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Abstract: We continue our program of describing hadrons as rotating strings with massive

endpoints. In this paper we propose models of baryons and confront them with the baryon

Regge trajectories. We show that these are best fitted by a model of a single string with

a quark at one endpoint and a diquark at the other. This model is preferred over the

Y-shaped string model with a quark at each endpoint. We show how the model follows

from a stringy model of the holographic baryon which includes a baryonic vertex connected

with Nc strings to flavor probe branes. From fitting to baryonic data we find that there is

no clear evidence for a non-zero baryonic vertex mass, but if there is such a mass it should

be located at one of the string endpoints. The available baryon trajectories in the angular

momentum plane (J,M2), involving light, strange, and charmed baryons, are rather well

fitted when adding masses to the string endpoints, with a single universal slope α′ =

0.95 GeV−2. Most of the results for the quark masses are then found to be consistent with

the results extracted from the meson spectra in [1], where the value of the slope emerging

from the meson fits was found to be 0.90 GeV−2. In the plane of radial excitations, (n,M2),

we also find a good agreement between the meson and baryon slopes. The flavor structure

of the diquark is examined, where our interest lies in particular on baryons composed of

more than one quark heavier than the u and d quarks. For these baryons we present a

method of checking the holographic interpretation of our results.
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1 Introduction

The old idea that hadrons admit a stringy behavior has been reincarnated in recent years

in the context of the holographic duality between gauge and string theories. Although

the main focus of holography has been the description of properties of operators of the

boundary gauge theory in terms of fields that reside either in the bulk or on flavor branes,

strings in the bulk and strings ending on flavor branes have also played a major role in

dualizing the gauge dynamics. For instance strings and D1 branes with fixed endpoints on

the boundary where shown to be the duals of Wilson and ’t Hooft lines respectively. In [1]

it was argued that the basic property of the mesonic spectra, the Regge trajectories, cannot

generically be accounted for by fields (in this case the fluctuations of the flavor branes)

whereas holographic rotating strings naturally admit this behavior. Using a map developed

in [2] we transformed the holographic strings of mesons into rotating strings with massive

endpoints in flat space-time. This model, which is characterized by the string tension, the

endpoint masses, and an intercept, was compared to PDG data and was found to be a

universal setup describing mesons built from light quarks as well as those constructed from

heavy ones.

It is very well known that mesons in nature admit Regge trajectories, but it is a

lesser known fact that baryons also furnish Regge trajectories [3–5]. Thus, the spectra of

baryons that follow from holography should admit such behavior. Like for the mesons,

there are two candidates for holographic duals of the baryons. Namely, they are either

a field configuration or a string configuration. It was shown [6] that in terms of the

former, baryons correspond to flavor instantons which are a static configuration of the 5

dimensional flavor gauge theory that resides on the Nf flavor branes, compactified, for

instance in the Sakai-Sugimoto model [7], on an S4. It was worked out, mainly in the

context of a generalization of that model, that these instantons can adequately describe

the static properties of baryons, and be responsible for appropriate (large Nc) nuclear

interactions and nuclear matter [8–10]. However, the spectrum of these instantons does

not admit the Regge trajectories behavior neither for M2 as a function of the angular

momentum J , nor as a function of the radial excitation number n. Therefore, we are led

again to consider strings as the holographic duals of baryons.

Since a single string that ends on the boundary or on a flavor brane corresponds to an

external or a dynamical quark respectively, a stringy baryonic configuration has to connect

Nc strings. It was shown in [11] for the AdS5 × S5 background and later for confining

backgrounds [12, 13] that a Dp brane that wraps a non-trivial p cycle with an RR flux

of Nc flowing out of it, must be connected to Nc strings. The other end of each of these

strings can be either on the boundary or on the flavor brane, thus constituting an external

or dynamical baryon respectively. Whereas in the original model [11] the baryonic vertex is

a D5 wrapping the fluxed S5, in the confining models of [7] it is a D4 brane wrapping an S4,

and in the model of [14] it is a D3 wrapping the three cycle of the deformed conifold. The

location of the baryonic vertex in the radial direction and on the flavor brane world-volume

coordinates is determined by minimizing the energy of the configuration [15]. In section 2

we briefly review two possible setups of stringy baryons: the spherically symmetric one

and the totally asymmetric configuration.
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As we did in [1] for the mesons while following [2], we map the baryonic holographic

configurations to configurations of strings with a baryonic vertex and massive endpoints

in flat space-time. In this paper, like in [1], we take these stringy configurations in flat

space-time as our theoretical models to compare with experimental data. We would like

to emphasize that we do not provide a systematic controlled transformation from the

holographic domain characterized by large Nc, large λ, and
Nf
Nc
� 1 to the realistic regime

of Nc = 3, λ of order one, and Nf = 6. The comparison between the predictions of our

model and the experimental data enables us to decide what is the preferable configuration

(in terms of the location of the baryonic vertex) and furthermore to extract the parameters

that characterize the models. These parameters are the string tension T (or equivalently

its inverse, the slope of the trajectories α′ ), the endpoint masses msep, the mass of the

baryonic vertex mbv and the intercept a. Whereas the former parameters show up in the

classical stringy model, the intercept emerges only upon quantization. It is well known

that for a string with no massive endpoints, namely the case of the linear Regge trajectory,

the passage from the classical to quantum trajectories is via the replacement J = α′ E2 →
J+n = α′E2 +a, where n is the quantum radial excitation number. The relevant questions

to our analysis are what is the theoretical value of the intercept for the massless case and

moreover how does it depend on the string endpoint masses. In [16] it was found, somewhat

surprisingly, that for the case of a rotating bosonic string with angular momentum in a

single plane, the intercept of the massless case is independent of the dimensionality of the

space-time D and takes the value of D−2
24 + 26−D

24 = 1. The first contribution to the intercept

is the usual “Casimir term” and the second one is the Polchinski-Strominger term. For the

rotating string with massive endpoints a similar determination of the intercept has not yet

been written down even though certain aspects of the quantization of such a system have

been addressed [17–19].

The main result of the paper is that the best model providing a universal setup of

the baryon is the model of a single string with a diquark at one endpoint and a quark at

the other. This model is preferred over the model of a Y-shaped string with a quark at

each endpoint. There is no clear evidence for a non-zero baryonic vertex mass, but if there

is such a mass it should be located at one of the string endpoints. We see that we can

fit the available baryon trajectories in the angular momentum plane (J,M2) rather well

when adding masses to the endpoints, and we can do it, if we wish, with a single universal

slope α′ = 0.95 GeV−2. Most of the results for the quark masses are then found to be

consistent with the results extracted from the meson spectra in [1], where the value of the

slope emerging from the meson fits - 0.90 GeV−2 - is close to the value obtained here for

the baryons. In the plane of string excitations, (n,M2), we fitted the trajectories of light

baryons and found that there too there is a good agreement between the meson and baryon

slopes.

The paper is organized as follows. In section 2 we briefly review the concept of baryonic

stringy configurations in holography. Section 3 is devoted to the basic (flat space-time)

theoretical model for the baryonic string with massive endpoints. In section 4 we describe

the various fitting models, and then move on to the results of the fits in section 5. Section 6

begins with a summary of the results, compares them with the results of the meson fits,

– 3 –
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Figure 1. Schematic picture of holographic baryons. On the left is an external baryon with

strings that end on the boundary, while on the right is a dynamical baryon with strings ending on

a flavor brane.

and offers a discussion of their implications regarding the structure and composition of the

baryons. In our discussion of the structure we also look into (but do not analyze in detail)

the decay modes of the baryons. In section 7 we conclude, summarize and mention several

future directions of the research program.

2 Holographic stringy baryons

A string that stretches from the boundary of a holographic background corresponds in

the dual field theory to an external quark. Similarly a string that stretches from a flavor

probe brane is a dual of a dynamical quark. The dual of the meson gauge singlet thus

corresponds to a string that starts and ends either on the boundary (external) or on a

flavor brane (dynamical). It is thus clear that a stringy holographic baryon has to include

Nc strings that are connected together and end on a flavor brane (dynamical baryon) or

on the boundary (external baryon). The question is what provides the “baryonic vertex”

that connects together Nc strings. In [20] it was shown that in the AdS5×S5 background,

which is equipped with an RR flux of value Nc, a D5 brane that wraps the S5 has to have

Nc strings attach to it. This property can be generalized to other holographic backgrounds

so that a Dp brane wrapping a non-trivial p cycle with a flux of an RR field of value Nc

provides a baryonic vertex. These two possible stringy configurations are schematically

depicted in figure 1. Whereas the dual of the original proposal [20] was a conformal field

theory, Baryons can be constructed also in holographic backgrounds that correspond to

confining field theories. A prototype model of this nature is the model of Nc D4 branes

background compactified on a circle with an Nf D8–5D8 U-shaped flavor branes [7]. In this

model the baryonic vertex is made out of a D4 brane that wraps an S4. Another model for

baryons in a confining background is the deformed conifold model with D7–D7 U-shaped

flavor branes [21]. In this model the baryon is a D3 brane that wraps the three-cycle of

the deformed conifold.

The argument why a Dp brane wrapping a fluxed p cycle is a baryonic vertex is in

fact very simple. The world-volume action of the wrapped Dp brane has the form of

– 4 –
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Figure 2. The location of the baryonic vertex along the radial direction of the Sakai-Sugimoto

model. u0 is the tip of the flavor branes and ukk is the “confining scale” of the model.

