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1 Introduction

Certain conformal field theories (CFTs) are dual to quantum gravity in asymptotically

anti-de Sitter (AdS) spacetime. These CFTs must have a large N limit for the bulk to be

weakly coupled, and a sufficiently sparse spectrum of low-dimension operators to ensure

that the bulk effective field theory has a limited number of fields. It is suspected that any

CFT with these two properties has a holographic dual, and indeed, these two criteria alone

are enough to begin building the bulk effective field theory perturbatively in 1/N about

the vacuum state directly from CFT [1–4]. However, to derive other universal features of

AdS quantum gravity, such as thermal free energy, transport coefficients, and entanglement

entropy, new methods are needed to reorganize CFT calculations at high energy density.

Holography suggests that at least within this class of theories, these methods should exist

and should dramatically simplify the structure of excited states in much the same way that

the Wilsonian renormalization group simplifies the ground state of a local Hamiltonian

(e.g., [5]).

In two-dimensional CFT, infinite-dimensional conformal symmetry simplifies the prob-

lem of studying these non-trivial classical states carrying O(N) energy. It has been used,

for example, to set quantitative bounds on the required sparsity of the spectrum to ensure
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that the bulk dual has black holes with semiclassical thermodynamics [6], and to derive

from CFT the entanglement entropy in vacuum [7–12].

Entanglement entropy is also useful for studying quantum field theories in excited

states, in both static and dynamical situations. The geometric entanglement entropy in

the CFT is related to the bulk through the holographic entanglement entropy proposal [13–

15]. On the gravity side, this is well established in non-dynamical situations [15–17], and

evidence is accumulating in its favor in dynamical spacetimes, e.g. [18–20]. In this paper

we provide further support by matching results on the two sides of the duality in a class

of excited states, and in the process develop new tools to analyze universal behavior in

large-N 2d CFTs.

The class of CFT states we consider are excited above the vacuum by the insertion of a

primary operator at a point. The general problem of Renyi and von Neumann entanglement

entropies of an interval in such states was considered in [21–23], which found the leading,

universal corrections to the vacuum values in an expansion in the interval length. These

corrections conform to a so-called first law of entanglement thermodynamics [24, 25]. A

holographic explanation of these terms can be found in [26]. Excited states in symmetric

orbifolds, and the D1D5 CFT in particular, were studied in [27, 28], and further progress

was made for rational CFTs in [29–32].

In a theory with large N , and therefore large central charge c, we can distinguish

between light operators with dimension ∆� c and heavy operators with ∆ = O(c). States

produced by light primaries in large-c CFTs were considered in [33]. Here we will consider

heavy states, which are dual to geometries with non-trivial backreaction of the metric.

Since the holographic dual is three-dimensional and there is no propagating graviton, the

backreaction is limited to local defects and global properties (deficit angles and black holes).

Given certain assumptions about the operator-product expansion in large-c CFTs, we find

precise agreement with holographic computations of the entanglement entropy for a single

interval in an excited state. Our analysis is in the same spirit as the study of entanglement

entropy in [9] and relies on large-c Virasoro conformal blocks obtained in [34].

We study Renyi entropy in these states using the replica trick, described in section 2.1.

This allows us to compute the Renyi entropy of a single interval in terms of a four-point

function of two heavy operators, which excite the state, and two twist operators. Using the

OPE, the four-point function can be expanded in conformal blocks. We restrict to states

with no macrosopic O(c) expectation values for light operators, and assume that in CFTs

with a large central charge and sparse spectrum the expansion is well approximated by the

identity block. This was proved for a different type of twist correlator (corresponding to the

torus partition function) in sparse CFTs in [6], but here it is just a conjecture. In general,

the identity contribution is not known in its full analytic form, though it can be computed

in a small-interval expansion. However, in the limit relevant for the entanglement entropy,

the twist operators become light and the corresponding ‘light-light-heavy-heavy’ vacuum

block has been computed in the large-c limit in [34]. The entanglement entropy then takes

a simple closed form, given in section 2.2.

The approximation of the full four-point function by the identity contribution is not

single valued on the complex plane; different ways of analytically continuing it define
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multiple OPE channels. We show in section 2.3 that the semiclassical conformal block is

directly related to the length of geodesics in a Euclidean asymptotically AdS3 geometry

with a defect. Different channels compute the length of geodesics with different winding

around the defect. The correlator, and thus the entanglement entropy, is given by the

identity block in the dominant channel, which corresponds to the geodesic of minimal

length.

This CFT result agrees precisely with holographic gravity calculations. Examples of

the heavy states that we consider include high-energy eigenstates of the Hamiltonian dual

to conical defects and microstates of BTZ black holes, discussed in section 3. We find

that the single interval entanglement entropy in these high-energy pure states on a circle

behaves like that of a finite temperature CFT on a line.

An interesting dynamical setup related by conformal mapping and analytic continu-

ation is that of a local quench, dual to a highly boosted black hole or conical defect. In

section 4, we show that the evolution of the single interval entanglement entropy precisely

matches the holographic computation of [35]. This is similar to what was found in [36],

where the authors proposed an exact holographic dual to a global quench of a 2d CFT,

and verified that the evolution of the single interval entanglement entropy was correctly

reproduced. Our findings provide new support to the holographic covariant proposal for

computing the entanglement entropy. We conclude in section 4.2 by commenting on the re-

lation of these local quenches to the well-known ones studied in [37, 38], and holographically

in [35, 39, 40].

