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1 Introduction

The phenomenon of mixing between different generations of quarks/leptons has now been

experimentally studied fairly well [1]. The three quark mixing angles are at present quite

well-measured. Though the leptonic mixing angles are not known as well, one has credible

nonzero 3σ upper and lower bounds on them. CP violation has been investigated quite

thoroughly in the quark sector, but as yet there is no reliable observation of CP violation

involving only leptons. Quark mixing angles are known to become progressively smaller in

order of magnitude as one moves from 1–2 to 2–3 and 1–3 generation mixing. This fact

can be understood qualitatively in terms of a hierarchical quark mass matrix. The mixing

angles, that emerge from such a mass matrix, are small and turn out to be given roughly

by the mass ratios of relevant generations of quarks. Since the masses of both up- and

down-type quarks are strongly hierarchical with respect to generations, this ties in with

observation. In complete contrast, the leptonic mixing angles have been found to be much

larger and show a different pattern. The qualitative difference between quark and lepton

mixing patterns is made starkly evident by a quantitative comparison of the approximate

magnitudes [2–5] of the elements of the respective unitary matrices VCKM and UPMNS :

|VCKM | ∼







0.9 0.2 0.004

0.2 0.9 0.01

0.008 0.04 0.9






, |UPMNS | ∼







0.8 0.5 0.2

0.4 0.6 0.7

0.4 0.6 0.7






. (1.1)

Though the masses of the charged leptons l (= e, µ, τ) show a pronounced hierarchical

pattern with respect to generations, one suspects that such may not be the case with
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neutrinos. What operates for the mixing the latter, possibly related to their presumed

Majorana nature1 originating, say from some kind of a seesaw mechanism [2], is perhaps

some underlying family symmetry. Though one need not make any specific assumption

on the neutrino mass hierarchy, such considerations are most natural for quasi-degenerate

neutrinos. Even if there is any mass hierarchy among neutrinos, it can be presumed to be

quite mild. Thus we separate the issue of the mixing of neutrinos from that of their mass

hierarchy. More definitely, the family symmetry controlling their mixing can be taken to

be independent of the neutrino mass hierarchy.

For fermions of type t (= u, d, l, ν), we can define the mass basis as one in which

the corresponding mass matrix Mt is diagonal. We can also consider the flavor basis in

which the fermions |χt〉 are flavor eigenstates but the mass matrix Mtf is not necessarily

diagonal. The hermitian squared mass matrix M †M in each basis is related by a unitary

transformation Ut:

U †
tM

†
tfMtfUt =M †

tMt. (1.2)

We subscribe to the following viewpoint. While each of Uu, Ud, Uℓ shows a hierarchical

structure, this is not true of Uν which is governed by a different principle. The way to

gain new insights into this principle is through more precise measurements of the leptonic

mixing angles and of the associated CP violating Dirac phase δCP as well as of the concerned

neutrino masses. These can test mixing constraints from specific theoretical ideas. Our aim

in this paper is to derive some such constraint which is experimentally testable. This we do

by considering lowest order perturbation theory in the additive breaking of tribimaximal

(TBM) neutrino mixing for neutrino and charged lepton mass matrices in the flavor basis.

The additively broken TBM paradigm is explained in detail below. From our consideration,

we obtain two alternative experimentally testable possibilities, at least one of which is

obligatory. Though our result is derived by use of general arguments, we check it in

specific flavor models.

The rest of the paper is organized as follows. Section 2 is devoted to a discussion of

tribimaximal mixing and its breaking. In section 3 we set up our basic lowest order per-

turbative formalism which is meant to compute the deviations away from tribimaximality.

Section 4 contains the derivation of the theoretical consequences of the said formalism.

In section 5 we discuss the experimentally testable constraint arising therefrom. Section 6

includes a comparative study of our result with those of various flavor models incorporating

deviations from TBM. The final section 7 summarizes our conclusions.

2 Broken tribimaximal mixing and its effects

There is a vast literature [2–6] covering theoretical ideas on the principle governingMνf and

Uν . Our focus, however, is on tribimaximal (TBM) mixing [6–9] which is elegant, predictive

1We follow the procedure of ref. [2] and take neutrinos to be light Majorana particles occurring in three

generations. Consequently, we take a complex symmetric mass matrix for them. In the mass basis, that is

Mν = diag. (mν1,mν2,mν3) with mν1 = |mν1|, mν2 = |mν2|e
−iα21 , mν3 = |mν3|e

−iα31 and α21, α31 as

Majorana phases. We also use cij ≡ cos θij and sij ≡ sin θij for the angle of mixing θij between neutrino

flavors i and j.
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and can be given a solid theoretical foundation [10, 11] from specific realizations of discrete

family symmetries such as A4, S3 and ∆27. Some of the latter have also suggested a few

neutrino mixing sum-rules [12–18]. We henceforth use the superscript zero to denote the

TBM limit. In this limit we choose to work in the weak flavor basis in which the charged

leptons have a diagonal Dirac mass matrix

M0

ℓ = diag. (m0
e,m

0
µ,m

0
τ ). (2.1)

The TBM limit of the neutrino mass matrix M0

νf in the flavor basis is characterized by

certain linear relations among elements of M0

νf :

(M0

νf )12 = −(M0

νf )13, (2.2)

(M0

νf )22 = (M0

νf )33, (2.3)

(M0

νf )11 − (M0

νf )13 = (M0

νf )22 − (M0

νf )23. (2.4)

Given (2.2), (2.3) and (2.4), the most general form of M0

νf is

M0

νf =







X Y −Y
Y X + Z −Y + Z

−Y −Y + Z X + Z






, (2.5)

where X,Y, Z are unknown complex mass dimensional parameters. Now the TBM pattern

obtains with the three emergent pairwise mixing angles, that appear [1] in UPMNS , being

fixed at θ0
12

= sin−1

√

1

3
≃ 35.3◦, θ0

23
= sin−1

√

1

2
= 45◦, θ0

13
= 0 independent of whether

the neutrino mass ordering is normal or inverted.