S = SDBI + SCS . The CS term takes the following form

SCS =

∫
Sp×R1

∑
i

cpi ∧ eF =

∫
Sp×R1

cp−1 ∧ F = −
∫

Sp×R1

Fp ∧A = −Nc

∫
R1

A (2.1)

where (i) the sum over i is over the RR p-forms that reside in the background, (ii) from

the sum one particular RR form was chosen, the cp−1-form that couples to the Abelian

field-strength F, (iii) for simplicity’s sake we took the p cycle to be Sp, (iv) A is the Abelian

connection that resides on the wrapped brane, (v) Fp is the RR p-form field strength, and

(vi) in the last step we have made use of the fact that
∫
Sp Fp = Nc. This implies that

there is a charge Nc for the Abelian gauge field. Since in a compact space one cannot have

non-balanced charges and since the endpoint of a string carries a charge one, there must be

Nc strings attached to it. It is interesting to note that a baryonic vertex rather than being

a “fractional” D0 brane of the form of a Dp brane wrapping a p cycle, can also be a D0

brane in an Nc fluxed background. This is the case in the non-critical string backgrounds

like [22] where there is no non-trivial cycle to wrap branes over, but an “ordinary” D0

brane in this background will also have a CS term of the form Nc

∫
R1
A.

Next we would like to determine the location of the baryonic vertex in the radial

dimension. In particular the question is whether it is located on the flavor branes or below

them. This is schematically depicted in figure 2 for the model of [7].

In [15] it was shown by minimizing the “mechanical energy” of the Nc strings and

the wrapped brane that it is preferable for the baryonic vertex to be located on the flavor

branes in the model of [7]. For the baryonic vertex of the model of [14] it was shown

that if the tip of the U-shaped flavor brane is close to the lowest point of the deformed

conifold the baryonic vertex does dissolve in the flavor branes. It is interesting to note that

for a background that corresponds to the deconfining phase of the dual gauge theory the

baryonic vertex falls into the “black hole” and thus the baryon dissolves.

– 5 –
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Figure 3. The location of the baryonic vertex on the flavor brane and the corresponding config-

uration of the baryon for some large Nc. When Nc = 3, the left is the analog of the quark-diquark

flat space-time model, and the right the analog of the Y-shape model.

The locations of the baryonic vertex and the ends of the Nc strings on the flavor branes

is a dynamical issue. In figure 3 we draw two possible setups. In one the baryonic vertex is

located at the center and the Nc ends of the strings are located around it in a spherically

symmetric way. In the “old” stringy model of baryons for three colors this is the analog

of the Y-shape configuration that we will further discuss in the sections describing the flat

space-time models. Another possibility is that of a baryonic vertex connected by Nc − 1

very short strings and with one long string to the flavor branes. Since the product of Nc−1

fundamental representations includes the anti-fundamental one, this configuration can be

viewed as a string connecting a quark with an anti-quark. For the case of Nc = 3 this

is the analog of what will be discussed below as the quark-diquark stringy configuration.

This latter string configuration (for any Nc) is similar to the stringy meson, but there is a

crucial difference, which is the fact that the stringy baryon includes a baryonic vertex.

It was shown in [2] that the classical rotating holographic stringy configuration of the

meson can be mapped into that of a classical rotating bosonic string in flat space-time

with massive endpoints. A similar map applies also to holographic stringy baryons that

can be transformed into stringy baryons in flat space time with massive endpoints. We will

proceed now to discuss this map for the central and asymmetric layouts of figure 3. The

asymmetric holographic configuration of a quark and Nc− 1 quarks on the two ends of the

holographic string depicted in figure 4 is mapped into a similar stringy configuration in flat

space-time where the vertical segments of the string are transferred into massive endpoints

of the string. On the left hand side of the string in flat space-time there is an endpoint

with mass msep given by

msep = T

∫ uf

uΛ
du
√
g00guu (2.2)

where uλ is the location of the “wall”, uf is the location of the flavor brane, and g00 and

guu are the 00 and uu components of the metric of the background.

On the right hand side the mass of the endpoint is msep + mbv. This is the sum of

the energy associated with the vertical segment of the string, just like that of the left hand

– 6 –
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Figure 4. The holographic setup downlifted to Nc = 3 of a quark and a diquark is mapped to a

similar configuration in flat space-time. The vertical segments of the holographic string is mapped

into masses of the endpoints.

Figure 5. The map between the holographic central configuration (for Nc = 3) and the Y-shaped

string in flat space-time.

side, and the mass of the baryonic vertex. Note that even though on the right endpoint

of the string there are in fact two endpoints or “two quarks” the mass is that of a single

quark since there is a single vertical string segment, belonging to the string connecting the

baryonic vertex with the lone quark at the other endpoint. This string setup is obviously

very similar to that of the meson. The only difference is the baryonic vertex that resides

at the diquark endpoint. Since we do not know how to evaluate the mass of the baryonic

vertex, it will be left as a free parameter to determine by the comparison with data. Our

basic task in this case will be to distinguish between two options: (i) the mass of the

baryonic vertex is much lighter than the endpoint mass, mbv � msep, in which case the

masses at the two endpoints will be roughly the same, and (ii) an asymmetric setup with

two different masses if the mass of the baryonic vertex cannot be neglected.

The configuration with a central baryonic vertex can be mapped into the analog of a

Y-shaped object with Nc massive endpoints and with a central baryonic vertex of mass

mc = mbv + Ncmsep. The factor of Nc is due to the fact that there are Nc strings that

stretch from it vertically from the flavor brane to the “wall”, as can be seen in figure 5 for

the case of Nc = 3. In this case, regardless of the ratio between the mass of the baryonic

vertex and that of the string endpoint, there is a massive center which is at least as heavy

as three sting endpoints.

– 7 –
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Figure 6. Holographic setup with flavor branes associated with the u, d quark, s, c and b quarks.

So far we have considered stringy holographic baryons that attach to one flavor brane.

In holographic backgrounds one can introduce flavor branes at different radial locations

thus corresponding to different string endpoint masses, or different quark masses. For

instance, a setup that corresponds to u and d quarks of the same msep mass, a strange s

quark, a charm c quark, and a bottom b quark is schematically drawn in figure 6. A B

meson composed of a bottom quark and a light ū/d̄ anti-quark was added to the figure.

Correspondingly there are many options of holographic stringy baryons that connect

to different flavor branes. This obviously relates to baryons that are composed of quarks

of different flavor. In fact there are typically more than one option for a given baryon. In

addition to the distinction between the central and quark-diquark configurations there are

more than one option just to the latter configuration. We will demonstrate this situation

in section 6.2, focusing on the case of the doubly strange Ξ baryon (ssd or ssu). The

difference between the the two holographic setups is translated to the two options of the

diquark being either composed of two s quarks, whereas the other setup features a ds or

us diquark. Rather than trying to determine the preferred configuration from holography

we will use a comparison with experimental data to investigate this issue.

2.1 The stringy models in flat space-time and their stability

There are some words to be said about the models emerging when mapping the holographic

rotating strings to flat space-time. In section 3, we will write the equations of motion of

the string with massive endpoints in flat space-time and present the rotating solution.

In this section, we briefly discuss another matter: the stability of the rotating solution.

Specifically, we claim that the Y-shape model of the baryon is (classically) unstable. In our

analysis of the spectrum we disregard this potential instability of the model and use the

expressions for the energy and angular momentum of the unperturbed rotating solution of

the Y-shape model as one of our fitting models, but it is important to remember that there

is this theoretical argument against it as a universal setup for baryons before we test it out

as a phenomenological model.

Other than the Y-shape and quark-diquark configurations which we analyze, there are

two more possible stringy models for the baryon when considering a purely flat space-time

point of view. These are drawn, together with the quark-diquark and Y-shape models, in

– 8 –
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Figure 7. Four different stringy models for the baryon in flat space-time. (a) is the quark-diquark

model, (b) the two-string model, (c) the three-string Y-shape, and (d) the closed ∆-shape. (a) and

(c) are the models discussed in the preceding discussion of holographic strings and their mappings

to flat space-time.

figure 7. The additional models are the two-string model where one of the quarks is located

at the center of the baryon, and the other two are attached to it by a string. The second

is the ∆-shape model, in which each quark is connected to the other two. It can be looked

at as a closed string with three points along it that carry finite momentum (which may be

either massive or massless). While the two-string model may have its analog in holography,

with the baryonic vertex lying with the quark at the center of mass, the ∆-shaped string

cannot be built if we impose the constraint that the three quarks should all be connected

to a baryonic vertex.

Two independent analyses of the three-string model [23, 24] concluded that the rotating

solution of the Y-shape configuration is unstable, even before taking quantum effects into

account. In another work, it was found that the instability does not show itself in first

order perturbation theory [25], but the claim of the unstable nature of the Y-shape model

has been verified using numerical methods in [26], where the instability was observed in

simulations and its dependence on endpoint masses was examined. To summarize the

results, in the three-string Y-shape model, a perturbation to one of the three arms would

cause it to shorten until eventually the Y-shape collapses to a form like that of the straight

two-string model. From this model in turn a different kind of instability is expected [23, 24].

The quark in the center of the baryon will move away from the center of mass given

a small perturbation and as it approaches one of the quarks at the endpoints quantum

effects will induce a collapse to the single string quark-diquark model, it being energetically

favorable for two of the quarks to form an diquark bound state in the anti-fundamental

color representation. It would seem that all other models have an instability that would

cause them to eventually collapse to the quark-diquark configuration as two quarks get

close enough to each other.1

From a phenomenological point of view the models differ mainly in their prediction of

the slope of the Regge trajectory. Assuming the strings in baryons have the same tension

as those in mesons, we can see which of the models offers the best match. We will see that

it is the configuration we know to be stable, that of a single string with a quark and a

diquark at its endpoints. Therefore, our fitting analysis will be focused on this model.2

1More discussion and detailed analyses of the different stringy models of the baryon and their stability

are found in the work of G.S. Sharov, most recently in [27].
2The quark-diquark model was also used to analyze the baryon spectrum in [28]. Another discussion of

diquarks as building blocks for hadrons is in [29].
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3 Basic theoretical model

As explained in the introduction our theoretical model is not the holographic stringy model,

but a model in flat space-time that incorporates two ingredients motivated by the holo-

graphic picture. Namely, they are massive particles at the ends of the strings and a baryonic

vertex that connects Nc = 3 strings.

