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We consider the case of a Lifshitz dynamical exponent z close to unity, where the non-

relativistic field theory can be understood as a specific deformation of the corresponding

CFT and, hence, the standard holographic dictionary can be applied. On the gravity side

this amounts to finding a dynamical bulk solution which interpolates between AdS and

Lishitz spacetimes as time evolves. We show that an asymptotically Lifshitz black hole is

always formed in the final state. This indicates that it is impossible to reach the vacuum

state of the Lifshitz theory from the CFT vacuum as a result of the proposed quenching

mechanism. The nonequilibrium dynamics following the breaking of the relativistic scaling

symmetry is also probed using both local and non-local observables. In particular, we

conclude that the equilibration process happens in a top-down manner, i.e., the symmetry

is broken faster for UV modes.
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1 Introduction

Understanding the behavior of quantum systems away from equilibrium is, in general,

a challenging problem, especially when systems at strong coupling are concerned. This

problem has recently attracted attention in different areas of many-body physics, motivated

by recent progress in cold atom experiments that provides a way of exploring the quantum

dynamics of strongly correlated systems in the laboratory [1, 2]. A class of nonequilibrium

problems of special interest in condensed matter is that of quantum quenches, i.e., the

response of a quantum system to a time-dependent coupling. The typical setup consists

in preparing the system at a given state (e.g., the ground state), then turning on a time-

dependent coupling that approaches a constant value at late times. A key question is

whether (and how) an equilibrium state is reached at the end of the process, and if such

a steady state is “thermal” in any sense. Of particular interest from a theoretical point

of view is the case of quenches near quantum critical points, since the response is likely

to exhibit universal features that might be applied to many different physical systems.

Nevertheless, the study of quench dynamics at strong coupling using standard field theory

methods is usually hard and, in fact, progress in this direction has been made mostly for

2-dimensional conformal field theories (CFTs) [3–6] (see [7] for a review).
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The AdS/CFT correspondence [8–10] provides a remarkable framework for the study of

a certain class of strongly coupled quantum field theories by mapping them to a dual grav-

itational theory in higher dimensions where the treatment is classical, thus, considerably

easier. It has found a wide range of applications going from quantum chromodynamics

to condensed matter physics (see e.g. [11] for a review), the majority of them in static

or near equilibrium configurations. However, since the conjectured duality between the

theories holds at the level of partition functions, there is no restriction on applying this

framework to far from equilibrium situations as well, where it could shed light into the

properties of nonequilibrium dynamics of quantum systems. On the gravity side this am-

mounts to studying time-dependent gravitational solutions. Indeed, holography has been

used to model quenches in strongly coupled CFTs with gravity dual [12–28], where the

time-dependent coupling in the CFT appears as a boundary condition for dynamical bulk

fields at the boundary of anti de Sitter (AdS) space, as dictated by the holographic dictio-

nary. Related work motivated by connections with the thermalization of the quark-gluon

plasma can also be found in [29–50].

Whilst some effective theories in condensed matter have relativistic conformal symme-

try, which is the situation where AdS/CFT is best understood, there are in turn many quan-

tum critical points that are not conformally invariant, exhibiting instead a non-relativistic

scaling (which we refer to as Lifshitz scaling) of the form

(t, xi)→ (λzt, λxi) , (1.1)

where the parameter z is called the dynamical critical exponent.1 Examples include phase

transitions with z = 2 and z = 3 at the onset of antiferromagnetism and ferromagnetism

in certain fermion systems, respectively [51]. By following the original AdS/CFT logic of

matching global symmetries of the gauge theory with isometries of the metric on the gravity

side, the following Lifshitz spacetime was proposed in [52, 53] as a candidate background

for the holographic dual of such a non-relativistic theory

ds2 = −r
2z

l2z
dt2 +

r2

l2
dx2 +

l2

r2
dr2 , (1.2)

where the scaling symmetry (1.1) is realized as an isometry when combined with r →
λ−1r. Unlike the AdS spacetime, however, this is not a vacuum solution of the Einstein

equations with a negative cosmological constant — some matter content is required to

support the geometry. A number of bottom-up models have been suggested in the literature

giving rise to this Lifshitz solution, such as Einstein-Proca, Einstein-Maxwell-Dilaton and

Einstein-p-form actions [52, 53] (see [54] for a general analysis of holography for bottom-up

Lifshitz models, including also the hyperscaling violating solutions obtained in [55, 56]),

or using the nonrelativistic gravity theory of Hořava-Lifshitz [57]. There are even some

solutions of supergravity with the specific exponent z = 2 [58–60], but at the moment no

satisfactory construction of such a non-relativistic version of AdS/CFT duality is known

and the problem of setting up holography for non-relativistic scenarios remains open.

1The lack of boost invariance induced by z should not sound surprising since in typical condensed matter

systems there is a preferred frame set by the rest frame of the atomic lattice.
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An interesting step in this direction was taken in [61] (see also [62] for the finite

temperature case, and [63] for related work in Schrödinger backgrounds), where it was

shown that Lifshitz geometries with z close to unity, i.e., z = 1 + ε2 with ε � 1, can

be understood as a continuous deformation of AdS. This implies that no more than the

standard AdS/CFT dictionary is required to set up holography for such a Lifshitz solution.

In fact, they showed that this particular class of Lifshitz spacetime is the holographic

dual of a nonrelativistic theory which is a specific deformation of the relativistic CFT

corresponding to z = 1. Namely, it is the theory obtained by deforming the CFT with the

time component of a vector primary operator Va of conformal dimension ∆ = d,

SLif = SCFT +
√

2ε

∫
ddxVt(x) . (1.3)

Notice that ε appears here as a dimensionless small coupling constant, suggesting that

conformal perturbation theory can be used to check calculations on the field theory side.

After establishing the holographic dictionary for this new class of holographic theories

using an Einstein-Proca model in the bulk, the authors have checked that Lifshitz invariance

indeed holds at the quantum level (to order ε2) and have provided a general field theoretical

argument for the construction of such Lifshitz invariant models using the above recipe.

Despite the operational convenience of working perturbatively in powers of ε, there is also

a possibility of application of these results since a number of theoretical models with z

close to one has appeared in condensed matter (see [64–69]).

In the present work we study holographic quenches of CFTs in the framework of [61] de-

scribed above, as an attempt to model the dynamics following the breaking of the relativis-

tic scaling symmetry of a CFT towards a nonrelativistic Lifshitz scaling of the type (1.1).

The operator to be quenched according to a prescribed time-dependent profile is the vector

operator Vt mentioned above. On the gravity side the problem translates into finding a dy-

namical solution to the Einstein-Proca model that flows between asymptotically AdS and

Lifshitz spacetimes as time evolves. Dynamics in the bulk appears as a result of exciting

in a time-dependent way a non-normalizable mode for the massive gauge field, as required

(according to the standard AdS/CFT dictionary) in order to simulate the quench in the

boundary CFT.

The paper is structured as follows. In section 2 we discuss the Einstein-Proca model

in the bulk and review the static Lifshitz solutions of [53] as well as the argument of [61]

for Lifshitz with z = 1 + ε2 (ε � 1) being a deformation of AdS. In section 3 we find

the dynamical bulk solution describing holographic quenches and discuss the final state of

the time evolution. Section 4 contains a study of the thermalization process as probed by

both the evolution of horizons and the entanglement entropy, while final remarks appear

in section 5.

2 Static Lifshitz solutions from a massive vector model

Static solutions with Lifshitz isometries can be constructed from several gravity models.

Here we will focus on the simplest one, first presented in [53], involving gravity with a
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negative cosmological constant and a massive vector field,2

S =
1

16πGd+1

∫
dd+1x

√
−g
[
R+ d(d− 1)− 1

4
FµνFµν −

1

2
M2AµA

µ

]
. (2.1)

The Einstein and Proca equations of motion are, respectively,

Rµν = −d gµν +
M2

2
AµAν +

1

2
F σ
µ Fνσ +

1

4(1− d)
F ρσFρσgµν (2.2a)

∇µFµν = M2Aν . (2.2b)

If we define

M2 =
zd(d− 1)2

z2 + z(d− 2) + (d− 1)2
and l2 =

z(d− 1)

M2
=
z2 + z(d− 2) + (d− 1)2

d(d− 1)
,

(2.3)

the action (2.1) admits a Lifshitz solution given by

ds2 = −r
2z

l2z
dt2 +

r2

l2
dx2 +

l2

r2
dr2 (2.4a)

A =

√
2(z − 1)

z

rz

lz
dt . (2.4b)

The Lifshitz scaling is realized for arbitrary dynamical exponent z by the transformation

(t, x, r) → (λzt, λx, λ−1r). Clearly, when z = 1 this becomes the usual relativistic scaling

transformation, the gauge field vanishes, and the solution above reduces to the well known

AdSd+1 solution with unit curvature radius, lAdS ≡ l(z = 1) = 1.