We can compare the TBM-predicted values of the three mixing angles with their cur-

rent 3σ allowed ranges. Recent global fits yield [19–21] 31◦ ≤ θ12 ≤ 36◦, 36◦ ≤ θ23 ≤ 55◦,

7.2◦ ≤ θ13 ≤ 10◦. Thus while θ12 and θ23 are certainly compatible with TBM values

within their measured ranges, θ13 a fortiori is not. Indeed, the measurement of a signifi-

cantly nonzero value of θ13 has been a major experimental advance recently [22–25] with

a tremendous theoretical impact. This is due to two reasons. First, CP-violation, that is

observable in neutrino oscillations, enters through the terms s13 e
±iδCP ; thus s13 ∼ 0.12–

0.17 is very encouraging to that end. Second, it means that any symmetry, leading to

TBM, must be a broken symmetry. The next natural question is: how quantitative is this

breaking and is TBM still relevant in an approximate sense?

We make an attempt to answer this last question. Our approach is to add small general

perturbations to the TBM limits of hermitian squared mass matricesM †
ℓfMℓf andM †

νfMνf .

We take both sets of perturbations to be of the same order of magnitude and treat them to

the lowest order. Much effort [26–29] has already been expended in this direction. However,

we do have something new and interesting to say. We bring out a novel feature of the near-

TBM mixing of neutrinos in terms of an analytically derived constraint which merits being

highlighted. The constraint implies that at least one of two conditions, that are testable in

forthcoming neutrino oscillation experiments, must hold. Either the deviation
∣

∣

∣s23 −
√

1

2

∣

∣

∣

from the maximal value of θ23 or the measure of CP violation |s13 sin δCP| has to be quite

– 3 –



J
H
E
P
0
2
(
2
0
1
5
)
1
3
5

small (< 3% as opposed to2 12–17% for the value of s13 as compared with unity), the latter

meaning that CP will be conserved at the lowest order. This conclusion is a consequence

of the fact that the perturbed eigenstates |χℓ,ν
i 〉 for i = 1, 2, 3 make up the columns of the

matrices Uℓ,ν to the lowest order. Hence any observation in the near future of both a sizable

deviation from maximal atmospheric neutrino mixing and a large amount of CP violation

in neutrino oscillations would go against the idea of lowest order additive perturbation to

TBM-invariant neutrino and charged lepton mass matrices.

In deriving the above conclusion, we do not assume any additional model either at

a high or at a low scale, or any specific discrete family symmetry. In fact, we perform a

lowest order model independent analysis with the most general TBM violating perturba-

tion matrices whose nonzero elements are expected to be of the same order of magnitude.

Moreover, our results on neutrino mixing do not need to assume anything about the neu-

trino mass ordering. This is since the perturbations are expected to be some kind of

symmetry breaking terms, which characterize their contributions to |χℓ,ν〉 by a set of small

dimensionless coefficients {ǫℓ,ν}. All members of the subset {ǫν} in the neutrino sector are

taken to be typically of magnitude ∼ s13 ≡ sin θ13 ∼ 0.12–0.17, i.e. of the order of 12–17%

or thereabouts of the unperturbed quantities. On the other hand, in the charged lepton

sector, arguements are given why {ǫℓ} are much less in magnitude than {ǫν} on account

of the strongly mass hierarchical nature of the charged leptons. This will be shown to

follow from all nonzero perturbation matrix elements being taken to be of the same order

of magnitude. Of course, the neglected O(ǫ2) terms are estimated to be only at a 2–3%

level which is below [30] the accuracy of the measurement of TBM deviants in ongoing and

forthcoming neutrino oscillation experiments.3

3 Lowest order perturbation away from tribimaximality

For charged leptons ℓ the normalized eigenvectors in the mass basis and the flavor basis

are identical in the TBM limit. Thus we can take

|χℓ0
1 〉 = |χℓ0

1 〉f =







1

0

0






, |χℓ0

2 〉 = |χℓ0
2 〉f =







0

1

0






, |χℓ0

3 〉 = |χℓ0
3 〉f =







0

0

1






. (3.1)

Moreover, the charged lepton mass matrix is identical in each basis in the same limit,

namely

M0

ℓf =M0

ℓ . (3.2)

2We shall throughout refer to a TBM deviating effect as (1) “very large” if it is ≫ 100s13% ∼12–17% so

that higher order perturbations cannot be ignored, (2) “large” if it is in the ballpark of 100s13% so that it

should be soon measurable as well as computable with only lowest order perturbations and (3) negligibly

“small” if it is < 0.03 which is O(s213).
3Experiments in the far future with neutrino factories may probe such a level and, for such measurements,

the neglected O(ǫ2) effects as well as those due to renornalization group evolution from an assumed high

scale symmetry would be relevant.
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Adding a perturbation M ′
ℓf (≡ λij) to M