3.1 Classical rotating string with massive endpoints

We describe the string with massive endpoints (in flat space-time) by adding to the Nambu-

Goto action,

SNG = −T
∫
dτdσ

√
−h (3.1)

hαβ ≡ ηµν∂αXµ∂βX
ν

a boundary term - the action of a massive chargeless point particle

Spp = −m
∫
dτ
√
−Ẋ2 (3.2)

Ẋµ ≡ ∂τXµ

at both ends. There can be different masses at the ends, but here we assume, for

simplicity’s sake, that they are equal. We also define σ = ±l to be the boundaries, with l

an arbitrary constant with dimensions of length.

The variation of the action gives the bulk equations of motion

∂α

(√
−hhαβ∂βXµ

)
= 0 (3.3)

and at the two boundaries the condition

T
√
−h∂σXµ ±m∂τ

(
Ẋµ√
−Ẋ2

)
= 0 (3.4)

It can be shown that the rotating configuration

X0 = τ,X1 = R(σ) cos(ωτ), X2 = R(σ) sin(ωτ) (3.5)

solves the bulk equations (3.3) for any choice of R(σ). We will use the simplest choice,

R(σ) = σ, from here on.3 Eq. (3.4) reduces then to the condition that at the boundary,

T

γ
= γmω2l (3.6)

with γ−1 ≡
√

1− ω2l2.4

We then derive the Noether charges associated with the Poincaré invariance of the

action, which include contributions both from the string and from the point particles at

3Another common choice is X0 = τ, x1 = sin(σ) cos(ωτ), X2 = sin(σ) sin(ωτ).
4Notice that in addition to the usual term γm for the mass, the tension that balances the “centrifugal

force” is T
γ

.

– 10 –
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the boundaries. Calculating them for the rotating solution, we arrive at the expressions

for the energy and angular momentum associated with this configuration:

E = −p0 = 2γm+ T

∫ l

−l

dσ√
1− ω2σ2

(3.7)

J = J12 = 2γmωl2 + Tω

∫ l

−l

σ2dσ√
1− ω2σ2

(3.8)

Solving the integrals, and defining q ≡ ωl - physically, the endpoint velocity - we write

the expressions in the form

E =
2m√
1− q2

+ 2T l
arcsin(q)

q
(3.9)

J = 2ml
q√

1− q2
+ T l2

(
arcsin(q)− q

√
1− q2

q2

)
(3.10)

The terms proportional to m are the contributions from the endpoint masses and the term

proportional to T is the string’s contribution. These expressions are supplemented by

condition (3.6), which we rewrite as

T l =
mq2

1− q2
(3.11)

This last equation can be used to eliminate one of the parameters l,m, T, and q from J

and E. Eliminating the string length from the equations we arrive at the final form

E = 2m

(
q arcsin(q) +

√
1− q2

1− q2

)
(3.12)

J =
m2

T

q2

(1− q2)2

(
arcsin(q) + q

√
1− q2

)
(3.13)

These two equations are what define the Regge trajectories of the string with massive

endpoints. They determine the functional dependence of J on E, where they are related

through the parameter 0 ≤ q < 1 (q = 1 when m = 0). Since the expressions are hard to

make sense of in their current form, we turn to two opposing limits - the low mass and the

high mass approximations.

In the low mass limit where the endpoints move at a speed close to the speed of light,

so q → 1, we have an expansion in (m/E):

J = α′ E2

(
1− 8

√
π

3

(m
E

)3/2
+

2
√
π3

5

(m
E

)5/2
+ · · ·

)
(3.14)

from which we can easily see that the linear Regge behavior is restored in the limit m→ 0,

and that the first correction is proportional to
√
E. The Regge slope α′ is related to the

string tension by α′ = (2πT )−1.

The high mass limit, q → 0, holds when (E − 2m)/2m� 1. Then the expansion is

J =
4π

3
√

3
α′ m1/2(E − 2m)3/2 +

7π

54
√

3
α′ m−1/2(E − 2m)5/2 + · · · (3.15)
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3.1.1 Generalizations: different masses, Y-shape model, and central mass

The generalization of the symmetric model to the case where there are two different masses

is simple. The angular momentum and energy were calculated by summing two equal

contributions - from two halves of the string (σ ∈ (−l, 0) and σ ∈ (0, l)) and two identical

point particles. To generalize this we simply replace the factor of two with a sum over two

different, but similar, contributions.

The two masses would still rotate with the same angular velocity, ω, and the string

tension remains the same for both string segments. The difference between the two con-

tributions stems from different endpoint velocities, qi, and the different radii of rotation,

related to the velocities by ωli = qi.

The energy and angular momentum in this case are, then,

E =
∑
i=1,2

mi

qi arcsin(qi) +
√

1− q2
i

1− q2
i

 (3.16)

J =
∑
i=1,2

πα′ m2
i

q2
i

(1− q2
i )

2

(
arcsin(qi) + qi

√
1− q2

i

)
(3.17)

The velocities q1 and q2 can be related using the boundary condition (3.6), from which

we have
T

ω
= m1

q1

1− q2
1

= m2
q2

1− q2
2

(3.18)

With q1 and q2 thus related, the massive Regge trajectory is obtained from the parametric

curve

E = E (q1, q2(q1)) J = J (q1, q2(q1)) (3.19)

where 0 ≤ q1 < 1

The equations of motion for the three segments of the Y-shaped string are unchanged

from the simple straight string. The only difference is an added boundary condition at

the point where the three strings connect. While this added condition is important when

analyzing the stability of the model, as done e.g. in [23], it holds trivially in the unperturbed

rotating solution. Therefore the only adjustment we need make to eqs. (3.16) and (3.17) to

get to the trajectories of the Y-shape model is in the summation index i - we now sum over

three contributions from three string segments and three endpoint masses, so i = 1, 2, 3.

In the case where we have three identical end point masses we have

E = 3m

(
q arcsin(q) +

√
1− q2

1− q2

)
(3.20)

J =
3

2

m2

T

q2

(1− q2)2

(
arcsin(q) + q

√
1− q2

)
(3.21)

This model is completely equivalent (in terms of the Regge trajectory) with a single string

model with the same total mass at the endpoints and with an effective higher string tension.

That is to say, a Y-shaped string with three identical masses mY and the string tension TY
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has the same exact Regge behavior as a string with two masses m1 = m2 = 3mY /2 and

the tension T , provided TY = 3
2T . In particular, in the massless case the Y-shape model

yields the result

J =
2

3
α′ E2 (3.22)

Another generalization would be to add a central mass to the string around which the

string rotates. This mass would be stationary so its only contribution would be a constant

shift in the energy, which amounts to the modification E → E−mbv in previous equations.5

4 Fitting models

4.1 Rotating string model

We define the linear fit by

J + n = α′ E2 + a (4.1)

where the fitting parameters are the slope α′ and the intercept a.

For the massive fit, we use the general expressions for the mass and angular momentum

of the rotating string, eqs. (3.16) and (3.17), for the case of two different masses, and we

add to them, by hand, an intercept and an extrapolated n dependence, assuming the same

replacement of J → J + n− a.

E =
∑
i=1,2

mi

qi arcsin(qi) +
√

1− q2
i

1− q2
i

 (4.2)

J + n = a+
∑
i=1,2

πα′ m2
i

q2
i

(1− q2
i )

2

(
arcsin(qi) + qi

√
1− q2

i

)
(4.3)

With the relation between q1 and q2 as in eq. (3.18):

T

ω
= m1

q1

1− q2
1

= m2
q2

1− q2
2

(4.4)

With the two additions of n and a, the two equations reduce to that of the linear fit

in (4.1) in the limit where both masses are zero.

Now the fitting parameters are a and α′ as before, as well as the the two endpoint

masses m1 and m2.

4.1.1 Rotating Y-shape with central mass

We also examine fits using the Y-shape model described in section 3.1.1, as well as the

model where the string rotates about a stationary mass, mbv.

The Y-shape fit uses the same expressions as the massive fit with the summation

changed from i = 1, 2 to i = 1, 2, 3. The central mass mbv may be inserted to the fits by

5The name mbv stems from a possible identification of such a central mass with the presence of a baryonic

vertex encountered in the holographic models.
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the replacement E → E −mbv in eq. (4.2), the same way we have inserted the intercept a

to J . Explicitly, the expressions then are

E = mbv +

3∑
i=1

mi

qi arcsin(qi) +
√

1− q2
i

1− q2
i

 (4.5)

J + n = a+

3∑
i=1

πα′ m2
i

q2
i

(1− q2
i )

2

(
arcsin(qi) + qi

√
1− q2

i

)
(4.6)

The relation between the three velocities qi is again through

T

ω
= mi

qi
1− q2

i

(4.7)

for i = 1, 2, 3. In the limit where all endpoint masses are zero, these equations reduce to

J + n− a =
2

3
α′ (E −mbv)

2 (4.8)

4.2 Fitting procedure

We measure the quality of a fit by the dimensionless quantity χ2, which we define, as we

did in [1], by

χ2 =
1

N − 1

∑
i

(
M2
i − E2

i

M2
i

)2

(4.9)

Mi and Ei are, respectively, the measured and calculated value of the mass of the i-th

particle, and N the number of points in the trajectory.

