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1 Introduction

Born-Infeld (BI) electrodynamics [1] is a non-linear generalization of Maxwell’s theory. BI

action governs the tensor field Fij = ∂iAj − ∂jAi; it is defined as

S[Ai] =
b2

4π

∫
d4x

(
1−

√
1 +

2S

b2
−

P 2

b4

)
, (1.1)

where S and P are the scalar and pseudo-scalar

S ≡
1

4
Fij F ij =

1

2
(B2 − E2) , P ≡

1

4
∗Fij F ij = E ·B . (1.2)

BI dynamical equations in vacuum are

∂iF
ij = 0 , where Fij ≡

Fij −
P
b2

∗ Fij√
1 + 2S

b2
− P 2

b4

. (1.3)

Constant b in eqs. (1.1) and (1.3) has units of field; it represents the scale for which BI

theory departs from Maxwell’s theory. In the weak field regime both theories lead to similar

results, since F ij in eq. (1.3) goes to F ij in the limit b → ∞ (see also References [2–4]).

Although the historical motivation for BI theory was to circumvent the infinite self-

energy of Maxwell’s point-like charge (by enforcing the electric field to have the value b

at the position of the charge), nowadays the interest in this kind of theory has moved
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towards high-energy physics, since the low energy limit of string theories contains BI-

like Lagrangians [5–9]. Except for a case without physical interest, BI theory is the only

non-linear electrodynamics free of birefringence and shock waves, and displaying causal

propagation [10–14]. Similarities between BI dynamics and MHD equations have been

considered in ref. [15].

Apart from the trivial spherically symmetric case, exact stationary BI configurations

are hard to obtain; they have been studied in the form of perturbative series [16, 17].

However, BI electrostatics in the plane can be exactly solved, although in an implicit way.

After replacing E = −∇u(x, y) and B = 0 in eq. (1.3), one obtains the equation governing

the electrostatic potential u(x, y):

(1 − b−2 u2,y) u,xx + 2 b−2 u,y u,x u,yx + (1 − b−2 u2,x) u,yy = 0 , (1.4)

Equation (1.4) can be regarded as a non-linear extension of the Laplace equation ∆u(x, y) =

0. While the Laplace equation in the plane immediately refers to holomorphic functions,

since the real and imaginary parts of any holomorphic function verify Laplace equation,

the relation between the solutions to eq. (1.4) and holomorphic functions is much more

subtle. This relation was obtained by Pryce [18, 19] (see also References [20–23]). It is

worth mention that eq. (1.4) can be also obtained directly from the action

S[u] =
b2

4π

∫
dx ∧ dy

√
1− b−2

(
u 2
,x + u 2

,y

)
. (1.5)

This action coincides with the one for the problem of maximal surfaces in (2+1) Minkowski

space (space-like surfaces with vanishing mean curvature). It is well known that the solution

to this geometrical problem can be written in a parametric way; if t = b−1 u(x, y) is the

equation for the surface defined on a domain D of the complex plane z = x+ i y, then the

solutions admit the Weierstrass-Enneper parametrization [24]:

(x(ς), y(ς), t(ς)) = Re

∫ (
1

2
φ (1 + ϕ2),

i

2
φ (1− ϕ2), −φϕ

)
dς , (1.6)

where φ is holomorphic and ϕ is meromorphic on D such that φϕ2 is holomorphic on D

and |ϕ(z)| 6= 1 for z ∈ D. Like the Weierstrass-Enneper parametrization, also the method

of References [18–23] is unable of offering the solutions in an explicit way. Instead, the

solution u(x, y) = u(z, z) is given in an implicit way through a function z = z(w,w), u

being the real part of w.

