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1 Introduction

The AdS backgrounds in eleven dimensions, following the original work of Freund and

Rubin [1], have found widespread applications either as supergravity compactifications,

see [2, 3] for reviews, or more recently in the AdS/CFT correspondence as it applies to

M-theory [4]. Because of this, there is an extensive literature in the construction of AdS

backgrounds with emphasis on those preserving some of the supersymmetry of the underly-

ing supergravity theory, for some selected references that include applications see [5]–[14].

Most of the computations made so far apply to special cases. These involve either restric-

tions on the number of active fields or a priori assumptions on the form of Killing spinors.

The purpose of this paper is to give a comprehensive description of all warped AdS and

flat backgrounds of 11-dimensional supergravity, AdSn ×w M
11−n and R

n−1,1 ×w M
11−n,
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respectively, making use of at most two assumptions.1 One assumption is that the back-

grounds admit at least one supersymmetry. This applies to all cases that will be described

in this paper. The second assumption, which applies to only parts of the analysis, is that

the fields and M11−n satisfy the requirements necessary for the maximum principle to ap-

ply. Such requirements include the assumptions that the fields are smooth and thatM11−n

is compact without boundary.

The focus of this paper is to count the number supersymmetries preserved by AdSn
and R

n−1,1 backgrounds. In another paper [15], we shall describe the restrictions on the

geometry of M11−n imposed by the KSEs and field equations of 11-dimensional super-

gravity. We have also included a brief description of the geometry of some of the AdSn
backgrounds.

Our results include the identification of all a priori fractions of supersymmetry pre-

served by the AdSn×wM
11−n and R

n−1,1 ×wM
11−n backgrounds. In particular assuming

that such backgrounds exist, we count the number of Killing spinors N that they preserve.

We find that for AdSn backgrounds

N = 2[
n
2
]k , n ≤ 4 ; N = 2[

n
2
]+1k , 4 < n ≤ 7 (1.1)

where k ∈ N>0. To prove this result for AdS2 backgrounds we have assumed that the fields

and M9 satisfy the requirements of the maximum principle. However for the rest of the

AdSn backgrounds, this assumption is not necessary and the counting of supersymmetries

stated is valid more generally. The number of supersymmetries N is further restricted. For

example, restrictions arise from the classification results of [16–18] on backgrounds with

maximal and near maximal supersymmetries. In addition all backgrounds preserving more

than 16 supersymmetries are homogeneous [19]. The results have been tabulated in table 1.

The number of supersymmetries preserved by AdSn backgrounds can also be deter-

mined by counting the zero modes of appropriate Dirac-like operators D (±) coupled to

fluxes on the transverse spaces M11−n. This is achieved by proving new types of Lich-

nerowicz theorems which give a 1-1 correspondence between the Killing spinors and the

zero modes of D (±). To prove these theorems, we assume that the fields and M11−n satisfy

all the conditions required for the maximum principle to hold. As a result, we show that

the number of supersymmetries of AdSn backgrounds can be rewritten as

N = ℓ(n)N− , (1.2)

where ℓ(n) = 2[
n
2
], 2 ≤ n ≤ 4 and ℓ(n) = 4, 4 < n ≤ 7 and N− = dimKerD (−).

The explicit expression we obtain for the Killing spinors of AdSn backgrounds allows

us to investigate whether they can be factorized into the form ǫ = ξ ⊗ ψ, where ξ is a

Killing spinor on AdSn and ψ is a Killing spinor on M11−n. Such a factorization has been

widely used in the literature to solve the KSEs for such backgrounds. We find that for

this factorization to hold an additional condition must be imposed on the Killing spinors

which does not arise from the solution of the KSEs on the spacetime. Because of this we

conclude that such a factorization does not hold for generic backgrounds. We demonstrate

1It is also assumed that the fields are sufficiently differentiable.
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with an explicit example that for the correct counting of supersymmetries, one should not

assume the above factorization.

Our AdSn results can be adapted to R
n−1,1 or equivalently flat backgrounds. The

latter arise in the limit where the AdS radius goes to infinity. This limit can be taken

smoothly in all our local computations. But some of the regularity properties enjoyed by

the AdSn backgrounds do not extend in the limit. One of the main consequences of this

is that the new Lichnerowicz theorems we have established for AdSn do not hold for flat

backgrounds. As a result, one cannot prove that R1,1 backgrounds always preserve an even

number of supersymmetries. However for the rest of the R
n−1,1 backgrounds, we shall

show that

N = 2[
n
2
]k , 2 < n ≤ 4 ; N = 2[

n+1
2

]k , 4 < n < 8 . (1.3)

N is further restricted. Observe that the number of supersymmetries preserved by the

AdSn and R
n−1,1 backgrounds differs. This is because the counting of linearly independent

Killing spinors is different in the two cases.

The method we use to solve the KSEs for each of the AdSn ×w M
11−n backgrounds is

based on the observation of [20] that all such backgrounds can be described as near hori-

zon geometries, and that the KSEs can be integrated for M-horizons [21–23]. In particular,

we use this to integrate the gravitino KSE of D=11 supergravity along all AdSn direc-

tions and then identify the independent KSEs on M11−n. The integration of KSEs along

AdSn first involves the integration along two lightcone directions which arise naturally in

the description of AdSn backgrounds as near horizon geometries. This is achieved after

decomposing the Killing spinor as ǫ = ǫ+ + ǫ− according to some lightcone projections

Γ±ǫ± = 0. This integration allows the Killing spinors to be written as ǫ± = ǫ±(r, u, φ±),

where φ± depend only on the coordinates of the co-dimension two subspace S defined by

r = u = 0. A key computation described in [22, 23], after using Bianchi identities and

field equations, reveals that there are two remaining independent KSEs one for each φ±,

which are derived from the naive restriction of the KSE equation of D=11 supergravity on

S. This is sufficient to establish the formulae (1.1) and (1.2) for AdS2 backgrounds. This

is because such backgrounds are special cases of horizons and so these formulae already

follow from the results of [21–23]. For AdSn, n > 2, to derive (1.1), it is necessary to

integrate along the rest of the AdSn directions. It turns out that this is always possible

at the cost of introducing additional algebraic KSEs on M11−n. The Killing spinors can

be expressed as φ+ = φ+(x, τ+, σ+) and φ− = φ−(x, τ−, σ−), where x denote collectively

the remaining AdSn directions and τ± and σ± depend only on the coordinates of M11−n.

Moreover, the remaining independent KSEs on τ± and σ± consist of those that one can find

by the naive restriction of the KSEs of φ± on M11−n, together with the introduction of the

above mentioned new algebraic KSEs one for each τ± and σ±. Therefore, the independent

KSEs can be arranged in four different sets, and each set contains two equations.

The derivation of the formula (1.1) for the AdSn backgrounds, n > 2, is based on

the observation that there are interwining Clifford algebra operators which allow for a

given solution to one of the four sets of KSEs to produce solutions to the other three sets.

– 3 –
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After taking into account all such Clifford algebra operations, the formula (1.1) can be

established.

The proof of (1.2) for AdSn, n > 2, requires the choice of appropriate Dirac-like oper-

ators D (±) on M11−n. These are linear combinations of the Dirac operators derived from

the gravitino KSEs, and the new algebraic KSEs which arise on M11−n after integrating

along the AdSn directions. Then assuming that D (+)χ± = 0, where χ+ is either σ+ or τ+,

one schematically establishes

D2 ‖ χ+ ‖2 +nA−1∂iA∂i ‖ χ+ ‖2= 2〈D(+)χ,D(+)χ+〉+ 2
9n− 18

11− n
‖ C(+)χ+ ‖2 , (1.4)

where D(+) is the gravitino KSE appropriately modified by the new algebraic KSE and C(+)

is the new algebraic KSE. A similar formula holds for the σ− and τ− spinors. Provided that

the requirements for the maximum principle to hold are satisfied by the fields and M11−n,

i.e. for smooth fields and M11−n compact without boundary, one concludes that the only

solutions to the above equation is that ‖ χ+ ‖ is constant and χ+ satisfies the KSEs. This

demonstrates a new type of Lichnerowicz theorems for D (±). These theorems establish an

1-1 correspondence between the zero modes of D (±) and Killing spinors. Using these, (1.2)

follows from (1.1) and a counting of the multiplicity of zero modes of D (±). This is done

by identifying the Clifford algebra operators which commute with D (±).

For the proof of the number of supersymmetries preserved by flat backgrounds Rn−1,1

in (1.3), it suffices to investigate the KSEs that arise for the AdSn backgrounds in the

limit of infinite AdS radius. All our local computations are smooth in this limit and so

these computations carry through to all flat n > 2 cases. Using this, one can establish

the independent KSEs on M11−n for flat backgrounds from those of the AdSn solutions.

However there is a difference in that the KSEs for σ± and τ± spinors become identical at

the limit of infinite AdS radius. As a result the σ± and τ± are not linearly independent and

so the counting of supersymmetries differs from that of AdSn backgrounds. After taking

into account the Clifford algebra operators which intertwine between and those that com-

mute with the KSEs, one can establish (1.3). Furthermore for flat backgrounds, some of

the regularity assumptions used to establish the Lichnerowicz type theorems for the AdSn
backgrounds do not hold. As a result, there is no analogue of the formula (1.2) for flat

backgrounds. For the same reason, one cannot establish that the number of supersymme-

tries preserved by R
1,1 backgrounds is even as this, for AdS2 backgrounds, requires the use

of global arguments.

This paper has been organized as follows. In section 2, we describe all AdSn and

R
n−1,1 backgrounds as near horizon geometries and summarize some of the results of [22]

on 11-dimensional horizons which are essential for the investigation that follows. In sec-

tion 3, we solve the KSEs for the AdS2 backgrounds along the AdS2 directions. In section 4

we demonstrate two new Lichnerowicz type theorems for AdS2 backgrounds utilizing the

maximum principle and verify that such backgrounds preserve an even number of super-

symmetries. In sections 5, 7 and 9, we solve the KSEs for AdS3, AdS4 and AdS5 back-

grounds verifying (1.1), respectively. In sections 6, 8 and 10, we prove new Lichnerowicz

type theorems for AdS3, AdS4 and AdS5 backgrounds verifying (1.2), respectively. In
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section 11, we investigate the factorization of the Killing spinors of AdS backgrounds.

In section 12, we prove (1.2) for R
n−1,1 backgrounds. We state our conclusions and

describe some preliminary results on the geometry of AdSn and R
n−1,1 backgrounds in

section 13.

