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1 Multi-Higgs boson production at hadron colliders

With the exception of very few interactions, most of the terms that comprise the Standard

Model (SM) Lagrangian have been measured or constrained, their strengths found to be

suggestively close to the expected ones. An important category of interactions not directly

observed are those of the the Higgs boson with itself. The so-called ‘self-couplings’ and

their energy dependence are crucial in determining the stability of the vacuum. Current

observations suggest that our Universe may be sitting at a metastable false vacuum [1–8]

and measurements of these couplings will illuminate this fact further.

At colliders, these terms, i.e. those proportional to hn, h being the Higgs boson scalar

field, can be directly probed through the simultaneous production of (n− 1) Higgs bosons.

Unfortunately, the production rates for processes with n ≥ 3, i.e. more than one Higgs

boson, are small, mainly due to the relatively large invariant mass of the final state system.

In particular, at the Large Hadron Collider (LHC) with 14 TeV proton-proton centre-of-

mass energy, gluon-fusion Higgs boson pair production is expected to have a cross section

of ∼40 fb [9–17], whereas triple production is expected to have a rather dwarfish rate,

with a cross section of O(0.1 fb) [15]. Hence, even though there is optimism that Higgs

boson pair production will provide important information and constraints through LHC

measurements [18–75], any direct measurement of SM-like triple Higgs boson production

will be essentially impossible at the LHC, even at the end of the high-luminosity phase

(HL-LHC) [76, 77]. However, with a significant increase in the collision energy, a Future
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Circular hadron-hadron Collider (FCC-hh), colliding protons at 100 TeV, stands a good

chance at observing and constraining the self-coupling of the Higgs bosons through Higgs

boson pair production [64, 71, 78–80], the cross section rising to ∼1.6 pb [81]. Additionally,

at the FCC-hh one may also get the chance to observe three on-shell Higgs bosons being

produced, since the total cross section rises to ∼5 fb [15]. The evaluation of this possibility

is the main object of the present article.

Concretely, the part of the Higgs boson potential which includes the self-interactions,

may be written as:

Vself =
m2
h

2v
(1 + c3)h

3 +
m2
h

8v2
(1 + d4)h

4 , (1.1)

where v ' 246 GeV is the vacuum expectation value (vev), mh ' 125 GeV is the measured

Higgs boson mass and c3 and d4 parametrize possible deviations from the standard model

expectation (i.e. the SM is recovered for c3 = d4 = 0).

Figure 1 shows some of the Feynman diagrams contributing to triple Higgs boson pro-

duction. It is clear that the production cross section depends on both c3 and d4 parameters.

This should be contrasted to double Higgs boson production, which does not depend on d4.

In ref. [76] the dependence of the triple Higgs boson cross section on the parameters c3 and

d4 was investigated at 14 TeV and 200 TeV proton-proton colliders for a Higgs boson mass

mh = 120 GeV. We produce an equivalent result for proton-proton collisions at 100 TeV,

for mh = 125 GeV, shown in figure 2. The conclusions are similar to those drawn in [76]:

the cross section dependence on d4 is mild, the deviations due to d4 = ±1 being at most

±20% for c3 = 1. Hence modifications of the d4 coefficient itself will be very challenging to

probe. This is also demonstrated in the contour plot of figure 3(a), which shows the cross

section normalised to the SM value, on the c3 − d4 parameter space. On this plane, one

can observe that the dependence along d4 is much weaker than that along c3.

In terms of constraining c3, triple Higgs boson production cannot be superior to double

Higgs boson production due to its small production cross section. On the other hand, triple

production would be the best process to constrain d4, although, as we will demonstrate,

even the FCC-hh with 30 ab−1 of integrated luminosity can only provide O(1) constraints

on d4, because its dependency of the cross section is very modest. However, observing

the triple Higgs boson production process is an interesting task in its own right, and as

will be seen, indeed challenging at the FCC-hh. The goal of this article is to provide a

first baseline study of Standard Model-like triple Higgs boson production via gluon fusion

(ggF), at a future 100 TeV proton-proton collider. Furthermore, we investigate triple Higgs

production in two scenarios where it is affected by new physics: (i) in the SM augmented

by a single higher-dimensional operator in an effective field theory approach and (ii) the

generic case on the (c3 − d4)-plane.