2 Twist correlators in sparse CFTs

2.1 Review of the replica trick

The entanglement entropy of a geometric region A is the von Neumann entropy of the

reduced density matrix ρA = trAc ρ,

SA = − tr ρA log ρA . (2.1)

Often it is easier to compute the associated Renyi entropies,

S
(n)
A =

1

1− n
log tr ρnA (2.2)

for integers n ≥ 2, and analytically continue n→ 1 to recover the entanglement entropy. In

particular, if the state associated to the density matrix ρ can be prepared by a Euclidean

path integral, then the Renyi entropy can be computed by a path integral for multiple

copies of the system glued together along region A (see [41] for a review). States that

meet this criteria include the vacuum, prepared by a path integral on a half-plane or disk;

thermal states, prepared by a path integral on a cylinder or torus; and states obtained

from these by acting with operator insertions.

A general pure state in CFT can be created by inserting a local operator at the origin,

by the state-operator correspondence [42]. The focus of this paper is on primary states
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Figure 1. Configuration of 2n ψ’s on a multisheeted surface, branched across the red cut which

extends along an arc on the unit circle from 1 to z.

and their conformal descendants. Primary states are pure states produced by inserting a

local primary operator,

|ψ〉 = ψ(0)|0〉 , 〈ψ| = lim
z,z̄→∞

z̄2hψz2h̄ψ〈0|ψ(z, z̄) , (2.3)

where ψ has dimensions (L0, L0) = (hψ, h̄ψ). For now, region A is taken to be a segment of

the unit circle in the complex plane, extending from 1 to z. The replica partition function

in the state ρ(ψ) ≡ |ψ〉〈ψ| is computed by a path integral on n copies of the system glued

together along A,

Gn(z, z̄) ≡ tr ρ(ψ)nA = 〈ψ(01)ψ(∞1)ψ(02)ψ(∞2) · · ·ψ(0n)ψ(∞n)〉Σn , (2.4)

where Σn is an n-sheeted manifold branched along A as depicted in figure 1, and the

subscripts label the sheets on which operators are inserted. Instead of viewing this as

a correlation function on a multisheeted surface we can instead view it as a correlator

including twist operators,

Gn(z, z̄) = 〈Ψ|σn(z, z̄)σ̃n(1)|Ψ〉
= 〈Ψ(∞)σn(z, z̄)σ̃n(1)Ψ(0)〉 . (2.5)

We have ignored a UV-sensitive constant, coming from regulating the twist operators,

which will be restored below. This is a 4-point function of local operators, not in the

original CFT but in the cyclic orbifold theory CFTn/Zn. The twist operators σ and σ̃

(which have opposite orientation) have dimension

Hn = Hn =
c

24

(
n− 1

n

)
, (2.6)

and |Ψ〉 is the state in the orbifold theory obtained by inserting ψ in all n copies,

Ψ = ψ1ψ2 . . . ψn , (2.7)

where the subscripts indicate different copies of the CFT.

2.2 Conformal block expansion

Using the OPE, any 4-point function including (2.5) can be expanded in conformal blocks.

Schematically,

〈ψnσnσ̃nψn〉 =
∑

primaries p

ap

σ

σ̃

Op

ψn

ψn

. (2.8)

– 4 –



J
H
E
P
0
2
(
2
0
1
5
)
1
7
1

In more detail,

Gn(z, z̄) =
∑
p

apF(cn, hp, hi, 1− z)F(cn, h̄p, h̄i, 1− z̄) , (2.9)

where F is the Virasoro conformal block, a function fixed entirely by the conformal algebra.

The sum converges for |z − 1| < 1. In this expression

cn ≡ cn (2.10)

is the central charge of the orbifold CFTn/Zn, the sum runs over Virasoro primary operators

Op of dimension (hp, h̄p) in the orbifold theory, ap is a constant related to OPE coefficients,

and hi = h1,2,3,4 denotes the external weights. In our case we have two external operators

that create the state and two twist operators,

h1 = h4 = hΨ = nhψ, h2 = h3 = Hn . (2.11)

We have expanded in the t channel z → 1, which corresponds to bringing together σn and

σ̃n.1 The conformal block F is not known in closed form, but it is fixed by the Virasoro

algebra and can be expanded in a power series,

F(c, hp, hi, z) = zhp−h1−h2

(
1 +

(hp + h2 − h1)(hp + h3 − h4)

2hp
z + · · ·

)
. (2.12)

We now specialize to the class of CFTs relevant for holography. These are CFTs with

large central charge c and a sparse spectrum of low-dimension operators. It is known that

in the limit c→∞ with hp/c and hi/c held fixed, the conformal block exponentiates [43]:

F(c, hp, hi, z) ≈ exp

[
− c

6
f

(
hp
c
,
hi
c
, z

)]
. (2.13)

Since (2.9) becomes a sum of exponentials, we expect that under certain circumstances it

is dominated by the largest term. For z → 1, the largest term must be the contribution of

the identity representation Op = 1, for which ap = 1, so:

Gn(z, z̄) ≈ exp
[
−cn

6
f0(hi/cn, 1− z)−

cn
6
f0(h̄i/cn, 1− z̄)

]
(2.14)

where2

f0(hi/c, x) ≡ f(0, hi/c, x) . (2.15)

This is the contribution from the identity and all of its descendants, which consist of all

operators constructed from the stress tensor and its derivatives. We will not attempt to

define precisely in what class of theories or in what range of z the approximation (2.14) is

1This choice of channel is reflected in the fact that the argument of the conformal block F is 1− z. Our

convention is that F(. . . , z) is the ordinary s-channel block.
2It was shown in [9] that the large-c limit commutes with the limit hp/c→ 0, so this expression is well

defined.
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valid. We expect it to hold for a finite range of z in theories with a large central charge

and a sparse spectrum of light (∆� c) operators.3

If there are light operators besides the stress tensor, then we will also restrict to states

|Ψ〉 which do not have macroscopic, O(c), expectation values for these light operators.