By the standard AdS/CFT dictionary, the presence of the massive vector field Aµ
(viewed as a perturbation at the AdS critical point) in the bulk implies that the CFT dual

to the action (2.1) contains in its spectrum a vector primary operator Va of dimension ∆

given by

∆ =
1

2

[
d+

√
(d− 2)2 + 4M2

]
=
d

2
+

√
(d− 2)2

4
+

zd(d− 1)2

z2 + z(d− 2) + (d− 1)2
. (2.5)

The asymptotic expansion of the bulk vector field near r =∞ is given in general by

At(t, x
i, r) = r∆−d+1A

(0)
t (t, xi) + · · ·+ r−(∆−1)A

(d)
t (t, xi) + · · · , (2.6)

where the non-normalizable mode A
(0)
t is interpreted as the source for the dual operator

and A
(d)
t is related to its expectation value. The theory also admits a Lifshitz critical point

with z > 1 provided M2 takes values in the range [61]

(d− 1)2(8− 3d+ 4
√

3d2 − 6d+ 4)

13d− 16
< M2 ≤ d(d− 1)2

3d− 4
. (2.7)

2However, the conventions used here are slightly different from [53]. Namely, we follow [61] where the

fields and coordinates are conveniently rescaled with respect to [53] by appropriate factors of l in order to set

the cosmological constant term independent of z: gµν → l2gµν , Aµ → lAµ, x
µ → lxµ, with the overall factor

of l2d absorbed into Gd+1. Then, by setting e.g. the AdS radius to unity this means that all dimensionful

quantities are measured in units of lAdS.
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We will be interested in the case where the dynamical exponent z is very close to one,

z = 1 + ε2, with ε� 1. In this case the static solution (2.4) reads

ds2 = −r2

[
1 + 2ε2 ln r +

ε2

1− d

]
dt2 + r2

[
1 +

ε2

1− d

]
dx2 +

[
1− ε2

1− d

]
dr2

r2
+O(ε4) (2.8a)

A =
√

2εr dt+O(ε3) , (2.8b)

with the corresponding mass being

M2 = d− 1 + (d− 2)ε2 +O(ε4) . (2.9)

This means that the dual operator Vt has dimension

∆ = d+
d− 2

d
ε2 +O(ε4) . (2.10)

The asymptotic expansion (2.6) in this case reduces to

At(t, x
i, r) = r

(
1 +O(ε2)

)
A

(0)
t (t, xi) + · · ·+ r−(d−1)

(
1 +O(ε2)

)
A

(d)
t (t, xi) + · · · , (2.11)

which perfectly matches the static solution (2.8) if we identify A
(0)
t ≡

√
2ε + O(ε3) and

A
(d)
t ≡ O(ε3). In other words, the full static solution (2.8) matches precisely the right

asymptotic solution required for the standard AdS/CFT interpretation of the bulk model

as a deformed CFT.3 Therefore, to order ε2 the Lifshitz solution with z = 1 + ε2 has the

holographic interpretation as a deformation of the corresponding CFT by a vector operator

Vt of dimension ∆ = d as anticipated in (1.3), namely

SLif = SCFT +
√

2ε

∫
ddxVt(x) . (2.12)

Before moving on to the study of holographic quenches in the next section we shall

make some brief comments on the massive vector model (2.1) used to construct the Lifshitz

spacetime. This is a bottom-up model that captures the desired Lifshitz scaling provided

the mass of the vector field is in the range (2.7), but at the moment it is still unclear if a

precise embedding in string theory exists. There are consistent Kaluza-Klein truncations

of type IIB [70] and few other supergravities [71–73] that lead to massive vectors with

M2 in the required range, each corresponding to a specific value of z. Nevertheless, they

all contain additional scalar fields coupled to the massive vector that cannot be set to

zero and, hence, do not correspond to our model. Therefore, a top-down construction

of holographic duality involving theories with Lifshitz symmetry remains obscure. As

mentioned above, the standard AdS/CFT dictionary does not directly apply to such models

since the geometry is not asymptotically AdS, and in fact not even the field theory dual

(if any) to the Lifshitz geometry is known for arbitrary z.

3It is important to notice that this does not happen for arbitrary z, since the asymptotic behavior

∼ r∆−d+1 of (2.6) (with ∆ given in (2.5)) is completely different from the exact solution ∼ rz shown

in (2.4), unless z = 1 + ε2. This means that setting up holography for the Lifshitz solution with arbitrary z

(if possible) will require more than just the standard AdS/CFT dictionary, which we shall not pursue here.
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3 Holographic quenches and the breaking of relativistic scaling

Motivated by the discussion of the previous section, we now study a simple dynamical

mechanism for the breaking of the relavistic scaling of a CFT towards a non-relativistic

Lifshitz scaling with z = 1 + ε2 (ε� 1). Namely, we study a quantum quench of the vector

operator Vt in (2.12) according to some prescribed quench profile j(t), i.e., we consider the

action (2.12) with a time depending coupling4 j(t) ≡
√

2εJ(t) which smoothly interpolates

between the values 0 (corresponding to a strongly coupled CFT) and
√

2ε (corresponding

to the Lifshitz theory discussed above) as time evolves from −∞ to +∞,

S = SCFT +
√

2ε

∫
ddx J(t)Vt(t,x) . (3.1)

This may provide new insights into the nonequilibrium process of reaching a Lifshitz critical

point, e.g., in condensed matter systems.

From the point of view of the dual gravitational description, all one needs to do is

to consider the Einstein-Proca model (2.1) and solve the equations of motion in a time-

dependent setting subject to quench-like boundary conditions at r → ∞. Namely, the

non-normalizable mode of the bulk vector field At must coincide with the desired quench

profile
√

2εJ(t) (see details below). Notice that by turning on a non-normalizable mode

proportional to ε the full bulk vector field will also be proportional to ε, and therefore

working perturbatively in ε (which is the only situation where a holographic interpretation

of the final state Lifshitz theory is clear) is equivalent to solving the Einstein-Proca equa-

tions (2.2) perturbatively in powers of Aµ. This is similar to the weak field collapse models

studied in [30, 31].

We begin by specifying our ansatz for the metric and vector field, which we do for

arbitrary exponent z before particularizing to the case of interest. As typical in dynamical

problems (see e.g. [34]), it will be useful to work with the ingoing Eddington-Finkelstein

(EF) coordinate system (v, r,x), where v is related to the usual t coordinate appearing

in (2.4) via dv = dt+ lz+1

rz+1dr. Notice that at the asymptotic boundary r =∞ both v and

t coincide, thus, any function J(v) appearing in the bulk solution is understood as J(t)

for an observer living on this boundary (in particular, this will be the case for our quench

profile on the CFT side). The ansatz for the metric and the vector field is

ds2 = 2h(v, r)dvdr − f(v, r)dv2 + r2dx2 (3.2a)

A(v, r) = a(v, r)dv + b(v, r)dr . (3.2b)

It involves 4 unknown functions f, h, a, b of both (v, r), and clearly reduces to the static

Lifshitz solution (2.4) written in EF coordinates if the functions assume the static forms

fLif(r) =
r2z

l2z
, hLif(r) =

rz−1

lz−1
, aLif(r) =

√
2(z − 1)

z

rz

lz
, bLif(r) = − l

z+1

rz+1
aLif(r) ,

and of course the particular case of pure AdS follows by taking z = 1.

4For simplicity we normalize our quench profile with the factor of
√

2ε, in such a way that when J(v)→ 1

we get the Lifshitz solution with z = 1 + ε2, equation (2.8).

– 6 –
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The particularization to our case of interest (z = 1 + ε2 + · · · ) is done by formally

expanding each function in the ansatz (3.2) as a power series in ε, i.e.,

f(v, r) =

∞∑
n=0

f (n)(v, r)εn (3.3a)

h(v, r) =

∞∑
n=0

h(n)(v, r)εn (3.3b)

a(v, r) =
∞∑
n=0

a(n)(v, r)εn (3.3c)

b(v, r) =

∞∑
n=0

b(n)(v, r)εn , (3.3d)

and then solving the equations of motion order by order in an ε expansion. We shall carry

this expansion to leading non-trivial order for each function, which happens to be order ε2

as we will see, but the extension to arbitrary order can be done in a similar way.

To solve the equations at a given order in ε one uses a power series ansatz in r with

log terms and v-dependent coefficients of the form

f (n)(v, r) = r2
∑
l=0

f
(n)
l (v) + f̃

(n)
l (v) ln r

rl
(3.4a)

h(n)(v, r) =
∑
l=0

h
(n)
l (v) + h̃

(n)
l (v) ln r

rl
(3.4b)

a(n)(v, r) = r
∑
l=0

a
(n)
l (v) + ã

(n)
l (v) ln r

rl
(3.4c)

b(n)(v, r) =
1

r

∑
l=0

b
(n)
l (v) + b̃

(n)
l (v) ln r

rl
. (3.4d)

The equations of motion then become simple algebraic equations relating all the v-

dependent coefficients above, except for the coefficients a
(n)
0 (v) and f

(n)
0 (v), which are

left free. The former is an external input (responsible for simulating the quench in the

dual boundary theory) and will be fixed by the boundary conditions (3.7), while the latter

represents a residual gauge freedom which we choose to fix such that the static result (2.8)

is recovered when the coupling does not vary in time (i.e., there is no quench at all).5

Besides the ansatz, in order to solve the equations of motion one still needs to specify

two more sets of data, the boundary conditions and the initial conditions. We first discuss

the latter. Our initial configuration on the field theory side corresponds simply to a strongly

coupled CFT in the vacuum state6 (no deformation at all). In the bulk description this is

5Namely, to second order in ε, a
(1)
0 (v) =

√
2J(v) and f

(2)
0 (v) = −J(v)2/4 (see next section).