The article is organised as follows: in section 1.1 we investigate an explicit scenario that

contains a single higher-dimensional operator. In section 2 we list, for future reference, the

final states that could be interesting in the study of Higgs boson triple production. The

Monte Carlo event generation, simulation of b-jet and photon tagging are described in

section 3. Differential distributions at parton level for triple Higgs boson production at

100 TeV, compared to those of Higgs boson pair production and the analysis of the channel
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Figure 1. Example Feynman diagrams contributing to Higgs boson triple production via gluon

fusion in the Standard Model. The vertices highlighted with a blobs indicate either triple (blue) or

quartic (red) self-coupling contributions.

(bb̄)(bb̄)(γγ) is described in section 4. We use this analysis to provide constraints in two

scenarios. Finally, we provide discussion and conclusions in section 5.

1.1 The self-coupling in D = 6 EFT

In the framework of the dimension-6 operator extension to the Standard Model (D = 6

EFT), one can compare the sensitivity of multi-Higgs production to variations of the op-

erator Wilson coefficients [50]. Here we consider, as an illustrative example, a simplified

mode with the assumption that the effect of all coefficients apart from a single one, origi-

nating from an operator of the form O6 ∼ |H|6, where H is the Higgs doublet scalar before

electroweak symmetry breaking:

Vself = µ2|H|2 + λ|H|4 +O6, O6 ≡
c6
Λ2
λ|H|6, (1.2)

where µ2 and λ are the conventional parameters employed in the SM potential for the

Higgs doublet H.

The changes in the quartic and the triple Higgs couplings, defined in eq. (1.1), are

related via [50]:1

c3 = c6, d4 = 6c6 . (1.3)

Due to the relation appearing in eq. (1.3), the cross section for triple Higgs boson

production is a quartic polynomial in c6, i.e. it contains terms up to c46. Such terms come

from squared matrix elements of diagrams containing two triple Higgs couplings, such as

the one shown in figure 1(d).

In figure 3(b) we show the variation of the inclusive leading-order cross sections for

ggF hh and hhh with respect to the SM (c6 = 0). The fit as a function of c6 for the two

cases, at 100 TeV, is:

σ(c6)hh
σ(SM)hh

= 0.22× c26 − 0.71× c6 + 1.00,

σ(c6)hhh
σ(SM)hhh

= 0.03× c46 + 0.03× c36 + 0.43× c26 − 1.31× c6 + 1.00. (1.4)

The line d4 = 6c3 is also shown as a dissection on the c3 − d4 plane in figure 3(a).

1Note that, in general, c3 and d4 would be multiplied by v2/Λ2 in D = 6 EFT. We have set Λ = v for

simplicity here.
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pendently (see eq. (1.1)). The Higgs boson mass was fixed to mh = 125 GeV. The SM cross section

at leading order is ∼ 2.88 fb. The NNPDF23 nlo as 0119 parton density function set was used.
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Figure 3. Total cross section ratios normalised to the Standard Model values for gluon-fusion-

initiated multi-Higgs production at 100 TeV. The Higgs boson mass was fixed to mh = 125 GeV.

The SM cross section at leading order is ∼ 2.88 fb. On the left-hand panel we show a contour plot

of the variation of the cross section ratio with respect to the c3 and d4 parameters (see eq. (1.1))).

On the right-hand panel one can see the variation with respect to the SM in a theory where the SM

is extended with a O6 ∼ |H|6 operator as in eq. (1.2), for both Higgs boson pair production (hh)

and Higgs boson triple production (hhh). For both calculations, the NNPDF23 nlo as 0119 parton

density function set was used.