Equation (1.4) becomes a wave equation by replacing y with i t. At the level of the

action (1.5), this procedure leads to a descendent of the Nambu-Goto action in 2+1 di-

mensions [25], which straightforwardly connects BI wave equation with string theory. Like

its static relative (1.4), the Born-Infeld wave equation for the scalar potential u(t, x) also

provides solutions to some configurations of BI electrodynamics. We remark that, as a

consequence of the non-linearity, BI electromagnetic waves interact with other waves and

static fields [26–31]. Only free plane waves evolve like in Maxwell’s theory, because S and

P vanish in such case (compare with the cylindrical wave in ref. [32]).
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Due to its relevance both for static and propagating BI electromagnetic configurations,

together with the impact in related theories, the methods to get solutions to eq. (1.4) are

deserving of our attention. The rest of the paper is organized as follows. In section 2 we

show that action (1.5) can be transformed into a simple form quadratic in the derivatives,

when written in terms of the fields z = z(w,w). In section 3 we invert the exact linear

equation accomplished by z = z(w,w) to get a first order differential equation for the com-

plex potential w = w(z, z), which is valid at the first order in b−2. In section 4 we solve for

periodic w(z, z) functions, and heal the unbounded behavior characterizing this kind of per-

turbative approach. The healing method takes advantage of a symmetry of the differential

equation at the considered order of approximation. In section 5 we solve the BI scalar wave

equation for a configuration of two waves traveling in opposite directions. The interaction

between these waves reveals as a modulation of the amplitudes and a shift in the dispersion

relation. As shown in section 6, this solution can be exploited to obtain configurations of

equally polarized BI electromagnetic waves traveling in opposite directions; in particular we

get the expression for a BI electromagnetic wave interacting with a mirror. We also show

that a BI electromagnetic wave entering a region containing a uniform magnetic field is

reflected at the interface and changes its polarization; this is an effect typical of a non-linear

theory, susceptible of experimental detection. In section 7 we display the conclusions.

2 Complex formulation

We will change from Cartesian coordinates to complex coordinates in the plane: (x, y) −→

(z, z). So, it follows that

dx2 + dy2 = |dz|2 = dz dz , (2.1)

which means that the metric tensor in the chart (z, z) has the components

gzz = 0 = gzz , gzz =
1

2
= gzz . (2.2)

By replacing u 2
,x + u 2

,y = gµν u,µ u,ν = 4uz uz (the subindexes indicate partial derivatives)

the action (1.5) becomes

S[u] =
b2

8π i

∫
dz ∧ dz

√
1− 4b−2 uz uz . (2.3)

From this action we can reobtain the equation (1.4) written in terms of the derivatives uz,

uz :

uzz +
1

b2
u2z uzz −

2

b2
uz uz uzz +

1

b2
u2z uzz = 0 . (2.4)

The equipotential lines u(x, y) = constant can be regarded as coordinate lines of a non-

Cartesian chart; so we will introduce a change of coordinates (z, z) −→ (w,w), where the

real and imaginary parts of w = u+i v are coordinates (u, v) in R
2. The Jacobian matrix is

(
uz uz
vz vz

)
=




∂z
∂u

∂z
∂v

∂z
∂u

∂z
∂v




−1

=




(zw + zw) i (zw − zw)

(zw + zw) i (zw − zw)




−1

. (2.5)
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This coordinate change is not unique, since we are free to choose the coordinate v. We

are going to show that BI equation (2.4) is remarkably simple when written not for u(z, z)

but for z(w,w), provided a convenient coordinate v is chosen. Let us rewrite the pieces

entering the action (2.3). On the one hand it is

dz ∧ dz = (zw zw − zw zw) dw ∧ dw . (2.6)

On the other hand we can solve uz from eq. (2.5):

uz =
1

2

zw − zw
zw zw − zw zw

. (2.7)

Therefore

dz∧dz
√
1− 4b−2 uz uz = dw∧dw

√
(zw zw − zw zw)2 − b−2 (zw − zw) (zw − zw) . (2.8)

Since u(z, z) is the sole degree of freedom in the action (2.3), we are free to choose the

partner coordinate v(z, z) in the most convenient way. So, we can look for a choice that sim-

plifies the result (2.8). Then, we will choose the complex coordinate w = u(z, z)+ i v(z, z)

in such a way that the vector ∂/∂w gets the form

2b
∂

∂w
= ξ

∂

∂z
+

1

ξ

∂

∂z

for some auxiliary function ξ. Thus

∂z

∂w
=

ξ

2b
,

∂z

∂w
=

1

2b ξ
. (2.9)

