
J
H
E
P
0
2
(
2
0
1
5
)
1
1
7

Published for SISSA by Springer

Received: October 30, 2014

Accepted: January 17, 2015

Published: February 18, 2015

Resummation of double-differential cross sections and

fully-unintegrated parton distribution functions

Massimiliano Procura,a Wouter J. Waalewijnb,c and Lisa Zeuneb

aAlbert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,

University of Bern,

CH-3012 Bern, Switzerland
bITFA, University of Amsterdam,

Science Park 904, 1018 XE, Amsterdam, The Netherlands
cTheory Group, Nikhef,

Science Park 105, 1098 XG, Amsterdam, The Netherlands

E-mail: mprocura@itp.unibe.ch, wouterw@nikhef.nl, l.k.zeune@uva.nl

Abstract: LHC measurements involve cuts on several observables, but resummed calcu-

lations are mostly restricted to single variables. We show how the resummation of a class

of double-differential measurements can be achieved through an extension of Soft-Collinear

Effective Theory (SCET). A prototypical application is pp → Z + 0 jets, where the jet

veto is imposed through the beam thrust event shape T , and the transverse momentum

pT of the Z boson is measured. A standard SCET analysis suffices for pT ∼ m1/2
Z T 1/2 and

pT ∼ T , but additional collinear-soft modes are needed in the intermediate regime. We

show how to match the factorization theorems that describe these three different regions

of phase space, and discuss the corresponding relations between fully-unintegrated parton

distribution functions, soft functions and the newly defined collinear-soft functions. The

missing ingredients needed at NNLL/NLO accuracy are calculated, providing a check of

our formalism. We also revisit the calculation of the measurement of two angularities on

a single jet in JHEP 1409 (2014) 046, finding a correction to their conjecture for the NLL

cross section at O(α2
s).

Keywords: Resummation, Effective field theories, QCD

ArXiv ePrint: 1410.6483

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP02(2015)117

mailto:mprocura@itp.unibe.ch
mailto:wouterw@nikhef.nl
mailto:l.k.zeune@uva.nl
http://arxiv.org/abs/1410.6483
http://dx.doi.org/10.1007/JHEP02(2015)117


J
H
E
P
0
2
(
2
0
1
5
)
1
1
7

Contents

1 Introduction 1

2 Factorization 5

2.1 Effective theory for the region between SCETI and SCETII boundaries 5

2.2 Factorization formulae 8

3 Ingredients at NNLL 11

3.1 Hard function 11

3.2 Beam functions 12

3.3 Soft functions 13

3.4 Collinear-soft function 15

3.5 Renormalization and anomalous dimensions 17

3.6 NLL cross section 18

4 Matching the effective theories 19

5 NLO cross section 21

5.1 Ingredients 22

5.2 Cancellation of IR divergences 24

5.3 Result 25

5.4 Comparison to resummed predictions 26

6 Measuring two angularities on one jet 29

7 Conclusions 32

A Plus distributions 33

B Renormalization group evolution 33

1 Introduction

Experimental LHC analyses typically involve several kinematic cuts. Many of them are

fairly harmless from a theoretical point of view. However, when these restrictions on initial-

and/or final-state radiation lead to widely separated energy scales, large logarithms can be

induced in the corresponding cross section, requiring resummation. One example is given

by the jet veto used to suppress backgrounds in Higgs analyses, where the resummation

of jet-veto logarithms [1–6] greatly reduces the dominant source of theoretical uncertainty.

A closely related process is Drell-Yan (or vector boson) production in the case the lepton
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pair has a small pT compared to their invariant mass Q [7–17]. Another example is the

jet mass mJ spectrum of a jet with transverse momentum pJT , which requires resummation

around the peak of the distribution where mJ � pJT [18–21].

In this paper we focus on double differential measurements, where both observables

lead to large logarithms. Using effective field theory methods, we derive new resummed

expressions for a class of double differential cross sections. Our results smoothly connect to

the phase space boundaries, which require different effective field theories. This formalism

has applications to jet cross sections and jet substructure studies, and we will consider an

example of both in this paper.