2 Triple Higgs production final states

We list the dominant Higgs boson triple production final states, i.e. those that yield

Nevents > 10 with 30 ab−1 of integrated luminosity at a proton collider at 100 TeV centre-

of-mass energy, in table 1.
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hhh→ final state BR (%) σ (ab) N30ab−1

(bb̄)(bb̄)(bb̄) 19.21 1110.338 33310

(bb̄)(bb̄)(WW1`) 7.204 416.41 12492

(bb̄)(bb̄)(τ τ̄) 6.312 364.853 10945

(bb̄)(τ τ̄)(WW1`) 1.578 91.22 2736

(bb̄)(bb̄)(WW2`) 0.976 56.417 1692

(bb̄)(WW1`)(WW1`) 0.901 52.055 1561

(bb̄)(τ τ̄)(τ τ̄) 0.691 39.963 1198

(bb̄)(bb̄)(ZZ2`) 0.331 19.131 573

(bb̄)(WW2`)(WW1`) 0.244 14.105 423

(bb̄)(bb̄)(γγ) 0.228 13.162 394

(bb̄)(τ τ̄)(WW2`) 0.214 12.359 370

(τ τ̄)(WW1`)(WW1`) 0.099 5.702 171

(τ τ̄)(τ τ̄)(WW1`) 0.086 4.996 149

(bb̄)(ZZ2`)(WW1`) 0.083 4.783 143

(bb̄)(τ τ̄)(ZZ2`) 0.073 4.191 125

(bb̄)(γγ)(WW1`) 0.057 3.291 98

(bb̄)(τ τ̄)(γγ) 0.05 2.883 86

(WW1`)(WW1`)(WW1`) 0.038 2.169 65

(τ τ̄)(WW2`)(WW1`) 0.027 1.545 46

(τ τ̄)(τ τ̄)(τ τ̄) 0.025 1.459 43

(bb̄)(WW2`)(WW2`) 0.017 0.956 28

(WW2`)(WW1`)(WW1`) 0.015 0.882 26

(bb̄)(bb̄)(ZZ4`) 0.012 0.69 20

(τ τ̄)(τ τ̄)(WW2`) 0.012 0.677 20

(bb̄)(ZZ2`)(WW2`) 0.011 0.648 19

(τ τ̄)(ZZ2`)(WW1`) 0.009 0.524 15

(bb̄)(γγ)(WW2`) 0.008 0.446 13

(τ τ̄)(γγ)(WW1`) 0.006 0.36 10

Table 1. The list of channels with Nevents > 10 with 30 ab−1 and their branching ratios (BR). The

subscript “x`” denotes the number of leptons x in the final state, originating from the di-bosons.

The cross section used for pp → hh at 100 TeV is σNLO = σLO × 2.0 = 5.78 fb, where a K-factor

K = 2.0 has been applied to obtain an estimate of the NLO cross section. The number of events

has been rounded to the nearest integer.

If we apply further requirements to the final states listed in table 1:

• to possess greater than 100 events at 30 ab−1 of integrated luminosity,

• and all gauge bosons fully decay to leptons,

then we are left with the following interesting final states: (bb̄)(bb̄)(bb̄), (bb̄)(bb̄)(τ τ̄),

(bb̄)(bb̄)(WW2`), (bb̄)(τ τ̄)(τ τ̄), (bb̄)(bb̄)(γγ), (bb̄)(τ τ̄)(WW2`). In particular, the expected

combined number of events in the multi-b-jet and multi-τ final states is ∼45000 over the
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lifetime of the FCC-hh, and will most likely provide valuable information on the triple Higgs

boson process. In the present study we focus on the rare but clean final state (bb̄)(bb̄)(γγ).

3 Event generation and detector simulation

3.1 Detector simulation

In the hadron-level analysis that follows, we consider all particles within a pseudorapidity

of |η| < 5 and pT > 400 MeV. We reconstruct jets using the anti-kt algorithm available in

the FastJet package [82, 83], with a radius parameter of R = 0.4. We only consider jets

with pT > 40 GeV within |η| < 3.0 in our analysis. We consider photons within |η| < 3.5

and pT > 40 GeV and 100% reconstruction efficiency. The jet-to-photon mis-identification

probability is taken to be Pj→γ = 10−3, flat over all momenta above the pT cut and over

all pseudorapidities.2 We also consider the mis-tagging of two light jets to bottom-quark-

initiated jets with a flat probability of 1% for each mis-tag, corresponding to a flat b-jet

identification rate of 80% and demand that they lie within |η| < 3.0. We demand all

photons to be isolated, an isolated photon having
∑

i pT,i less than 15% of its transverse

momentum in a cone of ∆R = 0.2 around it. Finally, no detector-smearing effects have

been considered.

