (b) The Extended

Survival Hypothesis, which is a consequence of minimal fine-tuning, is taken to be valid.

According to ESH [31, 32], at any intermediate energy scale only those scalar submul-

tiplets (under the unbroken symmetry at that stage) which are required to spontaneously

break a symmetry at that or any lower energy remain massless. All other submultiplets

become massive. Because the normal expectation of scalar masses is to be at the highest

energy scale the extended survival hypothesis posits the minimal number of fine-tunings in

the scalar sector.

With these guiding principles we now turn to the scalar multiplets that are employed

for the descent of SO(10) to the SM. The first (at MU ) and last (at M0) stages of the

symmetry breaking in figure 4, which are common to all alternate channels, utilise a 54-

plet and a 126-plet of scalar fields, respectively. D-parity is broken through the vev of

5We will use the notation [φ4, φL, φR] to specify the behaviour of SO(10) submultiplets under the Pati-

Salam symmetry.
6A 54 is used for the first step of GUT symmetry breaking. It does not affect the RG running of the

couplings.
7This excludes, for example, using scalar 16-plets to mimic the SO(10) 126 for neutrino mass through

effective dimension-5 terms in the Lagrangian.
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D-odd scalars. There is a D-odd PS singlet in the 210 of SO(10) which can be utilised

for the DCR or DRC symmetry-breaking route. For the CDR route a D-odd LRS model

singlet in the [15,1,1] of 45 is useful.

3.3 Renormalisation group equations

The one-loop RG evolution for the coupling αg(µ) corresponding to a gauge symmetry g

can be written as:
1

αg(µi)
=

1

αg(µj)
+
bgji
2π

ln

(
µj
µi

)
. (3.5)

bgji is the coefficient of the β-function between the scales µi and µj :

bg = −11

3
Ng +

2

3

∑
F

T (Fg)d(Fg′)nG +
1

6

∑
S

δST (Sg)d(Sg′), (3.6)

where the three terms are contributions from gauge bosons, chiral fermions, and scalars

respectively. Ng is the quadratic Casimir corresponding to the particular symmetry group

g, Ng is 0 for U(1) and N for SU(N). T (Fg) and d(Fg) are the index and the dimension of

the representation of the chiral fermion multiplet F under the group g and the sum is over

all fermion multiplets of one generation. nG is the number of fermion generations, 3 in

our case. Similarly T (Sg) and d(Sg) are the index and the dimension of the representation

Sg of the scalar S under g. δS takes the value 1 or 2 depending on whether the scalar

representation is real or complex.

It is worth noting that bg is positive for U(1) subgroups and negative8 for SU(n).

Therefore, U(1) couplings grow with increasing energy while SU(n) couplings decrease.

For ease of use, we will rewrite eq. (3.5) as:

wgi = wgj +
1

2π
bgji∆ji , (3.7)

where wgi ≡ 1
αg(µi)

and ∆ji ≡ ln
(
µj
µi

)
.

If the symmetry g is broken to g′ at the scale µi then the coupling constant matching

condition is simply wgi = wg
′

i unless two groups combine to yield a residual symmetry.

As an example of the latter, for U(1)Y of the standard model, resulting from a linear

combination of U(1)R and U(1)B−L at the scale M0, one has:

wY0 =
3

5
wR0 +

2

5
wB−L0 . (3.8)

Matching all the couplings at the boundaries and imposing the unification condition

one arrives at three equations:

w3
Z = wU +

1

2π

∑
i

bCi,i−1∆i,i−1 ,

8Contributions from large scalar multiplets can make the beta-function positive. This does happen for

SU(2)R in the example we discuss later.
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w2L
Z = wU +

1

2π

∑
i

b2Li,i−1∆i,i−1 ,

wYZ = wU +
3

5

1

2π

∑
i

b1Ri,i−1∆i,i−1 +
2

5

1

2π

∑
i

bB−Li,i−1∆i,i−1 , (3.9)

where wU is the reciprocal of the coupling strength at unification. i runs from the unifica-

tion scale toM0. C stands for SU(3)C or SU(4)C depending on the energy scale µ. Similarly,

1R (B − L) in the last equation represents U(1)R or SU(2)R (U(1)B−L or SU(4)C).

The left-hand-sides of the three equations in (3.9) are the inputs fixed by experiments.