5 Fit results

This section offers a discussion of the fit results for the baryons. We start by briefly

discussing the results using the Y-shaped string model for the baryon, and the effects

of including a massive baryonic vertex at the center of mass, via the replacement M →
M −mbv. The results prove to be against these options, so the rest of the section discusses

the results when using the quark-diquark model for the baryons. This means we describe

the baryons simply as a single string with two masses at its endpoints.

We separate the results into three sections, one for the light quark baryons, the next

for strange baryons, and the third for charmed baryons. In the light baryon section we

also examine the radial trajectories of the N and ∆ baryons. The rest of the sections have

trajectories only in the angular momentum plane (J,M2).

The detailed individual trajectory fits and the specification of all the states used are

found in appendix A. The experimental data used in this paper is taken from the Particle

Data Group’s Review of Particle Physics [30].
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5.1 Y-shape and central mass

As explained in section 3.1.1, the Y-shaped string model is equivalent in terms of the Regge

trajectories to a single string model with a higher effective string tension. In the picture

we have before adding endpoint masses, we may assume (as a phenomenological model)

linear trajectories for both the meson and baryon trajectories,

J = α′M2 + a (5.1)

with different slopes, α′ b and α′m for the baryons and mesons, respectively. Now, the

assumption that the baryons are Y-shaped strings while the mesons are straight single

strings, and that there is a single universal string tension, would lead us to expect the

relation

α′ b =
2

3
α′m (5.2)

between the baryon and meson Regge slopes. When we fit the data we see no such relation.

What we see in our results is that in fact, the meson and baryon slopes are very similar -

α′b ≈ α′ m - supporting the same single string model for the baryons that was used for the

mesons. This also excludes the triangle-shaped closed string baryon, which we have not

analyzed in detail but predicts an effective slope α′b of between 3
8α
′
m and 1

2α
′
m, depending

on the type of solution [31].

Our addition of endpoint masses does not change this picture, as we would still need

to see a similar relation between the baryon and meson slopes, with the baryon slope being

consistently lower. The slopes obtained from the baryon trajectory fits, which we present in

the next sections, still remain too high for the Y-shape model of the baryon to be consistent

with experimental data. In many cases the baryon slope is actually higher than the meson

slope.

As for the baryonic vertex mass, the assumption that there is a central mass that

contributes to the total mass of a state but not to the angular momentum was also found

to be unsupported by the data, neither in the Y-shape model nor in the straight string

model.6 We plot one of these fits in a following section (bottom-right plot in figure 8).

This does not rule out the presence of a mass due to a holographic baryonic vertex, but

means it is most likely located at the string endpoints and not at its center.

With these results in mind, we continue to present our fits using only the single string

model with two masses at its endpoints.

5.2 Symmetric vs. imbalanced string

Now we turn to the different mass configurations in the single string model. As mentioned

in the last subsection, there is no evidence to support a mass located at the center of the

string. To understand the structure of the baryon we would like to be able to tell how the

mass is distributed between the two endpoints, but this is information we cannot gather

6The two-string model discussed in section 2.1 with one quark at the center of mass has the same slope

as the quark-diquark model, but we exclude it here (after excluding it on grounds of its instability in

section 2.1) because we see no evidence, in any trajectory, of a massive central point.
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from the Regge trajectory fits. In the low mass approximation for the single string, the

leading order correction is proportional to α′ (m
3/2
1 +m

3/2
2 )
√
E. This is the generalization

of the low mass expansion of eq. (3.14). Therefore, for small masses - (m1 +m2)/E � 1 -

we cannot distinguish from the Regge trajectory fits alone between different configurations

with equal m
3/2
1 +m

3/2
2 . There are of course higher order corrections, but our fits are not

sensitive enough to them, and in practice, we see that fits with m
3/2
1 +m

3/2
2 = Const. are

nearly equivalent even for masses of a few hundred MeV (when using a typical value of the

slope, in the neighborhood of 0.9 GeV−2). An example of this is in the bottom-left plot of

figure 9.

When expanding J in E for two heavy masses, the combination in the leading term

would bem1+m2. In the mid range that cannot be described accurately by either expansion

there is a transition between the two different type of curves. This can be best seen

in figure 10, which shows the fits of the charmed Λc baryon. For higher masses, the

variation of the intercept along these curves is big enough to be easily measured, but as

the intercept takes reasonable values for both symmetric and asymmetric massive fits we

cannot use this measurement to decide between the two configurations. We do not have

accurate predictions for the intercept, and neither will we find emerging in our fit results

remarkably consistent results for it. To give some numbers, the symmetric fit of the Λc with

2m = 2010 has a = 0.09, while the asymmetric configuration which gives a comparable

fit has m1 = 1720, m2 = 90 and a = −0.13. The slope is roughly equal between the two

fits, 1.13 GeV−2 for the former and 1.22 GeV−2 for the latter. Since we have no reason to

prefer a = 0.09 over a = −0.13 we cannot use this information.

In both cases the symmetric fit where m1 = m2 = m gives an indication of the total

mass we can add to the endpoints for a good fit of a given trajectory. The best fitting

masses are on a curve in the (m1,m2) plane. The choice m1 = m2 maximizes the total

mass m1 +m2, whether the masses are light or heavy.

It should also be noted that for the trajectories we analyze we either have fits with

low masses, where the m3/2 approximation is valid, or trajectories with only 3 data points

where we would by default expect the optimum to be located on a curve in the (m1,m2)

plane, seeing how there are four fitting parameters in total.

While the presentation in the following sections of the results is for the symmetric fit,

this does not mean that we have found it is actually preferred by the data. The symmetric

fit tells us whether there is a preference for non-zero endpoint masses or not, and allows

us to obtain the values of the slope for a given total endpoints mass.

If we assume χ2 is constant along curves of the form m
3/2
1 +m

3/2
2 = Const., then there is

not much difference between the symmetric case and the case m1 = 2m2 when considering

the total sum m1 + m2. So for a given symmetric fit with 2m, the configuration with

(m1,m2) = (2
3m,

4
3m) will be almost equivalent to the one with m1 = m2 = m (and this is

true at both high and low masses). If one of the masses is zero, say m2 = 0, then as a rule

of thumb one can take m1 = 22/3m ≈ 0.8 × 2m to move from the symmetric fit result to

the totally imbalanced mass configuration.
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Figure 8. The light baryon trajectory fits. Top-left: the N trajectory and fits, showing the

even/odd effect. Top-right: χ2 vs. the two masses for the N trajectory. Bottom-left: χ2 vs.

(α′ , 2m) for the N . Bottom-right: χ2 vs. 2m and a central vertex mass mbv for the ∆ trajectory.

The χ2 plots are for fits to the (J,M2) trajectories, and use only the even L states. The darkest

areas in the χ2 plots have χ2
m/χ

2
l < 1, lightest areas are χ2

m/χ
2
l < 1.1.

5.3 Light quark baryons

In the light baryon sector, we look at the N and ∆ resonances.

5.3.1 Trajectories in the (J,M2) plane

One of the most interesting features of the baryon Regge trajectories is the splitting of

the trajectories of even and odd L states. The states with even and odd orbital angular

momentum do not lie on one single trajectory, but on two parallel linear trajectories, the

odd L states being higher in mass and lying above the trajectory formed by the even states.

The plot in figure 8 shows this effect for the (J,M2) trajectory of the N .

In our analysis, we fit the even and odd trajectories together, with the same endpoint

masses and slope, and allow the intercept to carry the difference between the even and odd

states.

In this way, we get that the N trajectory is best fitted with a slope of around 0.95

GeV−2, and that the linear fit is optimal. Only small masses, up to a total mass of 2m = 170

MeV, are allowed.7 Trying a fit using only the four highest J states (two even and two

7Masses in what we call the “allowed” range give a value of χ2 that is within 10% of its optimal value
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odd), we achieve a weaker χ2 dependence on the mass, and we can add a total mass of up

to 640 MeV, with the slope being near 1 GeV−2 for the highest masses.

The ∆ is also best fitted by the linear, massless, trajectory, but it allows for higher

masses. The maximum for it is 450 MeV. The slope, for a given mass, is lower than

that of the N . It is between 0.9 GeV−2 for the linear fit, and 0.97 GeV−2 for the maximal

massive fits.

As for the even-odd effect, we quantify it by looking at the difference between the

intercept obtained for the even L trajectory and the one obtained for the odd L trajectory.

The magnitude of the even-odd splitting is higher for the ∆ than it is for the N baryons.

For the ∆, the difference in the intercept is of almost one unit - ae − ao ≈ 1, while for the

N it is less than half that: ae − ao ≈ 0.45. The difference in M2 is obtained by dividing

by α′ , so it is 0.5 GeV−2 for the N and 1.1 GeV2 for the ∆.

5.3.2 Trajectories in the (n,M2) plane

The radial trajectories we analyze are also best fitted with small, or even zero, endpoint

masses.

For the ∆ we have three states with JP = 3/2+. The slope is between 0.92 and

0.94 GeV−2 and the maximal allowed total mass is less than 200 MeV.

For theN we use a total of fifteen states: four with JP = 1/2+ (the neutron/proton and

higher resonances), three with 3/2−, and four pairs with other JP assignments. They are all

fitted with the same slope and mass. The results show a lower slope here, from 0.82 GeV−2

for the linear fit to 0.85 GeV−2 for the highest mass fit, this time with 2m = 425 MeV.

5.4 Strange baryons

In the strange section there are several trajectories we analyze.

The first is that of the Λ. There are five states in this trajectory, enough for us to

see that the even-odd effect is not present - or too weak to be noticeable. The linear fit,

with α′ = 0.95 GeV−2, is the optimal fit, and only small masses of the order of 60 MeV

are allowed at each endpoint. Even if one of the masses is zero, the mass at the other end

could not exceed 100 MeV. This is a puzzling result because the results of the meson fits,

which will be compared in detail to the baryon fits in a later section, point toward a mass

of 200− 400 MeV for the s quark.