6Actually at this point all one can say is that the initial state corresponds to a zero temperature state

of the strongly coupled CFT. The fact that such a zero temperature state is truly the vacuum is discussed

in section 4.1, where the expectation values of field theory operators are calculated.
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represented by a pure AdS geometry and no gauge field, i.e.,

f(v → −∞, r) = r2 (3.5a)

h(v → −∞, r) = 1 (3.5b)

a(v → −∞, r) = 0 (3.5c)

b(v → −∞, r) = 0 . (3.5d)

In particular, this set of conditions completely determines the zeroth order coefficients in

the expansions (3.3) to be

f (0)(v, r) = r2, h(0)(v, r) = 1, a(0)(v, r) = 0, b(0)(v, r) = 0 , (3.6)

and demands that all the remaining f (n), h(n), a(n), b(n) (n 6= 0) vanish for v → −∞.

Now we turn to the boundary conditions at r → ∞. For the vector field, in order

to simulate a quench in the boundary field theory with quench profile j(t) =
√

2εJ(t),

according to the AdS/CFT dictionary we must turn on the non-normalizable mode for its

time component a(v, r) with exactly the same profile j(v) =
√

2εJ(v) (remember that the

time coordinates v and t coincide at r = ∞). For the metric components we impose that

the geometry is asymptotically Lifshitz.7 Thus, to order ε2, the boundary conditions read

f(v, r →∞) = r2
(
1 + 2ε2J(v)2 ln r + · · ·

)
(3.7a)

h(v, r →∞) = 1 + ε2J(v)2 ln r + · · · (3.7b)

a(v, r →∞) =
√

2εJ(v)r + · · · (3.7c)

b(v, r →∞) = 0 . (3.7d)

At first sight the asymptotic Lifshitz behavior at the final state may sound conflicting with

the pure AdS initial conditions (3.5), but it should be kept in mind that we are dealing

here with the case of z very close to 1, for which we have shown that the Lifshitz spacetime

can be understood as a deformation of AdS.

It should be stressed that the function J(v) is known from the beginning as an input

from the CFT side (it models the precise way in which energy is injected into the system,

causing a dynamical breaking of the relativistic scaling). In fact, it is the only responsible

for introducing dynamics in the bulk. Our main goal is to solve the equations of motion (2.2)

for the unknown functions in the ansatz (3.2)–(3.3) as functionals of J(v).

7Actually there is an abuse of terminology here. Strictly speaking, the metric is not asymptotically

Lifshitz (in the usual sense) during the whole dynamical process, since the Lifshitz exponent z in practice is

evolving in time from z = 1 to z = 1 + ε2, and hence the Lifshitz scaling is not realized in the intermediate

steps. In a way, we are modelling a continuous breaking of the relativistic scaling symmetry due to the

injection of energy in the form of a quench. What one really wants to ensure with such a boundary condition

is that asymptotic Lifshitz behavior in its strict sense is reached in the final state at v → +∞, when the

quench profile has stabilized to a constant value (J(v) → 1) and the metric exhibits the usual Lifshitz

isometry as in equation (2.8).
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3.1 The solution to order ε2

For simplicity we focus here on the case d = 3, namely a quantum quench of a CFT living

in (2 + 1) dimensions, which is motivated by a variety of layered 2-dimensional systems

in condensed matter, but a similar analysis should hold for any number d of dimensions

with no additional complications. By carrying out the perturbative scheme introduced

above and taking into account the initial conditions (3.5) and boundary conditions (3.7),

the solution to order ε2 for the vector field and the metric reads

A(v, r) = ε
[
a(1)(v, r)dv + b(1)(v, r)dr

]
+O(ε3) (3.8a)

ds2 = 2
[
1 + ε2h(2)(v, r)

]
dvdr −

[
r2 + ε2f (2)(v, r)

]
dv2 + r2

(
dx2

1 + dx2
2

)
+O(ε4) ,

(3.8b)

with the functions a(1), b(1), f (2), h(2) given in terms of the quench profile J(v) as8

a(1)(v, r) =
√

2r

(
J(v) +

J̇(v)

r
+
J̈(v)

2r2

)
(3.9a)

b(1)(v, r) = −
√

2

r

(
J(v) +

J̇(v)

2r

)
(3.9b)

f (2)(v, r) = 2r2

(
ln r − 1

4

)
J(v)2 − 3rJ(v)J̇(v)− J̇(v)2 − I(v)

r
(3.9c)

h(2)(v, r) = J(v)2 ln r − J(v)J̇(v)

r
− J̇(v)2

8r2
. (3.9d)

The coefficient I(v) is defined as

I(v) =
1

2

∫ v

−∞
J̈(w)2 dw . (3.10)

Unlike all the remaining coefficients, its value at instant v depends on the whole history of

the function J̈2 integrated up to this time, and for that reason this coefficient will play a

decisive role in determining the end state of the process, as we shall see in the sequence.

We begin the discussion by checking the trivial limit v → −∞, where the function J

and all its derivatives vanish due to our assumption that J(v) asymptotes to zero. The

coefficient I(v) also trivially vanishes, and we are left with the static AdS solution with no

gauge field, in agreement with our initial conditions (3.5).

Now let us analyze the final state at v → +∞. We have assumed that the quench

profile J(v) asymptotes to the constant value 1, so all coefficients involving derivatives

8If J(v) ≡ 1 for all v (i.e., the coupling is a constant and there is no quench at all), all derivatives of J

(and hence the coefficient I(v)) vanish and our solution reduces to the static Lifshitz solution with z = 1+ε2,

equation (2.8). This solution has been explored in [61], where it was shown to be dual to the vacuum state

of the Lifshitz field theory. As we shall see in section 4.1, for quench profiles going asymptotically from 0 to

1 this interpretation is no longer true for the final state of the evolution (essentially due to the non-vanishing

contribution of I(v), causing a breaking of the Lifshitz symmetry), which will correspond to a thermal state.
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of J(v) will vanish except for J(v) itself. In addition, the coefficient I(v) approaches a

constant positive value, namely

If =
1

2

∫ ∞
−∞

J̈(w)2dw > 0 . (3.11)

This means that the end state will correspond to an asymptotically Lifshitz black brane

with z = 1 + ε2, namely

ds2
f = 2

(
1 + ε2 ln r

)
dvdr − r2

[
1 + 2ε2

(
ln r − 1

4

)
− ε2

If
r3

]
dv2 + r2

(
dx2

1 + dx2
2

)
+O(ε4) ,

(3.12)

supported by a finite vector field configuration A =
√

2εr(dv − 1
r2dr). The corresponding

event horizon will be located at r = rh given by the largest solution of

1 + 2ε2
(

ln rh −
1

4

)
− ε2

If
r3
h

= 0 . (3.13)

The fact that If > 0 implies that it is impossible to reach a pure Lifshitz solution

at the final state, since there will always occur a black hole formation. Exciting the non-

normalizable mode of the vector field triggers a gravitational collapse in the bulk. From

the boundary field theory point of view, this means that quenching the vector operator

Vt in the CFT vacuum will always drive the system to a nonrelativistic Lifshitz theory at

finite temperature. Another way to state this is that it is impossible to reach the vacuum

state of the Lifshitz theory from the vacuum of a CFT as result of a (continuous) quench

of the operator Vt.
The Ricci scalar for the solution (3.8)–(3.9) is easily found by taking the trace of the

Einstein equation (2.2a), namely

R = −d(d+ 1) +
M2

2
AµA

µ +
3− d

4(1− d)
FµνF

µν

= −12−2ε2

[
J(v)2+

2J(v)J̇(v)

r
+
J(v)J̈(v) + 3

4 J̇(v)2

r2
+
J̇(v)J̈(v)

2r3

]
+O

(
ε4
)
. (3.14)

A curvature singularity appears at r = 0 but, as discussed above (see also next section for

two explicit examples), it is not naked since it is always covered by a horizon at rEH(v) ∼(
ε2I(v)

)1/3
. This also sets the regime of validity for our perturbative solution, namely the

range of values for the radial coordinate going from the boundary r = ∞ down to rh ∼(
ε2If

)1/3
. Together with ε � 1 this ensures that none of the terms in the solution (3.8)–

(3.9) spoil the assumption of weak field and, hence, the solution can be trusted.

3.2 Two quench profiles of interest

We now discuss two particular quench profiles of interest, which will be used for a detailed

study of observables in the sequence.

The first one is a function which interpolates between the values 0 and 1 in a time

scale δt, such as (see e.g. [37])

J(v) =
1

2

(
1 + tanh

v

δt

)
. (3.15)
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This is the case we have been anticipating from the beginning, in which our solution

describes a dynamical geometry evolving from pure AdS to a Lifshitz black hole with

z = 1 + ε2. For such a profile, the coefficient I(v) (the only nontrivial coefficient in the

solution (3.9)) can be analytically found as being

I(v) =
2 + 5 tanh3 (v/δt)− 3 tanh5 (v/δt)

30δt3
. (3.16)

In particular, its final value at v → +∞, which according to (3.12) is related to the mass

parameter of the final state Lifshitz black hole, is

If =
2

15δt3
. (3.17)

The fact that it goes with ∼ 1/δt3 implies that one should be careful when using our

perturbative solution for the case of a fast quench (δt→ 0). As we have mentioned before,

the perturbative solution is only valid for values of r going from infinity up to r ∼ rh (the

event horizon of the final state black hole) given by rh '
(
ε2If

)1/3 ' 0.5ε2/3/δt. Therefore,

for this choice of quench the perturbative solution can only be trusted deep inside the bulk

provided ε� 1 but also ε2/3/δt� 2 (or rh � 1).