Otherwise, we expect large OPE coefficients ap in (2.9). For Op constructed from a product

of n light operators with large expectation values, ap is expected to have a contribution

proportional to 〈Ψ|Op|Ψ〉 ∼ cn, and may therefore contribute to leading order in the 1/c

expansion. In fact, similar contributions have been found explicitly in supersymmetric

CFTs [28].4

These are all necessary conditions, but we have not proved they are sufficient; further

restrictions on the growth of OPE coefficients may also be required. For the rest of the

paper we will simply assume that (2.14) is a good approximation, up to corrections non-

perturbative in the 1/c expansion.

The universal contribution (2.14) is then a prediction for the replica partition function

with primary operator insertions in sparse CFTs. It can be easily expanded around z ∼ 1 to

any desired order using standard techniques to compute conformal blocks (see appendix A

of [9] for a review):

logGn(z, z̄) = −2cnδn log(1− z) (2.16)

−cn
6

[
a2(1− z)2 + a3(1− z)3 + a4(1− z)4 +O(1− z)5

]
+ (z → z̄ , δψ → δ̄ψ) ,

where

a2 = a3 = −12δψδn , a4 =
6

5
δψδn (−9− 2(δψ + δn) + 44δψδn) , (2.17)

and

δψ =
hΨ

cn
=
hψ
c
, δ̄ψ =

h̄ψ
c
, δn =

1

24

(
1− 1

n2

)
. (2.18)

For the entanglement entropy, n → 1, the answer can be obtained in closed form

without resorting to a series expansion. In this limit, the dimension of the twist operators

goes to zero, so we need the identity block where two external operators are heavy and two

are light. This was computed in the large-c limit in [34] using the monodromy method for

the Virasoro blocks [43]. This method, reviewed in [9, 34], translates the computation of

f(hp/c, hi/c, z) into the problem of fixing the monodromy for a second order differential

equation related to the conformal Ward identity. In [34], this was achieved to linear order

in a perturbative expansion in h2/c = h3/c for a light state running in the intermediate

channel.

Denoting this ‘light-light-heavy-heavy’ identity block by

g(hψ, ε; z) ≡ f0(hi/c, z), with h1 = h4 = hψ, h2 = h3 = ε
c

24
(2.19)

3The definition of ‘sparse’ suitable to reproduce the thermodynamics of 3d gravity is that the density of

states is bounded by ρ(∆) . e2π∆ [6]; this is likely to be at least a necessary criterion here as well.
4We thank the authors of [28] for bringing this to our attention.
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the result to leading order in ε is [34]

g(hψ, ε; 1− z) =
ε

2
log

(
1− zαψ
αψ

)
+
ε

4
(1− αψ) log z (2.20)

where

αψ ≡
√

1− 24hψ/c . (2.21)

Twist operators have ε ∼ 2(n− 1) as n→ 1, so

logGn(z, z̄) =
c

6
(1− n) log

[
z

1
2

(1−αψ)z̄
1
2

(1−ᾱψ)(1− zαψ)(1− z̄ᾱψ)

αψᾱψ

]
+O((n− 1)2) . (2.22)

This is the main technical formula that will be used to compute various entanglement

entropies throughout the paper.

2.3 Conformal block as geodesic length

The light-light-heavy-heavy conformal block is directly related to the length of a geodesic

on a 3d geometry with a defect. The other comparisons between correlators and geodesic

lengths in this paper all follow from this one by acting with conformal transformations

and the appropriate analytic continuations. Consider the asymptotically Euclidean AdS3

geometry

ds2 =
L

2
dz2 +

L

2
dz̄2 +

(
1

y2
+
y2

4
LL

)
dzdz̄ +

dy2

y2
, (2.23)

with

L = L(z) , L = L(z̄) , (2.24)

where z and z̄ are complex coordinates on the boundary plane, y is a bulk coordinate and we

have set the radius of AdS to unity. This is a solution of the vacuum Einstein equations for

any L, L (away from possible singularities), and in such a state the holographic dictionary

relates L with the CFT stress tensor T ≡ 〈Tzz(z)〉 as

T = − c

12
L . (2.25)

Let us choose

T =
hψ
z2

, T =
h̄ψ
z̄2

. (2.26)

This is the semiclassical stress tensor in the presence of heavy operator insertions at z =

0,∞, both with weights (hψ, h̄ψ). The same stress tensor was used in the CFT derivation of

the light-light-heavy-heavy Virasoro block [34]. Clearly the geometry is singular at z = 0.

The length of a geodesic γ in this geometry, anchored near the boundary at

(y, z) = (εUV, 1) , (y, z) = (εUV, z0) (2.27)

is straightforward to calculate. One can, for example, take the expression for geodesics in

pure AdS3 and then pull it back to the geometry (2.23) (see appendix A). The answer is

related to the semiclassical conformal block by

Lγ =
2

ε

(
g(hψ, ε; 1− z0) + g(h̄ψ, ε; 1− z̄0)

)
− 2 log εUV , (2.28)

where g was given in (2.20).
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.
.

Figure 2. Left: two ways to analytically continue the approximate expression for the twist corre-

lator Gn(z, z̄) around the singularity in the complex z-plane. Right: two geodesics in the singular

geometry (2.23) with the same endpoints. The choice of analytic continuation in evaluating the

block translates into a choice of winding around the singularity at z = 0.

There are different geodesics with the same endpoints but that differ in their winding

around the singularity at z = 0. All of their lengths are captured by (2.28). The choice of

branch cut for z
αψ
0 in this formula selects a winding for the geodesic around the singularity.

This has a direct counterpart in our CFT computation. When we approximate the

full Euclidean correlator Gn(z, z̄) by the identity block in (2.14) we must choose a way of

analytically continuing around the singularity at z = 0. This would not be necessary if we

knew the exact correlator, which is single valued on the complex plane, but it is required

once we replace the full correlator by its identity-block approximation since F(z) is not

single valued.5 Taking the analytic continuation around z = 0 along the solid curve or

along the dashed curve in figure 2a defines alternative conformal block expansions.