2 AdS backgrounds and near horizon geometries

2.1 Warped AdS and flat backgrounds

To systematize the investigation of warped AdS and Minkowski backgrounds in 11-dimen-

sional supergravity, AdSn×wM
11−n and R

n−1,1×wM
11−n, respectively, it is convenient to

express them as near horizon geometries. This has already been suggested in [20], where

a preliminary analysis has been carried out. In particular, the most general form of the

metric and 4-form flux which includes all these backgrounds can be written in Gaussian

null coordinates [24, 25] as

ds2 = 2e+e− + δije
iej = 2du

(

dr + rh−
1

2
r2∆du

)

+ ds2(S) ,

F = e+ ∧ e− ∧ Y + re+ ∧ dhY +X , (2.1)

where we have introduced the frame

e+ = du , e− = dr + rh−
1

2
r2∆du , ei = eiJdy

J ; gIJ = δije
i
Ie

j
J , (2.2)

and

ds2(S) = δije
iej , (2.3)

is the metric on the space S transverse to the lightcone directions given by r = u = 0. The

dependence on the coordinates r, u is given explicitly and dhY = dY − h∧ Y . In addition,

∆, h, Y and X are a 0-form, 1-form, 2-form and a 4-form on S and depend only on the

coordinates y of S. We choose the frame indices i = 1, 2, 3, 4, 6, 7, 8, 9, ♯ and we follow the

conventions of [23]. The form of the fields in (2.1) is the same as that of near horizon

geometries investigated in [21–23].

There are many advantages to describe the AdS backgrounds in terms of near horizon

geometries as in (2.1). One of them is that some of the results obtained for near horizon

geometries in [21–23] can be directly applied here, eg one can use the integrability of

the light-cone directions for horizons to reduce the problem to the identification of the

geometry of near horizon sections S. This is a problem in Riemannian geometry which

is easier to solve. To describe each AdSn ×w M case separately, for n = 2, . . . , 11, some

additional restrictions have to be imposed on the near horizon fields (2.1). This is because

the AdSn ×w M
11−n backgrounds are invariant under the SO(n − 1, 2) isometry group of

AdSn. Imposing this symmetry, we have the following.

– 5 –
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2.1.1 AdS2 ×w M9

The metric and fluxes are

ds2 = 2du

(

dr + rh−
1

2
r2∆du

)

+ ds2(M9) ,

F = e+ ∧ e− ∧ Y +X , (2.4)

with

h = −2A−1dA = ∆−1d∆ , dhY = 0 , (2.5)

where A, Y and X are a 0-form, 2-form and a 4-form on M9 = S, respectively. Observe

that dh = 0.

2.1.2 AdS3 ×w M8

The fields are

ds2 = 2du(dr + rh) +A2dz2 + ds2(M8) ,

F = e+ ∧ e− ∧ dz ∧Q+X , (2.6)

with

h = −
2

ℓ
dz − 2A−1dA, ∆ = 0 , Y = dz ∧Q , dhY = 0 (2.7)

where A,Q,X are a 0-form, 1-form and a 4-form of M8, respectively, and depend only on

the coordinates of M8. ℓ is the radius of AdS.

2.1.3 AdS4 ×w M7

The fields are

ds2 = 2du(dr + rh) +A2(dz2 + e2z/ℓdx2) + ds2(M7) ,

F = ez/ℓA2S e+ ∧ e− ∧ dz ∧ dx+X , (2.8)

with

h = −
2

ℓ
dz − 2A−1dA, ∆ = 0 , Y = ez/ℓA2S dz ∧ dx , dhY = 0 (2.9)

where A,S,X are a 0-form, 0-form and a 4-form of M7, respectively, and depend only on

the coordinates of M7. ℓ is the radius of AdS.

2.1.4 AdSn ×w M11−n, n > 4

The fields of the rest of the backgrounds are

ds2 = 2du(dr + rh) +A2

(

dz2 + e2z/ℓ
n−3
∑

a=1

(dxa)2

)

+ ds2(M11−n) ,

F = X , (2.10)

– 6 –
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with

h = −
2

ℓ
dz − 2A−1dA, ∆ = 0 , Y = 0 , (2.11)

where A,X are a 0-form and a 4-form of M11−n, respectively, and depend only on the

coordinates of M11−n. ℓ is the radius of AdS.

Observe that in all the above backgrounds AdSn×wM
11−n, we have that S = Hn−2×w

M11−n, i.e. S is the warped product of hyperbolic (n-2)-dimensional space Hn−2 with the

transverse space M11−n of AdSn.

2.1.5 R
n−1,1

×w M11−n

Another advantage of the universal ansatz (2.1) is that it includes the warped R
n−1,1 ×w

M11−n backgrounds. These arise in the limit of large AdS radius, ℓ → ∞. This limit is

smooth in all our calculations and so our AdS results can be adapted to R
n−1,1 ×w M

11−n

backgrounds. However, many properties of the AdSn ×w M
11−n backgrounds do not hold

in the limit of Rn−1,1 ×w M
11−n backgrounds and some care must be taken when taking

this limit.

2.2 Bianchi identities and field equations

The fields of AdSn×wM
11−n backgrounds are restricted by the field equations and Bianchi

identities of 11-dimensional supergravity [26]. Before we proceed to apply these to each

AdSn ×w M background separately, it is convenient to decompose them for the universal

ansatz (2.1) along the light-cone directions and the rest. In preparation for the applications

to AdSn ×w M
11−n, we shall also impose that dhY = 0 and dh = 0 which are satisfied

for all these backgrounds. The end result of the decomposition of the field equations and

later the KSEs along the light-cone and S directions is to reduce the problem on S as the

light-cone directions are integrable. In particular, we find the following.

The decomposition of the Bianchi identity of F , dF = 0, for the universal ansatz (2.1)

yields

dX = 0 , (2.12)

i.e. X is a closed form on S.

Similarly, the field equation

d ⋆11 F −
1

2
F ∧ F = 0 , (2.13)

of the 3-form gauge potential yields

∇̃iXiℓ1ℓ2ℓ3+ = hiXiℓ1ℓ2ℓ3 −
1

48
ǫℓ1ℓ2ℓ3

q1q2q3q4q5q6Yq1q2Xq3q4q5q6 (2.14)

and

∇̃jYji −
1

1152
ǫi
q1q2q3q4q5q6q7q8Xq1q2q3q4Xq5q6q7q8 = 0 , (2.15)

where ∇̃ is the Levi-Civita connection of the metric ds2(S) on S.

– 7 –
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The Einstein equation

RMN =
1

12
F 2
MN −

1

144
gMNF

2 . (2.16)

of 11-dimensional supergravity decomposes into a number of components. In particular

along S, one finds

R̃ij + ∇̃(ihj) −
1

2
hihj = −

1

2
Y 2
ij +

1

12
X2

ij + δij

(

1

12
Y 2 −

1

144
X2

)

, (2.17)

where R̃ij is the Ricci tensor of S. The +− component of the Einstein equation gives

∇̃ihi = 2∆+ h2 −
1

3
Y 2 −

1

72
X2 . (2.18)

Similarly, the ++ and +i components of the Einstein equation can be expressed as

1

2
∇̃i∇̃i∆−

3

2
hi∇̃i∆−

1

2
∆∇̃ihi +∆h2 = 0 , (2.19)

and

−∇̃i∆+∆hi = 0 , (2.20)

respectively. The last equation implies that if ∆ 6= 0, which is the case for only the

AdS2 ×w M
9 backgrounds, then h = ∆−1d∆.

As has been explained in [22], the ++ and the +i components of the Einstein equa-

tions, (2.19) and (2.20), respectively, are not independent but they hold as a consequence

of (2.12), the 3-form field equations (2.14) and (2.15) and the components of the Ein-

stein equation in (2.17) and (2.18). This does not make use of supersymmetry, or any

other assumptions on S. Hence, the conditions on ds2(S), ∆, h, Y and X simplify

to (2.12), (2.14), (2.15), (2.17) and (2.18).

2.3 Killing spinor equations

Another advantage of using the universal ansatz (2.1) is that one can apply the results

obtained for near horizon geometries in [22, 23] to integrate the KSEs

∇M ǫ+

(

−
1

288
/ΓFM +

1

36
/FM

)

ǫ = 0 ,

(2.21)

of 11-dimensional supergravity [26], where ∇ is the spacetime Levi-Civita connection. In

particular, it is known that the KSEs evaluated on the universal ansatz (2.1) are integrable

along the light-cone directions. The analysis that follows is carried out in generality. In

particular, we do not put any restrictions on the form of either the Killing spinor, or of

the fields. Moreover, we do not impose any other additional restrictions, like for example

the bi-linear matching condition. Furthermore, the calculation is local and applies to all

AdSn ×w M backgrounds.

– 8 –
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2.3.1 Light-cone integrability and independent KSEs

After integrating along the light-cone directions following [21, 22], one can write the Killing

spinor ǫ as

ǫ = ǫ+ + ǫ− , Γ±ǫ± = 0 , (2.22)

with

ǫ+ = φ+ + uΓ+Θ−φ−, ǫ− = φ− + rΓ−Θ+ǫ+ , (2.23)

where

Θ± =

(

1

4
/h+

1

288
/X ±

1

12
/Y

)

, (2.24)

Γ± are light-cone projections, and φ± = φ±(y) do not depend on r or u and depend only

on the coordinates of S. For future reference, we write

ǫ(φ−, φ+) = φ+ + uΓ+Θ−φ− + φ− + rΓ−Θ+ (φ+ + uΓ+Θ−φ−) . (2.25)

Furthermore, one can show that the only remaining independent KSEs are

∇
(±)
i φ± ≡ ∇̃iφ± +Ψ

(±)
i φ± = 0 , (2.26)

where

Ψ
(±)
i = ∓

1

4
hi −

1

288
/ΓXi +

1

36
/Xi ±

1

24
/ΓY i ∓

1

6
/Y i , (2.27)

and that if φ− is a solution of the KSEs, ∇
(−)
i φ− = 0, then

φ+ ≡ Γ+Θ−φ− (2.28)

is also a solution, ∇
(+)
i φ+ = 0. These results follow after substituting the spinor (2.22) into

the KSEs (2.21) and after an extensive use of the Bianchi identities and field equations.