3.2 Event generation

Events for the hhh signal samples have been generated via the loop-induced module of

the MadGraph 5/aMC@NLO package [84–88]. The SM loop model present in MadGraph

5/aMC@NLO was modified to allow for deformations of the Higgs boson triple and quar-

tic self-couplings away from the SM values. All tree-level and next-to-leading order (i.e.

matched via the MC@NLO method [89]) background processes have been generated using

MadGraph 5/aMC@NLO, apart from the di-Higgs plus jets (hh + jets) background, which

was simulated using HERWIG++ in conjunction with the OpenLoops matrix-element gener-

ator [32, 90]. The default parton density functions were used in each case: for the signal

and tree-level backgrounds (including hh+jets) the NNPDF23 nlo as 0119 set was used,

whereas for the NLO samples the NNPDF23 nlo as 0118 qed set was employed [91].

Due to the large cross sections and high-multiplicity final states present at a 100 TeV

collider, we only generate the tree-level processes to include true photons and true b-quarks

at parton level. This implies that light extra jets for these processes will be generated by the

parton shower, for which we employ the HERWIG++ general-purpose event generator [92–95].3

Inevitably this introduces an uncertainty to the results presented herein, rendering any

observables related to these light jets leading-log accurate.4 We do not expect this, however,

to alter the main conclusions of this first, baseline, study. Furthermore, generation-level

2Note that the HL-LHC expectation has the approximate form Pj→γ = 0.0093 × e−0.036pTj/GeV [78].

For a pT ∼ 40 GeV, this gives approximately Pj→γ ∼ 2× 10−3. Thus, the value employed here is expected

to be a reasonable approximation to future detector performance.
3Simulation of hadronization and the underlying event were also included. [96]. No simulation of pile-up

events was considered.
4The hh+jets process is the only exception, with the first jet being leading-order accurate [32].
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observable PS cut

pT,b > 35 GeV, at least one > 70 GeV

|ηb| < 3.2

pT,γ > 35 GeV, at least one > 70 GeV

|ηγ | < 3.5

∆Rγγ > 0.2

mγγ ∈ [90, 160] GeV

Table 2. The phase-space (PS) cuts imposed on the background samples bb̄bb̄, bb̄bb̄γ, bb̄bb̄γγ, bb̄γγ.

cuts that anticipate the analysis cuts at hadron level are imposed on the b quarks and the

photons. In the case of decaying resonances (i.e. h and Z bosons) no cuts are imposed.

The phase-space cuts applied on the samples bb̄bb̄, bb̄bb̄γ, bb̄bb̄γγ, bb̄γγ are shown in table 2.

At this point one should stress that even though NLO event generation matched to

the parton shower has been largely automated, NLO calculations for the high-multiplicity

final states, particularly with many coloured particles and complicated phase space cuts,

remain challenging at present. We hence apply a conservatively large flat K-factor of

K = 2.0 to all the processes calculated at tree level, as well as the hhh and hh+jets loop-

induced processes. This is a crucial point that should be addressed in future studies at

higher-energy hadron colliders, as such final states will become increasingly common.

The analysis of the signal and backgrounds generated for the final state (bb̄)(bb̄)(γγ)

is presented in section 4.2.

4 Analysis

4.1 Differential distributions

We investigate the shape of the differential distributions in Higgs triple production in the

Standard Model. Here we keep the Higgs bosons stable and include parton shower effects.

We compare the shape of the hhh distributions to those coming from the more familiar

case of Higgs boson pair production (hh) at 100 TeV.

Figure 4(a) shows the transverse momentum of any single Higgs boson either in hh

or hhh production, pT,h. Evidently, the transverse momentum of a Higgs boson in hhh is

softer than that of hh, peaking at ∼ 100 GeV instead of ∼ 150 GeV.

In figure 4(b) we show the the spectrum of the transverse momentum of the Higgs

boson “system”, pT,hn , i.e. the triplet of Higgs bosons in hhh, and the two Higgs bosons in

hh. One can observe that the pT,hn is harder in hhh than that of the pair in hh.