0

ℓf so that Mℓf =M0

ℓf +M
′
ℓf , we can construct the

corresponding matrix M ′
ℓ in the mass basis as

Mℓ =M0

ℓ +M ′
ℓ (3.3)

via,

M †
ℓMℓ = U †

ℓM
†
ℓfMℓfUℓ. (3.4)

Turning to neutrinos in the TBM limit, we can write

U0
ν
†
M0

νf

†
M0

νfU
0
ν = diag. (|m0

ν1|2, |m0
ν2|2, |m0

ν3|2) (3.5)

with

U0
ν =







√

2/3
√

1/3 0

−
√

1/6
√

1/3
√

1/2
√

1/6 −
√

1/3
√

1/2






. (3.6)

The normalized flavor eigenvectors |χν0
i 〉 of M0†

νfM
0

νf for i = 1, 2, 3 are the columns of U0
ν

while those in the mass basis are identical to the charged lepton ones. Thus

|χν0
1 〉 =







1

0

0






, |χν0

2 〉 =







0

1

0






, |χν0

3 〉 =







0

0

1






, (3.7)

whereas

|χν0
1 〉f =











√

2

3

−
√

1

6
√

1

6











, |χν0
2 〉f =











√

1

3
√

1

3

−
√

1

3











, |χν0
3 〉f =









0
√

1

2
√

1

2









. (3.8)

Once the perturbation is introduced, we have Mνf = M0

νf +M ′
νf , where M

0

νf obey the

TBM conditions (2.2)–(2.4) while (M ′
νf )ij ≡ µij = µji violate them. The violation in TBM

conditions is given by,

(Mνf )12 + (Mνf )13 = µ12 + µ13, (3.9)

(Mνf )22 − (Mνf )33 = µ22 − µ33, (3.10)

(Mνf )11 − (Mνf )13 − (Mνf )22 + (Mνf )23 = µ11 − µ13 − µ22 + µ23. (3.11)

Note that, unlike the real diagonal M0

ℓ and the general M ′
ℓ, both M0

νf and M ′
νf have to

be complex symmetric matrices in order to make the corresponding neutrinos Majorana

particles.

We now expand the perturbed eigenstates for both charged leptons and neutrinos at

the lowest order. We choose to use a compact notation covering both cases by introducing

perturbation parameters ǫν,ℓik (for i, k = 1, 2, 3). Thus we can write the ith first order

perturbed eigenvectors of M †
νfMνf on one hand and of M †

ℓfMℓf on the other as

|χν,ℓ
i 〉f = |χ0ν,ℓ

i 〉f +
∑

k 6=i

ǫν,ℓik |χ
0ν,ℓ
k 〉f +O(ǫ2). (3.12)
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Two new quantities have been introduced in (3.12). They are defined by

ǫν,ℓik = −ǫν,ℓ∗ki = (|m0

ν,ℓi|2 − |m0

ν,ℓk|2)−1pν,ℓki , (3.13)

pν,ℓik = 〈χ0ν,ℓ
i |M0

ν,ℓ

†
M ′

ν,ℓ +M ′
ν,ℓ

†
M0

ν,ℓ|χ0ν,ℓ
k 〉. (3.14)

Note that (3.13) and (3.14) have been written in the mass basis utilizing the fact that ǫν,ℓik ,

as well as pν,ℓik , do not change from one basis to the other. We can also comment on the lack

of dependence of the epsilon parameters on the yet unknown overall neutrino mass scale.

If M0
ν and M ′

ν are both scaled by a factor α, the unperturbed eigenvalues {m0
νi} will also

be scaled similarly. As a result, ǫνik will remain invariant under an overall mass scaling. On

the other hand, suppose two of the mass eigenvalues are large but close to one another, as

is the case with ν1 and ν2 with an inverted mass hierarchy, and this is not much affected

by the perturbations. In such a case the corresponding ǫν
12

will get enhanced.

Turning to (3.12), we see that its l.h.s. for i = 1, 2, 3 can be identified with three

corresponding columns of Uν,ℓ. Thus

Uν,l = (|χν,ℓ
1
〉f |χν,ℓ

2
〉f |χν,ℓ

3
〉f ). (3.15)

Neglecting O(ǫ2) terms, it follows from (3.15) that

Uℓ =







1 −ǫℓ∗
12

−ǫℓ∗
13

ǫℓ
12

1 −ǫℓ∗
23

ǫℓ
13

ǫℓ
23

1






(3.16)

and

Uν =











√

2

3
+
√

1

3
ǫν
12

√

1

3
−
√

2

3
ǫν∗
12

−
√

2

3
ǫν∗
13

−
√

1

3
ǫν∗
23

−
√

1

6
+
√

1

3
ǫν
12

+
√

1

2
ǫν
13

√

1

3
+
√

1

6
ǫν∗
12

+
√

1

2
ǫν
23

√

1

2
+
√

1

6
ǫν∗
13

−
√

1

3
ǫν∗
23

√

1

6
−
√

1

3
ǫν
12

+
√

1

2
ǫν
13

−
√

1

3
−
√

1

6
ǫν∗
12

+
√

1

2
ǫν
23

√

1

2
−
√

1

6
ǫν∗
13

+
√

1

3
ǫν∗
23











.

(3.17)

Let us define the Majorana phase matrix

K ≡ diag. (1, e
iα21

2 , e
iα31

2 ). (3.18)

Then UPMNSK
−1 can be written in the PDG convention [1] as

UPMNSK
−1 =







c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13
s12s23 − c12c23s13e

iδCP −c12s23 − s12c23s13e
iδCP c23c13






.