Our choice for w(z, z) implies that (u, v) are orthogonal coordinates. In fact,

∂

∂u
·
∂

∂v
= i

(
∂

∂w
+

∂

∂w

)
·

(
∂

∂w
−

∂

∂w

)
= i

∂

∂w
·
∂

∂w
− i

∂

∂w
·
∂

∂w

= i (gww − gww) = 2 i gzz

(
∂z

∂w

∂z

∂w
−

∂z

∂w

∂z

∂w

)
=

i

4b2

(
ξ

ξ
−

ξ

ξ

)
= 0 . (2.10)

The form of zw, zw given in eq. (2.9) is replaced in (2.8) to obtain

dz∧dz
√
1− 4b−2 uz uz =

dw ∧ dw

4b2

(
1

|ξ|2
− 2 + |ξ|2

)
= dw∧dw

(∣∣∣∣
∂z

∂w

∣∣∣∣
2

− 2 +

∣∣∣∣
∂z

∂w

∣∣∣∣
2
)

.

(2.11)

This simple action leads to trivial dynamical equations,

∂2z

∂w ∂w
= 0 , (2.12)

which says that z(w,w) is the sum of a holomorphic function of w and an anti-holomorphic

function. Notice that the Born-Infeld constant b is absent in eq. (2.12). Actually this

equation is satisfied by Maxwellian solutions too. However, the derivatives of z(w,w) are
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connected by the eq. (2.9), which links the holomorphic and the anti-holomorphic sectors;

this is the only role left to b. Therefore the general solution is

z = f(w) +
g(w)

4 b2
(2.13)

(the factor 4 b2 has been chosen for convenience), where functions f and g are linked by

the condition

f ′(w) g′(w) = 1 . (2.14)

Ideally, the potential u(z, z) = Re[w(z, z)] would be obtained by inverting the result (2.13).

However, we can hardly solve w(z, z) from eq. (2.13), except for trivial choices for f that

could be deprived of physical interest.

3 Perturbative expansion

The inversion of eq. (2.13) can be approached in a perturbative way. For b2 going to infinity

we recover the Maxwellian result (the complex potential is an analytic function of z). Then

we can start from a known Maxwellian solution z = f(w) and solve the equations (2.13)

and (2.14) at the order b−2; thus we will find the Born-Infeld corrections at the lowest order.

At the level of eq. (2.4), this approach is equivalent to replace the Maxwellian potential in

the three terms containing the factor b−2.

So we will now focus on getting a differential equation for w(z, z), at the first order in

b−2, that can be easily integrable. By differentiating eq. (2.13) with respect to z and z we

get two equations,

f ′(w)
∂w

∂z
+

g′(w)

4b2
∂w

∂z
= 1 , (3.1)

f ′(w)
∂w

∂z
+

g′(w)

4b2
∂w

∂z
= 0 . (3.2)

Let us conjugate the eq. (3.2) to solve ∂w/∂z,

∂w

∂z
= −

1

4b2
g′(w)

f ′(w)

∂w

∂z
. (3.3)

Therefore, at the first order in b−2, only the first term in eq. (3.1) is relevant. Then it

follows that

f ′(w)
∂w

∂z
≃ 1 . (3.4)

But eq. (2.13) means that f ′(w) = ∂z/∂w. Therefore, eq. (3.4) becomes

∂z

∂w

∂w

∂z
≃ 1 . (3.5)

Eq. (3.5) is not trivial, since the potential w is a function of z and z. It is only trivial

in Maxwell’s theory, where the potential is analytic in z. Eq. (3.5) means that such a

– 5 –
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Maxwellian property is also guaranteed in Born-Infeld theory at order b−2. In eq. (3.4) we

can solve f ′(w) in terms of ∂w/∂z. Thus, eq. (2.14) gives g′(w) in terms of ∂w/∂z,

g′(w) =
1

f ′(w)
≃

∂w

∂z
. (3.6)