In approximating the twist correlator Gn(z, z̄) by the identity block we therefore need

to consider all these possible channels. Since we are assuming that the correlator is dom-

inated by the identity block in sparse CFTs, the full answer is the identity block in the

dominant channel, which is equal to the minimal geodesic length. Non-minimal geodesics

(which may play an important role in reconstructing bulk geometry from entanglement [46–

51]) correspond to the identity block in subdominant OPE channels.

In [34] the semiclassical block g was also interpreted in terms of the motion of par-

ticles on a defect geometry. It was shown that g encodes information about the energy

shift of bound states on the defect background, and about the spectrum of quasinormal

modes on BTZ. Our interpretation of the semiclassical block as a geodesic length in the

geometry (2.23) is of course closely related. Indeed, large mass quasinormal modes can be

computed by geodesics in the WKB approximation (see for example [52]). In a general

large-c CFT, the match to bulk results discussed in [34] holds only at very high energies,

but in sparse CFTs where our approximations apply for all z, many of the results of [34]

should hold at all frequencies.

5The fact that individual conformal blocks are not analytic is well known in the context of braiding in

rational CFT [44, 45].
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3 Black holes and conical defects

3.1 Entanglement entropy on a circle

As the first application of (2.22) we consider a CFT on a circle w ∼ w+ 2π and let region

A be a segment of length `. This is related to the coordinates of section 2 by mapping

the cylinder to the plane, z = eiw. The twist operators are located at w = 0 and w = `.

Therefore we take

z = ei`, z̄ = e−i` (3.1)

in (2.22) to find the entanglement entropy of region A. For a state with zero spin, hψ = h̄ψ,

the result is6

SA =
c

3
log

[
βψ
πεUV

sinh

(
`π

βψ

)]
(3.2)

where

βψ ≡
2π√

24hψ/c− 1
. (3.3)

We have inserted a UV cutoff, εUV, to regulate the twist operators [41].

The interpretation of this formula depends on whether βψ is real or imaginary. We first

discuss the case of real βψ, i.e. hψ >
c

24 . The entanglement entropy in eq. (3.2) is the well-

known result for a CFT on a line at inverse temperature βψ [54, 55]. In other words, the

system has effectively thermalized at the level of the single-interval entanglement entropy.

Furthermore, the temperature relation in eq. (3.3) is precisely the transformation from

the microcanonical to the canonical ensemble in sparse CFTs [6]. The fact that we have

reproduced this formula here is nontrivial, for two reasons: first, our CFT is on a circle

rather than a line, and second, our CFT is in a pure state ρ = |ψ〉〈ψ| rather than a thermal

state.

The entanglement entropy in eq. (3.2) agrees precisely with the holographic entangle-

ment entropy formula applied to a BTZ black hole at temperature βψ [13, 56]. The map

in eq. (3.3) is the usual relation between temperature and energy for such a black hole.

Our CFT calculation corresponds to a particular microstate of BTZ. This raises a

potential puzzle, because in a pure state the entanglement entropy of region A is equal

to the entanglement entropy of its complement Ac, whereas our formula as written is not

invariant under `→ 2π − `. The resolution of this puzzle comes from considering different

channels for the OPE approximation. As explained in section 2.3, we should consider the

correlator as given by the identity block in the dominant channel. In the formula (3.2) we

implicitly used the analytic continuation along the dashed curve in figure 2a, but we could

have taken z along the solid curve instead, which amounts to replacing `→ 2π− ` in (3.2).

Multiple windings are also possible, but always subdominant. Therefore we should replace

` → min(`, 2π − `) in (3.2) for the full answer. At ` = π, the two expansions exchange

dominance and SA has a discontinuous first derivative.

In the BTZ black hole, these two OPE expansions correspond to two different geodesics,

shown in figure 3. There is also a third geodesic on BTZ that is important in the holographic

6Some of these results have been obtained independently by [53].

– 9 –



J
H
E
P
0
2
(
2
0
1
5
)
1
7
1

Figure 3. Two geodesics in the BTZ geometry (at fixed time) with the same endpoints. The choice

of channel in the CFT corresponds to a choice of winding around the black hole horizon.

entanglement entropy calculation at finite temperature but did not make any appearance

in our CFT calculation: the disconnected geodesic consisting of the solid curve in figure 3

plus another curve wrapping the horizon. This disconnected geodesic gives the correct

holographic entanglement entropy for a region of length π < ` < 2π in a thermal state.

The horizon segment is required to satisfy the homology condition which is part of the

holographic prescription, and accounts for the fact that SA 6= SAc in a mixed state [16].

Since we are working in a pure microstate, we do not expect such a contribution, and

indeed we find that our CFT calculation agrees with the holographic calculation without

imposing the homology condition.7

Finally we turn briefly to the case hψ <
c

24 , where βψ is imaginary. The dual geometry

is a conical defect in the center of global AdS. The formula (3.2) agrees once again with

the holographic entanglement entropy.

These matches between entanglement entropy and geodesic lengths follow from the

general relationship between conformal blocks and geodesics discussed in section 2.3. Al-

though the defect geometry computes the correct geodesic lengths, we do not mean to imply

that the defect geometry is precisely dual to a CFT microstate. The geometry is singular,

and therefore sensitive to UV effects in quantum gravity, and furthermore different CFT

microstates with the same values of (hψ, h̄ψ) map to the same bulk defect geometry. There-

fore the more accurate statement is that the defect geometry captures certain features of

the microstate, including the entanglement entropy. The true bulk microstate need not be

geometric at all, and to describe it in detail would presumably require string theory.