A second quench profile of interest, which is slightly different from the transition we

have been considering, is a Gaussian function that starts and ends asymptotically at 0, i.e.,

J(v) = e−v
2/2δt2 . (3.18)

This means that the relativistic scaling of the CFT is broken by the quench at intermediate

times but restored at the end state and it would be interesting to explore how this happens.

In the bulk description such a choice corresponds to a dynamical spacetime starting at pure

AdS, evolving in time in a nontrivial way, and ending up by forming an asymptotically AdS

black hole. One must have in mind that the expression for the final state black hole in

this case will again have the form (3.12), but now without the two ln r terms which are

exclusive of Lifshitz black holes. The coefficient I(v) then is

I(v) =
1

16δt6

[
3
√
πδt3 (1 + erf(v/δt)) + 2ve−v

2/δt2
(
δt2 − 2v2

)]
, (3.19)

and the corresponding final value at v → +∞ reads

If =
3
√
π

8δt3
. (3.20)

This quantity will be related to the mass of the Schwarzschild-like AdS black hole formed

at the end of the process. It again depends on the quenching time as ∼ 1/δt3, so the same

comment made for the first quench concerning the regime of validity applies here and, in

particular, one must be careful when applying our solution if we are interested in the fast

quench limit. Namely, the location of the horizon now will be rh = (ε2If )1/3 ' 0.9ε2/3/δt,

hence the perturbative solution is only reliable deep inside the bulk provided ε� 1 as well

as ε2/3/δt� 1 (or rh � 1).
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3.3 All-order structure of the perturbative solution

Although in the present work we are only interested in keeping terms up to ε2 in the

perturbative expansion introduced in (3.3), nothing prevents us from proceeding to higher

orders in ε.9 For the sake of completeness, here we analyze the all-order structure of the

Einstein-Proca equations of motion (2.2).

Since the vector field (which is turned on at order ε1 by the boundary condition (3.7c))

backreacts quadratically on the Einstein equation, it is straightforward to see that the

metric will only receive contributions at even powers of ε. As a consequence, the gauge

field will contain only odd powers of ε. In summary, the final form of the perturbative

solution will look schematically like

f(v, r) = r2 +

∞∑
n=1

ε2nf (2n)(v, r) (3.21a)

h(v, r) = 1 +
∞∑
n=1

ε2nh(2n)(v, r) (3.21b)

a(v, r) =

∞∑
n=0

ε2n+1a(2n+1)(v, r) (3.21c)

b(v, r) =

∞∑
n=0

ε2n+1b(2n+1)(v, r) . (3.21d)

4 Holographic probes of thermalization

In this section we use the gravity solution previously obtained to study the nonequilibrium

dynamics of observables with a known holographic description. Since the solution (3.8)–

(3.9) fluctuates at intermediate times but always reaches a static thermal configuration

after some time, as shown above, a clear notion of thermalization is ensured to happen in

our model. Then, an interesting point would be to study the thermalization time of the

field theory following the quench, and how this is affected at different scales. In Vaidya-like

approaches to the problem of holographic thermalization (see e.g. [37]) the conclusion was

that the UV (short distance) modes thermalize before IR (large distance) modes, the so

called top-down thermalization. It would be useful to check if the same holds here, as well

as the role played by the quenching rate δt.

4.1 Correlation functions

We begin by studying the time evolution of two local observables, namely the vacuum

expectation values 〈Tab〉 and 〈Va〉 of the stress-energy tensor and of the quenching operator

Va in the boundary theory. The standard procedure to obtain correlation functions in

AdS/CFT involves renormalizing the on-shell gravitational action using the holographic

renormalization prescription [74],10 then varying the renormalized action with respect to

9Of course the boundary conditions (3.7) must be appropriately modified in these cases.
10The holographic renormalization of Lifshitz theories is usually done using the vielbein formalism, which

is more appropriate to deal with non-relativistic theories (see, e.g., [75]). Here, however, since we are
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the corresponding sources (asymptotic boundary values of the corresponding bulk fields)

to get the correlators.

The holographic calculation of correlation functions has been carried out in full detail

for the Einstein-Proca model (2.1) in [61] (to order ε2). In appendix A we provide a

summary of the relevant results, which are valid for an arbitrary solution to the bulk

equations of motion, and discuss how to apply them to our quench solution. The resulting

correlators are given by〈
Vt(t)

〉
= − ε

16
√

2πG

...
J (t) +O(ε3) (4.1a)

〈
Ttt(t)

〉
= − ε2

16πG

[
−2I(t) + J̇(t)J̈(t)− J(t)

...
J (t)

]
+O(ε4) (4.1b)〈

Tij(t)
〉

= − ε2

32πG

[
−2I(t) + J̇(t)J̈(t)

]
δij +O(ε4) , (4.1c)

with the remaining components vanishing up to higher order terms in the ε expansion, i.e.,〈
V i
〉

= O(ε3) and
〈
Tti
〉

= O(ε4).

The time evolution of the correlators (4.1) is shown in figure 1 for the two quench pro-

files of interest. In the initial state (t = −∞) they all vanish (to order ε2) as a consequence

of our assumption that J(t) asymptotes to zero at early times (see initial conditions (3.5)),

where the bulk solution reduces simply to empty AdS space, i.e.,〈
Vt(−∞)

〉
=
〈
Ttt(−∞)

〉
=
〈
Txx(−∞)

〉
= 0 . (4.2)

Thus, the initial geometry can be interpreted as the vacuum state of the CFT as mentioned

before. The same is not true for the final state at t = +∞. Despite the fact that J

asymptotes to a final value and, hence, all its derivatives vanish at +∞, the function I(t)

approaches a positive constant If (see (3.11)). As a result,
〈
Ttt(+∞)

〉
and

〈
Txx(+∞)

〉
are

non-vanishing and the final state cannot correspond to the vacuum of the Lifshitz theory.

Such a (“spontaneous”) breaking of the Lifshitz symmetry has been anticipated before due

to the appearence of a finite temperature at the end state.

The correlation functions in the boundary theory are tipically constrained by the pres-

ence of Ward identities. In fact, it follows from (4.1) that

∂t
〈
Ttt
〉

= − ε2

16πG
J(t)

....
J (t) +O(ε4) =

√
2εJ(t)∂t

〈
Vt
〉

+O(ε4) . (4.3)

This is precisely (the time component of) the expected diffeomorphism Ward iden-

tity [76], namely

∇b
〈
Tab
〉

= A[0]a∇b
〈
Vb
〉
− F[0]ab

〈
Vb
〉
, (4.4)

since A[0]a =
√

2εJ(t)dt+O(ε3) (see (A.11)) is the source term coming from the vector field

to leading order in ε (the corresponding field strength F[0] = 0). If the quench profile J(t)

were a constant this would be just expressing the conservation of energy and momentum

studying the Lifshitz theory as a deformation from the point of view of an AdS critical point, the standard

metric formulation of [74] applies.

– 13 –



J
H
E
P
0
2
(
2
0
1
6
)
0
1
4

〈Vt(t)〉

〈Ttt(t)〉

〈Txx(t)〉

-10 -5 5 10 t

-0.02

0.02

0.04

0.06

(a) Tanh quench profile (3.15).
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(b) Gaussian quench profile (3.18).

Figure 1. Time evolution of the correlators (4.1) for the two quench profiles J(t) of interest. For

the plots we set 16πG ≡ 1 and choose the values ε = 0.1, δt = 1.

in the boundary theory. Therefore, in this sense, the right-hand side of (4.3) describes the

“work” done on the system by varying the coupling in time.

In addition to (4.4) there is also the conformal Ward identity [76]〈
T aa
〉

= A[0]a

〈
Va
〉

+A , (4.5)

where A is the conformal anomaly. The correlators (4.1) are trivially checked to satisfy

this constraint with A = 0, which is in agreement with the well known fact that there are

no conformal anomalies in odd dimensions (remember that d = 3 in our case). However, it

should be clear that tracelessness of Tab is only guaranteed at the initial and final states of

the evolution (
〈
T aa
〉
∼ J

...
J ), which is not surprising since, as mentioned before, the quench

breaks the scaling symmetry at intermediate times.

4.2 Time evolution of the apparent and event horizons

In this section we study the time evolution of the apparent and event horizons. Although

for a static black hole the two horizons necessarily coincide, this is not the case in a

dynamical spacetime [77]. In fact, they can evolve in time in completely different ways,

being coincident only when the equilibrium state is reached and the black hole is formed.

In general, if a gravitational collapse process is sourced by a physically reasonable matter

field, the apparent horizon should always lie inside the event horizon. In addition, the

area of the event horizon is expected to grow monotonically during the entire process.