(3.19)

We can now make the identification

UPMNSK
−1 = U †

ℓUν (3.20)

and work out the consequences from (3.16), (3.17) and (3.19).
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4 Consequences of lowest order perturbation

Let us define L ≡ U †
ℓUν and N ≡ UPMNSK

−1. The identification Lij = Nij as per (3.20)

leads to nine equations which are detailed in convenient combinations in the appendix.

Not all of these are independent, but they lead to four independent constraint conditions

and three equations for the three TBM deviants c12 −
√

2

3
, c23 − s23 and s13e

iδCP . The

constraint conditions follow from the fact that four of the elements of N are real. They

are given by

Im ǫν12 = O(ǫ2), (4.1)

Im (ǫν13 −
√
2ǫν23) = O(ǫ2), (4.2)

Im ǫl23 = O(ǫ2), (4.3)

Im (ǫl12 − ǫl13) = O(ǫ2). (4.4)

Neglecting O(ǫ2) terms, the three measurable TBM-deviants are linear in the ǫ coefficients

and may be given as

c12 −
√

2/3 =
√

1/2
(

√

1/3− s12

)

=
√

1/3 ǫν12 −
√

1/6
(

ǫl12 − ǫl13

)

, (4.5)

c23 − s23 = −
√

2/3
(

ǫν13 −
√
2 ǫν23

)

−
√
2 ǫl23, (4.6)

s13 e
iδCP = −

√

1/3
(√

2 ǫν13 + ǫν23

)

+
√

1/2
(

ǫl12 + ǫl13

)

. (4.7)

The derivation of eqs. (4.1)–(4.7) appears in the appendix.

Because of (4.2), the real and imaginary parts of (4.7) enable us to write, modulo O(ǫ2)

terms, that

tan δCP =
3 Im ǫν

23
−
√

3/2 Im (ǫℓ
12

+ ǫℓ
13
)

Re (
√
2 ǫν

13
+ ǫν

23
)−

√

3/2 Re (ǫl
12

+ ǫl
13
)
. (4.8)

The above equation may be recast in terms of the basis independent Jarlskog invariant J

which equals

Im [(U †
ℓUν)e1(U

†
ℓUν)µ2(U

†
ℓUν)

∗
e2(U

†
ℓUν)

∗
µ1].

We then have

J = − 1√
6
Im

[

ǫν23 −
1√
6

(

ǫl12 + ǫl13

)

]

+O(ǫ2). (4.9)

Let us now explore, to the lowest order in ǫ, the consequences of (3.13) and (3.14)

by explicitly taking elements of the respective perturbing mass matrices for neutrinos and

charged leptons. We take

(M ′
νf )ij = µij = µji (4.10)

and

(M ′
ℓf )ij = (M ′

ℓ)ij +O(ǫ2) = λij (4.11)

with λij and µij = µji as complex mass dimensional parameters naturally expected to

be of the same order of magnitude. The identity of the charged lepton mass basis and

– 7 –
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flavor basis in the TBM limit makes the calculations in this case quite straightforward.

From (3.13) and (3.14), we can easily derive

ǫl12 = (m0
e
2 −m0

µ
2
)−1 (m0

µλ21 +m0
eλ

∗
12), (4.12)

ǫl23 = (m0
µ
2 −m0

τ
2
)−1 (m0

τλ32 +m0
µλ

∗
23), (4.13)

ǫl13 = (m0
e
2 −m0

τ
2
)−1 (m0

τ λ31 +m0
eλ

∗
13). (4.14)

We want to comment on the magnitudes of ǫℓ
23

and ǫℓ
13
. In order for them to be large, the

relevant λ parameters would need to be of order mτ . That is not in conformity with our

premise that nonzero charged lepton perturbation mass matrix elements ( i.e. λij) cannot be

very different in order of magnitude from those for neutrinos (i.e. µij). Thus we expect that

|ǫℓ
23
| and |ǫℓ

13
| to be quite small. In any event, because of the strongly hierarchical nature of

charged lepton masses, (4.3) and (4.4) can be satisfied without unnatural cancellations only

by λ12, λ21, λ13, λ31, λ23, λ32 all being real to order ǫ. One then automatically obtains that

Im ǫl12 = O(ǫ2) = Im ǫl13. (4.15)

Feeding this information, we can simplify (4.8) and (4.9) to

tan δCP =
3 Im ǫν

23

Re (
√
2 ǫν

13
+ ǫν

23
)−

√

3/2 Re (ǫl
12

+ ǫl
13
)
, (4.16)

J = − 1√
6
Im ǫν23 +O(ǫ2) (4.17)

respectively.

Turning to neutrinos next, the relevant off-diagonal elements of M ′
ν = U0

ν
T
M ′

νfU
0
ν are

(M ′
ν)12 =

1

3
√
2
(2µ11 + µ12 − µ13 − µ22 + 2µ23 − µ33), (4.18)

(M ′
ν)23 =

1√
6
(µ12 + µ13 + µ22 − µ33), (4.19)

(M ′
ν)13 =

1√
3

(

µ12 + µ13 −
1

2
µ22 +

1

2
µ33

)

. (4.20)

It is now convenient to define

∆0
ij ≡ |m0

νi|2 − |m0
νj |2, (4.21)

a∓ij ≡ m0
νi ∓m0

νj . (4.22)

Then we take (3.13) and (3.14) and successively consider the index combinations i = 1, k =

2 and i = 2, k = 3 as well as i = 1, k = 3. Separating the real and imaginary parts and

using (4.21) and (4.22), we obtain the following six equations

2 ∆0
12

(

i Im ǫν
12

Re ǫν
12

)

= a∓
∗
21 (M ′

ν)12 ∓ c.c., (4.23)
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2 ∆0
23

(

i Im ǫν
23

Re ǫν
23

)

= a∓
∗
32(M

′
ν)23 ∓ c.c., (4.24)

2 ∆0
13

(

i Im ǫν
13

Re ǫν
13

)

= a∓
∗
31(M

′
ν)13 ∓ c.c. (4.25)

Needless to add, order ǫ2 terms have been neglected in deriving the above results.