The equations are linear in wU and ln(µi) — the logarithms of the mass-scales. There are

2+m variables: m, the number of scales intermediate to MU and MZ , wU , the magnitude

of the coupling at unification, and the GUT scale MU itself. Thus, an SO(10) chain with

one intermediate scale (m = 1) is a determined system while those with more steps are

underdetermined.

4 Low energy expectations from unification

In the LRS model the energy scales of symmetry breaking can be freely chosen to be con-

sistent with the low energy data. Once embedded in GUTs one must also verify that such

choices of intermediate scales are consistent with perturbative unification of the couplings

at sub-Planck energies and check their implications for other symmetry-breaking scales. In

this section we look at the restrictions imposed by coupling unification on η and the other

left-right symmetric model parameters.

SO(10) can descend to the SM through a maximum of four intermediate stages (fig-

ure 4). Such four-step symmetry breakings are underdetermined. Accordingly, one is

permitted to choose the scale MR in the TeV range, as required by the CMS data, and to

check the consistency of the equations. M0 is always below MR and thus keeping the latter

at a few TeV sets the former to an even lower value.

4.1 Pati-Salam partial unification

The PS symmetry with D-parity, G422D, is a common intermediate stage for all the SO(10)

symmetry-breaking options. When D-parity is intact, this model has two-independent

couplings, namely, g4C and g2L = g2R = g2, which achieve equality at the grand unification

scale MU . In the DCR route the Pati-Salam G422 survives at the next step but D-parity no

longer holds. In contrast, for the CDR chain the PS symmetry is broken before D-parity.

Needless to say, so long as D-parity remains unbroken η = 1.

In Pati-Salam partial unification one has a set of three equations similar to eq. (3.9)

sans the constraint of grand unification. In place of an inverse GUT coupling wU one

gets two separate couplings — w4
C (= wB−LC = w3

C) at MC and w2
D (= w2R

D = w2L
D ) at

MD. Thus, the two variables — the GUT coupling and the GUT scale — are replaced

by the SU(4)C unification coupling and a D-parity symmetric SU(2) coupling. In the

following sections we will look at the results that arise from RG evolution for both PS

partial unification and SO(10) grand unification.
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4.2 Left-right symmetry and unification

The scalar field contributions to gauge coupling evolution play a significant role in achieving

coupling unification while keeping a low MR. This has led to a plethora of models where

scalar fields have been incorporated in the theory solely for this purpose. This is not the

path that we choose. Indeed, the scalar fields which we do include become indispensible

in some cases. For example, a subcase which one might imagine from figure 4 will have

MR = M0. The one-step symmetry breaking of G3122 → G321 can be realized through the

vev of just a [10, 1, 3] ⊂ 126, dispensing off the submultiplet which breaks SU(2)R → U(1)R.

However, without this latter contribution the coupling constants no longer unify. So, MR =

M0 ∼ O(TeV) cannot be accommodated without at least the scalar multiplets that we keep.

As mentioned earlier, the three key ingredients in interpreting the CMS result are

the ratio between the left- and right-handed gauge couplings, η, the Majorana mass of

the right-handed electron neutrino, MNe , and the right-handed leptonic mixing VNll. The

Majorana mass of the right-handed neutrino of the l-th flavour, in the TeV range, is

obtained through the Yukawa coupling Y l
126. The mass is proportional to the ∆L = 2

vev, v126, of the (1,−2, 1, 1) ⊂ [10, 1, 3] ⊂ 126. The latter also breaks the G3121 symmetry.

Hence, one has MNl ∼ (Y l
126/gB−L)M0. The Yukawa coupling, Y l

126, can be chosen to obtain

a desired value of MNl without affecting other physics. Thus the choice of r = MN/MWR

is decoupled from the analysis of coupling unification.

The mixing in the right-handed lepton sector — VNll — is the second relevant quantity

in this analysis. It is determined by the generation structure of the Yukawa matrix. Since

this does not affect the evolution of couplings, which is the focus, our analysis does not

impose any restriction on the choice of this mixing.