On the other hand, the other strange baryon trajectories we examine point to very

high masses, with correspondingly high values of the slope. These are the results of the

two trajectories of the Σ baryon we examine. The first has three states with JP = 1/2+,

3/2−, and 5/2+. The second has the parity reversed (for a given value of J): JP = 3/2+,

5/2−, and 7/2+.

Since there are only three states per trajectory we cannot determine from the data

alone whether or not there is an even-odd splitting effect present here (and this is the case

with all following trajectories). Assuming that there is no even-odd splitting, the best fits

for that specific trajectory.
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Figure 9. The strange baryon trajectory fits. Top-left: χ2 vs. (α′ , 2m) for the Λ trajectory.

Top-right: same for the Σ. Bottom: χ2 vs. (m1,m2) for the Ξ trajectory, for α′ = 0.950 (left) and

adjustable α′ (right). The red curve in the bottom-left plot is m
3/2
1 +m

3/2
2 = 2× (425)3/2.

have 2m ≈ 1200 MeV and a slope of about 1.4 − 1.5 GeV−2. Assuming splitting, we find

in the case of the Σ that the linear fit connecting the two even states has α′ ≈ 0.9 GeV−2.

A third option, is fixing the slope at a more reasonable low value - we chose α′ = 0.95

GeV−2 - and redoing the massive fits (with the assumption that there is no splitting). The

best fits then for the Σ are at around 2m = 500 MeV, with the mass being somewhat

higher in the trajectory beginning with of the 1/2+ state. This is certainly the choice that

is most consistent with previous results, as we can distribute the total mass so there is a

mass of ms ≈ 400 MeV at one end and up to 100 MeV at the other. The cost in χ2 is

fairly high: for the first trajectory χ2 is approximately 10−4 for the higher slope and ten

times larger for α′ = 0.95, while for the second χ2 is almost zero for the high slope fit8

and about 5× 10−4 for the fixed slope fit. In any case, the fits with α′ = 0.95 GeV−2 and

with the added masses have a better χ2 than the linear massless fits.

There is one more possible trajectory we examine, of the doubly strange Ξ baryon.

The best fit overall is again with α′ ≈ 1.5 GeV−2, and at a somewhat higher mass of

2m = 1320. Fixing the slope at 0.95 GeV−2 results in 2m = 850 being optimal. This is

again the best choice in terms of consistency - the total mass is exactly in the range we

8This is often the case with three point trajectories, where we may find a choice of the parameters for

which the trajectory passes through all three data points. This makes the error in the measurement hard

to quantify.
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Figure 10. χ2 vs. the two endpoint masses for the Λc trajectory, for the two cases: α′ optimized

(left) and α′ fixed at 0.95 GeV−2 (right). In the adjustable slope case the optimum has α′ = 1.2

GeV−2. The red curves in the left plot are m1 +m2 = 2× 1000 and m
3/2
1 +m

3/2
2 = 2× (1000)3/2.

The real curve on which χ2 is optimal, for which we do not know the exact parametrization, is

between those two.

would expect to see where there are two s quarks present. In χ2, the fit with the high slope

has χ2 ≈ 10−4 while the latter has χ2 ≈ 4× 10−4.

5.5 Charmed baryons

In the charmed baryon section we have only one trajectory we can use, comprised of three

states, that of the Λc baryon. The best fits are again at a relatively high slope, 1.1 GeV−2,

with the mass 2m = 2010 MeV. This fit’s χ2 tends to zero. The fit with the slope fixed at

0.95 GeV−2 takes the mass down to 2m = 1760 MeV with χ2 = 3× 10−5. The high slope

fit is equivalent to a fit with m1 = 1720 MeV and m2 = 90, while a the fit with m1 = 1400

and m2 = 90 is roughly equal to the latter fixed slope fit. We plot χ2 as a function of the

two endpoint masses for both the fixed and adjustable slope case in figure 10.

We can also do a fit using two Ξc states. These states are charmed and strange and

are composed of dsc (Ξ0
c) or usc (Ξ+

c ). Since we only have two states, we do only a fit with

the fixed slope, α′ = 0.95 GeV−2. The best massive fit then has 2m = 2060 MeV.

6 Summary of results

We begin by presenting the two summary tables: in table 1 we list the results of the general

fits, while in table 2 are the results of the fits with the fixed slope, α′ = 0.95 GeV−2.

The internal structure of the baryon is more complex than that of the meson, and as

a result a unified stringy model of the baryon is harder to construct. Out of the various

stringy models we have examined, the model of a quark and diquark is best supported by

experiment. This is based mostly on the observation that the Regge slope for baryons is

roughly equal to the meson slope - so if we assume a universal string tension, the baryons

must be described by a single string model as the mesons are. As explained in section 5.2,
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Traj. N m α′ a

N 7 2m = 0− 170 0.944− 0.959 ae = (−0.32)− (−0.23) ao = (−0.75)− (−0.65)

N [a] 4 2m = 0− 640 0.949− 1.018 ae = (−0.34)− 0.50 ao = (−0.98)− (−0.13)

N [b] 15 2m = 0− 425 0.815− 0.878 a1/2+ = (−0.22)− 0.07 a3/2− = (−0.36)− (−0.06)

∆ 7 2m = 0− 450 0.898− 0.969 ae = 0.14− 0.54 ao = (−0.84)− (−0.42)

∆[c] 3 2m = 0− 175 0.920− 0.936 a = 0.11− 0.21

Λ 5 2m = 0− 125 0.946− 0.955 a = (−0.68)− (−0.61)

Σ 3 2m = 1190 1.502 a = (−0.15)

Σ[d] 3 2m = 1255 1.459 a = 1.37

Ξ 3 2m = 1320 1.455 a = 0.50

Λc 3 2m = 2010 1.130 a = 0.09

Table 1. Summary table for the baryon fits. The ranges listed have χ2 within 10% of its optimal

value. N is the number of points in the trajectory. [a] is the (J,M2) trajectory of the N baryons

when taking only the four highest J states, [b] is a fit to radial trajectories of the N . The fifteen

states used are four states with JP = 1/2+, three with 3/2−, and four pairs with other values of

JP . [c] is the radial trajectory of the ∆ (3/2+). [d] is a trajectory beginning with the state Σ(1385)

3/2+, as opposed to the 1/2+ Σ ground state. The rest of the trajectories are all leading trajectories

in the (J,M2) plane, and do not exclude any states.

Traj. N m a

N 7 2m = 0− 180 ae = (−0.33)− (−0.22) ao = (−0.77)− (−0.65)

∆ 7 2m = 300− 530 ae = 0.31− 0.66 ao = (−0.71)− (−0.26)

Λ 5 2m = 0− 10 a = (−0.68)− (−0.61)

Σ 3 2m = 530− 690 a = (−0.29)− (−0.04)

Σ* 3 2m = 435− 570 a = 0.15− 0.38

Ξ 3 2m = 750− 930 a = (−0.22)− 0.10

Λc 3 2m = 1760 a = (−0.36)

Ξc 2 2m = 2060 a = (−1.13)

Table 2. J,M2) fits done with the slope fixed at α′ = 0.950 GeV−2. Fits with m1 = m2 generally

maximize m1 +m2. In this table we may also include a fit for two Ξc states. The ranges listed have

χ2 within 10% of its optimal value. N is the number of points in the trajectory.

we present our results in terms of the total mass of the endpoints, as we cannot determine

the distribution of the mass between them from the Regge trajectory fits alone.

Our massive fits for the baryons are not always consistent. For the light quark trajec-

tories, of the N and the ∆, we have seen there is no evidence for a string endpoint mass of

the light quarks. These states are best fitted by linear trajectories with a slope similar to

that of the light mesons - around 0.95 GeV−2 for the N and 0.90 GeV−2 for the ∆. The

(J,M2) trajectories also exhibit a splitting between the trajectories of states with even and

odd orbital angular momentum. In our fits we incorporate this difference into the intercept

alone.

Since we do not see the splitting effect in the trajectory of the strange Λ baryon, which

has five data points, we assume this effect is only significant for the light baryons. The
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next heavier trajectories after the Λ are comprised of only three data points and therefore

cannot be used to determine whether this is a correct assumption or not. In the following

we summarize our results using this assumption.

For the strange baryon trajectories there is a significant discrepancy between the Λ,

which is best (and very well) fitted by a linear, massless, trajectory, and the Σ baryons

which are optimally fitted with a high total mass, of around 1200 MeV and an unusually

high slope, 1.5 GeV−2. The fits when fixing the slope at the value obtained from the lighter

baryon fits give a total mass in the more reasonable 500 − 600 MeV range. We have also

looked into the doubly strange Ξ baryon, where we have a similar picture: the same high

slope (1.5) and masses (1300) or α′ = 0.95 GeV−2 and a total mass of around 800 MeV.

We noted that the latter choice, of a fixed slope, is not only more consistent with the slopes

obtained from the lighter baryons, but also with the mass obtained for the s quark in the

meson fits, ms ≈ 400 MeV.

The last results are those of the charmed baryons, the heaviest baryons for which we

have a trajectory. The charmed Λc is again best fitted by a high slope, 1.2GeV−2 and a

total mass of a little over 1800 MeV. Once more we can bring down the mass by fixing

α′ at 0.95 GeV−2 and get 2m = 1760 MeV as the best fit. For the charmed-strange Ξc
trajectory, including only two data points and therefore fitted only with the fixed slope of

0.95 GeV−2, we find a fit with 2m = 2060 MeV.

6.1 Comparison with meson fits

This section will briefly summarize the results of the fits to the Regge trajectories of mesons

done in [1], and offer a comparison between them and the results presented in this paper

for the baryon trajectories.