We examine the distance between two Higgs bosons, ∆R(h, h), in hh and hhh produc-

tion in figure 4(c). In the case of triple production the distance is calculated between any

two Higgs bosons. The Higgs bosons in hh are found to be more back-to-back than those

in hhh, as expected.
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Figure 4. Comparison of differential distributions for Higgs boson pair (hh) and triple production

(hhh) in the Standard Model. Parton showering effects are included on top of leading-order matrix

elements. Figure (a) shows the transverse momentum of any single Higgs boson, pT,h. In (b)

we show the the spectrum of the transverse momentum of the Higgs boson “system”, pT,hn , i.e.

the triplet of Higgs bosons in hhh, and the two Higgs bosons in hh. In (c) the distance between

two Higgs bosons, ∆R(h, h), is examined and in (d) we show the the invariant mass of all Higgs

bosons, Mhn .

Finally, in figure 4(d) we show the the invariant mass of all Higgs bosons in hh or hhh

production, Mhn . The invariant mass distribution in hhh peaks just above Mh3 ∼ 600 GeV,

whereas that in Higgs pair production, just above Mh2 ∼ 400 GeV.

4.2 hhh→ (bb̄)(bb̄)(γγ)

The hhh → (bb̄)(bb̄)(γγ) process is expected to be relatively clean and simple to re-

construct.5 The excellent resolution of the di-photon invariant mass, that has con-

tributed to the Higgs boson discovery at the LHC’s Run 1, can be exploited to facilitate

background rejection.

5Note that this final state has been considered in [97], in the context of the two-Higgs doublet model

hH → hhh final state. Here we consider the SM case.
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observable selection cut

pT,b{1,2,3,4} > {80, 50, 40, 40}GeV

|ηb| < 3.0

mclose,1
bb ∈ [100, 160] GeV

mclose,2
bb ∈ [90, 170] GeV

∆Rclose,1
bb ∈ [0.2, 1.6]

∆Rclose,2
bb no cut

pT,γ{1,2} > {70, 40}GeV

|ηγ | < 3.5

∆Rγγ ∈ [0.2, 4.0]

mγγ ∈ [124, 126] GeV

Table 3. The final selection cuts imposed in the analysis of the (bb̄)(bb̄)(γγ) final state. The

observables are defined in the main text.

The present analysis follows a simple path, using the R = 0.4 anti-kt jets as described

in section 3. Note, however, that an analysis utilising the jet substructure of boosted

Higgses to a bottom-anti-bottom pairs, e.g. as in [98], could assist in signal-background

separation. We defer this task to future work.

We ask for four b-jets, or light jets mis-identified as b-jets, within |η| < 3.0, possessing

transverse momenta pT,b{1,2,3,4} > {80, 50, 40, 40}GeV, where the subscripts 1, 2, 3, 4 denote

the first, second, third and fourth hardest b-jets respectively. We ask for two photons, or

mis-identified jets as photons, within |η| < 3.0 and pT,γ{1,2} > {70, 40}GeV. Due to the fact

that, for the majority of b-jets we cannot identify whether they originated from a b-quark

or an anti-b-quark, there exists a 3-fold combinatorial ambiguity in combining b-jets into

the two Higgs boson candidates. As a simple choice, we take the highest-pT b-jet and pair

it with the closest b-jet in ∆R =
√

∆η2 + ∆φ2, and pair the other two remaining b-jets

together.6 We thus construct the paired b-jet invariant mass, respectively, mclose,1
bb and

mclose,2
bb , for which we demand mclose,1

bb ∈ [100, 160] GeV and mclose,2
bb ∈ [90, 170] GeV. The

rather large mass windows are chosen to maintain high signal efficiency given the small

initial cross section. Moreover, we construct the distance between the highest-pT b-jet and

the corresponding paired one, and impose ∆Rclose,1
bb ∈ [0.2, 1.6].7 For the photon pair, we

simply construct the invariant mass and impose a strong window on the measured Higgs

boson mass mγγ ∈ [124, 126] GeV.8 We also restrict the distance between the two photons

to ∆Rγγ ∈ [0.2, 4.0]. We collect these selection cuts in table 3.