The relative strength of the right-handed coupling vis-à-vis the left-handed one at the

SU(2)R-breaking scale — η = gR
gL

— is, however, intimately related to the RG running of

the gauge couplings.

w2R
R =

1

η2
w2L
R . (4.1)

The magnitude of η will vary for symmetry-breaking chains depending on the scalar content

of the theory and the energy scales at which different symmetries break. Nonetheless, the

minimum value that can be attained by η is almost independent of the way in which SO(10)

or GPS descends to the standard model, as we now discuss. Firstly the requirement that

MR is O(TeV) and M0 even lower, keeps them close to each other and the two are not too

far from MZ either. The other feature, noted earlier, is that U(1) couplings increase as the

energy scale µ increases while SU(n) couplings do the opposite.

One starts from eq. (3.8) which relates the U(1) couplings when the symmetry breaking

G3121 → G321 occurs at M0. Obviously,

w1R
0 > w1R

R = w2R
R =

(
1

η2

)
w2L
R , (4.2)

and from wB−LC = w3C
C

wB−L0 > wB−LR > w3C
R . (4.3)
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From eq. (3.8) together with eqs. (4.2) and (4.3) one has

η2 >
3w2L

R

5wY0 − 2w3C
R

' 3w2L
0

5wY0 − 2w3C
0

. (4.4)

The inequality in the first step in eq. (4.2) is due to the evolution of w1R from M0

to MR. Since these two energy scales are both in the TeV range this effect is not large.

A similar reasoning is also valid for the first inequality in eq. (4.3) but the second could

be much more substantial. Using the current values of the low energy couplings9 and

extrapolating them to µ = M0 one gets

ηmin ∼ 0.59 . (4.5)

We stress that eq. (4.5) is an artefact of the LRS model so long as there is a merging of the

U(1)B−L with SU(3)C , and so is valid for both PS (partial) and SO(10) (grand) unification.

However, this is a limit in principle, accomplishing it will depend on the details of symmetry

breaking and the scalar content of the theory. We have previously seen that if r = 0.5 the

CMS result is compatible with the LRS model for S as low as ∼ 0.25. From the preceding

discussion we see that S lower than ∼ 0.59 cannot be attained by η alone.

5 The three routes of SO(10) symmetry breaking

In this section we consider one by one the three routes depicted in figure 4 by which SO(10)

can descend to the SM. We focus on the scalar fields that are required and the intermediate

energy scales involved. We use one-loop renormalisation group equations here but have

checked that two-loop effects — on which we comment later on — do not change the results

drastically. Since the equations are usually underdetermined, motivated by the CMS data,

we will keep 4 TeV ≤MR ≤ 10 TeV and 1 TeV ≤M0 ≤ 4 TeV for the chains of descent.

5.1 The DRC route

Restricting MR to the TeV range automatically eliminates the DRC route (Blue dotted in

figure 4) — SU(4)C breaking after MR — because then the leptoquark gauge bosons of

SU(4)C achieve a mass of the TeV order. Light leptoquarks below 106 GeV are forbidden

from rare decays of strange mesons, such as KL → µe [2, 34, 35]. The DRC route of

symmetry breaking is thus not compatible with the CMS result.

5.2 The CDR route

With all intermediate stages distinct, for this route (Green dashed in figure 4) one has:

SO(10)
MU−−→
54
G422D

MC−−→
210
G3122D

MD−−→
210
G3122

MR−−→
210
G3121

M0−−→
126
G321 . (5.1)

The scalar submultiplets responsible for the symmetry breaking are shown in table 2. An

alternative to the above would be to break G3122 → G3121 using a [1,1,3] ⊂ 45 in place of

the [15, 1, 3] ⊂ 210. We also comment about this option.

9We use α3 = 0.1185(6), sin2 θW = 0.23126(5), and α = 1/127.916 at µ = MZ [33].
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SO(10) Symmetry Scalars contributing to RG

repn. breaking MZ ↔M0 M0 ↔MR MR ↔MD MD ↔MC MC ↔MU

G321 G3121 G3122 G3122D G422D
10 G321 → EM (1,2,±1) (1,0,2,± 1

2 ) (1,0,2,2) (1,0,2,2)+ [1,2,2]+

126 G3121 → G321 - (1,-2,1,1) (1,-2,1,3) (1,-2,1,3)+ [10,1,3]+

- - - (1,2,3,1)+ [10,3,1]+

210 G3122 → G3121 - - (1,0,1,3) (1,0,1,3)+ [15,1,3]+

- - - (1,0,3,1)+ [15,3,1]+

210 G3122D → G3122 - - - (1,0,1,1)− [1,1,1]−

210 G422D → G3122D - - - - [15,1,1]+

Table 2. Scalar fields considered when the ordering of symmetry-breaking scales is MC ≥ MD ≥
MR. The submultiplets contributing to the RG evolution at different stages according to the ESH

are shown. D-parity (±) is indicated as a subscript.