The substitution of (2.22) into the KSEs (2.21) yields a large number of integrability

conditions that are satisfied after an extensive use of the Bianchi identities, field equations

and the independent KSEs (2.26). However in what follows, it is instructive to include two

of these integrability conditions. Although these are not independent, nevertheless they

are useful in the solution of the KSEs along the remaining AdS directions. After imposing

dh = dhY = 0, which are satisfied for all AdSn ×w M
11−n backgrounds, we have

(

1

2
∆ + 2

(

1

4
/h−

1

288
/X +

1

12
/Y

)

Θ+

)

φ+ = 0 , (2.29)

and
(

−
1

2
∆ + 2

(

−
1

4
/h+

1

288
/X +

1

12
/Y

)

Θ−

)

φ− = 0 . (2.30)

To summarize, the independent KSEs that have to be solved to find the supersymmetric

AdSn ×wM
11−n backgrounds are (2.26). In what follows, we shall demonstrate that these

can be integrated along the remaining AdS directions in AdSn ×w M
11−n.
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3 AdS2: local analysis

3.1 Field equations

In this case M9 = S, the fields on S are

ds2(S) = ds2(M9) , F̃ 2 = Y , F̃ 4 = X , h = −2A−1dA . (3.1)

Next, it follows from (2.20) that h = ∆−1d∆ and so

∆ = ℓ−2A−2 , (3.2)

where ℓ is the radius of AdS2. Furthermore, the Bianchi identity for F and dhY = 0 imply

that

dX = 0 , d(A2Y ) = 0 . (3.3)

The remaining independent field equations are

∇̃i(A2Xiℓ1ℓ2ℓ3) = −
A2

48
ǫℓ1ℓ2ℓ3

q1q2q3q4q5q6Yq1q2Xq3q4q5q6 , (3.4)

R̃ij−∇̃i∂j logA
2−

1

2
∂i logA

2∂j logA
2 = −

1

2
Y 2
ij+

1

12
X2

ij+δij

(

1

12
Y 2−

1

144
X2

)

, (3.5)

∇̃i∂i logA = −
A−2

ℓ2
−2∂i logA∂i logA+

1

6
Y 2+

1

144
X2 , (3.6)

and (2.15) which remains unmodified.

3.1.1 The warp factor A is nowhere vanishing

Suppose that M9 is path connected, the fields are smooth and A is not identical to zero

but it may vanish at some points in M9. First let p ∈ M9 such that A(p) = 0 and a

point q ∈ M9 such that A(q) 6= 0. Without loss of generality we take A(q) > 0, otherwise

one can consider −A for the argument that follows. Moreover consider a smooth path γ

with γ(0) = q and γ(1) = p, and the function f = A ◦ γ. As A is continuous, there is a

neighborhood U of q such that A|U 6= 0. Next consider, the set

V = {a ∈ [0,∞) : f(t) 6= 0, ∀t ∈ [0, a]} . (3.7)

V is not empty as 0 ∈ V , andW ⊂ V whereW = {t ∈ [0, 1] : γ(t) ∈ U}. As V is bounded

by 1, it has a supremum b. Continuity requires that f(b) = 0 and there is a sequence {tn}

in V which converges at b.

Next restricting (3.6) at γ and multiplying it with f2(tn) 6= 0 for some finite n, we find

f(tn)∇
2A+ ∂iA∂

iA+
1

ℓ2
+
f(tn)

2

6
Y 2 +

f(tn)
2

144
X2 = 0 . (3.8)

Now as n → ∞, f(tn) approaches zero and becomes very small while the derivatives of A

and the fluxes are smooth and so their values are bounded when restricted on [0, 1] which

is compact. As a result, (3.6) cannot be satisfied very close to γ(b) as the term 1
ℓ2

which

depends on the radius of AdS cannot be arbitrary close to zero for any ℓ2 < ∞. Thus A

cannot vanish. Later, we shall see that A2 is related to the length of a parallel spinor in

all AdSk cases which again confirms that A is nowhere vanishing.

– 10 –



J
H
E
P
0
2
(
2
0
1
5
)
1
4
5

3.2 Killing spinor equations

The KSEs on S =M9 are

∇
(±)
i φ± ≡ ∇̃iφ± +Ψ

(±)
i φ± = 0 , (3.9)

where

Ψ
(±)
i = ±

1

4
∂i logA

2 −
1

288
/ΓXi +

1

36
/Xi ±

1

24
/ΓY i ∓

1

6
/Y i . (3.10)

Furthermore from the general results on horizons, if φ− is a solution of the KSEs, ∇
(−)
i φ− =

0, then

φ+ ≡ Γ+Θ−φ− , (3.11)

is also a solution, ∇
(+)
i φ+ = 0, where

Θ± =

(

−
1

4
/∂ logA2 +

1

288
/X ±

1

12
/Y

)

. (3.12)

It is not apparent that φ+ = Γ+Θ−φ− 6= 0. In particular, φ− can be in the kernel of

Θ−. In the AdS2 case, it has been shown in [23] that if M9 is compact without boundary,

then KerΘ− = {0} and so φ+ 6= 0 which leads to the enhancement of supersymmetry.

4 AdS2: global analysis

To prove that the number of supersymmetries preserved by AdS2 backgrounds is even,

it is required to establish Lichnerowicz type theorems relating the Killing spinors φ±,

∇(±)φ± = 0, to the zero modes of the Dirac-like operators

D(±) = Γi∇̃i +Ψ(±) , (4.1)

where

Ψ(±) = ΓiΨ
(±)
i = ±

1

4
/∂ logA2 +

1

96
/X ±

1

8
/Y . (4.2)

Such theorems have been demonstrated in the context of near horizon geometries in [23].

Since the AdS2 backgrounds are a special case of near horizon geometries, the result follows.

However, there is a difference. For AdS2 backgrounds both Lichnerowicz type theorems

can be shown using the maximum principle which has an advantage relative to a partial

integration formula used in [23]. This is because one also finds a restriction on the length

of the spinors.

4.1 A Lichnerowicz type of theorem for D
(+)

The proof of this theorem is identical to that in [23] and so we shall not give details. It

is clear that if ∇̃(+)φ+ = 0, then φ+ is a zero mode of the D(+) operator. To prove the

– 11 –
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converse, let us assume that D(+)φ+ = 0. Then after using the field equations and Bianchi

identities, one obtains

∇̃i∇̃i ‖ φ+ ‖2 +∂i logA2 ∇̃i ‖ φ+ ‖2= 2〈∇̃(+)iφ+, ∇̃
(+)
i φ+〉 . (4.3)

Assuming that the requirements for applying of the maximum principle hold2 on the func-

tion ‖ φ+ ‖2, eg M9 is compact and the fields are smooth, one finds that the only solutions

to the above equation are

D(+)φ+ = 0 ⇐⇒ ∇̃
(+)
i φ+ = 0 , (4.4)

and

‖ φ+ ‖= const . (4.5)

This establishes the theorem.

4.2 A Lichnerowicz theorem for D
(−)

The proof of the Lichnerowicz type theorem for the D(−) operator is done in a similar

fashion as that for D(+). It is clear that if ∇̃(−)φ− = 0, then φ− is a zero mode of the

D(−) operator. To prove the converse, let us assume that D(−)φ− = 0. Then after using

the field equations and Bianchi identities, one obtains

∇̃i∇̃i ‖ φ− ‖2 +hi∇̃i ‖ φ− ‖2 +(∇̃ihi) ‖ φ− ‖2= 2〈∇̃(−)iφ−, ∇̃
(−)
i φ−〉 . (4.6)

For the AdS2 solutions, h = ∆−1d∆, and this expression can be rewritten as

∇̃i∇̃i

(

∆ ‖ φ− ‖2
)

− hi∇̃i

(

∆ ‖ φ− ‖2
)

= 2∆〈∇̃(−)iφ−, ∇̃
(−)
i φ−〉 . (4.7)

Since ∆ is nowhere zero applying the maximum principle on the function ∆ ‖ φ− ‖2, one

concludes that

D(−)φ− = 0 ⇐⇒ ∇̃
(−)
i φ− = 0 (4.8)

and

∆ ‖ φ− ‖2= const . (4.9)

This establishes the 1-1 correspondence between Killing spinors and the zero modes of the

Dirac-like operator D(−).

2From now on whenever we apply the maximum principle we shall assume that all the requirements on

the fields and the associated manifold hold.
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4.3 Counting supersymmetries

One of the applications of the global analysis above is to prove that AdS2×wM backgrounds

preserve 2k, 0 < k < 15, supersymmetries. The proof that AdS2 ×w M9 backgrounds

preserve an even number of supersymmetries is similar to that for near horizon geometries

established in [23]. The main point of the proof is that the D(−) operator has the same

principal symbol as the standard Dirac operator on the 9-dimensional manifold M9. As

a result they have the same index which in this case vanishes, as the index of the Dirac

operator on compact without boundary odd dimensional manifolds is zero. Moreover, one

can show that the dimension of the Kernel of D(+) operator is the same as that of (D(−))†,

the adjoint of D(−). Now the number of supersymmetries N preserved by the AdS2 ×w M

backgrounds is

N = dimKerD(−) + dimKerD(+) = dimKerD(−) + dimKer(D(−))†

= 2dimKerD(−) = 2k , (4.10)

where we have used that dimKerD(−) = dimKer(D(−))† because the index of D(−) is

zero [27].

The restriction 0 < k < 15 in the range of k arises because of the results of [18]

and [16] which rule out the existence of AdS2 ×w M backgrounds preserving 30 and 32

supersymmetries, respectively.

5 AdS3: local Analysis

5.1 Bianchi identities and field equations

The metric on S = R×w M
8 and the form field strengths are

ds2(S) = A2dz2 + ds2(M8) , ds2(M8) = δije
iej ,

Y = A−1ez ∧Q , F̃ = X . (5.1)

Next the Bianchi identity for F implies that

d(A2Q) = 0 , dX = 0 . (5.2)

Let D be the Levi-Civita connection3 on M8 and dvol(S) = ez ∧ dvol(M8). Then, we

find that the field equations (2.14) and (2.15) of the 4-form F reduce on M8 as

DkXki1i2i3 = −3A−1DkAXki1i2i3 +
1

24
A−1ǫi1i2i3

j1j2j3j4j5Qj1Xj2j3j4j5 , (5.3)

and

Dk(A−1Qk) +
1

1152
ǫi1i2i3i4i5i6i7i8Xi1i2i3i4Xi5i6i7i8 = 0 . (5.4)

3From here on D will denote the Levi-Civita connection on M11−n and the latin indices i, j, k, ℓ are

frame indices for M11−n.
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We also reduce the Einstein equation (2.17). From the zz component one obtains

A−1DkDkA+ 2A−2DkADkA+
2

ℓ2
A−2 =

1

3
A−2Q2 +

1

144
X2 , (5.5)

and from the i, j component, one has

R
(8)
ij = 3A−1DiDjA−

1

2
A−2QiQj +

1

12
X2

ij + δij

(

1

6
A−2Q2 −

1

144
X2

)

, (5.6)

where R(8) denotes the Ricci tensor of M8.