5 Results and discussion

Eq. (4.23) has a simple consequence if we exclude unnatural cancellations. In conjunction

with (4.1), it forces the combination of µij , occurring in (M ′
ν)12, i.e. 2µ11+µ12−µ13−µ22+

2µ23 − µ33, to be real. It also implies that m0
ν2

−m0
ν1

is real, the latter forcing α0
21

to be

0 or π. However, our key observation follows from combining (4.24) and (4.25) with (4.2).

That procedure yields the equality

Im [(m0∗
ν3

−m0∗
ν2
)(µ12 +µ13 +µ22 −µ33)] = Im

[

(m0∗
ν3

−m0∗
ν1
)

(

µ12 + µ13 +
1

2
µ22 −

1

2
µ33

)]

.

(5.1)

There are two ways to satisfy (5.1) without any unnatural cancellation, at least one of which

is obligatory. Either we must have option (1), namely that m0
ν2

= m0
ν1

and µ22 = µ33 or

there must be option (2), namely that m0
ν3
,m0

ν2
,m0

ν1
, µ12 + µ13 and µ22 − µ33 are all real

so that each side of (5.1) vanishes. Take (1) first. Since m0
ν1 = |m0

ν1| by choice, we now

have |m0
ν1
| = |m0

ν2
| and α0

21
= 0, i.e. ∆21 ≡ |m2

ν2|−|mν1|2 arises solely from TBM breaking.

Further, with µ22 = µ33, the implication from from (4.24) and (4.25) is that
√
2 Re ǫν

23
=

Re ǫν
13
+O(ǫ2). Consequently, it follows from (4.3) and (4.6) that c23−s23 = −

√
2ǫℓ

23
+O(ǫ2)

which leads to the result
∣

∣

∣
s23 − 1√

2

∣

∣

∣
= 1√

2
|ǫℓ
23
|+ |O(ǫ2)| ≪ |O(ǫν)|. The strong inequality in

the last step has been based on the discussion which followed (4.14). Thus option (1) says

that the magnitude of any deviation from maximal atmospheric mixing, being of order

|ǫℓ
23
| and small, will not be easily observed in forthcoming experiments. Let us turn to

alternative (2). Now we have α0
21

and α0
31

equalling 0 or π. Further, by use of (4.19)

and (4.24), we derive that Im ǫν
23

= O(ǫ2). As a result, by virtue of (4.16) as well as (4.17),

one concludes that s13 sin δCP = O(ǫ2) and J = O(ǫ2), so that both would be small and

hard to detect in experiments planned for the near future. The implication of option (2)

is that CP violation in neutrino oscillations may not be seen in those experiments. It may

be noted that the assumption |ǫℓ| ≪ |ǫν | is unnecessary for this option.

It is also noteworthy that in option (1) one needs to use degenerate perturbation

theory [31–33] with respect to the TBM limit for the 1–2 sector of neutrinos. In the latter

case, the perturbation splits the 1–2 mass degeneracy and generates the solar neutrino

mass difference with m0
ν1 = m0

ν2 = m0
ν . One then obtains

∆21 =
√

(pν
11

− pν
22
)2 + pν

12
2, (5.2)

as calculated using (3.14). Additionally, to order ǫν and ǫℓ, s13e
iδCP can be obtained in terms

of m0
ν3,m

0
ν ,m

0
e,m

0
µ,m

0
τ as well as the µ and λ parameters by using (4.7) and employing

the expressions for the ǫ parameters. We choose not write that full expression here.
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Some comments on the issue of unnatural cancellations are in order. The TBM break-

ing terms in the mass matrix of charged leptons do not leave any residual symmetry except

possibly some rephasing invariances. As stated earlier, given that me ≪ mµ ≪ mτ , the

cancellations required to avoid the reality condition on all λij (for i 6= j) cannot be effected

by any such invariance. In the neutrino case, there generally is a residual Z2 symmetry [7–

11, 14–16] after TBM is broken. Even such a discrete symmetry does not generally enable

one to obtain the concerned complicated equality between specific combinations of TBM

violating perturbation parameters, TBM invariant neutrino masses as well as Majorana

phases. We feel, therefore, that our argument ruling out such cancellations is sound and

our conclusions are reliable.