Here we study these two features for our dynamical solution, since they provide nontrivial

consistency checks of the solution.

The apparent horizon is defined as the outermost trapped surface, that is, the closed

surface on which all outgoing null rays normal to it have zero expansion (i.e., they stop

expanding outwards). It is a local concept in the sense that its existence can be inferred

by an observer looking only at a small region of the spacetime. The notion of apparent

horizon is not an invariant property of the spacetime, since its location or even its existence

depends on how spacetime is foliated. This is in sharp contrast with the concept of event
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horizon, defined as the null surface inside of which light rays can never escape to null

infinity. Notice that the existence of an event horizon is a fundamental causal property

of the spacetime which does not depend on the choice of coordinates, since determining

whether or not light is able to escape to null infinity requires the knowledge of the entire

history of the spacetime.

We begin by calculating the event horizon for our solution. It is defined as the null

surface S(v, r) ≡ r − rEH(v) = 0, meaning that its normal vector ∂µS = ∂r − r′EH(v)∂v
must be null, i.e., gµν∂µS∂νS = 0. For a spacetime of the form (3.2) this results in the

following differential equation for rEH:

drEH

dv
=

f(v, rEH)

2h(v, rEH)
. (4.6)

In order to obtain the apparent horizon, we first need to introduce the tangent vectors

ξµin/out to the ingoing and outgoing radial null geodesics in the spacetime (3.2). They are

given by

ξµin = −∂r , ξµout =
1

h(v, r)

[
f(v, r)

2h(v, r)
∂r + ∂v

]
, (4.7)

where the normalization was chosen such that ξ2
in = ξ2

out = 0 and ξin · ξout = −1. Then

the apparent horizon is located at the radius rAH(v) where the expansion θout(v, r) of a

congruence of outward pointing null geodesics vanishes, namely

θout = Lξout ln
√
−γ = ξµout∂µ ln

√
−γ ≡ 0 for r = rAH(v) . (4.8)

Here Lξout denotes the Lie derivative along ξout (which acts just as a directional derivative

for a scalar function) and
√
−γ = r2 is the area element on the codimension-2 surface

γijdx
idxj = r2(dx2

1 +dx2
2) which is orthogonal to this null congruence. It is straightforward

to show from the formulas above that θout = f(v,r)
rh(v,r)2 , so the apparent horizon is determined

by the equation

f(v, rAH) = 0 . (4.9)

Expressions (4.6) and (4.9) with f(v, r) = r2 + ε2f (2)(v, r) completely determine the

location of the event and apparent horizons for our solution (3.8)–(3.9) once the quench

profile J(v) is specified. In figure 2 we show a comparison of rEH(v) and rAH(v) during

the whole time evolution for the two quench profiles of interest. In both cases one sees

that the apparent horizon lies behind the event horizon during the whole collapse process,

as expected. It also follows that the area of the event horizon, which is proportional

to rEH(v)2, will grow monotonically in time (and similarly for the area of the apparent

horizon). The two horizons reach the same static values at the end of the process, as

expected, and this happens at roughly the same time of order ∼ δt. Therefore we see that

our solution trivially passes the two consistency checks.

4.3 Entanglement entropy

An interesting non-local observable in field theory with a well known dual gravity descrip-

tion is the entanglement entropy of a spatial subregion A. For any quantum field theory
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(a) Tanh quench profile (3.15).
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(b) Gaussian quench profile (3.18).

Figure 2. Evolution of the apparent horizon rAH(v) (blue) and the event horizon rEH(v) (red,

dashed), as dictated by equations (4.9) and (4.6), respectively. For the plots we choose ε = 0.1

and δt = 4. The relatively large value for δt was chosen for didatic purposes to make evident the

non-trivial behavior of rAH(v). As the value of δt is decreased (faster quenches) rAH(v) approaches

a step function.

in a given state ρ (such as the vacuum state |0〉〈0|) the entanglement entropy of a space-

time region A with its complement B provides a notion of how much entanglement exists

between the two regions. It is defined as

SA = −TrA (ρA ln ρA) , (4.10)

i.e., as the von Neumann entropy associated with the reduced density matrix ρA = TrBρ

obtained by tracing over the degrees of freedom in region B.

The AdSd+1/CFTd correspondence provides a simple and elegant way to compute

the entanglement entropy in a strongly coupled gauge theory with a gravitational dual

in terms of a geometrical quantity in the bulk. This so called holographic entanglement

entropy formula, first proposed by Ryu and Takayanagi [78] (see also [79] for the covariant

version) is given by

SA =
1

4G
(d+1)
N

extγA(Area(γA)) , (4.11)

where G
(d+1)
N is the Newton’s constant in d+1 dimensions and γA is a codimension-2 surface

in the bulk with its border ∂γA coinciding with the border ∂A of the desired entangling

region A of the CFT living in the AdS boundary. The symbol extγA denotes the extremal

surface among all the γA’s (in the sense of [79]). In the case where the entangling region

A is chosen at a constant time slice (which will be our case), this condition reduces simply

to finding the minimal area bulk surface with ∂γA = ∂A.

As one can see from the holographic formula above, the entanglement entropy clearly

depends on both the size and shape of the entangling region. This means that it can capture

physical properties at many different length scales, and hence using the entanglement
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entropy as a probe for the quench dynamics of the CFT may be helpful to understand the

equilibration process at different scales.

Now we particularize to d = 3, which is our case of interest. For simplicity, we consider

the simplest shape for the boundary entangling region A, namely a strip-like geometry in

the (x1, x2) directions at a constant time slice. We take the strip to have infinite width

(regulated by `⊥ →∞) in the x2 direction and a finite width ` in the x1 direction. Due to

this infinite extension, the entangling region is translation invariant along x2 and hence the

bulk surface will depend only on x1 ≡ x, which can be used to parametrize the functions

v(x) and r(x) characterizing the surface.

The area functional for the class of bulk surfaces γA described above becomes

A[v, r] = `⊥

∫ `/2

−`/2
dx r(x)

√
r(x)2 + 2h(v, r)r′(x)v′(x)− f(v, r)v′(x)2 , (4.12)

where ′ = d
dx . Notice that the infinite length `⊥ of the x2 direction factorizes and, since we

are interested just in the ` dependence, we can study the density A[v, r]/`⊥ instead of the

area itself. The pair of functions (vmin(x), rmin(x)) minimizing this functional will be the

minimal surface γA appearing in the Ryu-Takayanagi formula and, then, the holographic

entanglement entropy will be SA = A/4GN , where A ≡ A[vmin, rmin].

Expanding the metric coefficients f, h in powers of ε as dictated by the solution (3.9),

and also the time and radial profiles11 v(x), r(x) of the minimal surface as

v = v0 + ε2v2 +O(ε4) (4.13a)

r = r0 + ε2r2 +O(ε4) , (4.13b)

it follows that the entanglement entropy can also be written as a power series in ε, i.e.,

SA = S
(0)
A + ε2S

(2)
A +O(ε4) . (4.14)

The zeroth order contribution is given by

S
(0)
A =

`⊥
4GN

∫ `/2

−`/2
dx L(v0, r0) (4.15)

where we have defined (the “Lagrangian” for minimal surfaces in the background AdS

spacetime)

L(v0, r0) = r0

√
r2

0 + 2r′0v
′
0 − r2

0v
′2
0 . (4.16)

The second order contribution is

S
(2)
A =

`⊥
4GN

∫ `/2

−`/2
dx

r2
0

[
2v′0r

′
0h

(2)(v0, r0)− v′20 f (2)(v0, r0)
]

2L(v0, r0)
(4.17)

+
`⊥

4GN

∫ `/2

−`/2
dx

r2
0v
′
0r
′
2 + r2

0(r′0 − r2
0v
′
0)v′2 + 2r0

[
r′0v
′
0 + r2

0(1− v′20 )
]
r2

L(v0, r0)
.

11A comment on notation: we will omit from now on the subscript “min” to denote the minimal area

surface, and also denote the εn terms in the ε expansion of the functions v and r as vn ≡ v(n), rn ≡ r(n) in

order to keep the notation as clean as possible in the sequence.
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Notice that it depends on both the zeroth order profiles (v0, r0) and second order profiles

(v2, r2), meaning that in order to get S
(2)
A one needs to calculate v2, r2 as well. As we shall

see below, the integral in the second line contributes to the entanglement entropy only a

term proportional to r2(`/2). Thus it is not necessary to solve for the full r2(x) (only near

x = `/2, what is considerably easier).

To get v0 and r0 we need to solve the Euler-Lagrange equations arising from (4.15).

This can be done with the help of two immediate conserved quantities, the “Hamiltonian” H

and the “momentum” pv0 arising from the fact that L(v0, r0) does not depend explicitly

on x and on v0(x), respectively, i.e.,

H(x) ≡ − r0(x)3√
r0(x)2 + 2r′0(x)v′0(x)− r0(x)2v′0(x)2

= −r2
∗ (4.18a)

pv0(x) ≡
r0(x)

[
r′0(x)− r0(x)2v′0(x)

]√
r0(x)2 + 2r′0(x)v′0(x)− r0(x)2v′0(x)2

= 0 . (4.18b)

Above, we have introduced the modified boundary conditions for the minimal surface at

x = 0, namely

v0(0) = v∗, r0(0) = r∗, r′0(0) = v′0(0) = 0 . (4.19)

These follow from the fact that the surface stretching from the boundary to the bulk

interior must be symmetric with respect to x = 0, therefore this must be a turning point.