5.1.1 The warp factor A is nowhere vanishing

Before proceeding with the analysis of the supersymmetry, we shall first examine whether

or not A can vanish somewhere on M8. For this, we use a similar set up as for the proof of

A 6= 0 for the AdS2 case. In particular after assuming that there are points p and q with

A(p) = 0 and A(q) 6= 0, constructing a path γ between p = γ(1) and q = γ(0), and arguing

the existence of a sequence tn such that limn→∞ f(tn) = 0 where f(tn) = A(γ(tn)) 6= 0, we

have from (5.6) and (5.5) that

f2(tn)R
(8) = −6DkADkA−

6

ℓ2
+

11

6
Q2 +

7

144
f(tn)

2X2 , (5.7)

and

f(tn)D
kDkA+ 2DkADkA+

2

ℓ2
=

1

3
Q2 +

1

144
f(tn)

2X2 . (5.8)

Eliminating the Q2 term from the second equation using the first, we find

11f(tn)D
iDiA+ 16DiADiA+

16

ℓ2
= f2(tn)R

(8) +
1

36
f2(tn)X

2 . (5.9)

Assuming regularity for all the data and that M8 is path connected, an argument similar

to that of the AdS2 case implies that the above equation cannot be satisfied if A vanishes.

Therefore A 6= 0 everywhere on M8.

5.2 Killing spinor equations

To reduce the KSEs from S to M8, we first decompose (2.26) along the z-direction to find

∂zφ± = Ξ(±)φ± , (5.10)

where

Ξ(±) = −
1

2
Γz /∂A∓

1

2ℓ
+

A

288
Γz /X ±

1

6
/Q , (5.11)

∂z ≡ ∂
∂z and Γz denotes the frame gamma matrix from here on. The KSEs (2.26) along

the remaining directions can be written as

D
(±)
i φ± = 0 , (5.12)
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where

D
(±)
i = Di ±

1

2
A−1DiA−

1

288
/ΓXi +

1

36
/Xi ∓

1

12
A−1Γz/ΓQi ±

1

6
A−1ΓzQi . (5.13)

Before proceeding further, it is useful to evaluate the following two integrability con-

ditions

Γj

(

DjDi −DiDj

)

φ± =
1

2
R(8)

ijΓ
jφ± (5.14)

and
(

∂zDi −Di∂z

)

φ± = 0 (5.15)

where for both (5.14) and (5.15), the KSE (5.10) and (5.12) are used to expand out the

l.h.s. in terms of the fluxes. After some involved computation, making use of the field

equations, one finds that (5.14) and (5.15) are in fact equivalent. This implies that there

are no mixed integrability conditions between the z-direction and the rest. Therefore the

independent KSEs to solve are (5.10) and (5.12).

Next, we consider the algebraic conditions (2.29) and (2.30). Note that these arise from

the integrability conditions along the light-cone directions and they are not independent,

i.e. they are implied by the remaining KSEs. Nevertheless, (2.29), (2.30), and together

with (5.10) imply that

(∂z)
2φ± ±

1

ℓ
∂zφ± = 0 . (5.16)

This can be solved to yield

φ± = σ± + e∓
z
ℓ τ± , (5.17)

where

∂zσ± = ∂zτ± = 0 , (5.18)

and

Ξ(±)σ± = 0, Ξ(±)τ± = ∓
1

ℓ
τ± . (5.19)

To summarize, in order to find a solution to the KSEs for AdS3 ×w M
8 backgrounds,

it is sufficient to find spinors, τ± and σ± which depend only on the coordinates of M8

satisfying

D
(±)
i σ± = 0 , D

(±)
i τ± = 0 ,

A(±)σ± = 0, B(±)τ± = 0 , (5.20)

where D
(±)
i is defined in (5.13) and

A(±) = Ξ(±) , B(±) = Ξ(±) ±
1

ℓ
. (5.21)

Having given a solution to (5.20), one can substitute it in (5.17) to construct the spinors

φ±. In turn, φ± will solve the KSEs (2.26). Therefore to find the Killing spinors of the

AdS3 ×w M
8 backgrounds, it suffices to find the solutions of (5.20).
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5.3 Counting supersymmetries

Unlike for AdS2 backgrounds, the counting of supersymmetries for AdS3 backgrounds can

be done using local geometry, and so additional requirements, like the conditions for the

maximum principle to apply, are not necessary. For this we note that there is a 1-1

correspondence between the σ− and σ+ solutions to the KSEs. Indeed given a σ− solution

of (5.20), then

σ+ = A−1Γ+Γzσ− , (5.22)

automatically satisfies the KSEs, and conversely, if σ+ is a solution then so is

σ− = AΓ−Γzσ+ . (5.23)

There is also an identical 1-1 correspondence between τ+ and τ− Killing spinors. Further-

more note that unlike for AdS2 backgrounds, Θ− has a non-trivial kernel, i.e. Θ−τ− = 0.

Using the relation between the (σ−, τ−) and (σ+, τ+) spinors described above, we con-

clude that the number of supersymmetries of the AdS3 backgrounds is

N = 2
(

dimKer(D(−),A(−)) + dimKer(D(−),B(−))
)

,

= 2
(

dimKer(D(+),A(+)) + dimKer(D(+),B(+))
)

. (5.24)

Therefore all such backgrounds preserve an even number of supersymmetries establish-

ing (1.1).

6 AdS3: global Analysis

The number of supersymmetries preserved by AdS3 backgrounds can also be counted from

the zero modes of Dirac-like operators on M8 as stated in (1.2). For this a 1-1 correspon-

dence must be established between Killing spinors and the zero modes of these Dirac-like

operators. The proof of this correspondence leads to new Lichnerowicz type theorems

associated with the KSEs (5.20).

6.1 A new Lichnerowicz theorem for τ+ and σ+

One of the main difficulties in establishing (1.2) is to choose appropriate Dirac-like operators

on M8. The analysis is similar for σ+ and τ+ spinors. Because of this, it is straightforward

to describe both cases at once. Let χ denote either the σ+ or the τ+ spinors and consider

the operator

D
(+)
i ≡ D

(+)
i + kΓiC

(+) , (6.1)

where

C(+) =

(

−
1

2
A−1/∂A+

1

288
/X +

1

6
A−1Γz /Q+ cA−1Γz

)

, (6.2)
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c is a constant, with c = − 1
2ℓ for χ = σ+ and c = 1

2ℓ for χ = τ+, and k is another constant

which will later be set to k = −1
8 . Therefore C(+) = A(+) if the operator acts on σ+, and

C(+) = B(+) if the operator acts on τ+. Next observe that if χ is a Killing spinor, then

D
(+)χ = 0.

The associated Dirac equation to (6.1) is

D
(+) ≡ Γi

D
(+)
i χ = ΓiDi +

((

1

2
− 4k

)

A−1/∂A+

(

1

72
+

k

36

)

/X

+

(

5

12
+

4

3
k

)

A−1Γz /Q+ 8ckA−1Γz

)

. (6.3)

In what follows, we shall demonstrate that the σ+, τ+ Killing spinors are in 1-1 correspon-

dence with the zero modes of D (+).

It is clear that if χ is a Killing spinor, then it is a zero mode of D (+). It remains to

prove the converse. For this assume that χ is a zero mode of D (+), i.e. D (+)χ = 0, and

that the fields of the theory satisfy the field equations and the Bianchi identities. Then we

shall demonstrate that for k = −1
8

DiDi ‖ χ ‖2 +3A−1DiADi ‖ χ ‖2= 2〈D(+)iχ,D
(+)
i χ〉+

9

4
‖ C(+)χ ‖2 . (6.4)

An application of the maximum principle on the function ‖ χ ‖2 reveals that the zero

modes of D (+) are Killing spinors. Note that as we have demonstrated A is nowhere zero,

it follows that A−1 is smooth if A is smooth.

To show (6.4), we compute

DiDiχ = ΓkDk

(

ΓjDjχ

)

+
1

4
R(8)χ

= ΓkDk

(((

4k −
1

2

)

A−1/∂A−

(

1

72
+

k

36

)

/X

−

(

5

12
+

4

3
k

)

A−1Γz /Q− 8ckA−1Γz

)

χ

)

+
1

4
R(8)χ . (6.5)

One then obtains

Re 〈χ,DiDiχ〉 = 〈χ,

((

−
1

2
+ 4k

)

Dk(A−1DkA) +
1

4
R̂+

(

5

12
+

4

3
k

)

Dk(A−1Qk)Γz

)

χ〉

+Re 〈χ,Γi

((

−
1

2
+ 4k

)

A−1/∂A−

(

1

72
+

k

36

)

/X

−

(

5

12
+

4

3
k

)

A−1Γz /Q− 8ckA−1Γz

)

Diχ〉 . (6.6)
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We also write

〈Diχ,Diχ〉 = 〈D(+)iχ,D
(+)
i χ〉+ F1

+Re 〈χ,

(

−A−1DiA+
1

144
/ΓX

i
+

1

18
/X
i

−
1

6
A−1Γz/ΓQ

i
−

1

3
A−1ΓzQ

i + k

(

A−1/∂A−
1

144
/X

+
1

3
A−1Γz /Q− 2cA−1Γz

)

Γi

)

Diχ〉 , (6.7)

where

F1 = 〈χ,

(

−
11

32
A−2DiADiA+

1

384
A−1Dk1A /ΓX

k1 −
5

32
A−2ΓzQiD

iA

+
5

24576
Xk1k2k3k4Xk5k6k7k8Γ

k1k2k3k4k5k6k7k8 +
1

1024
Xk1k2ijXk3k4

ijΓk1k2k3k4

−
17

3072
X2 −

1

128
A−1ΓzQ

i /Xi −
1

16
A−2Q2

+
1

384
cA−1Γz /X +

1

16
cA−2 /Q−

1

32ℓ2
A−2

)

χ〉 (6.8)

is a term which is purely algebraic in Q,X, dA and A. We then evaluate

1

2
DiDi ‖ χ ‖2= Re 〈χ,DiDiχ〉+ 〈Diχ,Diχ〉 . (6.9)

We first consider the sum of the last two lines of (6.6) and the last three lines of (6.7). We

require that this should be written in the form 〈χ,F2Γ
kDkχ〉, where F2 is purely algebraic

in Q,X, dA and A. This imposes the condition k = −1
8 as was mentioned previously, with

F2 = −
1

384
/X +

7

8
A−1/∂A−

1

8
A−1Γz /Q−

3

4
cA−1Γz . (6.10)

If k = −1
8 , one can then eliminate almost all of the conditions involving Diχ by

making use of the Dirac equation. However, there is one term of the type 〈χ,DkADkχ〉,

which cannot be entirely removed by such an elimination. This remaining term is equal to

−3
2A

−1DiADi ‖ χ ‖2, and this will be retained.