In order to proceed with an elaboration of the consequences associated with this route

it is helpful to list the one-loop beta-function coefficients for the stages MR ↔ MD and

MD ↔ MC . Including the contributions from the scalars in table 2, fermions, and gauge

bosons one finds from eq. (3.5)

b3DR = −7 , bB−LDR =
11

2
, b2LDR = −3 , b2RDR = −2 ,

b3CD = −7 , bB−LCD = 7 , b2LCD = −2 , b2RCD = −2 . (5.2)

The SU(2)L and SU(2)R couplings evolve from MR to become equal at MD. This requires

(∆AB = ln MA
MB

):

w2L
R − w2R

R =
1

2π

{
(b2LDR − b2RDR)∆DR

}
. (5.3)

Similarly the SU(3)C and U(1)B−L couplings become equal at MC , i.e.,

w3
R − wB−LR =

1

2π

{
(b3DR − bB−LDR )∆DR + (b3CD − bB−LCD )∆CD

}
. (5.4)

The left-hand-sides of eqs. (5.3) and (5.4) are given in terms of the various couplings at

MR. Since MR ∼ O(TeV) and the RG evolution is logarithmic in energy it is not a bad

approximation to assume that they do not change significantly from MZ to MR, i.e., wiR '
wiO ' wiZ . Then recalling eq. (3.8) which relates wY0 with wR0 and wB−L0 one can obtain:

3w2L
Z + 2w3

Z − 5wYZ '
1

2π

{[
3(b2LDR − b2RDR) + 2(b3DR − bB−LDR )

]
∆DR + 2(b3CD − bB−LCD )∆CD

}
. (5.5)

Using the beta-function coefficients from eq. (5.2), one can reexpress eq. (5.5) as:

3w2L
Z + 2w3

Z − 5wYZ '
1

2π
{28 ∆CR} . (5.6)
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SO(10) Symmetry Scalars contributing to RG

repn. breaking MZ ↔M0 M0 ↔MR MR ↔MC MC ↔MD MD ↔MU

G321 G3121 G3122 G422 G422D
10 G321 → EM (1,2,±1) (1,0,2,± 1

2 ) (1,0,2,2) [1,2,2] [1,2,2]+

126 G3121 → G321 - (1,-2,1,1) (1,-2,1,3) [10,1,3] [10,1,3]+

- - - - [10,3,1]+

210 G3122 → G3121 - - (1,0,1,3) [15,1,3] [15,1,3]+

- - - - [15,3,1]+

210 G422 → G3122 - - - [15,1,1] [15,1,1]+

210 G422D → G422 - - - - [1,1,1]−

Table 3. Scalar fields considered when the ordering of symmetry-breaking scales is MD ≥ MC ≥
MR. The submultiplets contributing to the RG evolution at different stages according to the ESH

are shown. D-parity (±) is indicated as a subscript.

Notice that MD has dropped out. Further, the low energy values of α, αs and sin2 θW [33]

then imply MC ∼ 1018MR, i.e., way beyond the Planck scale. The low energy SM paramters

are now quite well-measured and offer no escape route from this impasse. Two-loop con-

tributions also do not change the situation drastically. We have checked that if one breaks

G3122 → G3121 through a [1,1,3] ⊂ 45 rather than the [15, 1, 3] ⊂ 210 (see table 2), the

change is in the evolution of the couplings in the MC ↔ MU sector which does not affect

this conclusion.

The above analysis does not resort to the constraint of grand unification at all. The

results hold for PS partial unification as well. So, the CDR route of descent also has to be

abandoned for MR ∼ O(TeV).