Results (3.4) and (3.6) are used in eq. (3.2) for getting the differential equation

∂w

∂z
+

1

4b2
∂w

∂z

(
∂w

∂z

)2

= O(b−4) . (3.7)

4 Periodic solutions

In eq. (3.7), let us try the solution

w(z, z) = D cos[k z +Ψ(z)] , k ∈ R , (4.1)

which is associated with the Maxwellian seed w(z) = D cos(k z) describing a periodic

configuration. In the second term of eq. (3.7), we replace w with its Maxwellian value,

without error at the considered order. Then, one obtains

Ψ′(z) +
k3D

2

4 b2
sin2(k z) = 0 . (4.2)

Thus the complex potential is

w(z, z) = D cos

[
k z −

k3D
2

8 b2
z +

k2D
2

16 b2
sin[2k z]

]
+O(b−4) , (4.3)

which can be simplified by just keeping terms of order b−2 in the development of the cosine

function,

w(z, z) ≃ D cos

[
k z −

k3D
2

8 b2
z

]
−

k2DD
2

16 b2
sin[2k z] sin

[
k z −

k3D
2

8 b2
z

]
. (4.4)

This solution becomes Maxwellian in the limit k2D2 ≪ b2. In spite of appearances, the

approximated solution (4.4) is not entirely satisfactory because the terms of order b−4 in

the r.h.s. of eq. (3.7) will include an unbounded term that is linear in z. Thus the obtained

solution is valid only for small values of |z|. This is a common problem in perturbative

expansions of solutions to differential equations. In Born-Infeld theory this problem can

be solved by resorting to a symmetry displayed by the equation at the lowest order in b−2.

Since ∂w/∂z only appears in eq. (3.7) at the order b−2, then the replacement

z −→ z +
α

b2
z (4.5)

would not have consequences for the solution at the considered order. Moreover, by choos-

ing α = −D2k2/8 we obtain the potential

w(z, z) ≃ D cos

[(

1 +
k4D2D

2

64 b4

)

k z −
k3D

2

8 b2
z

]

−
k2DD

2

16 b2
sin

[

2 k

(

z −
k2D2

8 b2
z

)]

sin

[

k z −
k3D

2

8 b2
z

]

,

(4.6)
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which satisfies

∂w

∂z
+

1

4b2
∂w

∂z

(
∂w

∂z

)2

=
k5DD

2

128 b4
cos[kz] sin[2kz]

(
D

2
cos[2kz]− 4D2 sin2[kz]

)
+O(b−6).

(4.7)

The terms of order b−4 in the r.h.s. are bounded; so the solution (4.6) is satisfactory.

Therefore, even if we are looking for solutions at the lowest order in b−2, we have to

consider the behavior at the next order to avoid unbounded contributions in the differential

equation. The real part of potential (4.6) is then a proper solution to the equation (1.4)

at the lowest order in b−2.

5 The Born-Infeld wave equation

Equation (1.4) becomes a non-linear wave equation by replacing y with −it. Because of

this reason, the periodic solution (4.6) can help to find solutions to the BI wave equation

(1 + b−2 u2,t) u,xx − 2 b−2 u,t u,x u,tx − (1 − b−2 u2,x) u,tt = 0 . (5.1)

Notice that the real part of the Maxwellian seed is

Re[D cos(k z)] = D1 cos(kx) cos(iky)− iD2 sin(kx) sin(iky) . (5.2)

If D2 = 0, then the replacement y −→ −it leads to a stationary wave of amplitude D1. But

in general the result of replacing y −→ −it will not be real. However, by replacing D1 =

a1+a2 andD2 = i(a2−a1) we obtain two waves of amplitudes a1, a2 that propagate towards

increasing and decreasing values of x respectively. We will now start from the potential (4.6)

and follow this recipe to obtain the corresponding BI solution at the order b−2. The result is

u(t, x) =

{

a1 cos

[(

1−
a2
2 k

2

2b2

)

kx−

(

1 +
a2
2 k

2

2b2

)

kt

]