The mesons are expected to have a simpler structure than the baryons. Therefore, one

could say they are a better source from which we can begin to extract the parameters of

our models. We have only one stringy model of the meson - in holography it is the rotating

open string connected at both ends to flavor branes, and in the mapping to flat space-time

it is a single string with two endpoint masses.

The first result, that is easiest to compare, is that of the Regge slope. For the (J,M2)

trajectories of the mesons we found that, with added masses, all trajectories involving u, d,

s, and c quarks are well fitted with a Regge slope of around 0.9 GeV−2.9 For the baryons,

we have seen that the light (N and ∆) baryons, as well as the strange Λ, are best fitted

with a slope of 0.90-0.95 GeV−2. This similarity between the meson and baryon results is

what drove us to use the single string quark-diquark model for the baryon, which predicts

an equal Regge slope between baryons and mesons.

Moving on to the heavier baryons, we found higher slopes (of up to 1.5 GeV−2) but also

found that we can get reasonably good fits using 0.95 GeV−2 as a “universal” slope, common

9The only exception, in the (J,M2) plane, was the trajectory of the Υ (bb̄), which had a slope of

0.64 GeV−2. For the baryons, we do not have trajectories of bottom baryons, and therefore, no point of

comparison. In [1] we noted that since our model is based on a long string approximation it might not hold

for the heavy bb̄ mesons, and hence the discrepancy in the slope. We do not have trajectories of baryons

containing b quarks, and the problem of short strings is less apparent in the current analysis.
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to all available trajectories (light, strange, and charmed). We have seen this happen for

the mesons as well, but the differences there between the optimal fits and the “universal

slope” fits were smaller - there it was the difference between 1.0-1.1 and 0.9 GeV−2.

In the (n,M2) plane the light meson trajectories had a similar slope to their respective

orbital trajectories, but always slightly lower. A generic value obtained there would be

0.8 GeV−2. For the baryons, we only analyzed the trajectories of the N and the ∆. For

the N we have seen the same behavior we have for the mesons, with approximately the

same slope, but for the ∆ the slope in (n,M2) is the higher one.

Knowing the different mesons’ compositions, we can extract from them the quark

masses directly. The two endpoint masses correspond directly to the quark and anti-quark

making up the meson, and so we naturally identify the masses obtained in our fits with

quark masses.

The mass of the u and d quarks we could not determine from the meson fits. We

found no evidence that clearly states that the light quarks have a non-zero mass, but we

did not exclude a mass of up to about 100 MeV. For the s quark meson fits we found that

a non-zero mass for the s was always preferable. The results were generally in the range

ms = 200− 400 MeV. The c quark was found to have a mass close to the value of its mass

as a constituent quark, around 1500 MeV.

The light baryon trajectories seem to prefer massless endpoints without completely

excluding masses of a few dozen MeV, or up to a hundred MeV. This is similar to the

meson result. The strange Λ offers the biggest discrepancy in terms of the mass. The Λ

trajectory is best fitted by a simple linear fit with no endpoint masses where we would

have expected the presence of the s quark to contribute a mass of at least 200 MeV. The

other strange baryons, on the other hand, seem to be consistent with the meson results,

especially when fixing the slope at its universal value. The results for the charmed Λc
baryon are also consistent with a mass of 1500 MeV for the c quark, as is the result for the

charmed-strange baryon, which is compatible with a mass of 1500 MeV on one end (for the

charmed), and a mass of 400 MeV on the other.

6.2 Structure of the baryon in the quark diquark model

For the light baryons our analysis of the spectrum cannot offer much new insight regarding

the different baryons’ structure,10 in particular because we have no way to distinguish

between the two light quarks, given their small - possibly zero - masses, but also because we

cannot in general make any comments regarding the mass distribution within the different

baryons (both light and heavy). In spite of this, there is one interesting implication when

interpreting our results in light of the underlying holographic models and the way they

map the diquarks into flat space-time.

In our analysis of the meson spectrum, we argued that the mass parameter relevant to

the analysis is the mass of the quark as a string endpoint, which generically was found to be

between the usual QCD and constituent masses attributed to the respective quark. For the

10[28] offers a discussion of the composition of the light baryons in a model of a quark and diquark

joined by a flux tube. In the analysis of the spectrum done there, the light baryons are assigned different

configurations of the diquark based on the energetics of the ud diquarks.
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Figure 11. The two holographic setups for the Ξ− baryon, with different compositions of the

diquarks. The vertical segments of the strings contribute the measured endpoint masses.

diquark the identification between string length and mass can have another implication, as

illustrated in figure 11. If the relevant mass parameter is the length of the vertical segment

of the string connected to the flavor brane, and if the two quarks forming the diquark and

the baryonic vertex to which they are both connected all lie close to each other on the

flavor brane, then we would expect the mass of the diquark - in the holographic picture,

as a string endpoint - to be approximately equal to the mass of a single quark:

mqq ≈ mq (6.1)

This is because we have only one contribution to the mass from the string connecting

the lone quark outside the diquark and the baryonic vertex. This is a prediction that can

serve as a test of the holographic interpretation of the string endpoint masses. Since we

do not have an accurate figure for the mass of the light u and d quarks, and since we lack

data for charmed and heavier baryons, our best avenue for verifying this experimentally is

by examining the doubly strange Ξ baryon.

The two options for the Ξ quark are one where the diquark is composed of an s and

a light quark, and another where the diquark is composed of two s quarks. For the first

option, our holographic interpretation would lead us to expect there to be two masses at the

endpoints approximately equal to the s quark mass, leading to a total mass of 2m ≈ 2ms

at the endpoints. In the second option, the two s quarks in the diquark would contribute

only once to the total mass we measure in the Regge trajectory fits, so the result for the

total mass 2m should be around, possibly a little higher than, the mass of a single s quark.

The result from the fixed slope fit of the Ξ trajectory, 2m = 750 − 930 MeV, is

consistent, from the holographic point of view, with a ds or us diquark, as opposed to ss.

This is because we expect the mass of the s to be somewhere near 400 MeV. Of course,

from a purely flat space-time perspective, an ss diquark with a mass of roughly 2ms is not

excluded.

If we look at the decay modes of the states used in the Ξ fits we might learn something

about their structure [32, 33]. We look at a baryon’s strong decays into a baryon and a
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Figure 12. A doubly strange baryon with an ss diquark decaying into a doubly strange baryon

and a non-strange meson. First the string tears, and then the endpoints reconnect to the flavor

brane, forming a quark-anti-quark pair.

meson, and our assumption is that in these decays the diquark and baryonic vertex go into

the outgoing baryon while the third lone quark ends up in the meson. An illustration of

this type of decay is in figure 12.

The lightest doubly strange state does not have the phase space for strong decays. If

we look at the two next states in the trajectory, the Ξ(1820) and the Ξ(2030), we see that

they decay mainly into ΛK or ΣK. The fact that they decay into a strange meson and

strange baryon is against the ss diquark configuration. The leading modes of decay should

leave the diquark intact, so if the diquark were ss the leading mode of decay would be Ξπ

(as it is for some of the other observed doubly strange baryons).

For the baryons with a single strange quark, the Λ and the Σ, we have seen an odd

discrepancy between the obtained mass values. The mass in the Λ baryon was less than

100 MeV, while in the Σ we have seen masses of above 400 MeV. We cannot explain

this discrepancy in terms of different configurations of the diquarks, as we expect the s to

contribute to the mass whether it is in the diquark or not. The decay modes do not give

a straightforward answer regarding the compositions of the Λ and Σ, as the states decay

both to NK and Σπ/Λπ. We do not see a systematic preference for decays where the s

remains in the baryon (implying it is near the baryonic vertex in the diquark) or vice versa

in either of the trajectories.

For the charmed-strange Ξc we see a mass compatible compatible with m1 + m2 =

ms + mc. This implies to us that the possibility of a cs diquark is excluded, since we see

both quarks’ masses (from the holographic point of view we expect the diquark mass to

be mcs ≈ mc). Unfortunately we cannot test this based on the decay modes. If we look

at the decays of the Ξc baryons, we find that the Ξ0
c/Ξ−c does not have the phase space to

decay strongly, and the next state we take in the trajectory, Ξc(2815), is also too light to

provide information that would be useful to us. The Ξc(2815) cannot decay to a charmed

meson and a strange baryon (which is the decay mode we will naively expect if the Ξc is
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a us/ds diquark joined to a c quark), simply because the lightest of these, D±/D0 and Λ

respectively, are still heavy enough so that the sum of their masses exceeds the mass of the

Ξc(2815).

For the charmed Λc baryon, with one c and two light u/d quarks, we have no prediction

based on the masses, because in any case we expect to see a total mass of approximately

mc = 1500 MeV. The first state in the trajectory heavy enough to decay into a charmed

meson and a baryon, the Λc(2800)+, was observed to decay both to pD0 and Σcπ, but

there is no quantitative data to indicate which of these modes (if any) is dominant.

7 Conclusions and future directions

If we seek a universal stringy model of the baryon the best option seems to be the model of

a quark and a diquark at the endpoints of a rotating string. We have seen how this model

can be obtained from a mapping of rotating holographic strings to flat space-time, and it

is the only stringy configuration in flat space-time which we know to be classically stable.

From a phenomenological point of view, unlike the three string Y-shape or the closed

string ∆-shape models, the quark-diquark model is supported by the simple fact that the

baryons lie on Regge trajectories with a slope roughly equal to that of the meson trajec-

tories. In our fitting analysis we have presented fits of trajectories of baryons composed of

u, d, s, and c quarks, an in particular fits with the fixed slope α′ = 0.95 GeV−2. The fixed

slope fits, while not optimal, are for the most part consistent with the meson fit results

of [1].