Certain microstates in supersymmetric field theories dual to string theory were consid-

ered in [28], where the authors found non-universal (state-dependent) contributions to the

entanglement entropy. These are microstates constructed from a superposition of Ramond

groundstates designed to produce an atypically large expectation value for light supergrav-

7Another difference between our pure-state calculation and the finite-temperature calculation is that we

do not (and should not) see the Hawking-Page transition. At finite temperature, holographic entanglement

entropy should be computed in the geometry that dominates the canonical ensemble. At high temperature

βψ < 2π this is BTZ, but below the Hawking-Page transition at βψ = 2π, i.e. hψ = c
12

the dominant

geometry is thermal AdS [57]. In our pure-state calculation we have fixed the energy, not the temperature,

so the result agrees with the black hole geometry even at energies below the transition.
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ity fields [58]. Generally we do not expect our results to apply to such states for the reasons

discussed below (2.15) — our restriction on the growth of OPE coefficients ensures that

only the gravity sector of the bulk theory is important.

3.2 Renyi entropies

The Renyi entropy computed from the series expansion (2.16) with z = ei`, z̄ = e−i`, is

S
(n)
A =

1

1− n
logGn(z, z̄)

=
c

6

(1 + n)

n

[
log `− `2

24
− `4

2880
+ δψ`

2 +
δψ
60

(1− 12δψ)`4
]

(3.4)

− c
6

(1 + n)(n2 − 1)

n3

δψ − 22δ2
ψ

120
`4 +O(`5) ,

where δψ = hψ/c.

This is a CFT prediction for the Einstein action evaluated on the bulk replica man-

ifold obtained by solving the Einstein equations with boundary conditions as in figure 1.

Although we have not done so, it is likely that the methods of [8] could be used to con-

struct this geometry explicitly. If so, then the Einstein action would be determined by the

same monodromy prescription used to compute the Virasoro block in [34], and therefore

would manifestly agree with (3.4). This would be a very direct relationship between the

CFT calculation and the bulk geometry, analogous to the relationship for two intervals in

vacuum demonstrated in [8, 9].

Our result (3.4) is the Renyi entropy in a pure state on a circle in a small ` expan-

sion at fixed δψ. Renyi entropies on a circle at finite temperature have been computed

holographically in [10] and in CFT in [59], using a high-temperature expansion. It would

be interesting to repeat our microstate calculation in the corresponding high-energy limit,

which is defined by δψ →∞ with `δψ held fixed, in order to compare to the thermal result.

The full Renyi entropy in a thermal state cannot equal the Renyi entropy in a pure state,

since the former is not invariant under ` → 2π − ` [10]. However, this does not rule out

the possibility that the O(c) contribution can agree.

3.3 Angular potential

The discussion of the previous sections immediately generalizes to excited states with hψ 6=
h̄ψ. Taking z = ei`, z̄ = e−i` in (2.22) and generic (hψ, h̄ψ) we find the entanglement entropy

SA =
c

6
log

[
βψβ̄ψ
π2ε2UV

sinh

(
min(`, 2π − `)π

βψ

)
sinh

(
min(`, 2π − `)π

β̄ψ

)]
, (3.5)

where now

βψ ≡
2π√

24hψ/c− 1
, β̄ψ ≡

2π√
24hψ/c− 1

. (3.6)

For real inverse temperatures, the entanglement entropy (3.5) matches the entangle-

ment entropy for a CFT on a line at inverse temperature β and angular potential Ω [14].
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The relation to the effective temperatures for left and right moving modes is

βψ = β(1 + Ω) , β̄ψ = β(1− Ω) . (3.7)

The result (3.5) agrees with the holographic computation of the entanglement entropy of

a rotating BTZ black hole [14] (without the homology condition).

4 Local operator quenches

So far we have restricted to static configurations and computed geodesic lengths in Eu-

clidean AdS3. We now turn to the time-dependent entanglement after a local quantum

quench, for which the holographic calculation involves geodesics in Lorentzian signature.

A quench is a sudden change in the system that produces a time-dependent excited

state. To model this process, we consider a state on the real line created by the insertion of

a local operator at x = 0, t = iδ. The offset into the imaginary time direction is necessary

to produce a normalizable state. Physically this is quite different from the primary states

on a circle considered above, though the calculation will turn out to be related by conformal

symmetry. For the local quench, the operator is inserted close to the line on which the

state is defined, so it creates a localized excitation. This excitation then spreads out over

the system, so we expect corresponding behavior for the entanglement entropy.

This model for a quench was recently analyzed in [29–31] in the context of rational

CFTs, and for large-c CFTs in [33]. The results in [33] apply to quenches produced by

light operators, which do not backreact in the bulk. We consider heavy operators, with

dimension O(c).

Note that a different type of quench was considered by Calabrese and Cardy in [37, 41].

The relation between the two is discussed in more detail below.

4.1 Identity block approximation

Following [29–31, 33], the real-time density matrix after a local operator quench is

ρ(t) = Ne−iHtψ(w4, w̄4)|0〉〈0|ψ(w1, w̄1)eiHt (4.1)

where the normalization factor N is fixed by tr ρ(t) = 1, and

w4 = iδ , w̄4 = −iδ, w1 = −iδ, w̄1 = iδ . (4.2)

We assume hψ = h̄ψ. The quench is local in the limit δ → 0 but we will take δ finite for

now. We choose region A to be the interval [`1, `2] at time t, with |`1| < |`2|. See figure 4

for the case `1 > 0. The Renyi entropy can be computed from the two-point correlator of

twist operators in this excited state,

An(wi, w̄i) ≡ 〈Ψ(w1, w̄1)σn(w2, w̄2)σ̃n(w3, w̄3)Ψ(w4, w̄4)〉 . (4.3)

This is a correlation function in the cyclic orbifold CFTn/Zn, with the twist operators

inserted at the interval endpoints,

w2 = `1 + t , w̄2 = `1 − t , w3 = `2 + t , w̄3 = `2 − t . (4.4)
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Figure 4. Setup for the local operator quench. The initial state has a localized excitation near

x = 0, which propagates outward and eventually increases the entanglement entropy of region A.