+ a2 cos

[(

1−
a2
1 k

2

2b2

)

kx+

(

1 +
a2
1 k

2

2b2

)

kt

]}

{

1−
a1a2 k

2

2b2
sin

[(

1−
a2
2 k

2

2b2

)

kx−

(

1 +
a2
2 k

2

2b2

)

kt

]

sin

[(

1−
a2
1 k

2

2b2

)

kx+

(

1 +
a2
1 k

2

2b2

)

kt

]}

, (5.3)

which satisfies the Born-Infeld wave equation at first order in b−2:

(1 + b
−2

u
2
,t) u,xx − 2 b−2

u,t u,x u,tx − (1 − b
−2

u
2
,x) u,tt = −

a1a2 k6

4 b4
(cos[2kt]− cos[2kx])

{

a2(4 a
2
1 + a

2
2) cos[k(t+ x)] + a1(4 a

2
2 + a

2
1) cos[k(t− x)] + a

3
1 cos[3k(t− x)] + a

3
2 cos[3k(t+ x)]

+6 a1a
2
2 (cos[k(3t+ x)] + cos[k(t+ 3x)]) + 6 a2

1a2 (cos[k(3t− x)] + cos[k(t− 3x)])
}

+O(b−6) (5.4)

(notice that a bounded function of order b−4 is left).

6 Born-Infeld electromagnetic waves

The Born-Infeld wave equation (5.1) is involved in some configurations of BI electrody-

namics. For instance, consider the potential

Ai = (0, 0, u(t, x), 0) . (6.1)

– 7 –
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Then the components of the field tensor are

Fty = Ey =
∂u

∂t
, Fxy = −Bz =

∂u

∂x
, (6.2)

so P = 0. Therefore the field F ij is

F ij =
F ij

√
1 + 2S

b2

=
F ij

√
1 + 1

b2

[(
∂u
∂x

)2
−
(
∂u
∂t

)2]
, (6.3)

and eq. (1.3) becomes the eq. (5.1) for the potential u(t, x). Therefore, the solution (5.3)

can be regarded as the corresponding BI electromagnetic configuration for the Maxwell

field of two equally polarized monochromatic plane waves propagating along the x−axis

in opposite directions. Such a configuration could be produced when a plane wave is

perpendicularly incident on a plane interface. Since a source distribution will appear at

the interface, we remark that the dynamical equation (1.3) for the coupling Aj j
j becomes

∂iF
ij = 4π jj . (6.4)

6.1 Mirror

If the interface is a mirror, then the electric field must vanish on the mirror. This boundary

condition is achieved for a1 = −a2 ≡ a (assuming that the mirror is located at x = 0). In

fact, the potential becomes

u = 2 a sin

[(
1 +

a2 k2

2b2

)
kt

]
sin

[(
1−

a2 k2

2b2

)
kx

]

×

{
1 +

a2k2

4b2

(
cos

[(
1 +

a2 k2

2b2

)
2kt

]
− cos

[(
1−

a2 k2

2b2

)
2kx

])}
. (6.5)

So, we obtain a stationary wave where Ey = ∂u/∂t has nodes at positions xn given in

terms of the arbitrary wavenumber k as follows:
(
1−

a2k2

2b2

)
k xn = nπ . (6.6)

While in Maxwell’s theory the consecutive nodes are separated by a half-wavelength, in

BI electrodynamics the separation between nodes is affected by the wave amplitude (see

References [29, 31] for the case of waveguides).

Equation (6.5) also shows that the amplitude of the stationary wave is modulated by

its second harmonic. In other words, at the order b−2 the field contains the fundamental

frequency and its third harmonic. The amplitude of the modulation, a2k2/(4b2), is expected

to be very weak. This tiny non-linear effect could be evidenced by a sensitive measurement

of the electric current in the mirror surface. According to eq. (6.4) a current jy = g(t)δ(x)

is associated with the jump of the magnetic component Fxy. Then, it follows that

g(t) =
1

4π
∆Fxy|x=0 =

a k

2π
sin

[(
1 +

a2k2

2b2

)
kt

](
1−

7 a2k2

2 b2
+

5 a2k2

2 b2
cos

[(
1 +

a2k2

2b2

)
2kt

])
.