We therefore set k = −1
8 , and expand out the terms algebraic in the fluxes, making use

of the bosonic field equations to eliminate the terms of the form DiXik1k2k3 , D
i(A−1Qi),

R(8) and DiDiA in terms of terms algebraic in the fluxes and dA. Then after some com-

putation, we obtain (6.4).

To summarize, we have shown that for k = −1
8

D
(+)χ = 0 ⇐⇒ D

(+)
i χ = 0 , C(+)χ = 0 ,

(6.11)

and furthermore

‖ χ ‖= const, (6.12)
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as a consequence of (6.4). In particular, if σ+, τ+ satisfy the Dirac equation (6.3) with

k = −1
8 , and c = − 1

2ℓ , c = 1
2ℓ , respectively, then σ+, τ+ satisfy the KSE (5.20), and

furthermore

‖ σ+ ‖= const., ‖ τ+ ‖= const. (6.13)

This concludes the proof of a new Lichnerowicz type theorem for the connection (6.1).

6.2 A new Lichnerowicz theorem for τ
−

and σ
−

There is also an 1-1 correspondence between the τ−, σ− Killing spinors and the zero modes

of a Dirac-like operator on M8. The proof follows from the relationship between τ−, σ−
and τ+, σ+ spinors given in (5.22) and (5.23) and the corresponding relations for τ±. Al-

teratively, one can repeat the analysis we have done for σ+ and τ+ now for σ− and τ−.

For this, we again treat both cases simultaneously by defining the operator

D
(−)
i ≡ D

(−)
i ψ + kΓiC

(−) , (6.14)

where

C(−) = −
1

2
A−1/∂A+

1

288
/X −

1

6
A−1Γz /Q+ c̃A−1Γz . (6.15)

The operator D
(−) acts on the spinors ψ such that for ψ = σ− one has c̃ = 1

2ℓ , and for

ψ = τ− one has c̃ = − 1
2ℓ . Equivalently, C

(−) = A(−) for c̃ = 1
2ℓ and C(−) = B(−) for c̃ = − 1

2ℓ .

k will be set to k = −1
8 . It is clear from this that if ψ is a Killing spinor, then D

(−)
i ψ = 0.

Next consider the Dirac-like operator

D
(−) ≡ Γi

D
(−)
i = ΓiDi +

(

1

96
/X −

1

4
A−1Γz /Q−A−1c̃Γz

)

. (6.16)

Observe that if ψ is a Killing spinor, then ψ is a zero mode of D (−). To prove the converse,

assume that D (−)ψ = 0 and after performing a calculation similar to the one presented for

D (+), one can establish the formula

DiDi

(

A−2 ‖ ψ ‖2
)

+3A−1DiADi

(

A−2 ‖ ψ ‖2
)

=2A−2〈D(−)iψ,D
(−)
i ψ〉+

9

4
A−2 ‖ C(−)ψ ‖2 ,

(6.17)

for k = −1
8 . In fact, for the purely algebraic terms not obtained from the bosonic field equa-

tions and not involving dA, the resulting expressions are identical, modulo the replacements

Q→ −Q, c→ c̃.

It is clear that on applying the maximum principle to (6.17), it follows that

D
(−)ψ = 0 ⇐⇒ D

(−)
i ψ = 0, C(−)ψ = 0 ,

(6.18)

and furthermore that

‖ A−1ψ ‖= const. (6.19)
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Therefore, if σ−, τ− satisfy the Dirac equation (6.16) for c̃ = 1
2ℓ and c̃ = − 1

2ℓ , respectively,

then σ−, τ− satisfy the KSEs (5.20), and furthermore

‖ A−1σ− ‖= const., ‖ A−1τ− ‖= const. (6.20)

This together with the similar result in the previous section establish the 1-1 correspondence

between Killing spinors and zero modes of the Dirac-like operators.

6.3 Counting supersymmetries again

It is now straightforward to establish (1.2). Provided that the requirements for the validity

of the new Lichnerowicz type theorems hold, the number of supersymmetries preserved by

the AdS3 backgrounds (5.24) can be rewritten as

N = 2
(

dimKer(D
(−)
1/2ℓ) + dimKer(D

(−)
−1/2ℓ)

)

= 2
(

dimKer(D
(+)
−1/2ℓ) + dimKer(D

(+)
1/2ℓ)

)

, (6.21)

where the subscripts denote the values of c̃ and c.

7 AdS4: local analysis

7.1 Field equations

The metric and fluxes induced on S = H2 ×w M
7 from AdS4 ×w M

7 are

ds̃2 = (ez)2 + (ex)2 + ds2(M7) , ds2(M7) = δije
iej ,

Y = S ez ∧ ex , F̃ = X , (7.1)

where

ez = Adz , ex = Aez/ℓdx . (7.2)

Substituting these into the Bianchi identities and field equations for F , we find that

dX = 0 , d(A4S) = 0 , (7.3)

and

DkXki1i2i3 + 4DkAXki1i2i3 = −
1

24
Sǫi1i2i3

k1k2k3k4Xk1k2k3k4 , (7.4)

where we have set dvol(S) = ez ∧ ex ∧ dvol(M7).

Furthermore, the Einstein equations reduce on M7 as

DkDk logA = −
3A−2

ℓ2
− 4∂k logA∂

k logA+
1

3
S2 +

1

144
X2 , (7.5)

and

R
(7)
ij − 4Di∂j logA− 4∂i logA∂j logA =

1

12
X2

ij + δij

(

1

6
S2 −

1

114
X2

)

, (7.6)

where R(7) is the Ricci tensor onM7. This completes the reduction of the Bianchi identities

and field equations on M7.
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7.1.1 The warp factor A is nowhere vanishing

Using a similar argument based of the field equations as that in the AdS3 case, one can

again demonstrate that A is nowhere vanishing on M7. Again A2 is related via the KSEs

to the length of a parallel spinor confirming that it cannot vanish anywhere.

7.2 Integrability of KSEs along AdS

To integrate the independent KSEs (2.26) along the remaining AdS directions, we shall

first integrate along ez and then the remaining ex direction. The integration along the

ez direction proceeds as in the previous AdS3 ×w M
8 backgrounds and after using (2.29)

and (2.30), we find that

φ± = η± + e∓z/ℓχ± , (7.7)

where

Ξ(±)η± = 0 , Ξ±χ± = ∓
1

ℓ
χ± , (7.8)

and

Ξ(±) = −
1

2
Γz /∂A∓

1

2ℓ
+

1

288
ΓzA /X ±

1

6
ASΓx . (7.9)

The spinors η± and χ± depend on the x coordinate of AdS4 and the coordinates of M7.

Next we integrate along the x coordinate to find that

φ+ = σ+ −
1

ℓ
xΓxΓzτ+ + e−z/ℓτ+ , φ− = σ− + ez/ℓ

(

−
1

ℓ
xΓxΓzσ− + τ−

)

, (7.10)

where σ± and τ± depend only on the coordinates of M7. There are no further conditions

to consider.

To summarize after integration over all AdS directions, the independent KSEs are

D
(±)
i σ± = 0 , D

(±)
i τ± = 0 , (7.11)

and

A(±)σ± = 0 , B(±)τ± = 0 , (7.12)

where

D
(±)
i ≡ Di ±

1

2
∂i logA−

1

288
/ΓXi +

1

36
/X i ±

1

12
SΓizx ,

A(±) ≡ Ξ(±) , B(±) ≡ Ξ(±) ±
1

ℓ
. (7.13)

Therefore, the KSEs reduce to a set of parallel transport and algebraic equations on the

transverse spaces M7.
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7.3 Counting supersymmetries

To find the supersymmetries preserved by the AdS4×wM
7 backgrounds, notice that if σ±

is a solution of the KSEs, then

τ± = Γzxσ± (7.14)

is also a solution, and vice versa as Γzx is invertible. Furthermore, observe that if σ−, τ−
is a solution, so is

σ+ = A−1Γ+Γzσ− , τ+ = A−1Γ+Γzτ− . (7.15)

and similarly, if σ+, τ+ is a solution, so is

σ− = AΓ−Γzσ+ , τ− = AΓ−Γzτ+ . (7.16)

From the above relations, one concludes that the AdS4 ×w M
7 backgrounds preserve

N = 4 dimKer(D(−),A(−)) (7.17)

supersymmetries for 0 < dimKer(D(−), A(−)) ≤ 8. This proves (1.1). For dimKer(D(−),

A(−)) = 8, there is a unique solution which is locally isometric to AdS4 × S7.

8 AdS4: global analysis

8.1 A new Lichnerowicz theorem for τ+ and σ+

To prove (1.2), one has to establish a 1-1 correspondence between Killing spinors and zero

modes of a Dirac-like operator. To identify the appropriate Dirac-like operator, as for the

AdS3 case, we take a linear combination of the (7.11) and (7.12) KSEs and consider the

modified gravitino KSE operator

D
(+)
i ≡ D

(+)
i + kΓiC

(+) , (8.1)

where

C(+) = −
1

2
A−1ΓkDkA+

1

288
/X +

1

6
SΓzx + cA−1Γz . (8.2)

D
(+) is acting on the spinors χ such that for χ = σ+, one has c = − 1

2ℓ , and for c = 1
2ℓ , one

has χ = τ+. In what follows, one determines k to formulate a maximum principle for the

length square ‖ χ ‖2 of the spinor χ.

The associated Dirac equation to (8.1) is

D
(+) ≡ Γi

D
(+)
i = ΓiDi +

[

1− 7k

2
A−1/∂A+

5 + 7k

288
/X +

7

4
SΓzx + 7ckA−1Γz

]

. (8.3)

Assuming now that D (+)χ = 0 and using the Bianchi identities and field equations,

one can prove following steps similar to those described for the AdS3 case that

D2 ‖ χ ‖2 +4A−1∂iA∂i ‖ χ ‖2= 2〈D
(+)
i χ,D(+)iχ〉+

36

7
‖ C(+)χ ‖2 , (8.4)

provided that k = −2/7.
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Applying the maximum principle on ‖ χ ‖2, one finds that

D
(+)χ = 0 ⇐⇒ D

(+)
i χ = 0 , C(+)χ = 0 (8.5)

and in addition

‖ χ ‖= const . (8.6)

This establishes a 1-1 correspondence between the σ+ and τ+ Killing spinors and zero

modes of D (+).