From (4.3), we can compute8

Tr ρ(t)n =
An(wi, w̄i)

(〈ψ(w1, w̄1)ψ(w4, w̄4)〉)n
= |w14|4nhψAn(wi, w̄i) . (4.5)

Applying a global conformal transformation

z(w) =
(w1 − w)w34

(w − w4)w13
, (4.6)

this becomes

Tr ρ(t)n = |w23|−4nHn |1− z|4nHnGn(z, z̄) (4.7)

where Gn is the 4-point function analyzed in section 2.2, as a function of the cross-ratio

z ≡ w12w34

w13w24
=

(`1 + t+ iδ)(`2 + t− iδ)
(`1 + t− iδ)(`2 + t+ iδ)

. (4.8)

For small δ,

z = 1 +
2i(`2 − `1)

(`1 + t)(`2 + t)
δ +O(δ2) , z̄ = 1− 2i(`2 − `1)

(`1 − t)(`2 − t)
δ +O(δ2) . (4.9)

As discussed in section 2.2, in CFTs with a large central charge and a sparse spectrum of

low-dimension operators, we expect that Gn(z, z̄) can be approximated by the contribution

from the identity and its Virasoro descendants, and that corrections are exponentially

suppressed in the 1/c expansion. Thus the Renyi entropy is

S
(n)
A =

1

1− n
log

[
|w23|−4nHn |1− z|4nHn

∣∣∣exp
(
−cn

6
f0(hi/cn, 1− z)

)∣∣∣2] . (4.10)

In principle this is the final answer for the Renyi entropy. At early times, it can be

evaluated as a series expansion around z ∼ 1 using the explicit Virasoro block (2.12). We

will assume (4.10) holds for all times in a sparse CFT, but for |t| > |`1| the usual series

8wij ≡ wi − wj and |w|2 ≡ ww̄.
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expansion is invalid (even though z, z̄ ∼ 1) due to branch cuts in the Lorentzian correlator

as discussed below.

As n→ 1, the twist operators effectively become light, and plugging in (2.22) we find

the entanglement entropy

SA =
c

6
log

[
(`1 − `2)2 (zz̄)

1
2

(1−αψ)(1− zαψ)(1− z̄αψ)

α2
ψ(1− z)(1− z̄)

]
. (4.11)

To fully define this expression we must choose branch cuts, i.e. we have the freedom to

take z → e2πinz and z̄ → e2πimz̄. The correct choice depends on whether ψ is outside or

inside region A, so we consider these two options in turn.

4.1.1 ψ outside region A (0 < `1 < `2)

At early times 0 < t < `1, the cross ratio approaches 1. In order for the correlation function

to have the usual Euclidean singularity at z ∼ 1, z̄ ∼ 1 we must choose the standard branch

cut for the powers in (4.11). For small δ the resulting entanglement entropy is

SA = Svac
A ≡ c

3
log

(
`2 − `1
εUV

)
(0 < t < `1) . (4.12)

The constant depending on the UV cutoff εUV has been fixed to produce the usual vacuum

entanglement at t = 0.

In the window `1 < t < `2, the cross-ratios are again near 1. However, from (4.9), we

see that at t = `1, z̄ crosses through infinity and its imaginary part changes sign. Thus z̄

moves to another sheet, so we should take z̄ → e2πiz̄ and then use the standard branch cut

in (4.11). This gives

SA =
c

6
log

[
(`2 − `1)(t− `1)(`2 − t)

ε2UVδ

sin(παψ)

αψ

]
(0 < `1 < t < `2) . (4.13)

At late times, t > `2, z̄ crosses back through the branch cut and the answer is once

again (4.12).

The results (4.12) and (4.13) agree with the holographic entanglement entropy on a

conical defect geometry computed in [35] (see also [40] for explicit expressions in the δ → 0

limit). While here we have explicitly performed computations at leading order in a small

δ expansion, the agreement with the holographic results of [35] also holds at finite δ. Thus

we have derived these results from CFT under our assumption that the identity block

dominates the correlator in sparse CFTs.

The discussion of the correct branch cut to reach (4.13) was brief, so we will now

explain how to do this more carefully with the same result. In Euclidean signature, the

4-point function of local operators does not depend on the operator ordering. This is

reflected in the fact that it is a single-valued function of the cross-ratio z. In Lorentzian

signature, there are branch points when two operators are separated by a null ray, which

in our case occurs for |t| = `1, `2 (as δ → 0). The choice of analytic continuation around
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Figure 5. Left: analytic continuation in the complex time plane. Continuing along the solid

curve gives the correlator with the first two operators in time ordering, and the second gives these

operators in anti-time-ordering. Right: lorentzian configuration of operators where we cannot use

the σσ̃ OPE.

these branch points translates into a choice of operator ordering. For example, consider a

Euclidean 2pt function,

DE(z) = 〈O(z)O(0)〉 = 〈O(0)O(z)〉 . (4.14)

This is an analytic function of z, but setting z = σ+ iτ , it has a branch cut in the complex

time plane starting at τ = ±iσ; which side of the cut we take in the analytic continuation

selects the time-ordered or anti-time-ordered Lorentzian correlator. Setting t→ t− iε is a

simple way to select the analytic continuation appropriate for a time-ordered correlator.

In a four-point function, there are multiple branch points corresponding to the various

ways of ordering the four operators. For the Renyi entropy, since we are interested in the

expectation value of σσ̃ in the state |Ψ〉 we must calculate the correlator ordered as

〈Ψσσ̃Ψ〉 . (4.15)

At early times, all points are spacelike separated. In this case, (4.15) is time ordered, so

we can compute it by t → t − iε and it agrees with the branch cut used to derive (4.12).