(6.7)

This current could be detectable in the walls of the resonant cavities of high power lasers.
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6.2 Interface with a magnetostatic uniform field

It is well known that BI electromagnetic waves travel at a speed lower than c (we are using

c = 1) in the presence of a magnetostatic field Bo. For a propagation direction orthogonal

to Bo, the propagation velocity is [10, 11, 27, 28, 30]

β =
1√

1 + B2
o

b2

. (6.8)

In this sense, the presence of a magnetostatic field Bo makes the space behave like a re-

fractive medium. Therefore it could be expected that an interface with an (otherwise)

empty semi-space containing a uniform magnetostatic field Bo will produce a transmitted

wave together with a reflected wave. Notice that Maxwell’s theory does not produce any

reflection at the interface; since the theory is linear there is no interaction between fields.

So the Maxwell wave is not affected by the magnetostatic field; Bo just implies a jump of

the magnetic field at the interface, which is governed by a constant surface current perpen-

dicular to Bo. These features are not so simple in non-linear Born-Infeld electrodynamics.

In fact, the field is governed by dF = d(dA) = 0 and the eq. (6.4). The last relates the

charges and currents on the interface to the jumps of the normal electric and tangential

magnetic components of F . The former implies the continuity of the tangential electric and

normal magnetic components of F . However, differing from Maxwell’s theory, F and F do

not coincide; the electric (magnetic) part of F contains traces of the magnetic (electric)

part of F (see the definition of F in eq. (1.3)). As we will see, this feature is the key to

produce a reflected wave at the interface.

We will consider a normally incident BI plane wave on an interface at x = 0. The

region x > 0 (right region) contains a magnetostatic field Bo ŷ; so, we propose a constant

surface current j = g δ(x) ẑ at the interface. Since the field F is purely tangential at the

interface, the solution must satisfy the continuity of Fty, Ftz and Fxy; besides the jump of

Fxz is governed by the surface current:

[Fxz
right −Fxz

left]x=0 = 4π g . (6.9)

In the left region (x < 0) the form the field is an incident plane wave polarized along y,

corrected by a reflected wave polarized along z:

Fleft = −E(x− t) d(x− t) ∧ dy + b−2 H(x+ t) d(x+ t) ∧ dz , (6.10)

This means that the incident-reflected solution is not related to the potential (5.3), since

the solution (5.3) describes equally polarized incident and reflected waves. However, as the

reflected wave in the field (6.10) is already of order b−2, the approximated approach will

be rather simple in this case.

In the right region, the transmitted wave polarized along y is corrected by a transmitted

wave polarized along z. Both of them propagate at the speed β:

Fright = −B(x− β t) d(x− β t)∧ dy+Bo dx∧ dz+ b−2 K(x− β t) d(x− β t)∧ dz . (6.11)
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The equation dF = 0 is trivially fulfilled in both regions. The continuity of Fty and Ftz

implies

E|x=0 = β B|x=0 , H|x=0 = −β K|x=0 . (6.12)

As will be shown, the corrections H and K cannot vanish, but they are needed to satisfy

the eq. (6.9).

Let us compute the field F as defined in eq. (1.3). Notice that H and K contribute to

b−2P and (1 + b−2 2S − b−4 P )−1/2 at the order b−4; thus it follows that

b−2Pleft = O(b−4) , (1 + b−2 2S − b−4 P )
−1/2
left = 1 +O(b−4) , (6.13)

b−2Pright = b−2βBoB(x−βt)+O(b−4) , (1 + b−2 2S − b−4 P )
−1/2
right = β +O(b−4) . (6.14)

Then Fleft ≃ Fleft, and
1

Fright ≃ β (F − b
−2

P ∗ F )right (6.15)

≃ B d(t− β x) ∧ dy + β Bo dx ∧ dz + b
−2

β
2
B

2
Bo d(t− β x) ∧ dz + b

−2
β K d(x− β t) ∧ dz.