In section 6.2 we have explained how one could test the holographic interpretation of

the endpoint masses as the lengths of the vertical segments of the string along the radial

dimension by examining the trajectories of doubly heavy baryons. We have attempted this

test for the doubly strange Ξ baryon, but found no conclusive answer. In that section we

also briefly discussed our approach to the holographic decay of hadrons. A detailed analysis

of hadronic decays, not only qualitative as offered in this paper but also quantitative, is one

avenue for continuing the use of our model for research. The static properties of baryons

have also been examined in holography [6, 15], and it is left to see how one can describe

some of them using a stringy model.

Another prediction from holography is the presence of a baryonic vertex. Our fits

exclude the presence of a baryonic vertex mass at the center of mass of the rotating baryon,

but in the quark-diquark model which we prefer it is expected to be found at one of the

string endpoints, with the diquark. If there is a baryonic vertex at an endpoint, there is

no evidence to suggest it contributes greatly to the endpoint mass.

We could also attempt enhancements of the model. Adding spin degrees of freedom

to the endpoints would give us a much better chance of constructing a universal model

that would describe the entire baryon spectrum. In [28] the distinction between spin zero

and spin one diquarks played an important part in analyzing the spectrum, while we have

only discussed the flavor structure of the diquark and ascribed its mass to the holographic

string alone (with a possible small addition from the baryonic vertex). Spin interactions

could also help explain the even-odd splitting observed in the light baryons - our simple
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Traj. I JP State Status Traj. I JP State Status

N 1
2 1/2+ n/p **** Λ 0 1/2+ Λ(1116) ****

3/2− N(1520) **** S = −1 3/2− Λ(1520) ****

5/2+ N(1680) **** 5/2+ Λ(1820) ****

7/2− N(2190) **** 7/2− Λ(2100) ****

9/2+ N(2220) **** 9/2+ Λ(2350) ***

11/2− N(2600) *** Σ 1 1/2+ Σ(1193) ****

13/2+ N(2700) ** S = −1 3/2− Σ(1670) ****

∆ 3
2 3/2+ ∆(1232) **** 5/2+ Σ(1915) ****

5/2− ∆(1930) *** Σ 1 3/2+ Σ(1385) ****

7/2+ ∆(1950) **** S = −1 5/2− Σ(1775) ****

9/2− ∆(2400) ** 7/2+ Σ(2030) ****

11/2+ ∆(2420) **** Ξ 1
2 1/2+ Ξ0/Ξ− ****

13/2− ∆(2750) ** S = −2 3/2− Ξ(1820) ***

15/2+ ∆(2950) ** 5/2+ Ξ(2030) ***

Λc 0 1/2+ Λc(2286)+ ****

C = 1 3/2− Λc(2625)+ ***

5/2+ Λc(2880)+ ***

Ξc
1
2 1/2+ Ξ+

c /Ξ
0
c) ***

C = 1 3/2− Ξc(2815)+ ***

S = −1

Table 3. The baryon states used in the (J,M2) trajectory fits.

classical model will not explain a phenomenon that distinguishes between symmetric and

anti-symmetric states without some additional interaction.

We should also strive to gain a better understanding of the intercept. While all previous

sections discuss results for the slope and endpoint masses alone, the intercept, the results

for which are listed in the summary tables of section 6, is an interesting parameter from a

theoretical point of view, and understanding its behavior is an important goal in construct-

ing a truly universal model of the baryon. Added interactions should contribute, in leading

order, a correction to the intercept, which should also be affected by the endpoint masses,

and understanding the intercept’s behavior may also help us distinguish between different

configurations of the baryon without requiring additional information from experiment.

A Individual trajectory fits

This section presents the data and individual trajectory fits. The experimental data is

taken from the Particle Data Group’s (PDG) Review of Particle Physics [30].

A.1 The states used in the fits

The states we have used in our analysis, and their assignment into trajectories, are sum-

marized in tables 3 and 4. The first table is for the (J,M2) plane and the latter for the
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Traj. I(JP ) n State Status Traj. I(JP ) n State Status

N 1
2(1/2+) 0 n/p **** N 1

2(1/2−) 0 N(1535) ****

1 N(1440) **** 1 N(1895) **

2 N(1880) ** N 1
2(3/2+) 0 N(1720) ****

3 N(2100) * 1 N(2040) *

N 1
2(3/2−) 0 N(1520) **** N 1

2(5/2−) 0 N(1675) ****

1 N(1875) *** 1 N(2060) **

2 N(2150) ** ∆ 3
2(1/2+) 0 ∆(1232) ****

N 1
2(5/2+) 0 N(1680) **** 1 ∆(1600) ***

1 N(2000) ** 2 ∆(1920) ***

Table 4. The baryon states used in the (n,M2) trajectory fits and their assignments.

(n,M2) trajectories. For the baryons, we also indicate the overall “status” of their PDG

listing, ranking the resonances from one to four stars based on how well established are

they and their properties in experiment. As a general rule we consider states with three or

four stars safe to use as we see fit. We include lesser resonances only when they complement

a trajectory formed by well established states.

To build the trajectories, we assume the relation between a states orbital angular

momentum and its parity is P = (−1)L, so even and odd states in a given trajectory in

the (J,M2) have alternating parity, as they do for mesons. We do fits only to leading

trajectories (with n = 0), so we always select the lightest mass state for a given angular

momentum and with the appropriate quantum numbers for a given trajectory.

The majority of states used in the (J,M2) fits are states with a PDG status of four

or three stars. The few exceptions are the high spin states of the N and ∆ baryons,

where we use some two star states. These states generally fit in well with their respective

trajectories, which might be considered as evidence for the existence of those high J states

at their given masses. The only exception is the ∆(2950) which lies above its predicted

place in the trajectory. Its mass should be about 100 MeV lower than the mass the PDG

lists for it.

The strange baryons used are all well established states, but there one comment to be

made about the Σ states chosen. In the first trajectory, beginning with the JP = 1/2+ Σ

ground state, the next state chosen (with 3/2−) is the Σ(1670). The PDG lists another

state with the same JP at a lower mass, Σ(1580), but it is a one star state and its existence

is very uncertain. If we use the Σ(1580) as the 3/2− state in the trajectory, we see that

it is well fitted by a linear trajectory with α′ = 0.90 GeV−2. The choice of Σ(1670) is

more compatible with the massive fit, and has similar results to the ones obtained from

the second Σ trajectory, where we use the lightest known states with JP = 3/2+, 5/2−,

and 7/2+, all well established.

For the doubly strange trajectories we use, alongside the ground state Ξ0/Ξ± and the

Ξ(1820), the state Ξ(2030). This is a three star state in the PDG, but its parity and angular

momentum are not exactly known. The PDG places the bound J ≥ 5/2 on its angular

momentum, and our analysis of the Regge trajectory seems consistent when identifying

this state as the JP = 5/2− state in the leading Ξ trajectory.
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Going to the charmed baryon sector, we still have well established states we can use,

but some of these states’ quantum numbers are yet to be measured directly. The second

state in the Λc trajectory is the Λc(2625), for which J and P have not been measured, but

the PDG offers the assignment JP = 3/2−. In the charmed-strange sector, the two states

Ξc states we use are again without a direct measurement of their spin-parity, and are only

assigned JP = 1/2+ and 3/2−. Our analysis of the Regge trajectories gives us no reason

to doubt these assignments.

We also include some trajectories of the light baryons in the (n,M2) plane. For the ∆

baryons we have two states with three stars following the well known and well established

ground state. For the N baryons, we present an assignment of fifteen states into six

trajectories, each with a different spin-parity. Here is the only place where we use some

dubious one star states. We include them mostly to observe how this assignment results in

parallel trajectories in the (n,M2) plane. The conclusions we eventually draw from the fits

pertain to the value of the slope obtained, and the slope does not change significantly if

we include only the best established states, the JP = 1/2+ or 3/2− N baryons with three

or four PDG stars. N resonances with three or four stars that we do not use in these fits

are the N(1650)1/2−, N(1700) 3/2−, N(1710) 1/2+, and N(1900) 3/2+. For each of these

we find at least one lower resonance with the same JP , and all are too low in mass to be

the next states in their respective trajectories.

A.2 Trajectories in the (J,M2) plane

A.2.1 Light quark baryons

The states in this section are all comprised of u and d quarks only.

The N trajectory: the states, with their JP values, are N(939)1
2

+
, N(1520)3

2

−
,

N(1680)5
2

+
, N(2190)7

2

−
, N(2220)9

2

+
, N(2600)11

2

−
, and N(2700)13

2

+
. The trajectory and

its fits are depicted in (13).

The linear fit is

α′ = 0.944, ae = −0.32, ao = −0.75

with χ2
l = 12.15× 10−4. It is optimal, and the highest mass fit with a good χ2 is

2m = 170, α′ = 0.959, ae = −0.23, ao = −0.65

with χ2
m/χ

2
l = 1.10.

When taking only the four highest J states in the trajectory (i.e. the states starting

from J = 7/2), the mass dependence is weaker. The linear fit, now

α′ = 0.949, ae = −0.34, ao = −0.98

is still optimal, with χ2
l = 1.10× 10−4, but we can go to higher masses, such as

2m = 640, α′ = 1.018, ae = 0.50, ao = −0.13

which has χ2
m/χ

2
l = 1.09.
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Figure 13. Top: the N with linear (red, dashed line) and maximal mass fits (blue line). The

maximal mass is defined as the highest mass with χ2 within 10% of its optimal value. Top-left: all

the states and fit with 2m = 170. Top-right: fit to highest J states alone leads to a maximal mass

of 2m = 640. The states marked in red are those excluded from the fits. Bottom: trajectory of the

∆ with the maximal mass 2m = 450.