Now suppose `1 < t < `2. Then the time-ordered correlator corresponds to analytically

continuing along the solid curve in figure 5a. This is related to the expectation value we

need by

〈TΨσσ̃Ψ〉 = 〈Ψσσ̃Ψ〉+ 〈[σ,Ψ]σ̃Ψ〉 . (4.16)

The extra commutator indicates that we should analytically continue along a contour that

circles the branch point produced by Ψ. This contour is shown as a dashed curve in

figure 5a. In terms of the cross-ratio, we reach this contour by taking z̄ → e2πiz̄ with z

held fixed. This was exactly the prescription used to derive (4.13). (Note that the branch

cuts discussed here are different from the branch cuts discussed in section 2.3, see the

discussion in section 4.1.2 below.)

A related point is that in Lorentzian signature, it is incorrect to apply the OPE to

σ(x1)σ̃(x2) ‘across’ the light cone of a third operator, as in figure 5b. For `1 < t < `2, this
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means we cannot expand directly in the σ → σ̃ OPE channel, even though z, z̄ → 1. What

we have done instead is to expand in the early-time, Euclidean OPE channel z, z̄ → 1, then

analytically continue to compute the Lorentzian correlator. Indeed, while the correlator

has the usual singularity (1 − z̄)−2nHn for z̄ → 1 at early times, it has different behavior

as z̄ → 1 on the second sheet as we can see from (4.11).

In summary, the rise in the entanglement entropy for `1 < t < `2 after a local quench

is determined by the Virasoro identity block if we first take z̄ → e2πiz̄ and then expand

near z̄ ∼ 1. This is a braiding operation where we move the operators at 0 and z̄ around

each other.9 In the limit n → 1 relevant for the entanglement entropy we extracted the

behavior after braiding from the explicit expression for the block (2.20). More generally,

we do not know a practical way to compute the n ≥ 2 Renyi entropies at intermediate

times, because the needed configuration (z̄ → 1 on the second sheet) is very far from the

point around which the conformal block is usually expanded (z̄ → 1 on the first sheet).10

4.1.2 ψ inside region A (`1 < 0 < `2)

Only one of the two geodesics drawn in figure 2 played a role in the discussion above, for

the quench occurring outside of region A. In CFT language, this is the statement that we

only considered a single OPE channel. A new ingredient for ψ inside region A is that there

is a second, competing OPE channel which dominates at early times. This is completely

analogous to what we found in the static examples of section 2.3 and 3.

It is simplest to start at late times and work backwards. For t > `2, both z and z̄ are

on the principal sheet, so the entanglement entropy is (4.12). For |`1| < t < `2, z crosses

the branch cut and the answer is once again (4.13).

For t < |`1|, both z and z̄ are on the second sheet. This would naively lead to the

entanglement entropy

SA =
c

6
log

[
(`22 − t2)(`21 − t2)

ε2UVδ
2

sin2(παψ)

α2
ψ

]
, (4.17)

but this answer cannot be entirely correct since it does not reproduce the expected vacuum

result for t ∼ 0. The issue is that the OPE channel in which we are expanding does not

dominate at early times. When we approximate the full Euclidean correlator Gn(z, z̄) by

the identity block in (4.10) we must choose a way of analytically continuing around the

singularity at z = 0, see figure 2 and the discussion in section 2.3. This is a choice of OPE

channel.

Note that this choice of analytic continuation is an issue completely separate from the

choices made in the analytic continuation to Lorentzian signature discussed in section 4.1.1.

9In [30] the rise in entanglement after a local operator quench in rational CFT was shown to be fixed

by the quantum dimension of the operator. Quantum dimensions are also closely related to braiding of

conformal blocks, but braiding appears to be qualitatively different in rational vs. non-rational CFTs, as

we can see by comparing the entanglement entropies. For a different but probably related appearance of

the quantum dimension in 3d gravity, see [60].
10As written, (2.12) converges only in the unit circle so it cannot be used to compute braiding. However

Zamolodchikov’s q-expansion [43] (reviewed in [9]) can be used to evaluate the block on the second sheet,

so this could perhaps be used to calculate the Renyi entropy numerically by going to high enough order.
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There, the correct analytic continuation was dictated by the operator ordering of the

Lorentzian correlator. In the present case we have two different approximations to the

same function Gn(z, z̄) coming from two different OPE channels, already in Euclidean

signature, and the correct choice is whichever is larger.

To compute the entanglement entropy in the other channel we take z → e−2πiz, z̄ →
e2πiz̄, and find

SA = Svac
A (4.18)

for t < |`1|,

SA =
c

6
log

[
(`2 − `1)(`2 + t)(`1 + t)

ε2UVδ

sin(παψ)

αψ

]
(4.19)

for |`1| < t < `2, and

SA =
c

6
log

[
(t2 − `22)(`21 − t2)

ε2UVδ
2

sin2(παψ)

α2
ψ

]
(4.20)

for t > `2.

Recall that our conjecture is that in a sparse CFT, the correlator is computed by the

identity block in the dominant channel. Choosing the dominant channel at each time, the

entanglement entropy is therefore

SA =


c
3 log

(
`2−`1
εUV

)
for t < |`1|, t > `2

c
6 log

[
(`2−`1)(`2+t)(`1+t)

ε2UVδ

sin(παψ)
αψ

]
for |`1| < t <

√
−`1`2

c
6 log

[
(`2−`1)(t−`1)(`2−t)

ε2UVδ

sin(παψ)
αψ

]
for

√
−`1`2 < t < `2

. (4.21)

This again exactly matches the holographic result of [35] (see also expressions (108)-(111)

in [40]), with the two OPE channels corresponding to bulk geodesics with different winding

around the defect.

4.2 Joining quench

In [37, 41] (see also [61]) Calabrese and Cardy studied a different type of local quench in

which two 1+1-dimensional BCFTs are suddenly joined at their boundaries, and subse-

quently evolve as a single connected CFT. We refer to this specific process as a “joining

quench”.