6We have verified explicitly that an alternative method based on minimization of the squared sum of

(mbb−mh) from each combination yields results that differ by O(1%) compared to the simpler ∆R method.
7The distance between the other paired b-jets was not found to have significant discriminatory power.
8This cut implies that the di-photon resolution should be better than ∼ 1 GeV at the FCC-hh. The

current resolution at the LHC is 1-2 GeV, [99, 100] and thus it is not unreasonable to expect an improvement

at the detectors of the future collider.
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process σLO (fb) σNLO × BR× Ptag (ab) εanalysis N cuts
30 ab−1

hhh→ (bb̄)(bb̄)(γγ), SM 2.89 5.4 0.06 9.7

hhh→ (bb̄)(bb̄)(γγ), c6 = 1.0 0.46 0.9 0.04 1.1

hhh→ (bb̄)(bb̄)(γγ), c6 = −1.0 7.94 15.0 0.05 22.5

bb̄bb̄γγ 1.28 1050 2.6× 10−4 8.2

hZZ, (NLO) (ZZ → (bb̄)(bb̄)) 0.817 0.8 0.002 � 1

hhZ, (NLO)(Z → (bb̄)) 0.754 0.8 0.007 � 1

hZ, (NLO) (Z → (bb̄)) 8.019× 103 1129 O(10−5) � 1

bb̄bb̄γ + jets 2.948× 103 2420 O(10−5) O(1)

bb̄bb̄ + jets 5.449× 103 4460 O(10−6) � 1

bb̄γγ + jets 98.7 4.0 O(10−5) � 1

hh + jets, SM 275.0 592.7 7× 10−4 12.4

hh + jets , c6 = 1.0 153.8 331.5 0.001 9.9

hh + jets , c6 = −1.0 518.2 1116.9 4× 10−4 13.4

Table 4. The processes considered in the analysis of the (bb̄)(bb̄)(γγ) final state. The parton-level

cross section, including the cuts given in the main text is given (if any), the analysis efficiency and

the expected number of events at 30 ab−1 are given. A flat K-factor of K = 2.0 has been applied to

all tree-level processes (including hh+jets) as an estimate of the expected increase in cross section

from LO to NLO. The hZZ, hhZ and hZ processes have been produced at NLO and hence no

K-factor is applied. Even though the hhZ process depends on c6, we only consider the SM case,

as it was found to be negligible after cuts.

We show a summary of the processes considered in the analysis in table 4. The most

significant backgrounds in our set-up turn out to be the SM bb̄bb̄γγ and those coming from

Higgs boson pair production in association with extra jets. Specifically, the latter emulates

the signal well, as the di-photon mass window is expected to have similar efficiency to the

signal. Moreover, as we have pointed out at the beginning of the section, the Higgs bosons

in hh are harder on average than than those in hhh, thus passing transverse momentum

cuts easily. This background could be tackled in future studies via h→ bb̄ tagging using jet

substructure techniques that exploit the decay versus the g → bb̄ branching that produces

the additional bb̄ pair in hh+jets.9

4.3 Sensitivity in D = 6 EFT

Despite the rather large backgrounds, a signal-to-background ratio of O(1) can be obtained

for the SM case. To summarise the results of the analysis, we present in the first two

columns of table 5, respectively, the number of expected hhh events and the total expected

number of events, for the SM, as well as for the two simple deformations obtained by

including the D = 6 operator O6, with coefficient values c6 = ±1. The third column of

9Note that the additional two b-jets in hh+jets and hZ have been generated by gluon splitting into bb̄,

performed by the shower Monte Carlo.
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Figure 5. The expected exclusion significance on the c6 coefficient (right vertical axis), assuming

that the theoretical uncertainty on the expected number of hhh and hh+jets events is 40% for

each process and uncorrelated between the two. The left vertical axis shows the expected num-

ber of events after cuts at 30 ab−1. The horizontal magenta dashed lines show the 2σ and 5σ

exclusion points.

table 5 indicates that, if one assumes that the SM is the underlying theory, then c6 = ±1

can be excluded at 95% C.L. or better, using hhh→ (bb̄)(bb̄)(γγ) at the ‘high-luminosity’

phase of the FCC-hh.