5.3 The DCR route

After having eliminated the other alternatives, the only remaining route of descent has the

mass ordering MD ≥MC ≥MR (Red solid in figure 4). Keeping all possible intermediate

stages separate from each other this corresponds to:

SO(10)
MU−−→
54
G422D

MD−−→
210
G422

MC−−→
210
G3122

MR−−→
210
G3121

M0−−→
126
G321 . (5.7)

In the above we have indicated the SO(10) multiplets which contribute to symmetry

breaking at every stage. The scalar submultiplets which contribute to the RG equations

as dictated by ESH are shown in table 3. There is, however, an alternative which relies on

a 45 of SO(10) whose contents under the Pati-Salam group are given in eq. (3.3). SU(2)R
can be broken by the (1,0,1,3) ⊂ [1, 1, 3] ⊂ 45 replacing the [15,1,3] ⊂ 210. In fact, the
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SU(4)C breaking [15,1,1] is also present in the 45. However, one cannot entirely dispense

with the 210 because the [1,1,1]− in it has no analog in the 45.

Denoting by hD, hC , hR the SO(10) scalar multiplets responsible for the breaking of

D-Parity, SU(4)C , and SU(2)R respectively, we therefore have the following alternatives:

{hD, hC , hR} can be {210,45,45}, {210,45,210}, {210,210,45} and {210,210,210}. Of these,

the first employs the lowest dimensional scalar multiplets required to break symmetries at

each scale while the last one uses the least number of SO(10) scalar multiplets. Using 45

or 210 for hC makes no difference in the physics since in both cases a [15,1,1] Pati-Salam

submultiplet is used. The distinction is relevant only in the choice of hR.

The one-loop beta-function coefficients for the couplings in the MR ↔MC and MC ↔
MD energy ranges obtained using eq. (3.5) and the scalars in table 3 are:

b3CR = −7 , bB−LCR =
11

2
, b2LCR = −3 , b2RCR = −2 ,

b4DC = −5 , b2LDC = −3 , b2RDC =
26

3
. (5.8)

The SU(3)C and U(1)B−L couplings evolve to become equal at MC . Thus

w3
R − wB−LR =

1

2π

{
(b3CR − bB−LCR )∆CR

}
. (5.9)

Matching of the SU(2)L and SU(2)R couplings at MD implies:

w2L
R − w2R

R =
1

2π

{
(b2LCR − b2RCR)∆CR + (b2LDC − b2RDC)∆DC

}
. (5.10)

As before, we use the approximation wiR ' wiO ' wiZ and combine eqs. (5.9) and (5.10) to

get:

3w2L
Z + 2w3

Z − 5wYZ '
1

2π

{[
3(b2LCR − b2RCR) + 2(b3CR − bB−LCR )

]
∆CR + 3(b2LDC − b2RDC)∆DC

}
. (5.11)

A special limit of the DCR route is when MD = MC , i.e., ∆DC = ln MD
MC

= 0. In this

limiting case there is no distinction between this route and the CDR one. Indeed, setting

MD = MC in eq. (5.11) and substituting the beta-function coefficients from eq. (5.8) one

exactly reproduces (5.6) which places the solution in an unacceptable energy regime.

That one should nonetheless expect acceptable solutions can be surmised from the fact

that eq. (5.11) implies

d lnMC

d lnMD
=

3(b2LDC − b2RDC)

[3(b2LDC − b2RDC − b2LCR + b2RCR)− 2(b3CR − bB−LCR )]

= 5 , (5.12)

where in the last step we have used eq. (5.8). This indicates that MC changes faster

than MD and so starting from the MD = MC limit solutions in the DCR route with the

symmetry breaking scales below MPlanck are feasible. Replacing the 210 in hR by a 45

reduces b2RDC so much that unification of couplings is no longer possible. In the next section

we present the allowed soultions in detail.
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6 SO(10) unification with MR ∼ O(TeV)

In the previous section we have seen that of the three routes of symmetry breaking accessible

to SO(10), DRC is trivially eliminated when the twin requirements MR ∼ O(TeV) and

MR > MC are imposed. We also indicated that for the CDR route with the minimal scalar

content and following the extended survival hypothesis the requirement MR ∼ O(TeV)

implies MC > MPlanck. The only route that can accommodate MR ∼ O(TeV) is DCR.

To simplify the discussion, in eq. (5.11) we have ignored the running of the couplings

between MZ and MR. In obtaining the results presented in this section we have not

used such an approximation. We have, however, not included the effect of mixing of

U(1)R × U(1)B−L under RG evolution from M0 to MR. As these two scales are close to

each other, both in the few TeV range, the impact of the mixing will not be large.