Let us finally remark on the relevance of our result to planned experiments at the proton

beam intensity frontier. The determination of the sign of the neutrino mass ordering is one

of their aims. It is noteworthy that the constraint on neutrino mixing parameters, derived

by us, is independent of this issue just as the consequences of exact TBM are. Those

experiments will also investigate neutrino mixing parameters. A combination [34–36] of

data from the ongoing and upcoming runs of T2K and NOνA experiments would probe
∣

∣

∣s23 − 1√
2

∣

∣

∣ from the conversion probability P (νµ → νe). Now, in case a sizable nonzero

value of that quantity is measured, being of magnitude comparable in percentage terms to

(100 s13)% of the maximal value of s23, our condition (2) would hold and predict a small

amount of CP violation in neutrino oscillations from the above data. Contrariwise, the

failure to measure any deviation from maximal atmospheric neutrino mixing outside error

bars would mean that our condition (1) would operate with s13 sin δCP = O(ǫν), J = O(ǫν)

permitted; that would bolster the hope of detecting CP nonconservation for oscillating

neutrinos from the difference in conversion probabilities P (νµ → νe) − P (νµ → νe). The

latter would be good news not only for a combined analysis of data from forthcoming

runs of [37] of T2K and NOνA but also for future experiments with superbeams, such as

LBNF [38], LBNO [39, 40] or a neutrino factory at 10GeV [41]. Current hints, either for a

non-maximal θ23 or a nonzero sin δCP/J , by no means constitute any robust evidence and

an experimental resolution of these two issues is urgently called for.

6 Comparative studies with specific flavor models of broken TBM

In the present analysis we have used first order perturbation theory to analytically estab-

lish relations between basis independent sets of small coefficients {ǫℓ, ǫν} and TBM deviant

measurables. In doing so, we have been able to establish the relations given in eq. (4.1) to

eq. (4.4). Physical observables partaining to CP violation have also been related analyt-

ically to these basis independent ǫ coefficients. For these relations to remain valid, TBM

symmetry should be broken weakly so that one could jusify first order perturbation the-

ory. If that symmetry is broken strongly, in other words, if the Lagrangian contains large

terms violating TBM symmetry, then these relations would fail to be true.4 In that case

direct numerical diagonalization would need to be made. On the other hand, numerical

4TBM braking in general is naturally expected to be under control for lowest order perturbation theory

since s13 has been observed to be < 0.18.
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diagonalization cannot be done in a model independent way; consequently, a case by case

study, depending on the model of TBM symmetry breaking, would be required.

Given our two assumptions, namely (1) |ǫℓ| ≪ |ǫν | and (2) the absence of unnatural

cancellations, it is desirable to cross check our result with specific flavor symmetry models

which break tribimaximality by some amount. We consider below several such proposed

models in a representative but not comprehensive survey. Most (though not all) of these are

variations of a basic family symmetry model [42] utilizing the discrete group A4 along with

gauge singlet Higgs fields called flavons which transform as specified A4 representations.

Not every such model can be cast within the framework of additive perturbations to M0

νf

and M0

ℓf . Nonetheless, we deem it useful to make this comparison. In these models, if

some flavons develop VEVs aligned in appropriately chosen directions in the corresponding

A4 representation space, TBM obtains in the neutrino sector with mass diagonal charged

leptons. Certain higher mass dimensional terms are entered into the Lagrangian containing

ratios of flavon VEVs divided by a much larger cut-off scale. If some slight misalignment

is then introduced in these VEV directions, deviations result from exact TBM.

The first example of this type on our list is that of ref. [43] which utilizes two A4

triplet and three A4 singlet flavons. An analytical study of this model was made here while

the TBM deviants were investigated numerically. The magnitude of the dominant TBM

breaking parameters was restricted to small values by taking |U13| < 0.2. This analysis

took care to ensure unitary implementation of broken TBM symmetry, i.e. that perturbed

eigenstates of type t do make up the columns of Ut. A revealing facet of this model is

that the misalignment induced coefficients in the perturbed charged lepton eigenstates

turn out to be significantly less in magnitude than the corresponding ones for neutrinos.

This is since the latter get enhanced by mass ratio factors such as (m0
ν1 + m0

ν3)(m
0
ν2 −

m0
ν1)

−1, (m0
ν1 +m0

ν3)|m0
ν2 −m0

ν3|−1 and (m0
ν3 +m0

ν1)|m0
ν1 −m0

ν3|−1 in our notation, from

the imposed unitary implementation. The corresponding factors in the charged lepton case

are non-enhancing because of the hierarchical nature of the charged lepton masses. Thus

the model manifestly satisfies our condition |ǫℓ| < |ǫν |. The computed numerical values

of J are found to go all the way up to 0.046 when the full parameter space is scanned,

cf. table II of ref. [43]. This means that (s13 sin δCP)max ∼ 0.195, allowing substantial

possible CP violation in neutrino oscillations. However, throughout the parameter space,

one always has sin2 2θ23 < 0.994 i.e.
∣

∣

∣s23 −
√

1

2

∣

∣

∣ < 0.03, which permits only a tiny deviation

from maximality in atmospheric atmospheric neutrino mixig. Therefore this model satisfies

our option (1). The second model [44] that we consider is very similar to that of ref. [43]

except that the perturbations can be arbitrarily large and real flavon VEVs were chosen;

consequently, there is no CP violation to be observed in neutrino oscillations. The deviation

from maximality in s23 can be made large only by chosing the TBM breaking perturbation

parameter |Ue3| ∼ 0.4. If |Ue3| is restricted to < 0.2, as dictated by later experiments,

once again the numerical constraint
∣

∣

∣
s23 −

√

1

2

∣

∣

∣
< 0.03 is seen to operate in agreement

with ref. [43], i.e. the deviation from maximal neutrino mixing is small by our critarion.

Hence our option (1) is maintained here with the additional proviso of a nonexistent J .