8.2 A new Lichnerowicz theorem for τ
−

and σ
−

A Lichnerowicz type theorem can be proven for the τ− and σ− Killing spinors following

similar steps to those described in the previous section. Alternatively, one can use the

relation between τ−, σ− and τ+, σ+ spinors described in (7.15) and (7.16). In either case,

assuming that ψ is a zero mode of a modified Dirac-like operator D (−), one can establish

the equality

D2 ‖ A−1ψ ‖2 +4A−1∂iA∂i ‖ A
−1ψ ‖2= 2A−2〈D

(−)
i ψ,D(−)iψ〉+

36

7
A−2 ‖ C(−)ψ ‖2 , (8.7)

where D
(−) = D(−) + kΓiC

(−) is the modified gravitino KSE operator,

C(−) = −
1

2
A−1/∂A+ c̃A−1Γz +

1

288
/X −

1

6
SΓzx , (8.8)

k = −2/7 and c̃ = 1
2ℓ for ψ = σ− and c̃ = − 1

2ℓ for ψ = τ−. Moreover D (−) = Γi
D
(−)
i . An

application of the maximum principle implies that

D
(−)ψ = 0 ⇐⇒ D

(−)
i ψ = 0 , C(−)ψ = 0 , (8.9)

and that

‖ A−1ψ ‖= const . (8.10)

The warp factor is therefore related to the length of the Killing spinors. Combining the

results of this with the previous section, we have established a 1-1 correspondence between

the Killing spinors and the zero modes of Dirac-like operators on M7.

8.3 Counting supersymmetries

Now we can establish (1.2). It is simply a consequence of the Lichnerowicz type theo-

rems proved in the previous two sections. In particular, the number of supersymmetries

preserved by AdS4 ×w M
7 backgrounds (7.17) can now be written as

N = 4 dimKerD
(−)
1/2ℓ . (8.11)

This formula can also be expressed in terms of any other three choices of Dirac-like opera-

tors.
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9 AdSn n > 4: local analysis

9.1 Bianchi identities and field equations

The metric and fluxes induced on S = Hn−2 ×w M
11−n from AdSn ×w M

11−n, n > 4, are

ds̃2 = (ez)2 + δabe
aeb + ds2(M11−n) , ds2(M11−n) = δije

iej ,

F̃ = X , (9.1)

where

ez = Adz , ea = Aez/ℓdxa . (9.2)

The Bianchi identities and field equations of the fluxes can be written as

DkXki1i2i3 = −nA−1DkAXki1i2i3 , dX = 0 . (9.3)

Similarly after a decomposition, the independent Einstein field equations are

Dk∂k logA = −
n− 1

ℓ2
A−2 − n∂k logA∂k logA+

1

144
X2 , (9.4)

and

R
(11−n)
ij − nDi∂j logA− n∂i logA∂j logA =

1

12
X2

ij −
1

144
δijX

2 . (9.5)

This completes the decomposition of Bianchi and the field equations on M11−n.

9.1.1 The warp factor A is nowhere vanishing

For AdSn ×wM
11−n backgrounds, the warp factor does not vanish at any point of M11−n.

This follows from the field equations as in all the previous cases.

9.2 Integrability of KSEs along AdS

To integrate the independent KSEs (2.26) along the remaining AdS directions, we shall

first integrate along ez and then the remaining ea directions. The integration along the

ez direction proceeds as in the previous examples and after using (2.29) and (2.30, we

find that

φ± = η± + e∓z/ℓχ± , (9.6)

where

Ξ(±)η± = 0 , Ξ(±)χ± = ∓
1

ℓ
χ± , (9.7)

and

Ξ(±) = −
1

2
Γz /∂A∓

1

2ℓ
+

1

288
ΓzA /X . (9.8)
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The spinors η± and χ± depend on the xa and the coordinates of M . Next we integrate

along the xa coordinates to find that

φ+ = σ+ −
1

ℓ
xaΓaΓzτ+ + e−z/ℓτ+ , φ− = σ− + ez/ℓ

(

−
1

ℓ
xaΓaΓzσ− + τ−

)

, (9.9)

where σ± and τ± depend only on the coordinates of M11−n.

Furthermore after integration over all AdS directions, the independent KSEs are

D
(±)
i σ± = 0 , D

(±)
i τ± = 0 , (9.10)

and

A(±)σ± = 0 , B(±)τ± = 0 , (9.11)

where

D
(±)
i = Di ±

1

2
∂i logA−

1

288
/ΓXi +

1

36
/X i ,

A(±) = Ξ(±) , B(±) = Ξ(±) ±
1

ℓ
. (9.12)

Therefore, the investigation of solutions to the KSEs reduces to a set of parallel transport

and algebraic equations on the transverse spaces M11−n.

9.3 Counting supersymmetries

To find the supersymmetries preserved by the AdSn×wM
11−n backgrounds, notice that if

σ± is a solution of the KSEs, then

τ±(v) = vaΓzΓaσ± (9.13)

is also a solution for any constant vector v, and vice versa. In addition if two vectors

v are orthogonal, then the associated spinors τ±(v) are also orthogonal and so linearly

independent. Furthermore, observe that if σ−, τ− is a solution, so is

σ+ = A−1Γ+Γzσ− , τ+ = A−1Γ+Γzτ− . (9.14)

Similarly, if σ+, τ+ is a solution, so is

σ− = AΓ−Γzσ+ , τ− = AΓ−Γzτ+ . (9.15)

As a result if σ− is Killing spinor, then

Γabσ− , a < b , (9.16)

are also Killing spinors of the same KSEs, i.e. D(−)Γabσ− = Ξ(−)Γabσ− = 0. However

not all (σ−,Γabσ−), a < b, are linearly independent. Clearly if {σ−,Γabσ−}, a < b are

mutually orthogonal, they are linearly independent. σ− is orthogonal to all Γabσ−, and

Γabσ− is orthogonal to Γa′b′σ−, iff the bilinear

〈σ−,ΓabΓa′b′σ−〉 = 0 . (9.17)
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Using these, one can count the number of supersymmetries preserved by AdSn ×w M
11−n

backgrounds. A straightforward analysis reveals that if the solutions exist, AdS5 ×w M
6

backgrounds preserve 8k supersymmetries and AdS6 ×w M5 backgrounds preserve 16k

supersymmetries. Note that

dimKer(D(−),Ξ(−)) = 2k , dimKer(D(−),Ξ(−)) = 4k , (9.18)

respectively. In these two cases, the orthogonality condition (9.17) is always automatically

satisfied.

For AdS7 ×w M
4, (9.17) gives a non-trivial restriction for a, b, a′ and b′ distinct. To

see this observe that Γaba′b′ commutes with the KSEs (D(−),Ξ(−)) and so σ− can be taken

to be in one of the two eigenspaces of Γaba′b′ with eigenvalues ±1. For σ− in one of the two

eigenspaces, only 4 from the 7 spinors {σ−,Γabσ−}, a < b, are linearly independent. As a

result AdS7×wM
4 can preserve 16k supersymmetries with k given by the second equation

in (9.18).

To summarize, we have the following:

(i) AdS5 ×w M
6 backgrounds can preserve 8, 16 and 24 supersymmetries. This follows

from the results of [16] which rule out the existence of such backgrounds preserving

32 supersymmetries. It also turns out that there are no AdS5 ×w M
6 preserving 24

supersymmetries. The proof of this will be demonstrated in [15].

(ii) AdS6 ×w M
5 backgrounds can preserve 16 supersymmetries. The existence of such

backgrounds preserving 32 supersymmetries is ruled out from the results of [16].

It turns out that under some assumptions there are no backgrounds preserving 16

supersymmetries either, and a proof will be presented in [15], see also [14].

(iii) AdS7 ×w M
4 can preserve 16 and 32 supersymmetries with the latter being locally

isometric to the maximally supersymmetric AdS7×S
4 background of 11-dimensional

supergravity. In fact all AdS7 ×w M
4 solutions are locally isometric to AdS7 × S4.

This follows from the results of [28] mentioned in [8].

Collecting all these results together, we establish (1.1) for the rest of the AdSn back-

grounds.

10 AdSn n > 4: global analysis

In this section, we prove (1.2). For this, we shall demonstrate new Lichnerowicz type

theorems associated with the KSEs (9.10) and (9.11).

10.1 A new Lichnerowicz Theorem for τ+ and σ+

To show that there is a 1-1 correspondence between Killing spinors and zero modes of Dirac-

like operators, we take a linear combination of the (9.10) and (9.11) KSEs and consider

the modified gravitino KSE operator

D
(+)
i ≡ D

(+)
i + kΓiC

(+) , (10.1)
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where

C(+) = −
1

2
A−1ΓkDkA+

1

288
/X + cA−1Γz . (10.2)

This operator acts on spinors χ such that for χ = σ+, c = − 1
2ℓ , and for χ = τ+, c =

1
2ℓ .

The associated Dirac equation to (10.1) is

D
(+) ≡ ΓiDi+

[

1− k(11− n)

2
A−1/∂A+

n+ 1 + k(11− n)

288
/X + ck(11−n)A−1Γz

]

. (10.3)

Assuming now that D (+)χ = 0 and using the Bianchi identities and field equations, one

can prove following steps similar to those described for the AdS3 backgrounds that

D2 ‖ χ ‖2 +nA−1∂iA∂i ‖ χ ‖2= 2〈D
(+)
i χ,D(+)iχ〉+ 2

9n− 18

11− n
‖ C(+)χ ‖2 , (10.4)

provided that k = 2− n/11− n.

For completeness, one has that

F1 = 〈χ,

[

−
11− 3n+ n2

4(11− n)
(d logA)2 +

15− 3n

288(11− n)
∂k logA /ΓX

k

+
63− 18n

1152(11− n)
Xijk1k2X

ij
k3k4Γ

k1k2k3k4

+
−261 + 36n

3456(11− n)
X2 +

3n− 6

144(11− n)
cA−1Γz /X −

(2− n)2

4(11− n)
A−2

]

χ〉 (10.5)

and

F2 =
10n− n2 − 7

2(11− n)
A−1/∂A+

−15 + 3n

288(11− n)
/X +

(2− n)(9− n)

11− n
cA−1Γz . (10.6)

Applying the maximum principle one concludes that

D
(+)χ = 0 ⇐⇒ D

(+)
i χ = 0 , C(+)χ = 0 , (10.7)

and that

‖ χ ‖= const . (10.8)

This proves the correspondence between the Killing spinors σ+ and τ+ and the zero modes

of D (+).