6.1 Pati-Salam partial unification for the maximum-step case

The maximum-step symmetry-breaking DCR route has been given in eq. (5.7). Before

turning to SO(10) we briefly remark about Pati-Salam partial unification within this route.

Because there are four steps of symmetry breaking this is an underdetermined system. For

this work, MR is restricted to be in the O(TeV) range. The scale MC is taken as the

other input in the analysis. At the one-loop level the results can be analytically calculated

using the beta-function coefficients in eq. (5.8). The steps can be identified from eqs. (5.10)

and (5.11). The latter determines MD once MC is chosen. η is then fixed using eq. (5.10).

For example, for MC = 106 GeV one gets η = 0.63 when MR = 5 TeV. Within the

Pati-Salam model the upper limit of MD is set by MPlanck. We find that in such a limit

one has MC = 1017.6 GeV and η = 0.87 for MR = 5 TeV.

6.2 Coupling unification for the maximum-step case

For SO(10) grand unification one must find the energy scale at which the common SU(2)L,R
coupling beyond MD equals the SU(4)C coupling, i.e., g2 = g4C . This limits the upper

bound of MC compared to the Pati-Salam partial unification.

In the left panel of figure 5 we plot η as a function of MC . In the inset is shown the

behaviour of MU and MD as functions of MC . Due to the unification constraint, the upper

limits of MC , MD and η all decrease from the respective values which were obtained in the

PS case. The lowest value of η turns out to be ∼ 0.63. Notice that a lower value of MC is as-

sociated with a higher MU , which must not exceed MPlanck. MC is also bounded from below

by the experimental limits on flavour-changing transitions such as KL → µe. It is this that

determines the lowest admissible MC , in general. From the inset it is seen that although MU

increases as MC decreases, it remains below MPlanck so long as MC > 106 GeV. As MC in-

creases MD increases as well and the point where it meets the decreasing MU determines the

upper limit of MC . For every plot the ranges consistent with 4 TeV ≤MR ≤ 10 TeV are be-

tween the two curves, the solid one indicating the MR = 4 TeV end. The results are almost

insensitive to the choice of M0 between 1 TeV and MR. Note that irrespective of the scale of

SU(4)C breaking, MD always remains above 1016 GeV. The unification coupling constant,

wU , varies between 38.4 and 47.6 and thus perturbativity remains valid throughout.
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Figure 5. Left: η is plotted as a function of MC for the DCR chain. In the inset the behaviour

of MD and MU are shown. The two curves in each case correspond to MR = 4 (solid) and 10 TeV

(dashed). In both cases M0 = 1 TeV is taken. Right: behaviour of the gauge couplings for the DCR

chain of SO(10) GUT with M0 = 1 TeV, MR = 5 TeV and MC = 1010 GeV. The solid (dashed)

lines correspond to one-loop (two-loop) evolution of couplings. The scalar fields are as in table 3.

The behaviour of the coupling constants as a function of the energy scale for a typical

case of M0 = 1 TeV, MR = 5 TeV and MC = 1010 GeV are shown (solid lines) in the right

panel of figure 5. Note that due to the contributions of large scalar multiplets to the β-

functions the coupling g2R grows beyond MC . Although this chain is suited to our needs,

the unification scale is close to the Planck scale for MR ∼ O(TeV). Thus, if MWR
∼ O(TeV)

then it is unlikely that ongoing proton decay experiments [36] will observe a signal. This

is a consequence of our adhering to the principle of minimality of Higgs scalars. One can

lower MU by including scalars redundant to symmetry breaking.

We have set the lower limit of MC at 106 GeV from the limits on rare meson decays such

as KL → µe or Bd,s → µe. The current limit on the branching ratio for the former process is

Br(KL → µ±e∓) < 4.7× 10−12 at 90% CL [33] which translates to MC & 106 GeV. LHCb

has set the tightest bounds on the latter processes. They find (again at 90% CL) [37]

Br(B0
d → µ±e∓) < 2.8 × 10−9 and Br(B0

s → µ±e∓) < 1.1 × 10−8 which yield a weaker

limit on MC . It can be expected that these bounds will be strengthened when the results

from the newer runs of LHC appear. In addition, n−n̄ oscillations can be mediated through

coloured scalars belonging to the [10, 1, 3] ⊂ 126 which also acquire mass at the scale of

MC . The current experimental limit, τn−n̄ ≥ 2.7 × 108 s [38] at 90% CL, also translates

to MC & 106 GeV. Therefore, improvements in the measurement of the above-noted rare

meson decays and n − n̄ oscillations open the possibility of probing, at least in part, the

GUT options that can accommodate a TeV-scale WR.