Significant deviations
∣

∣

∣s23 −
√

2

3

∣

∣

∣ can occur for very large perturbations which are beyond

the scope of our work.
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We then consider the study of A4 and S4 based flavor symmetry models with per-

turbed lepton mass matrices reported in ref. [45]. In particular, for the S4 based model

investigated, s2
23

gets fixed at 1/2 and there is no deviation from maximality in atmospheric

neutrino mixing; moreover, δCP is preferred to be near π, i.e. no significant CP-violation

in neutrino oscillations is predicted. So this model is compatible with both our options 1

and 2. In the A4 based model considered (with just two A4 singlet flavons), the authors

derive the sum rule s2
13
sin2 δCP = s2

13
− 2(s2

23
− 1/2)2. It is noteworthy that both our

options 1 and 2 are compatible with this result. This is since, according to the sum rule,

CP violation in neutrino oscillations is largest when s2
23

= 1/2 while the deviation from

maximal atmospheric neutrino mixing is greatest when the Dirac phase δCP = 0 or π i.e.

there is no CP violation.

The next analysis in our menu is that of ref. [46]. Here again A4-based models are

considered with the number of A4 singlet flavons varying from one to three and with the

possibility of including the see-saw mechanism for neutrino mass generation. Additive

perturbations are considered vis-à-vis TBM invariant charged lepton and neutrino mass

matrices and numerical diagonalization is carried out. The parameter spaces of the models

considered here allow both a substantial J ∼ 0.02 (i.e. δCP ∼ 30◦) and a sizable |s2
23
−1/2| ≥

0. However, unlike in ref. [43], very large perturbation parameters have been alowed here.

For instance, the charged lepton perturbations ǫch have been taken upto 0.3 while the

corresponding neutrino ones have been kept completely free in the numerical scan with large

allowed values. Thus lowest order perturbation theory does not apply to a considerable

region of their parameter space. We expect that their results should agree with those of

ref. [43] once the smallness criterion is imposed on the perturbations.

The final analysis within the ambit of our comparative study is that of ref. [47]. This

work is somewhat different from the previously considered models in that no specific flavor

symmetry such as A4 for the Lagrangian is assumed. Instead, three separate mechanisms

of TBM breaking are considered per se: (1) corrections to Uℓ in the charged lepton sector

while keeping U0
ν unchanged, (2) renormalization group corrections (with supersymmetry)

starting from exact TBM and nearly mass degenerate neutrinos at a very high scale and (3)

explicit TBM breaking terms added toM0

νf in the neutrino sector only. For (1), the authors

find that J approaches a near maximum with δCP ∼ π/2 but the deviation from maximal

atmospheric neutrino mixing is small with s2
23

= 1/2+O(|Ue3|2). This respects our option
(1). For cases (2) and (3) of ref. [47], sizable such deviations in the latter are possible

with |s2
23

− 1/2| ∼ 0.1–0.2; however, J was not investigated. For case (2), in particular,

exact TBM at a high scale makes the starting boundary value of δCP indeterminate and

an unambiguous answer is not possible.

7 Concluding summary

In this paper we have considered general perturbations at the lowest order to hermitian

squared mass matricesM †
ℓfMℓf andM †

νfMνf respectively for charged leptons and neutrinos

in the flavor basis of each and away from their TBM limits by carefully taking into account

the unitary relation between the mass basis and the flavor basis. We have utilized the fact
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that columns of the said unitary matrix are the perturbed eigenstates. We have derived

linear expressions for the three measurable TBM deviants in terms of the dimensionless

coefficients that appear in the perturbed charged lepton and neutrino eigenstates. We

have further derived four independent constraints on the imaginary parts of the latter

from the requirement that four of the elements of U †
ℓUν have to be real. With the plausible

arguements of the mixing caused by the strongly mass hierarchical charged leptons being

significantly smaller than that due to neutrinos and no unnatural cancellations, we have

derived a result, forcing one of two possibilities, which should be testable in the foreseeable

future. This main result of ours can be stated succintly in the language of mathematical

logic. Proposition A: an accurate description of neutrino mixing is given by the lowest

order of additively perturbed tribimaximality without unnatural cancellations and with the

mixing from the strongly mass hierarchical charged leptons being significantly smaller than

that from neutrinos. Proposition B:
∣

∣

∣
s23 −

√

1

2

∣

∣

∣
= O(ǫν). Proposition C: s13 sin δCP/J =

O(ǫν). Then A ∩ (B ∪ C) = ∅.

A Derivation of mixing constraints

Neglecting O(ǫ2) terms, we may write,

|ψν,l
1
〉f = |ψ0ν,l

1
〉f + ǫν,l

12
|ψ0ν,l

2
〉f + ǫν,l

13
|ψ0ν,l

3
〉f , (A.1)

|ψν,l
2
〉f = −ǫν,l

12

∗|ψ0ν,l
1

〉f + |ψ0ν,l
2

〉f + ǫν,l
23
|ψ0ν,l

3
〉f , (A.2)

|ψν,l
3
〉f = −ǫν,l

12

∗|ψ0ν,l
1

〉f − ǫν,l
23

∗|ψ0ν,l
2

〉f + |ψ0ν,l
3

〉f , (A.3)

where

|ψ0ν
1 〉f =











√

2

3

−
√

1

6
√

1

6











, |ψ0ν
2 〉f =











√

1

3
√

1

3

−
√

1

3











, |ψ0ν
3 〉f =









0
√

1

2
√

1

2









(A.4)

and

|ψ0l
1 〉f =







1

0

0






, |ψ0l

2 〉f =







0

1

0






, |ψ0l

3 〉f =







0

0

1






. (A.5)