The continuity of Fxy is guaranteed by the eq. (6.12). The eq. (6.9) implies

[β Bo − b−2β3B2Bo + b−2β K − b−2 H]x=0 = 4π g . (6.16)

Because of eq. (6.12), one gets

[β Bo − b−2β E2Bo − 2 b−2H]x=0 = 4π g . (6.17)

Let us introduce a monochromatic incident wave E = e sin[k(x− t)]. Thus

β Bo −
1

2
b−2 β e2Bo (1− cos[2kt])− 2 b−2 [H]x=0 = 4π g . (6.18)

Then

β Bo

(
1−

e2

2 b2

)
= 4π g , (6.19)

i.e.,

Bo

(
1−

B2
o + e2

2 b2

)
≃ 4π g , (6.20)

and
1

2
b−2 β e2Bo cos[2kt]− 2 b−2 [H]x=0 = 0 . (6.21)

Therefore the reflected wave is

b−2H(t+ x) =
e2 βBo

4 b2
cos[2k(x+ t)] ≃ b−2 π e2 g cos[2k(x+ t)] . (6.22)

According to eq. (6.12), the transmitted wave is given by

B(x− β t) = β−1 e sin

[
k

β
(x− β t)

]
and b−2K(x− β t) = −

e2Bo

4 b2
cos

[
2 k

β
(x− β t)

]
.

(6.23)

1∗F ≃ B d(x−β t)∧dz−β Bo dt∧dy−b−2β2 B2Bo d(x−β t)∧dy+b−2β K d(β x−t)∧dy. The equation

d ∗ F = 0, which is equivalent to the dynamical equation (1.3), is trivially satisfied by any differentiable

functions B(x − βt), K(x − βt) because d(β x − t) can be replaced by d(x − β t) without error at the

considered order.
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7 Conclusions

Exact solutions to the Born-Infeld electrostatic equation (1.4) (or, equivalently, (2.4)) are

linked to a pair of holomorphic and anti-holomorphic functions, f and g respectively, sub-

jected to the condition (2.14). Nevertheless the solutions remain expressed in the implicit

way (2.13), where the coordinates z are given as functions of the complex potential w. This

relation can be inverted order by order in powers of b−2, to get the (real) potential as a

function of the coordinates. This procedure is equivalent to solve the equations order by

order; in this case, the equations are satisfied up to terms of higher order in powers of b−2.

However such terms could develop secular behaviors for large values of the coordinates. We

have taken advantage of the symmetry (4.5) to avoid the undesired behavior. The solutions

to the scalar equations (1.4) and (5.1) can be applied to obtain simple configurations of

Born-Infeld electrodynamics: those where E and B are orthogonal and depend just on two

coordinates (a third coordinate can always be introduced by means of a Lorentz boost).

With this aim, we considered periodic complex potentials for getting a configuration of elec-

tromagnetic BI waves traveling in opposite directions (see Reference [26] for a different ap-

proach to this problem). In the case of the stationary wave produced by the reflection of an

BI electromagnetic wave normally incident on a mirror, we have shown that the separation

between nodes becomes dependent on the amplitude of the wave. Besides, both the wave

amplitude and the surface current at the mirror are modulated by the second harmonic.

These effects could be detected in cavities, and have consequences in the phenomenology of

laser-plasmas [33]. We have also studied the propagation of BI electromagnetic waves at the

interface with a region containing a magnetostatic field. It is well known that the magne-

tostatic field alters the propagation velocity, like a sort of refractive index; this property is

exploited in some experimental arrays recently proposed [34]. We have shown that the anal-

ogy with a refractive index also works to produce a reflected wave at the interface, whose

polarization is orthogonal to the one of the incident wave. Irrespective of the technical dif-

ficulties in carrying out this experiment, we should keep the idea that it is possible to test

BI electrodynamics by searching for optical effects in (non-necessarily homogeneous) static

fields; these effects include deviation of rays and contributions of harmonic frequencies.
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