10.2 A new Lichnerowicz Theorem for τ
−

and σ
−

The new Lichnerowicz theorem on the τ− and σ− can be formulated either by following

a calculation similar to that of the previous section or more simply by utilizing the rela-

tionship between the positive and negative lightcone chirality spinors and their associated

KSEs given in (9.14) and (9.15). The maximum principle formula can be written as

D2 ‖ A−1ψ ‖2 +nA−1∂iA∂i ‖ A
−1ψ ‖2= 2A−2〈D

(−)
i ψ,D(−)iψ〉+ 2

9n− 18

11− n
A−2 ‖ C(−)ψ ‖2 ,

(10.9)
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AdSn ×w M
11−n N

n = 2 2k, k < 15

n = 3 2k, k < 15

n = 4 4k, k ≤ 8

n = 5 8, 16, 24

n = 6 16

n = 7 16, 32

Table 1. The number of supersymmetries N of AdSn ×w M backgrounds are given. For

AdS2 ×w M
9, one can show that these backgrounds preserve an even number of supersymmetries

provided that they are smooth and M9 is compact without boundary. For the rest, the counting

of supersymmetries does not rely on the compactness of M11−n. The bounds in k arise from the

non-existence of supersymmetric solutions with near maximal supersymmetry. For the remaining

fractions, it is not known whether there always exist backgrounds preserving the prescribed number

of supersymmetries.

where

D
(−)
i = D

(−)
i + kΓiC

(−) , (10.10)

C(−) = −
1

2
A−1/∂A+ c̃A−1Γz +

1

288
/X , (10.11)

is the modified gravitino KSE, k = 2 − n/11 − n and c̃ = 1
2ℓ for ψ = σ− and c̃ = − 1

2ℓ for

ψ = τ−. The application of the maximum principle implies that

D
(−)ψ = 0 ⇐⇒ D

(−)
i ψ = 0 , C(−)ψ = 0 , (10.12)

and that

‖ A−1ψ ‖= const . (10.13)

Thus, the warp factor is proportional to the length of the Killing spinor.

10.3 Counting supersymmetries

It is now straightforward to prove (1.2) for AdSn ×w M11−n, n > 4 backgrounds. In

particular this follows from (1.1) and after setting

N− = dimKerD
(−)
1/2ℓ . (10.14)

This completes the proof of (1.2) for all AdSn backgrounds.

11 Do the Killing spinors factorize?

In many of the investigations of AdSn solutions of supergravity theories, it is assumed that

the Killing spinors of the spacetime factorize as

ǫ = ξ ⊗ ψ (11.1)
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where ξ is a Killing spinor on AdSn satisfying the Killing spinor equation

∇µξ + λγµξ = 0 , (11.2)

and ψ is a spinor on the transverse space, and where µ are AdSn indices and γµ are

AdSn gamma matrices. Then the ansatz (11.1) is substituted into the KSEs to derive the

equations that must be satisfied by ψ. This factorization has been instrumental in many

of the AdS computations. Here we shall examine whether the Killing spinors can always

be written in this way.

It is not straightforward to adapt our results to the ansatz (11.1) for the spinors stated

above. This is because of the ambiguities that one encounters when decomposing the

spacetime gamma matrices in terms of those of AdS and transverse space as well as the

differences in the choice of coordinates on AdSn and spacetime frame. However we can

restrict our Killing spinors on AdSn and examine whether they satisfy (11.2). Indeed, if the

Killing spinors factorize as in (11.1) and ψ is taken to be a constant, then ǫ solves (11.2).

Consider first the AdS2 case. Observe that after using the integrability condition (2.30)

the Killing spinors can be written as

ǫ = φ+ + φ− + uΓ+Θ−φ− + rΓ−Θ+φ+ +
∆

2
ruφ− , (11.3)

where φ± lie in the 16 Majorana representation of Spin(9), the spin group of M9, and

they are localized on M9. φ± are the candidates to be identified with ψ. On imposing the

condition (11.2) we find

(

Θ± + λ

)

φ± = 0, λ2 =
∆

4
. (11.4)

However, these conditions are incompatible with the KSEs. To see this, observe that the

horizon Dirac equations on S can be written as

Γi∇̃iψ± + 3Θ±ψ± = 0 (11.5)

where ψ+ = ∆−1φ+, ψ− = ∆− 1
2φ−. Then (11.5) implies that

∫

M9

〈ψ±,Θ±ψ±〉 = 0 . (11.6)

However, substituting (11.4) into (11.6) then leads to a contradiction. Hence the AdS2
background spinors cannot factorize as in (11.1).

Next let us turn to the AdS3 case. After applying the integrability condition (2.30)

and using the algebraic KSEs (5.19), the Killing spinor can be written as

ǫ = σ+ + σ− + e−
z
ℓ τ+ + e

z
ℓ τ− −

u

ℓ
A−1Γ+zσ− −

r

ℓ
A−1e−

z
ℓΓ−zτ+ . (11.7)

Observe that σ± and τ± are in the 16 Majorana (but not Weyl) representation of Spin(8),

the spin group of M8, and they are localized on M8. Next let us restrict ǫ on AdS3 by

treating σ± and τ± as integration constants, i.e. suppress all the dependence of ǫ on the
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coordinates of M8, and investigate whether the resulting spinor solves the KSE (11.2) on

AdSn for some choice of λ. Substituting ǫ into (11.2), one finds that it solves the KSE if

and only if

1

2ℓ
A−1Γzσ± ± λσ± = 0 ,

1

2ℓ
A−1Γzτ± ∓ λτ± = 0 . (11.8)

Let us focus on the condition (11.8) for σ+. This condition can be solved by imposing

the projection Γzσ
±
+ = ±σ±+ with σ+ = σ+++σ−+ and λ = ∓ 1

2ℓA
−1. Therefore ǫ solves (11.2)

if and only if one of the components of σ+, σ
+
+ or σ−+, is set to zero. However, this is

an additional condition on σ+ which does not arise from the KSEs as applied to AdS3
backgrounds. In fact since Γz does not commute with the KSEs, one cannot consistently

set σ++ or σ−+ to zero without imposing an additional restriction on the fields. A similar

analysis can be done for the remaining three cases. Therefore for generic AdS3 backgrounds,

the Killing spinors cannot be written as in (11.1) satisfying (11.2).

Next let us consider the same question for AdSn backgrounds for n > 3. The Killing

spinors for these backgrounds, after using the integrability condition (2.30) and the alge-

braic KSEs A(±)σ± = B(±)τ± = 0, can be written as

ǫ = σ+ + σ− + e−
z
ℓ τ+ + e

z
ℓ τ−

−
1

ℓ

(

uA−1Γ+zσ− + rA−1e−
z
ℓΓ−zτ+ +

∑

a

xaΓaΓz(τ+ + e
z
ℓ σ−)

)

. (11.9)

Again ǫ depends on four linearly independent spinors σ± and τ±. As in the AdS3 case

substituting4 ǫ into (11.2), one finds that σ± and τ± must satisfy (11.8). Repeating the

argument we developed for the AdS3 case, one concludes that ǫ does not factorize5 as

in (11.1).

To illustrate the importance of keeping both components of σ+, σ
+
+ and σ−+, under

the projection with Γz for the correct counting of supersymmetries, let us consider the

AdS7 × S4 background. One solves the algebraic KSEs, A(+)σ+ = 0, after imposing the

projection6

ΓzΓ
[4]σ+ = σ+ , (11.10)

where Γ[4] is the Clifford element associated with the volume form of S4. This projection

reduces the number of components of σ+ from 16 to 8. Then the gravitino KSE can be

solved without additional conditions. Using the intertwining Clifford algebra operators

to find solitions to the KSEs for σ− and τ±, one concludes that AdS7 × S4 preserves 32

superymmetries as expected. However if one in addition imposes Γzσ
±
+ = ±σ±+ in order for

4In the KSE (11.2) we use the spacetime gamma matrices. The same result holds if one uses the AdS

gamma matrices after one decomposes σ± and τ± in terms of AdS and transverse spinors.
5This questions the generality of several results that have been obtained in the literature using the

factorization ansatz (11.1). How this additional assumption affects each computation is not apparent and

the claims about the generality of several results have to be re-examined.
6The other projection ΓzΓ

[4]σ+ = −σ+ can be treated in a similar way.
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the Killing spinor ǫ to satisfy (11.2), then one would incorrectly conclude that AdS7 × S4

preserves 16 supersymmetries.

We have demonstrated that the non-factorization of the Killing spinor as in (11.1) is

crucial for the correct counting of supersymmetries of these backgrounds. On the other

hand, the effect of the non-factorization of ǫ on the geometry of the transverse spaces

M11−n is more subtle. A preliminary investigation [15] suggests that in some cases it has

an effect but in some other cases it does not. Therefore it is required to investigate each

case separately.

12 R
n−1,1 M-theory backgrounds

As has been mentioned in the introduction the warped flat backgrounds Rn−1,1 ×w M
11−n

can be investigated in the context of AdSn backgrounds after taking the AdS radius ℓ to

infinity. All our local computations are smooth in this limit. As a result, one can solve the

KSEs, decompose the field equations and Bianchi identities as in the AdSn case and then

take the limit ℓ→ ∞ to derive the corresponding formulae for flat backgrounds. However in

the limit, not all properties of AdSn backgrounds carry through. In particular the solutions

to the KSEs will be re-examined as the process of integration yields powers of ℓ which alters

the conclusions somewhat. To emphasize another difference, it is known for sometime

that there are no smooth warped compactifications of 11-dimensional supergravity [29].

This is unless one appeals to M-theory and includes higher curvature corrections, due for

example to anomaly cancellation, and/or additional brane charges. All these backgrounds

are constructed starting from those of 11-dimensional supergravity and then appropriately

correcting them. Since the 11-dimensional backgrounds are the starting point for such

computations, we shall focus on these here.

12.1 The warp factor is not nowhere vanishing

One of the key properties of AdSn backgrounds is that the warp factor A is nowhere vanish-

ing. This is not the case for flat backgrounds. For flat backgrounds with non-trivial fluxes

and under certain conditions, A must always vanish somewhere.7 This follows from [29].

To see this focus on the R
1,1 backgrounds and in particular in the field equation (3.6).

After taking the limit ℓ → ∞ and assuming that the conditions on the fields and M9 for

the maximum principle to apply hold, one finds that the only solution to this equation is

A constant and Y = X = 0, i.e. all the fluxes vanish, F = 0. Therefore for compact M9

and smooth fields, A must vanish somewhere on M9. A similar analysis can be done for

the other flat backgrounds.

12.2 Counting supersymmetries

Because our global techniques do not straightforwardly apply to flat backgrounds, we shall

focus on the counting of their supersymmetries based only on the local solution of the KSEs.