By using Uℓ = (|ψℓ
1
〉f |ψℓ

2
〉f |ψℓ

2
〉f ) and Uν = (|ψν

1
〉f |ψν

2
〉f |ψν

3
〉f ), one is led to the

respective expressions for Uℓ and Uν , as given in the text. If we define L ≡ U †
ℓUν , then

neglecting O(ǫ2) terms, the nine elements of the L matrix are

L11 =

√

2

3
+

√

1

3
ǫν12 −

√

1

6
ǫℓ∗12 +

√

1

6
ǫℓ∗13, (A.6)

L12 =

√

1

3
−
√

2

3
ǫν∗12 +

√

1

3
ǫℓ∗12 −

√

1

3
ǫℓ∗13, (A.7)

L13 = −
√

2

3
ǫν∗13 −

√

1

3
ǫν∗23 +

√

1

2
ǫℓ∗12 +

√

1

2
ǫℓ∗13, (A.8)
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L21 = −
√

1

6
+

√

1

3
ǫν12 +

√

1

2
ǫν13 −

√

2

3
ǫℓ12 +

√

1

6
ǫℓ∗23, (A.9)

L22 =

√

1

3
+

√

1

6
ǫν∗12 +

√

1

2
ǫν23 −

√

1

3
ǫℓ12 −

√

1

3
ǫℓ∗12, (A.10)

L23 =

√

1

2
+

√

1

6
ǫν∗13 −

√

1

3
ǫν∗23 +

√

1

2
ǫℓ∗23, (A.11)

L31 =

√

1

6
−
√

1

3
ǫν12 +

√

1

2
ǫν13 −

√

2

3
ǫℓ13 +

√

1

6
ǫℓ23, (A.12)

L32 = −
√

1

3
−
√

1

6
ǫν∗12 +

√

1

2
ǫν23 −

√

1

3
ǫℓ13 −

√

1

3
ǫℓ23, (A.13)

L33 =

√

1

2
−
√

1

6
ǫν∗13 +

√

1

3
ǫν∗23 −

√

1

2
ǫℓ23. (A.14)

Similarly, defining N ≡ UPMNSK
−1 and again neglecting O(ǫ2) terms

N =









c12 s12 s13 e
−iδCP

−s12c23 −
√

1

3
s13e

iδCP c12c23 −
√

1

6
s13e

iδCP s23

s12s23 −
√

1

3
s13e

iδCP −c12s23 −
√

1

6
s13e

iδCP c23









. (A.15)

Expanding in ǫ, the relations
√
2c12 + s12 =

√
3 + O(ǫ2) and c23 + s23 =

√
2 + O(ǫ2)

are automatic. The equality L = N leads to the mixing constraint relations. Specifically,

the identification of elements or their combinations

L11 = N11, L21 − L31 = N21 −N31, L21 + L31 = N21 +N31,

L12 = N12, L22 + L32 = N22 +N32, L22 − L32 = N22 −N32,

L∗
13 = N∗

13, L33 + L23 = N33 +N23, L33 − L23 = N33 −N23,

neglecting O(ǫ2) terms, lead respectively to the equations

c12 −
√

2

3
=

1√
2

(

√

1

3
− s12

)

=

√

1

3
ǫν12 −

√

1

6
(ǫℓ∗12 − ǫℓ∗13), (A.16)

−
√

1

3
(c23 − s23)−

2√
3
s13e

iδCP =
√
2ǫν13 −

√

2

3
(ǫℓ12 + ǫℓ13) +

√

1

6
(ǫℓ23 + ǫℓ∗23), (A.17)

−
√
2s12 = −2

√

1

6
+ 2

√

1

3
ǫν12 −

√

2

3
(ǫℓ12 − ǫℓ13) +

√

1

6
(ǫℓ23 − ǫℓ∗23),

(A.18)

s12 =

√

1

3
−
√

2

3
ǫν∗12 +

√

1

3
(ǫℓ∗12 − ǫℓ∗13), (A.19)

√

2

3

(

c23 − s23 − s13e
iδCP

)

=
√
2ǫν23 −

√

1

3
(ǫℓ12 + ǫℓ13 + ǫℓ∗23 + ǫℓ23), (A.20)

√
2c12 = 2

√

1

3
+ 2

√

1

6
ǫν∗12 −

√

1

3
(ǫℓ∗23 − ǫℓ23)−

√

1

3
(ǫℓ12 − ǫℓ13),

(A.21)
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s13e
iδCP = −

√

1

3
(
√
2ǫν13 + ǫν23) +

√

1

2
(ǫℓ12 + ǫℓ13) (A.22)

c23 + s23 =
√
2 +

1√
2
(ǫℓ∗23 − ǫℓ23), (A.23)

c23 − s23 = −
√

2

3
ǫν∗13 −

√

1

2
(ǫℓ23 + ǫℓ∗23) +

2√
3
ǫν∗23 . (A.24)

Eq. (4.3) is a direct conseqence of (A.23). Eq. (4.2) is easily derived from (A.20)

and (A.22), while eq. (4.1) follows from (A.19) and (A.21). Now eq. (4.4) obtains

from (A.21), whereas eq. (4.5) is just a rewritten form of (A.16) with the input of eq. (4.4).

Eq. (4.6) follows from (A.17) and (A.20). Finally, eq. (4.7) is the same as (A.22).
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