Furthermore, we show in figure 5 the expected exclusion region on the c6 coefficient, as

well as the expected number of events after cuts, at 30 ab−1. The theoretical uncertainty

on the expected number of events for the hh and the hh+jets processes was taken to be

40% and uncorrelated between the two. The analysis efficiencies for hhh and hh+jets were

individually fitted using points in the region c6 ∈ [−3.0, 4.0].10 We assume that there is

negligible uncertainty on the ‘other’ backgrounds, which are taken to consist of the bb̄bb̄γγ

and bb̄bb̄γ+jets processes. By examining the central values of the the grey exclusion band,

we can see that the regions c6 . −0.7 and c6 & 3.0, as well as the intermediate region

c6 ∈ [∼ 1.0,∼ 1.7], are expected to be excluded at 95% C.L. (2σ). Moreover, due to the

fast-rising hhh cross section, as a function of the c6 coefficient in this simple model, the

5σ-excluded region lies close to the 2σ outer regions: c6 . −1.4, c6 & 3.5. Note that the

analysis can be optimised for each value of c6 to obtain a higher significance, but in light

of the many sources of uncertainties we do not pursue this here. Such optimisation could

substantially alter the shape of the hhh and hh+jets curves in figure 5.

4.4 Sensitivity on the (c3 − d4)-plane

Higgs boson triple production can be used to place constraints on the (c3−d4)-plane. This

can subsequently be used to impose constraints on arbitrary relations between the triple

and quartic coefficients in explicit models. We approximate the hhh signal efficiency over

the whole plane by calculating its average value for c3 ∈ [−3.0, 4.0], d4 = 6c3, as obtained

in the D = 6 EFT example. The analysis is used verbatim, without any modification of

10The fitting uncertainty is not shown in figure 5.
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hhh total |N(SM)−N(c6)|√
N(SM)

SM 9.7 31.3

c6 = 1.0 1.1 20.2 ∼ 2.0

c6 = −1.0 22.5 45.1 ∼ 2.5

Table 5. The number of events for an integrated luminosity of 30 ab−1 at 100 TeV, for the Standard

Model and the the two simple deformations with O6, with coefficient values c6 = ±1. The first

and second columns show, respectively, the number of events for the hhh signal and the total

expected number of events for all contributing processes: hhh, hh+jets, bb̄bb̄γγ (using 8.2 events)

and bb̄bb̄γ+jets (using 1 event). The third column shows, approximately, the level (in number of

standard deviations) at which the two hypotheses c6 = ±1 can be excluded given that the standard

model is the underlying theory.

3 2 1 0 1 2 3 4 5

c3
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5

10

d
4

d 4
=

6c
3

≥2σ

≥5σ

approximate c3−d4  exclusion, hhh→(b̄b)(b̄b)(γγ), pp@100 TeV

Figure 6. The approximate expected 2σ (blue) and 5σ (red) exclusion regions on the c3−d4 plane

after 30 ab−1 of integrated luminosity, derived assuming a constant signal efficiency, calculated

along the d4 = 6c3 line in c3 ∈ [−3.0, 4.0].

cuts along the plane. The standard deviation on the efficiency obtained this way was found

to be ∼ 20% along this direction in the given interval. Considering the magnitude of the

uncertainties on the signal and background predictions, we consider this to be adequate at

present. For the hh+jets background we use the efficiency fit calculated for the D = 6 EFT

case. We show the projected constraints on the (c3− d4)-plane an integrated luminosity of

30 ab−1 in figure 6. As a sanity check, we draw the d4 = 6c3 line and check that the outer

2σ-region: c6 . −2 and c6 & 3 approximately reproduces the D = 6 EFT result given

the uncertainties. A few interesting observations can be made. Firstly, the whole region

c3 . −1 can be excluded at 5σ irrespective of the value of d4 using triple Higgs production.