7From now on, we shall assume that A is non-vanishing on an open subset of M11−n and restrict our

analysis to that subset.
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12.2.1 R
1,1 backgrounds

It is instructive to re-examine the integration of the KSEs in this case, in the limit that

ℓ → ∞, ∆ = 0. Using the expression for the Killing spinor in (2.23) and the integrability

conditions (2.29) and (2.30), we find that

ǫ+ = φ+ + uΓ+Θ−φ− , ǫ− = φ− + rΓ−Θ+φ+ . (12.1)

Therefore ǫ can depend on the lightcone coordinates r, u. Of course this dependence re-

lies on φ± /∈ KerΘ±. However, it should be stressed that φ± satisfy automatically the

integrability conditions (2.29) and (2.30) as a consequence of the remaining KSEs (3.9) on

M9, the field equations and Bianchi identities. Therefore, the dependence on the lightcone

coordinates depends crucially on been able to find solutions of (3.9) which satisfy (2.29)

and (2.30) but do not lie in the kernel of Θ±.

The proof that we gave for AdS2 backgrounds to preserve an even number of super-

symmetries is not automatically valid for flat backgrounds. This is because it has been

based on global considerations which are no longer valid for R
1,1 solutions. Nevertheless,

it is expected that some R
1,1 backgrounds exhibit supersymmetry enhancement. Indeed

suppose that φ− is a Killing spinor. Then we have shown by a local computation that

φ+ = Γ+Θ−φ− is also a Killing spinor. Thus if φ− /∈ KerΘ−, then such backgrounds will

admit at least two supersymmetries.

12.2.2 R
2,1 backgrounds

To determine the Killing spinors for this backgrounds, let us reexamine the solutions of

the KSEs (2.23) along the additional z direction of R2,1. The relevant equation is given

in (5.10). To continue observe that the Ξ(±) given in (5.11) satisfy

(

Ξ(±)
)2
φ± = 0 , (12.2)

in the limit ℓ→ ∞ as a consequence of the integrability conditions (2.29) and (2.30). Thus

the most general solution can be written as

φ± = σ± + zΓzAΘ±τ± , Ξ(±)(σ± − τ±) = 0 , (12.3)

where we have used that Ξ(±) = AΓzΘ±. Using again (12.2), the Killing spinors can be

expressed as

ǫ+ = σ+ + uΓ+Θ−σ− + zΓzAΘ+σ+ , ǫ− = σ− + rΓ−Θ+σ+ + zΓzAΘ−σ− . (12.4)

Therefore the Killing spinors can depend on the coordinates8 of R2,1. But this depends

crucially on σ± /∈ KerΞ(±) even though they are in the kernel of
(

Ξ(±)
)2

because of (12.2).

8As we shall see this is the case for the rest of the R
n−1,1 backgrounds. It would be of interest to

find solutions that exhibit this property, which is allowed from consideration of the KSEs, in order to test

whether field equations and Bianchi identities impose additional conditions which remove this dependence.
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Furthermore a direct observation of the KSEs on M8 (5.20) reveals that if σ− is a

solution, then

σ+ = A−1Γ+Γzσ− (12.5)

is also a solution, and vice versa if σ+ is a solution, then so is

σ− = AΓ−Γzσ+ . (12.6)

Therefore all R
2,1 backgrounds preserve an even number of supersymmetries confirm-

ing (1.3).

12.2.3 R
3,1 backgrounds

As in the previous case, it is straightforward to observe that the solution to the KSEs along

all R3,1 directions can be written as

ǫ+ = σ+ + uΓ+Θ−σ− + (zΓz + xΓx)AΘ+σ+ ,

ǫ− = σ− + rΓ−Θ+σ+ + (zΓz + xΓx)AΘ−σ− . (12.7)

This is derived using
(

Ξ(±)
)2
φ± = 0 which in turn is implied from the integrability condi-

tions (2.29) and (2.30) in the limit ℓ→ ∞, and Ξ(±) = AΓzΘ±.

To verify (1.3), it remains to count the multiplicity of solutions to (7.11) in the limit

ℓ→ ∞. For this, if σ− is a Killing spinor so is σ+ = A−1Γ+Γzσ− and vice versa if σ+ is a

Killing spinor so is σ− = AΓ−Γzσ+. In addition, it follows from direct observation that if

σ+ is a Killing spinor so is

σ′+ = Γzxσ+ , (12.8)

and similarly for the σ−. Therefore, R3,1 backgrounds preserve 4k supersymmetries con-

firming (1.3).

12.2.4 R
n−1,1, n > 4 backgrounds

As in the previous cases, integrating the KSEs along the R
n−1,1 directions yields

ǫ+ = σ+ + uΓ+Θ−σ− +
∑

a

xaΓaAΘ+σ+ ,

ǫ− = σ− + rΓ−Θ+σ+ +
∑

a

xaΓaAΘ−σ− . (12.9)

where Γa are in the frame basis in R
n−1,1 and are transverse to the two lightcone directions

+ and −, and xa are the corresponding coordinates. The dependence of the Killing spinors

on the coordinates of Rn−1,1 depends on σ± /∈ KerΞ(±) even though
(

Ξ(±)
)2
σ± = 0 as a

consequence of (2.29) and (2.30). Observe that in the limit ℓ → ∞, Ξ(±) = AΓzΘ± and

that Θ+ = Θ−.

To verify (1.3), it remains to count the multiplicity of solutions σ± of the remaining

KSEs on M11−n. As in the previous cases, if σ− is a Killing spinor so is σ+ = A−1Γ+Γzσ−
and vice versa if σ+ is a Killing spinor so is σ− = AΓ−Γzσ+.
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Furthermore for R4,1 backgrounds it is easy to see that if σ+ is a Killing spinor, then

Γabσ+, a < b, is also a Killing spinor, and similarly for the σ− spinors. Therefore R
4,1

backgrounds preserve 8k supersymmetries confirming (1.3).

Next consider the R
5,1. In this case, if σ+ is a Killing spinor, then Γabσ+, a < b and

Γa1a2a3a4σ+, a1 < · · · < a4, are also Killing spinors. There are six Γab, a < b and a unique

Γ[4] = Γa1a2a3a4 , a1 < · · · < a4, Clifford algebra operators. Moreover Γ[4] commutes with

all the KSEs (9.10) and (9.11). Since Γ2
[4] = 1, σ+ can lie in one of the two eigenspaces of

Γ[4]. If this is the case, then only three of the Γabσ+ are linearly independent. Thus R
5,1

backgrounds preserve 8k supersymmetries confirming (1.3).

To count the supersymmetries of R
6,1 backgrounds observe that if σ+ is a Killing

spinor so is Γabσ+, a < b and Γa1a2a3a4σ+, a1 < · · · < a4. There are ten Γab, a < b and

five Γa1a2a3a4σ+, a1 < · · · < a4, Clifford algebra operators. Furthermore all Γa1a2a3a4σ+,

a1 < · · · < a4 commute with the KSEs (9.10) and (9.11). Suppose we choose one such oper-

ator Γ[4]. Since Γ
2
[4] = 1, Γ[4] has two eigenspaces with eigenvalue ±1. If σ+ is in one of the

two eigenspaces, then there are only eight linearly independent spinors Γabσ+, a < b and

Γa1a2a3a4σ+, a1 < · · · < a4. Thus R
6,1 backgrounds preserve 16k supersymmetries confirm-

ing (1.3). Since there are no non-trivial R6,1 backgrounds with 32 supersymmetries [16],

such solutions necessarily preserve 16 supersymmetries.

13 Concluding remarks

We have systematically described all warped AdS, AdSn ×wM
11−n, and flat backgrounds,

R
n−1,1 ×w M

11−n, of D=11 supergravity which preserve at least one supersymmetry. The

novelty of our approach is that we have solved the KSEs of D=11 supergravity without

making any assumptions on the form of the fields and Killing spinors. Integrating over

all AdSn and flat directions, we have identified all the a priori fractions of supersymmetry

preserved by these backgrounds. These results for AdS and flat backgrounds have been

summarized in equations (1.1) and (1.3) in the introduction, respectively. Furthermore for

AdS backgrounds that satisfy the requirements of maximum principle, we show that the

Killing spinors can be identified with the zero modes of Dirac like operators on M11−n.

This identification is demonstrated via the proof of new Lichnerowicz type theorems for

these Dirac like operators based on the identity (1.4). As a consequence we show that the

number of Killing spinors of AdS backgrounds are given in terms of the dimension of the

kernel of these Dirac like operators as in (1.2).

The general solution of the KSE of 11-dimensional supergravity for AdSn ×M11−n

backgrounds has allowed us to investigate whether the Killing spinors can be factorized as

a product of a Killing spinor on AdSn and a Killing spinor on the transverse M11−n. We

have found that such a factorization does not occur. In particular we have demonstrated

with an explicit example that assuming such a factorization gives an incorrect counting for

the supersymmetries of AdS backgrounds.

The identification of the a priori fractions of supersymmetry preserved by AdS and flat

backgrounds can be used to find all such solutions of 11-dimensional supergravity and M-

theory. This provides a systematic approach towards understanding all such backgrounds
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with applications in AdS/CFT and flux compactifications. There are already some pre-

liminary results in this direction. In particular we find that under certain assumptions

that are no AdS6 backgrounds in D=11 supergravity, however compare with [14] where the

same results was proven assuming that the Killing spinors factorize. We also find that the

geometry of AdS2 backgrounds is less restricted than those investigated in [11, 12]. The

proof of these results will be presented elsewhere [15].

Another aspect of our approach is the generalization of the classical Lichnerowicz

theorem to non-metric connections. It is curious that the maximum principle which has

been instrumental in the proof applies so widely in the context of supergravity. It is not

known why this is so and it should be investigated further, as ultimately it may be related

to supersymmetry.
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A Notation and conventions

Our form conventions are as follows. Let ω be a k-form, then

ω =
1

k!
ωi1...ikdx

i1 ∧ · · · ∧ dxik , (A.1)

and

dω =
1

k!
∂i1ωi2...ik+1

dxi1 ∧ · · · ∧ dxik+1 , (A.2)

leading to

(dω)i1...ik+1
= (k + 1)∂[i1ωi2...ik+1] . (A.3)

Furthermore, we write

ω2 = ωi1...ikω
i1...ik , ω2

i1i2 = ωi1j1...jk−1
ωi2

j1...jk−1 . (A.4)

Given a volume form dvol = 1
n!ǫi1...indx

i1 ∧ · · · ∧ dxin , the Hodge dual of ω is defined as

χ ∧ ∗ω = (χ, ω)dvol (A.5)

where

(χ, ω) =
1

k!
χi1...ikω

i1...ik . (A.6)

It is well-known that for every form ω, one can define a Clifford algebra element /ω

given by

/ω = ωi1...ikΓ
i1...ik (A.7)
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where Γi, i = 1, . . . n, are the Dirac gamma matrices. In addition we introduce the notation

/ωi1
= ωi1i2...ikΓ

i2...ik , /Γωi1 = Γi1
i2...ik+1ωi2...ik+1

. (A.8)

The rest of our spinor conventions can be found in [30, 31].
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