6.3 The MD = MU case

There are a number of daughter chains of the DCR route with two symmetries breaking at

the same scale. Of these, the choice MC = MR, resulting in a common point of the DCR
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Figure 6. A comparison of the results for one-loop (solid lines) and two-loop (dotted line) running.

The evolution of MU and MD with MC is displayed. Also shown is the case of one-loop running

when a [15,2,2] scalar multiplet is added (dashed lines). In the inset the variation of η is presented.

and DRC routes, violates the lower bound on MC from flavour changing processes since

MR ∼ O(TeV). As noted in the previous section, another alternative, namely, MD = MC ,

which is a point shared by the DCR and CDR routes, occurs at an energy beyond the

Planck scale. The only remaining possibility is MD = MU .

The upper limit on MC is set by the requirement MD = MU . This happens when

D-parity is broken at the GUT scale by a [1,1,1]− ⊂ 210. We thus have

SO(10)
MU=MD−−−−−−→

210
G422

MC−−→
210
G3122

MR−−→
210
G3121

M0−−→
126
G321 . (6.1)

From the inset in the left panel of figure 5 it is seen that for MC ∼ 2× 1014 GeV one

has MD = MU . As this chain has three intermediate steps, there are no free parameters

after setting M0 and MR. The coupling at unification, wU , comes to be around 47.6, and

η, as can be seen from the left panel of figure 5, is near 0.78. An interesting aspect of this

chain is that it is minimal in the number of scalar multiplets used.

6.4 Two-loop comparison

The discussion till now, based on RG evolution using one-loop β-functions, was amenable

to an analytical examination. Our aim was to reason our way through different SO(10)

symmetry-breaking options in search of chains which can accommodate a TeV range MR.

Now, after finding a specific pattern for which MR ∼ O(TeV) is tenable, we indicate the

size of two-loop effects for this chain. In the right panel of figure 5 the evolution of the

couplings for a typical choice of MC = 1010 GeV, MR = 10 TeV and M0 = 1 TeV are

indicated by the dashed lines. It is seen that the essential physics is largely unaltered

though there is some change in the various energy scales.

The chain in (5.7) contains many scalar fields until SU(4)C breaking, contributing

heavily to the two-loop β-coefficients [39–42]. These are responsible for some departures

from the one-loop results. We have presented the one-loop results for the DCR route
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keeping MC as an input parameter. In figure 6 we compare the one-loop (solid lines) and

two-loop (dotted lines) results for MU and MD as a function of MC . The deviation for

both scales increases with decreasing MC . This is intuitive because with lower MC SU(4)C
remains a good symmetry for a larger energy range over which the two-loop contributions

are effective. In the inset a similar comparison is made for η. It is noteworthy that η

remains largely unaffected.

6.5 Additional scalars: two examples

If fermion masses are generated through scalars which belong to the minimal set required

for symmetry breaking then mass relationships do not reflect observed values. One needs to

add at least one extra scalar multiplet — which is light, couples to fermions, and develops

a vev at the electroweak scale — to get realistic mass ratios. In SO(10), fermions reside in

the 16 representation and scalars transforming only as 120, 126, and 10 can have Yukawa

couplings, since:

16× 16 = 10 + 120 + 126 . (6.2)

In SO(10) GUTs improved fermion mass relations can be obtained [30] using the PS sub-

multiplet [15,2,2] ⊂ 126 in addition to the [1,2,2] ⊂ 10. The natural scale for the extra

scalar submultiplet would have been at the GUT scale and extra fine-tuning is necessary

to keep it at the electroweak scale.

We have examined the behaviour of gauge coupling evolutions for the DCR case includ-

ing the additional [15,2,2] submultiplet to check if the TeV range MR still remains viable. In

figure 6 the variation of MD and MU with MC when an extra [15,2,2] is included are shown

(dashed lines). The effect on η (shown in the inset) is negligible. The important change is

that the permitted lowest MC is more restricted as MU tends rapidly towards MPlanck.