Of course these are not our original boundary conditions defined by the boundary time

t and separation `, but it will turn out to be convenient to work with these modified

boundary conditions when integrating the equations of motion. At the end we can go back

and express our solution in terms of t, ` instead of v∗, r∗ using the relations

v0(±`/2) = t, r0 (±`/2) = r∞ . (4.20)

Here, r∞ is a cutoff for the AdS boundary introduced to regulate possible divergences

arising due to the UV behavior of the metric.

Solving the two conservation equations (4.18) for r′0(x) and v′0(x) results in

v′0(x) =
r′0(x)

r0(x)2
(4.21a)

r′0(x) = r0(x)2

√
r0(x)4

r4
∗
− 1 . (4.21b)

It is not possible to integrate these equations in terms of elementary functions due to

the fourth power appearing inside the square root. However, an exact solution can be

obtained in terms of special functions.12 Taking into account the modified boundary con-

12Although, in order to get the entanglement entropy, it is not actually necessary to integrate these

equations and find the explicit form of the functions v0, r0. Namely, one could simply change the integration

variable from x to r0(x) inside the integral in (4.17) using (4.21) and never worry about the exact form of

r0(x) itself. Anyway, we find it instructive to present the exact form (4.22).
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ditions (4.19) the solution is given as an implicit function of x by

v0(x) = v∗ +
1

r∗
− 1

r0(x)
(4.22a)

x =

√
πΓ(3/4)

r∗Γ(1/4)
− r2

∗
3r0(x)3 2F1

(
1

2
,

3

4
;

7

4
;

r4
∗

r0(x)4

)
(4.22b)

where Γ(u) is the gamma function, 2F1(a, b; c;x) is the hypergeometric function, and the

parameters v∗, r∗ are related to the original t, ` boundary conditions via

t = v∗ +
1

r∗
, ` =

2

r∗

√
πΓ(3/4)

Γ(1/4)
=

1.19814

r∗
. (4.23)

The background contribution to the entanglement entropy, S
(0)
A , does not depend on

t,13 so in order to study the time evolution one subtracts this constant value and study

δSA(t) = SA(t)− S(0)
A instead of SA(t) itself. To order ε2 this is given by equation (4.17).

In the integral appearing in the first line we simply change the integration variable from

x to r0(x) with the help of (4.21). In the second line, we first integrate the r′2 term by

parts to get a total derivative and a term proportional to r2; then use the equations of

motion (4.21) to show that the coefficients multiplying r2 and v′2 vanish; the only term

remaining is the total derivative
(√

1− r4
∗/r

4
0 r2

)′
. This is trivially integrated to yield a

surface term that can be simplified using the boundary condition (4.20), resulting simply

in 2r2(`/2). Therefore, the time evolution of the entanglement entropy finally becomes

δSA(t) = ε2
`⊥

4GN

∫ r∞

r∗

dr0

√
r4

0 − r4
∗

r4
0

[
2r2

0h
(2)(t− 1/r0, r0)− f (2)(t− 1/r0, r0)

]
+ε2

`⊥
2GN

r2(`/2) +O(ε4) . (4.24)

Notice that the integrand in the first line is completely determined once the quench profile

J is specified, since the metric coefficients f (2) and h(2) are known from (3.9). The constant

r∗ is related to the boundary separation ` via the analytic expression (4.23).14 As we shall

see, the contribution of r2(`/2) in the second line will depend on time and therefore must

be taken into account into the time evolution of δSA(t).

However, there are two immediate problems with the expression (4.24): the integral in

the first line of (4.24) diverges due to the contribution near the boundary r = r∞ →∞, as

well as the r2(`/2) term diverges due to our boundary conditions, and we need a regular-

ization procedure in order to get a finite result for the entanglement entropy. In practice

13This follows simply from the background AdS spacetime being static, but it can also be seen explicitly

from the fact the “Lagrangian” (4.16) does not depend on v0(x), which according to the solution (4.22)–

(4.23) is the only place where t appears.
14Even without knowing the explicit solution (4.22) to the equations of motion we still could find the

boundary separation ` by simply looking at equation (4.21b) as a differential equation for x(r0) instead of

r0(x), then integrating from x = 0 to x = `/2 and using the boundary conditions r0(0) = r∗, r0(`/2) =

r∞ →∞ to get

` = 2

∫ ∞
r∗

dr

r2
√

r4

r4∗
− 1

.
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this can be done by using the large r regulator r∞ to identify the divergences. Namely,

our goal will be to split the entanglement entropy into two contributions: a divergent one,

regulated by r∞, and a finite subleading one (which will be studied in detail), i.e.,

δSA(t) = δSAdiv
(t) + δSAfinite

(t). (4.25)

An alternative way would be to use the renormalized version of the entanglement entropy

introduced in [80], but we shall not pursue this here.

We first regulate the term r2(`/2). In order to find the radial profile correction r2(x)

we need to solve the Euler-Lagrange equations for r2(x), v2(x) appearing in the func-

tional (4.17). They consist of a complicated set of coupled differential equations involving

the order ε2 metric coefficients f (2), h(2) (and their derivatives) as well as the order ε0

profiles r0, v0 found before, which is hardly enlightening to show here. However, since we

just need the value of r2 at x = `/2 we can solve these equations only for x near `/2, in

which case they simplify considerably. The order 0 radial profile appearing in (4.22) in this

regime takes the simple power-law form

r0(x) =

(
r2
∗

3y

)1/3

+ · · · , (4.26)

where y ≡ `/2 − x → 0. By inserting this result in the aforementioned pair of equations

and solving perturbatively in y it is easy to find the profile r2(x) as being

r2(x) =
1

3
J(t)2 ln

(
3y

r2
∗

)(
r2
∗

3y

)1/3

+
1

12
J(t)J̇(t)

(
15 + 4 ln

r2
∗

3y

)
+ · · ·

= −J(t)2r0(x) ln r0(x) + J(t)J̇(t) ln r0(x) +
5

4
J(t)J̇(t) + · · · (4.27)

for small y. The first two terms are clearly divergent for x→ `/2 (y → 0), while the terms

in the ellipsis all vanish in this limit. Using the same regulator r∞ introduced before, i.e.,

r0(`/2) = r∞, the value of r2 at x = `/2 is then found to be

r2(`/2) = −J(t)2r∞ ln r∞ + J(t)J̇(t) ln r∞ +
5

4
J(t)J̇(t) . (4.28)

Now we discuss the regularization of the integral term in (4.24). The divergent part

comes from the leading behavior of the metric functions f (2) and h(2) near r0 → ∞. It

follows from expressions (3.9) that the large r0 behavior of the combination 2r2
0h

(2) − f (2)

appearing inside the integral is

2r2
0h

(2)(t− 1/r0, r0)− f (2)(t− 1/r0, r0) =
1

2
r2

0J(t)2 + · · · .

Therefore, in order to identify the divergences one just needs to plug this result into the

integrand and evaluate the integral with the UV regulator r∞, namely

δSAint,div
(t) = ε2

`⊥
4GN

∫ r∞

r∗

dr0

√
r4

0 − r4
∗

r4
0

[
1

2
r2

0J(t)2

]
= ε2

`⊥
4GN

[
1

2
J(t)2r∞

]
+ ε2

`⊥
4GN

[√
πΓ(−1/4)

16Γ(5/4)
r∗J(t)2

]
. (4.29)
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Therefore, the finite part of the entanglement entropy introduced in (4.25) follows

simply from the general expression (4.24) by subtracting the divergent terms (all of them

properly identified by the regulator r∞ in equations (4.28), (4.29)). The final result, written

explicitly in terms of the quench profile instead of the metric functions f (2), h(2), reads

δSAfinite
(t) = ε2

`⊥
4GN

{∫ ∞
r∗

dr

√
r4 − r4

∗
r2

[
J(t− 1/r)2 − J(t)2

2
+
J(t− 1/r)J̇(t− 1/r)

r

+
3J̇(t− 1/r)2

4r2
+
I(t− 1/r)

r3

]
+

√
πΓ(−1/4)

16Γ(5/4)
r∗J(t)2 +

5

2
J(t)J̇(t)

}
, (4.30)

where once again we stress that r∗ is related to the boundary separation ` via (4.23).15

Notice that the integrand naturally vanishes at large r and hence the result of the integral

is indeed finite.

In the following we will make a detailed study of this quantity for the two quench

profiles of interest as a probe of the quench dynamics. In doing so, it will be convenient to

ignore the prefactor of `⊥/4GN by defining the entanglement entropy density (times 4GN )

δsAfinite
(t) ≡ 4GN

`⊥
δSAfinite

(t).

In figure 3 we show the time evolution of the entanglement entropy for the tanh quench

profile (3.15). For simplicity we fix the value ε = 0.1, meaning that the final state Lifshitz

theory will have the dynamical exponent z = 1 + ε2 = 1.01.