The joining quench is not a local operator quench of the type discussed above, but it

shares certain features.11 The stress tensor after a joining quench was computed in [40]

with the result

T (w) = − c
8

δ2

(w2 + δ2)2
. (4.22)

11Note that a local operator quench produces a localized excitation, but is not causal, meaning that

information about the quench is not confined inside the lightcone t > |x|. Consider for example the one-

point function 〈ψ|ψ|ψ〉, which differs from the vacuum even at t = 0. Therefore the local operator quench

cannot be produced by a local physical operation at x = t = 0. This differs from the joining quench, which

can be viewed as a sudden local change in the Hamiltonian, and is therefore causal.
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This can be compared to the stress tensor created by a heavy operator insertion, (2.26) after

transforming it with (4.6). We see that the joining quench produces the same stress-energy

as a local primary operator of conformal dimension

h =
c

32
. (4.23)

Now we can compare the single interval entanglement entropy results of [37, 41] to

those found here, setting hψ = hψ̄ = c/32, αψ = 1
2 . The results of [37, 41] are universal

(independent of the CFT) when the identity operator dominates the OPE. This is the case

for t < |`1|, t > `2 if `2 � |`1|, and for any time if `1 � `2 − `1 > 0. In these regimes,

the results agree with the expressions we find above, except at early times (t < |`1|)
when `2 � |`1|. In this case, the result of [37, 41] corresponds to the sum of ground state

entanglement entropies for two slits (0, |`1|), (0, `2) in a half line for `1 < 0, or to the ground

state entanglement entropy for a slit (`1, `2) in a half line for `1 > 0. Our computation for

t < |`1| gives instead the vacuum entanglement entropy of an interval (`1, `2) in a line. This

is not a contradiction as it is a different type of quench; at a technical level, the difference

comes from an additional OPE channel that exists in the joining quench due to the fact

that it is a BCFT calculation, and this channel dominates at early times.
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A Geodesics length in the defect geometry

In this appendix we discuss the computation of geodesic lengths in the singular 3d geome-

try (2.23) using its local equivalence to AdS3.

In 3d all Euclidean solutions to the vacuum Einstein equations with negative cosmo-

logical constant (away from possible singularities) can be written as [62]

ds2 =
L

2
dz2 +

L

2
dz̄2 +

(
1

y2
+
y2

4
LL

)
dzdz̄ +

dy2

y2
, (A.1)
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with L = L(z), L = L(z̄). L is related to the dual CFT stress tensor T by

T = − c

12
L . (A.2)

The CFT stress tensor transforms under conformal mappings as

T (z) =

(
dw

dz

)2

T (w(z)) +
c

12
{w, z} , (A.3)

where

{w, z} =
w′′′(z)w′(z)− 3

2w
′′(z)2

w′(z)2
. (A.4)

Correspondingly, the two geometries dual to such CFT states are related via a diffeomor-

phism that extends the boundary conformal mapping into the bulk.

The singular Euclidean geometry (2.23) of section 2.3 corresponds to

T =
hψ
z2

, T =
h̄ψ
z̄2

, (A.5)

while pure AdS3 in Poincaré coordinates has T = T = 0,

ds2 =
dwdw̄ + du2

u2
. (A.6)

The 3-parameter family of maps relating the two can be found from (A.3):

w(z) =
a1

zαψ + a2
+ a3 , (A.7)

where αψ =
√

1− 24hψ/c. The full non-linear bulk diffeomorphism relating Poincaré

AdS3 to a generic geometry (A.1) has been worked out in [63]. In particular, this allows

computing the length of geodesics in (2.23), directly from that of AdS geodesics.

The expression for the length of a geodesic γ̃ in AdS3, anchored near the boundary at

generic points

(u,w) = (u∞+, w∞+) , (u,w) = (u∞−, w∞−), (A.8)

is

Lγ̃AdS3 = log
(w∞+ − w∞−)(w̄∞+ − w̄∞−)

u∞+u∞−
. (A.9)

Starting from this, the length of a geodesic γ in the singular geometry of (2.23), anchored

near the boundary at

(y, z) = (y∞, z∞+) , (y, z) = (y∞, z∞−) , (A.10)

is straightforward to calculate using the expressions in [63]. One just needs to apply the dif-

feomorphism constructed from (A.7) to pull back the boundary points of γ to (u∞±, w∞±).

The asymptotic form of the diffeomorphism in [63] suffices,

w∞± ≈ w(z∞±) , (A.11)

u∞± ≈ y∞
√
w′(z∞±)w̄′(z̄∞±) . (A.12)
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Plugging

(y, z) = (εUV, 1) , (y, z) = (εUV, z0) , (A.13)

into (A.11)–(A.12) and substituting into (A.9), one obtains the geodesics length in the

defect geometry (2.23)

Lγ = log
(1− zαψ0 )(1− z̄αψ0 )

α2
ψ

+
1− αψ

2
log z0 +

1− ᾱψ
2

log z̄0 − 2 log εUV . (A.14)

Notice that in fact this formula captures the length of the various geodesics in the singular

geometry (2.23) with equal endpoints but differing in their winding around z = 0. For

simplicity, let us fix a1 = 1, a2 = a3 = 0 for which the inverse map of (A.7) takes the form

z(w) = w−1/αψ . Consider in AdS3 two different geodesics γ̃1, γ̃2 which extend between w∞+

and w∞− = w1, w2 respectively. For any w2 = w1e
2πikαψ with integer k and non-integer

kαψ, w2 and w1 represent two distinct points in Euclidean AdS3 both mapping to the same

point z0. The corresponding geodesics γ̃1 and γ̃2 will then map to geodesics anchored at

the same points in the defect geometry but with different winding around z = 0. In other

words the formula for Lγ involves choosing a branch cut for z
αψ
0 , and this choice selects a

winding number for the geodesic around the defect.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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