It is clear that the scale MD is governed by the difference in the β-coefficients of

SU(2)R and SU(2)L. Submultiplets such as [15,2,2], which contribute symmetrically to the

β-coefficients of the left- and right-handed SU(2) groups, will not affect the difference and

so do not change the D-parity breaking scale. For the reasoning η is not affected as well.

Another alternative we examined pertains to the impact of additional scalars necessary

to produce two right-handed neutrinos nearly degenerate in mass but with opposite CP-

properties. As noted in section 2.1 this can explain the lack of like-sign dilepton events in

the CMS data [18]. A right-handed neutrino mass matrix of the appropriate nature can

be generated [27] by a scalar multiplet χ ≡ (1,2,1) under the SU(2)L × SU(2)R ×U(1)B−L
symmetry. In an SO(10) GUT χ is a member of the 16 representation and must develop a

vev at the scale M0. We have examined the impact of adding a 16-plet on η = gR/gL, the

symmetry breaking scales, and the coupling at the unification point. We find no serious

effect on any of these, the allowed range of MC is about one order of magnitude larger,

and for any MC , the unification scale, MU , and the D-parity-breaking scale, MD, are both

somewhat lowered. η is essentially unaffected.
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Sr Intermediate Symmetries Mass Scales
(

log µ
[GeV]

)
wU η

No. MU MD MC

1 G422D→G422→G3122→G3121 19.02 - 18.38 16.70 - 18.38 6.00 - 14.39 38.41 - 47.63 0.64 - 0.78

2 2-loop 18.27 - 17.88 14.87 - 17.88 6.00 - 14.80 29.54 - 46.66 0.64 - 0.79

3 Added [15,2,2] scalar MPlanck - 18.19 17.06 - 18.19 7.90 - 13.52 18.59 - 37.52 0.66 - 0.76

Table 4. The SO(10) symmetry-breaking chains consistent with MR = 5 TeV and M0 = 1 TeV.

The intermediate symmetries and the associated mass-scales are shown.

7 Summary and conclusions

The observation by the CMS collaboration of a 2.8σ excess in the (2e)(2j) channel around

2.1 TeV can be interpreted as a preliminary indication of the production of a right-handed

gauge boson WR. Within the left-right symmetric model the excess identifies specific values

of η = gR/gL, r = MN/MWR
, and VNee. We stress that even with gR = gL and VNee = 1

the data can be accommodated by an appropriate choice of r.

We explore what the CMS result implies if the left-right symmetric model is embedded

in an SO(10) GUT. η 6= 1 is a consequence of the breaking of left-right D-parity. We find

that a WR in the few TeV range very tightly restricts the possible routes of descent of the

GUT to the standard model. The only sequence of symmetry breaking which is permitted

is MD > MC > MR > M0 with a D-parity breaking scale ≥ 1016 GeV. All other orderings

of symmetry breaking are excluded. Breaking of left-right discrete parity at such a high

scale pushes gL and gR apart and one finds 0.64 ≤ η ≤ 0.78. The unification scale, MU ,

has to be as high as ∼ 1018 GeV so that it is very unlikely that proton decay will be seen

in the ongoing experiments. The SU(4)C-breaking scale, MC , can be as low as 106 GeV,

which may be probed by rare decays such as KL → µe and Bd,s → µe or n− n̄ oscillations.

In table 4 we summarise the essence of the allowed GUT solutions. We have assumed that

no extra scalar multiplets are included beyond those needed for symmetry breaking and

invoked the Extended Survival Hypothesis to identify scalar submultiplet masses.

The ATLAS collaboration has indicated [43] an enhancement around 2.1 TeV in the

di-boson — ZZ and WZ — channels in their 8 TeV data. Our interpretation of the excess

in the (ee)(jj) channel can be extended to include the branching ratio of WR to di-boson

states [44, 45]. One can arrange to accommodate both these findings if r ' 1 and VNee < 1.

Such a combined analysis is beyond the scope of this work and will be reported elsewhere.

Results along somewhat similar directions can be found in the literature [46]. It has also

been shown that interpretations of the di-boson observations are possible if the LRS model

is embellished with the addition of some extra fermionic states [14, 27].
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