In part (a) the value of the boundary separation is fixed to be ` = 2 so as to study

the effect of the quenching time δt. We recall from the discussion above that the minimal

surface penetrates inside the bulk from r =∞ up to r∗(`) given by equation (4.23), which

in the case of ` = 2 corresponds to r∗ = 0.599. This means that one can trust our solution

to calculate the entropy with such a value of ` as long as the final state Lifshitz black brane

forms at rh sufficiently away from this value.16 It follows from the definition of rh that

this constrains the quenching time to be δt > 0.37 (of course this constraint will change

for a different ε), and for that reason we show in the plot a comparison of many curves

with different values of δt only above this value. It can be seen from the plot that despite

the quench J(t) being a monotonically increasing function, the time evolution of the (finite

part of) entanglement entropy is never monotonic and differs qualitatively depending on

the quenching rate δt. Namely, fast enough quenches induce an oscillatory behavior at

intermediate times before the thermal state is reached, while slower quenches do not. In-

creasing the value of δt we see that the equilibration curves become smoother, approaching

the adiabatic regime studied in [14]. Remarkably, by comparing the equilibrium value of

the entanglement entropy at the Lifshitz point with the initial background value we see

15Here we have used a trick in order to extract the finite contribution to the integral in (4.24): instead

of calculating the full original integral and then subtracting the divergent piece ε2 `⊥
4GN

[ 1
2
J(t)2r∞] obtained

in (4.29), we equivalently subtract the whole integral in (4.29) and add back separately the constant term

coming from the lower limit. In this way, the UV divergence of the integral is cancelled directly in the

integrand even before integrating (which is convenient for numerical integration) at the cost of adding back

by hand the extra term.
16We will adopt in this work the convention of r∗ > 2rh for what we mean by “sufficiently away”. Thus,

in the present case, for example, we demand rh . 0.3.
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(b) δt = 1 fixed and ` varying.

Figure 3. Time evolution of δs
Afinite

(t) ≡ 4GN

`⊥
δS

Afinite
(t) for the Tanh quench (3.15). In (a) the

boundary separation ` = 2 is fixed and we compare different quenching times δt. The curves go

from δt = 0.4 (top) to 2 (bottom). For δt . 0.35 the perturbative solution is expected to break

down (for our choice of ε = 0.1), so we only show curves for δt above this value. In (b) the quenching

time δt = 1 is fixed and we study the thermalization process at different length scales, from ` = 0.2

(bottom) to ` = 6 (top).

that there may be an increase or decrease depending on the quenching time: slow quenches

(δt & 0.8) cause an entanglement loss in the process, while for quenches faster than these

the amount of entanglement entropy is increased (the faster the quench is, the bigger the

gap between the final and initial values becomes).

In part (b) we now fix the quenching time to be δt = 1 and analyze the thermalization

curves for different boundary separations ` (i.e., at different energy scales in the boundary

gauge theory). Note that with ε = 0.1 and δt = 1 the horizon radius of the final state

black hole is fixed at rh = 0.11, so one can trust the calculation for all length scales

up to ` ' 6 (for which r∗ ∼ 2rh). It is clear from the figure that the thermalization

of the entanglement entropy is a top-down process, i.e., short-scale entanglement entropy

equilibrates before its large-distance counterpart. From the dual gauge theory point of

view, this result once again suggests that the dynamical breaking of the relativistic scaling

symmetry to a Lifshitz symmetry happens faster at short distances (high energies). Another

interesting aspect noted from the plot is that the dynamics (as told from the entanglement

entropy) is qualitatively different at distinct length scales on the boundary. Namely, at

very small distances (` ∼ 0.2) the entropy decreases monotonically in the whole process

towards its final value (which is considerably less than the initial one). At larger distances,

on the other hand, the dynamics becomes non-monotonic, the gap between the final and

initial values is decreased, and the value of the entanglement entropy at the Lifshitz point

can be even greater than the background one (for ` & 3).

In figure 4 we make a similar analysis for the Gaussian quench profile (3.18). Again

we use the value ε = 0.1, but it should be kept in mind that now this does not correspond
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(b) δt = 1 fixed and ` varying.

Figure 4. Time evolution of δs
Afinite

(t) ≡ 4GN

`⊥
δS

Aren
(t) for the Gaussian quench (3.18). In (a) the

boundary separation ` = 2 is fixed and we compare different quenching times δt. The curves go

from δt = 0.6 (top) to 2 (bottom). For δt . 0.6 the perturbative solution is expected to break down

(for our choice of ε = 0.1), so we only show curves for δt above this value. In (b) the quenching time

δt = 1 is fixed and we study the thermalization process at different length scales, from ` = 0.06

(bottom) to ` = 3 (top).

to the Lifshitz exponent since in the final state we have an asymptotically AdS black hole.

In part (a) the value of the boundary separation is fixed (` = 2) and the quenching time

δt is varied. The regime of validity of our solution now constrains δt & 0.6, which is the

reason why we show only curves with δt above this value. We notice from the plot that

the time evolution is always non-monotonic, as in the case of Tanh profile analyzed above,

but the form of the curves is slightly different. The breaking of the relativistic scaling at

intermediate times and its subsequent restoration manifests here as an oscillatory behavior

of the entanglement entropy before reaching the final value. An important difference with

respect to the Tanh quench previously analyzed is that the final equilibrium value of the

entropy is always bigger than the initial one, i.e., there is always an entanglement growth

in the process regardless of the value of δt. The quenching time sets the gap between

the final and initial values for the entanglement entropy, namely, the gap is larger for

faster quenches.

In part (b) it is the quenching time that is fixed to δt = 1, and we analyze the

thermalization curves at different values of `. Note that by choosing ε = 0.1 and δt = 1 the

horizon radius of the final state black hole is now fixed at rh = (3
√
πε2/8δt3)1/3 = 0.19, so

one can trust the calculation for all length scales up to ` ' 3 (for which r∗ = 0.40 > 2rh).

We see from the figure the same top-down thermalization observed for the Tanh profile. It

is also interesting to notice that at distance scales up to ` ' 0.5 the gap between the final

and initial values for the entanglement entropy is almost zero. As already discussed, this

should not be a surprise since differences between the final state AdS black hole and the

pure AdS initial state can only be seen if we probe deep inside the bulk (i.e., for minimal
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surfaces with large `). In the case of the Tanh quench, where we had a Lishitz black

brane in the final state, such a gap had no reason to be small due to the ln r term in the

metric (3.12) which can be sensed even without penetrating deep into the bulk.

We close by noticing from figures 3 and 4 that δsAfinite
eventually becomes negative

for different combinations of ` and δt. However, this is not a problem since it represents

only the finite contribution to the entanglement entropy. The full entanglement entropy

has an additional divergent contribution (regulated by the cutoff r∞) in such a way that

it always increases.

5 Conclusions

We have considered here the problem of holographic quenches leading to a breaking of the

standard relativistic scaling symmetry towards a Lifshitz scaling with z = 1 + ε2 (ε � 1).

The quenching operator is (the time component of) a vector operator Vt with dimension

∆ = d, in which case the Lifshitz theory can be understood as a standard deformation of

the CFT.

After introducing the perturbative setup in the bulk, we have found (to order ε2) the

gravity solution describing the quench dynamics and discussed its regime of validity. In

particular, this regime excludes the case of infinitely fast quenches. The solution interpo-

lates between pure AdS space at past infinity and an asymptotically Lifshitz black hole at

future infinity. This means that the corresponding non-relativistic dual field theory appear-

ing at the end state is always at finite temperature or, conversely, that it is impossible to

reach the vacuum state of the Lifshitz theory from the CFT vacuum using the continuous

quench mechanism proposed here.

We have also probed the nonequilibrium dynamics following the breaking of the rela-

tivistic scaling using both local (1-point correlators of operators in the boundary theory)

and non-local (the entanglement entropy) observables, as well as the apparent and event

horizons. Both horizons were shown to be monotonically increasing functions of time, with

the apparent horizon being inside the event horizon during the whole process, agreeing

with what is expected for physically reasonable collapse processes. The full time evolution

of 1-point functions of Tab and the quenching operator Va in the boundary was obtained

analytically, and they were shown to satisfy all the expected Ward identities. However,

being local observables, they are not sensitive to physics at different scales. Using the

entanglement entropy the thermalization process was probed at different length scales `

in the boundary theory and for different values of the quenching rate δt. Specifically, we

have concluded that the equilibration is a top-down process, i.e., the symmetry breaking

takes place faster for UV modes than for low energy modes. In addition, the curves are

slightly different depending on the value of δt and the gap between the final and initial

values increases for faster quenches.

The present work can be generalized in many ways, such as changing the number

of dimensions (we used d = 3 for the boundary theory) or the quench profile. More

interesting generalizations to pursue are the inclusion of a hyperscaling violation parameter

or the study of quenches in the Schrödinger background (in this case reference [63] may be

helpful), which we leave for a future work.
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A Holographic renormalization and 1-point functions

A.1 General results for an arbitrary solution

The holographic renormalization of the Einstein-Proca model (2.1) as well as the calculation

of renormalized 1-point functions has been carried out in full detail in [61] (to order ε2).

Here we summarize the main results, which hold for an arbitrary solution to the bulk

equations of motion in 3 + 1 dimensions, before particularizing to our case of interest. The

reader is referred to [61] for the details.