Moreover, if c3 is constrained to lie near c3 ∼ 0, then the weakest constraints on d4 are

obtained in all of the plane. On the other hand, if a non-zero value of c3 is measured, e.g.

c3 ∼ 4, then the constraint on d4 can be quite stringent and in a region excluding d4 = 0,

i.e. d4 ∈ [∼ 4,∼ 8] at 5σ.
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5 Discussion and conclusions

Evidently, discovering Standard Model-like triple Higgs boson production will be a chal-

lenging task. Our analysis of the hhh → (bb̄)(bb̄)(γγ) channel has demonstrated that the

process merits serious investigation at a future collider running at 100 TeV proton-proton

centre-of-mass energy. It is important at this point to emphasise the defining points and

caveats that lead this phenomenological analysis to this conclusion:

• The detector of an FCC-hh needs to have excellent photon identification and reso-

lution, so that a di-photon invariant mass window of width 2 GeV around the Higgs

boson mass can imposed. As we already mentioned, the current resolution at the

LHC is 1-2 GeV, [99, 100]. Moreover, the projections for photon identification effi-

ciency at the high-luminosity LHC are at O(80%) [101]. It is not unreasonable to

expect an improvement in both of these parameters at the FCC-hh, to a resolution

of . 1 GeV or photon identification of & 90%.

• Tagging of b-jets should be extremely good, at least in the range of 70-80%, with

excellent light jet rejection of O(1%) over a wide range of transverse momenta and

pseudorapidities. Reducing the tagging probability from 80% to 70% would reduce

the final number of events in ‘true’ 4-b-jet final states by about 40%. We note that

the expected performance of the b-tagging algorithms for the LHC Run 2 is already

at this ballpark [102].

• Any analysis of triple Higgs production that includes bb̄ pairs will also benefit from a

very good forward coverage, allowing identification of b-jets up to pseudo-rapidities

of |η| ∼ 3.0. Good forward coverage for photons to |η| ∼ 3.5 would also benefit

the analysis. For example, the fraction of signal events with two b-jets falling in

|ηb| ∈ [2.5, 3.0] is ∼ 15% and the fraction of events with two photons falling in

|ηγ | ∈ [2.5, 3.5] is ∼ 5%. These two are approximately uncorrelated, and thus an

LHC-like coverage of |ηb| < 2.5, |ηγ | < 2.5 would cause a ∼ 20% reduction in signal

efficiency compared to the analysis presented in this article.

• Predictions of the triple Higgs boson production cross section, as for the case of

double production, posses large theoretical uncertainties at present, due to the un-

known higher-order corrections. The best available calculation includes only exact

real emission diagrams in combination with ‘low-energy theorem’ results [15]. A full

next-to-leading order calculation will reduce this and allow one to use the process to

extract constraints on various models of new physics.

• Crucially, the Monte Carlo event generation of multiple coloured partons (4-6) at

next-to-leading order, with complicated phase-space cuts, matched to the parton

shower, is essential. Technical improvements in this direction, along with increase

in computing power, will allow us to perform predictions with reduced theoretical

uncertainties, as well as perform analyses of more hhh final states, such as those

mentioned in section 2 (as well as other processes that involve multiple Higgs bosons).
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• Due to the aforementioned theoretical and technical limitations, as well as the un-

known characteristics of the future collider, we have not attempted to fully quantify

the theoretical uncertainties permeating our results. We expect that future improve-

ments in all of these aspects would allow one to obtain a more reliable quantitative

result, including a reasonable expectation of uncertainty.

We note here that our event selection is optimised for the assumed detector per-

formance, and if some of these assumptions are changed, the event selection should

also be changed to optimise the signal acceptance and background rejection. More-

over in the scenario that the FCC-hh performance is substantially worse than what we

have assumed, other channels could come into play, such as hhh → (bb̄)(bb̄)(τ+τ−) or

hhh→ (bb̄)(τ+τ−)(τ+τ−).

In conclusion, the study of triple Higgs production should be an important aspect of

any future collider programme. It could provide complementary information on the nature

of the Higgs boson and its role in electroweak symmetry breaking, as well as extensions

of the Higgs boson sector beyond the standard model. This first baseline study resurrects

this process and prompts further investigation into how it can be put into use.
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