The ∆ trajectory: here we use the states ∆(1232)3
2

+
, ∆(1930)5

2

−
, ∆(1950)7

2

+
,

∆(2400)9
2

−
, ∆(2420)11

2

+
, ∆(2750)13

2

−
, and ∆(2950)15

2

+
. The linear fit is again optimal

α′ = 0.898, ae = 0.14, ao = −0.84

and it has χ2
l = 12.51× 10−4. The highest mass fit is

2m = 450, α′ = 0.969, ae = 0.54, ao = −0.42

with χ2
m/χ

2
l = 1.10. This trajectory is depicted in the bottom plot of figure 13.

A.2.2 Strange baryons

I = 0. The Λ trajectory: in the left side plot of figure 14, we have the Λ baryons.

These contain two light quarks (u/d), and an s quark. The states we use are Λ(1116)1/2+,

Λ(1520)3/2−, Λ(1820)5/2+, Λ(2100)7/2−, and Λ(2350)9/2+.

The even/odd effect is not present in this trajectory. The best linear fit is

α′ = 0.946, a = −0.68
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Figure 14. The strange baryon trajectories. Left: the Λ, for which the linear fit is optimal and

the maximal mass is 2m = 125. Right: the two Σ trajectories, with their massive fits - 2m = 1190

for the trajectory beginning with JP = 1/2+ and 2m = 1255 for the trajectories whose lowest state

has JP = 3/2+.

with χ2
l = 0.71× 10−4. Once again, it is optimal, and masses can only go up to

2m = 125, α′ = 0.955, a = −0.61

where χ2
m/χ

2
l = 1.10.

I = 1. The Σ trajectory: here we use the states Σ(1193)1/2+, Σ(1670)3/2−, and

Σ(1915)5/2+. The best linear fit is:

α′ = 0.843, a = −0.71

with χ2
l = 26.42× 10−4. The best massive fit is at the high value of

2m = 1190, α′ = 1.502, a = 0.50

with χ2
m/χ

2
l = 0.06. We also do a fit with the slope fixed at α′ = 0.950, to match the

result of the N , ∆, and Λ, and get as a result the fit

2m = 620, α′ = 0.950, a = −0.15

as the optimum with χ2
m/χ

2
l = 0.77. If, instead, we assume there is an even-odd effect,

then we are left only with two data points. The line connecting them is

α′ = 0.890, ae = −0.76

and then the intercept determined from the single odd state and the given slope is ao =

−0.98.
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I = 1. The reverse parity Σ trajectory: we have three more Σ states with the parity

reversed relative to the states used in the previous trajectory: Σ(1385)3/2+, Σ(1775)5/2−,

and Σ(2030)7/2−. For them, the optimal linear fit is

α′ = 0.882, a = −0.20

It has χ2
l = 5.96× 10−4, and the optimal massive fit,

2m = 1255, α′ = 1.459, a = 1.37

has χ2
m = 3× 10−6 (χ2

m/χ
2
l = 0.005). The optimal fit with the slope α′ = 0.950 is

2m = 505, α′ = 0.950, a = 0.27

with χ2
m/χ

2
l = 0.81. The two Σ trajectories are in figure 14.

Doubly strange baryons. The Ξ trajectory: this potential trajectory is comprised

of the Ξ0(1315)/Ξ−(1322)1/2+, Ξ(1820)3/2−, and takes Ξ(2030) to be the 5/2+ state. Its

fits are plotted in figure 15. The best linear fit is

α′ = 0.788, a = −0.90

with χ2
l = 51.12× 10−4. The optimal symmetric fit is

2m = 1320, α′ = 1.455, a = 0.50

with χ2
m/χ

2
l = 0.20, and the best fit with α′ = 0.950 is

2m = 850, α′ = 0.950, a = −0.04

with χ2
m/χ

2
l = 0.77.

A.2.3 Charmed baryons

The Λc trajectory: here we used the following three states: Λc(2286)+1/2+,

Λc(2625)+3/2−, and Λc(2880)+5/2+. These can be seen in the top-right plot of figure 15.

Assuming that, like the strange Λ, no even-odd effect is present, the best linear fit we

have is

α′ = 0.642, a = −2.88

with χ2
l = 1.39× 10−4, and the optimal fit is at a high mass

2m = 2010, α′ = 1.130, a = 0.09

with χ2
m = 2× 10−9. The best fixed slope fit is

2m = 1760, α′ = 0.950, a = −0.36

and it has χ2
m0.24 × 10−4 (χ2

m/χ
2
l = 0.17). Some fits with an asymmetric distribution of

the masses are

m1 = 1720,m2 = 90, α′ = 1.221, a = −0.13

with χ2
m = 6× 10−10, or in fixed slope case, we find values near

m1 = 1400,m2 = 90, α′ = 0.950, a = −0.68

which has χ2
m = 0.30× 10−4 (χ2

m/χ
2
l = 0.22).
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Figure 15. Left: the doubly strange Ξ baryon and its fit, 2m = 1320. Right: the charmed Λc

and its fit with m1 = 90, m2 = 1720. Bottom: the charmed-strange Ξc with its fit, 2m = 2060.

A.2.4 Charmed-strange baryons: the Ξc

We include here a fit done to a trajectory containing only two points. To reduce the number

of fitting parameters, we do the fits with the assumption m1 = m2 = m and with the fixed

slope α′ = 0.95 GeV−2. This leaves us with only two fitting parameters: the total mass

2m and the quantum intercept a. The states used are the Ξ+
c /Ξ

0
c 1/2+ and Ξc(2815) 3/2−.

The best fit with the slope fixed is

2m = 2060, α′ = 0.950, a = −0.13

The linear fit connecting the two points is

α′ = 0.547, a = −2.83

χ2 ≈ 0 for both these fits. They are plotted in figure 15.

A.3 Trajectories in the (n,M2) plane

A.3.1 Light quark baryons

The N radial trajectory: we use a total of 15 states belonging to six different trajec-

tories with different JP assignments. They are N(939), N(1440), N(1880), and N(2100)
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with JP = 1/2+, N(1520), N(1875), and N(2150) which have JP = 3/2−, and N(1680)

and N(2000) with JP = 5/2+. Also, we have the states with reverse parity, N(1535) and

N(1895) with 1/2−, N(1720) and N(2040) with 3/2+, and finally N(1675) and N(2060)

with 5/2−. The best linear fit has

α′ = 0.815

a1/2+ = −0.22, a3/2− = −0.36, a5/2+ = 0.15

a1/2− = −1.42, a3/2+ = −0.92, a5/2− = 0.16

and it has χ2
l = 4.90× 10−4. It is optimal and the highest good mass fit is

2m = 425, α′ = 0.878

with χ2
m/χ

2
l = 1.10 and the intercepts

a1/2+ = 0.07, a3/2− = −0.06, a5/2+ = 0.46

a1/2− = −1.11, a3/2+ = −0.61, a5/2− = 0.47

The radial trajectories are depicted in figure 16.

The ∆ radial trajectory: Also in figure 16 we have the radial trajectory of the ∆. Here

we have three states: ∆(1232), ∆(1600), and ∆(1920), all with 3/2+. The linear fit

α′ = 0.920, a = 0.11

is optimal with χ2
l = 1.78× 10−4. The highest mass fits which are still close to the linear

fit are around

2m = 175, α′ = 0.936, a = 0.21

with χ2
m/χ

2
l = 1.10.

B Predictions for higher states

In tables 5 and 6 are the predictions for higher J and n baryons, based on the results of

our fits.
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Figure 16. Top: the radial trajectories of the N . Top-left are the JP = 1/2+, 3/2−, and 5/2+

states. Top right are 1/2−, 3/2+, and 5/2−. All are fitted with the same slope and mass. Bottom:

radial trajectory of the ∆ baryon.

Trajectory Next states

N 15/2−: 2950− 2960 17/2+: 3050− 3060

∆ 17/2−: 3115− 3250 19/2+: 3170− 3230

Λ 11/2−: 2555 13/2+: 2750− 2755

Σ 7/2−: 2210/2075 9/2+: 2445/2270

Σ 9/2−: 2245/2295 11/2+: 2430/2520

Ξ 7/2−: 2270/2325 9/2+: 2460/2560

Λc 7/2−: 3095/3060 9/2+: 3280/3275

Ξc 5/2+: −− /3080 7/2−: −− /3315

Table 5. Predictions for the next states in the (J,M2) plane based on the optimal massive fits,

with their JPC and mass (in MeV) values. The ranges listed correspond to the ranges in table 1.

For the Σ baryons, the Ξ and the Λc the first value is using the higher mass and slope of table 1,

and the second is the value from the α′ = 0.95 fixed slope fits in table 2.
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Trajectory Next states

N(1
2

+
) n = 4: 2395− 2405 n = 5: 2625− 2650

N(3
2

−
) n = 3: 2425− 2440 n = 4: 2655− 2680

N(5
2

+
) n = 2: 2295− 2310 n = 3: 2540− 2560

N(1
2

−
) n = 2: 2180− 2195 n = 3: 2435− 2455

N(3
2

+
) n = 2: 2315− 2330 n = 3: 2555− 2580

N(5
2

−
) n = 2: 2290− 2310 n = 3: 2535− 2560

∆(3
2

+
) n = 3: 2180− 2185 n = 4: 2415− 2420

Table 6. Predictions for the next states in the (n,M2) plane based on the optimal massive fits.

Mass are in MeV. The ranges listed correspond to the ranges in table 1.
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