As usual in holographic renormalization, the calculation is done using Fefferman-

Graham (FG) coordinates (t, ρ) rather than the EF coordinates (v, r) used in section 3.

The main reason is that in the latter the “radial” direction r is not orthogonal to the

spacetime boundary located at infinity, while the FG coordinate ρ is spacelike and, hence,

one can choose a timelike planar cutoff surface by simply setting ρ = ρ∞. Namely, the

metric and vector field are parametrized in FG coordinates as

ds2 =
dρ2

ρ2
+ ρ2gabdx

adxb (A.1a)

Aµ = Aρdρ+Aadx
a , (A.1b)

where xa ≡ (t, xi) are boundary coordinates and the ε expansion is taken as before,

gab(ρ, x; ε) = g
(0)
ab (ρ, x) + ε2g

(2)
ab (ρ, x) +O(ε4) (A.2a)

Aa(ρ, x; ε) = ερA(1)
a (ρ, x) +O(ε3) (A.2b)

Aρ(ρ, x; ε) = ερA(1)
ρ (ρ, x) +O(ε3) . (A.2c)

Since the divergences in the on-shell action occur only due to the contribution at the

boundary, just the large ρ behavior of the quantities is necessary. Thus, in addition to the

ε expansion, each function appearing above admits also an asymptotic expansion17 near

the boundary of the form

g
(0)
ab (ρ, x) = g

(0)
[0]ab(x) +

1

ρ2
g

(0)
[2]ab(x) +

1

ρ3
g

(0)
[3]ab(x) + · · · (A.3a)

A(1)
a (ρ, x) = A

(1)
[0]a(x) +

1

ρ2
A

(1)
[2]a(x) +

1

ρ3

(
A

(1)
[3]a(x) + Ã

(1)
[3]a(x) ln ρ

)
+ · · · (A.3b)

A(1)
ρ (ρ, x) = A

(1)
[0]ρ(x) +

1

ρ2
A

(1)
[2]ρ(x) +

1

ρ3

(
A

(1)
[3]ρ(x) + Ã

(1)
[3]ρ(x) ln ρ

)
+ · · · (A.3c)

g
(2)
ab (ρ, x) = h

(2)
[0]ab(x) ln ρ+

(
g

(2)
[2]ab(x) + h

(2)
[2]ab(x) ln ρ

)
ρ2

+

(
g

(2)
[3]ab(x) + h

(2)
[3]ab(x) ln ρ

)
ρ3

+ · · · .

(A.3d)

17Whose order in 1
ρ

we shall denote by a square bracket subscript [n].
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With the FG expansion above the equations of motion can be solved order by order

in ε to yield the most general asymptotic solution for the metric and vector field given the

non-normalizable modes g
(0)
[0]ab(x) and A

(1)
[0]a(x) as arbitrary Dirichlet data on the boundary.

This asymptotic solution is used to calculate the regulated on-shell action and identify the

divergent contributions, which are then cancelled by appropriate counterterms defined at

the regulated boundary ρ = ρ∞. The resulting renormalized on-shell action (to order ε2) is

Sren = Son-shell + SGH + S
(0)
ct + S

(2)
ct

=
1

16πG

∫
d4x
√
−g
[
−6− 1

4
FµνF

µν

]
+

1

8πG

∫
∂
d3x
√
−γK

− 1

16πG

∫
∂
d3x
√
−γ (4 +R[γ]) +

1

32πG

∫
∂
d3x
√
−γAaAa + · · · , (A.4)

where SGH is the usual Gibbons-Hawking boundary term, S
(0)
ct is the order ε0 (pure gravity)

counterterm obtained in [74] and S
(2)
ct is the counterterm needed to cancel the leading

divergences18 at order ε2.

The desired correlation functions then follow simply from functional differentiation of

Sren with respect to the sources, i.e.,

δSren

[
g

(0)
[0]ab, A

(1)
[0]a

]
= −

∫
d3x
√
−g(0)

[0]

[
1

2
〈Tab〉δg

(0)ab
[0] + 〈Va〉δA(1)

[0]a

]
, (A.5)

the result being〈
Va
〉

= ε

[
1

16πG
g

(0)ab
[3] A

(1)
[0]b −

3

16πG
A

(1)a
[3]

]
+O(ε3) (A.6a)

〈
Tab
〉

=
3

16πG
g

(0)
[3]ab −

ε2

16πG

[
h

(2)
[3]ab − 3g

(2)
[3]ab −

1

4
A

(1)
[0]cA

(1)c
[0] g

(0)
[3]ab −A

(1)c
[0] g

(0)
[3]cdA

(1)d
[0] g

(0)
[0]ab

+A
(1)
[0]cA

(1)c
[3] g

(0)
[0]ab +A

(1)
[0]aA

(1)
[3]b +A

(1)
[0]bA

(1)
[3]a

]
+O(ε4) . (A.6b)

A.2 Particularizing to the quench solution

The only thing needed to make contact between our case and the general results presented

above is to express our solution (3.8)–(3.9) in the FG form given in (A.1)–(A.3). This

is done by equating the two line elements and writing the EF coordinates v and r as

functions of the new FG coordinates (t, ρ), which provides a set of 3 equations to be solved

for v(t, ρ), r(t, ρ) and the metric component gtt(t, ρ). Namely,

2hr′v′ − fv′2 =
1

ρ2
(A.7a)

2hṙv̇ − fv̇2 = ρ2gtt (A.7b)

h(r′v̇ + ṙv′)− fv′v̇ = 0 , (A.7c)

18There are also subleading divergences at order ε2 which require additional counterterms to be removed,

but such extra pieces do not contribute to the 1-point functions and can be ignored for our purposes.
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with h(v, r) ≡ 1 + ε2h(2)(v, r), f(v, r) ≡ r2 + ε2f (2)(v, r) and a prime (dot) denotes ∂ρ (∂t).

From the above one can express gtt in terms of v(t, ρ) alone, whilst the spatial components

gij depend only on r(t, ρ) as follows straightforwardly from the definition (A.1), namely

gtt = − v̇(t, ρ)2

ρ4v′(t, ρ)2
, gij(t, ρ) =

r(t, ρ)2

ρ2
δij . (A.8)

Equations (A.7) can be solved order by order in ε by writing

v(t, ρ) = v(0)(t, ρ) + ε2v(2)(t, ρ) +O(ε4) (A.9a)

r(t, ρ) = r(0)(t, ρ) + ε2r(2)(t, ρ) +O(ε4) . (A.9b)

Actually to order ε0 the coordinate transformation is already known: since the bulk solution

in this case is simply pure AdS space, the Poincaré coordinates (2.4) do the job as our FG

coordinates, i.e.,

v(0)(t, ρ) = t− 1

ρ
, r(0)(t, ρ) = ρ .

The solution to order ε2 can be found in the large ρ asymptotic expansion using a power

series ansatz with log terms of the form

v(2)(t, ρ) =
∑
n

(cn(t) + c̃n(t) ln ρ)ρn

(and similarly for r(2)). The complete resulting coordinate transformation is given by

v(t, ρ) = t− 1

ρ
+ ε2

[
1

4

∫ t

−∞
J(u)2du+

3J(t)2 ln ρ+ 2J(t)2

4ρ
− 6J(t)J̇(t) ln ρ+ 7J(t)J̇(t)

8ρ2

+
48
(
J(t)J̈(t) + J̇(t)2

)
ln ρ+ 5

(
14J(t)J̈(t) + 11J̇(t)2

)
144ρ3

+ · · ·

]
+O(ε4)

(A.10a)

r(t, ρ) = ρ+ ε2

[
−1

4
J(t)2ρ ln ρ+

J̇(t)2 − 2J(t)J̈(t)

16ρ
+

6I(t) + 2J(t)
...
J (t)− 3J̇(t)J̈(t)

36ρ2

+
−8İ(t)− J(t)

....
J (t) + 3J̈(t)2 + 2

...
J (t)J̇(t)

64ρ3
+ · · ·

]
+O(ε4) . (A.10b)

As a consequence, using (A.8) our metric and vector field (3.8)–(3.9) can be cast in

the desired FG form (A.1)–(A.3) with the following non-vanishing coefficient functions

g
(0)
[0]ab(x) = ηab (A.11a)

A
(1)
[0]t(x) =

√
2J(t), A

(1)
[3]t(x) = −

...
J (t)

3
√

2
, A

(1)
[3]ρ(x) =

J̇(t)√
2

(A.11b)

h
(2)
[0]tt(x)= −3

2
J(t)2, h

(2)
[2]tt(x) = −J(t)J̈(t) + J̇(t)2

2
(A.11c)
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g
(2)
[2]tt(x)=

J̇(t)2 − 4J(t)J̈(t)

8
, g

(2)
[3]tt(x) =

2I(t)− J̇(t)J̈(t)

3
(A.11d)

h
(2)
[0]ij(x) = −1

2
J(t)2δij (A.11e)

g
(2)
[2]ij(x)=

J̇(t)2−2J(t)J̈(t)

8
δij , g

(2)
[3]ij(x) =

6I(t) + 2J(t)
...
J (t)− 3J̇(t)J̈(t)

18
δij . (A.11f)

Finally, plugging the identifications (A.11) into the general expressions (A.6) results in the

correlators presented in (4.1).
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