As the field of jet substructure has matured [22–24], multivariate analyses have become

common. Furthermore, some of the measurements with the best discrimination power are

ratios of infrared and collinear safe observables, such as ratios of N -subjettiness [25–27], en-

ergy correlation functions [28–30] or planar flow [31, 32]. These quantities are themselves

not infrared and collinear safe, and their calculation involves marginalizing over the re-

summed two-dimensional distribution [33]. The pioneering study in ref. [34], investigating

the measurement of two angularities on one jet, inspired the present paper.

Our formalism can also be applied to pp→ H + 1 jet production, where in addition to

the jet veto the transverse momentum of the jet becomes small. This important contribu-

tion to the cross section is not yet fully understood [6]. In this paper, to better illustrate

the features of our framework, we will mainly focus on a simpler (but related) problem in

Z + 0 jet production, carrying out the simultaneous resummation of the jet veto and the

transverse momentum of the Z boson.

Resummation is often achieved using the parton shower formalism. The great advan-

tage of parton shower Monte Carlo event generators, such as Pythia [35] and Herwig [36],

is that they produce a fully exclusive final state, giving the user full flexibility. On the other

hand, this approach is limited to leading logarithmic (LL) accuracy, and it is difficult to

estimate the corresponding theory uncertainty. It is also not clear to what extent correla-

tions between resummed observables are correctly predicted by Monte Carlo models, see

e.g. ref. [37]. By contrast, we predict these correlations and our resummed predictions have

a theory uncertainty attached to it, whose reliability can be verified by comparing different

orders in resummed perturbation theory. Note that there has been significant progress

by matching higher-order matrix elements with parton showers (see e.g. refs. [38–45]) and

(partially) including higher-order resummation [42].

We will illustrate the features of our framework in the specific case of pp→ Z + 0 jets,

where the transverse momentum pT of the Z boson is measured and a global jet veto is

imposed using the beam thrust event shape [1, 46]

T =
∑
i

piT e
−|ηi| =

∑
i

min{p+
i , p

−
i } . (1.1)

The sum on i runs over all particles in the final state, except for the leptonic decay products

of the Z. Here, piT is the magnitude of the transverse momentum and ηi the pseudorapidity

of particle i in the center-of-mass frame of the hadronic collision. Light-cone coordinates
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Figure 1. The different regions for the double measurement of pT and beam thrust T in Z-boson

production from pp collisions.

are defined as

pµi = p+
i

nµ

2
+ p−i

nµ

2
+ pµi⊥ , p−i = n̄·pi , p+

i = n·pi , (1.2)

where nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1) are along the beam axis. Beam thrust imposes

a global veto on all radiation in an event, which is impractical in the LHC environment.

This can be remedied by only including the contributions from jet regions in eq. (1.1) [47].

We will nevertheless consider the global veto to keep our discussion as simple as possible.

At the end of section 2.2 we will comment on a special class of non-global measurements

whose logarithms can easily be resummed within our approach.

We will perform resummations using Soft-Collinear Effective Theory (SCET) [48–51].

Which version of SCET is the appropriate one, namely what the relevant degrees of freedom

are, depends on the region of phase space probed by the measurement, as shown in figure 1

and discussed below. We find that in the intermediate region, between the SCETI and

SCETII boundaries, the effective field theory involves additional collinear-soft modes. This

type of mode was introduced in a different context in ref. [52], and has led us to also

refer to our effective theory as SCET+. Since we are considering different observables than

ref. [52], there are of course important differences, which will be discussed in section 2.1.

We now comment on the theoretical description relevant for each region of phase space in

the (pT , T ) plane.

• Fixed Order: pT , T ∼ Q
When pT and T are parametrically of the same size as the hard scale Q2 = p2

Z ∼ m2
Z ,

resummation is not necessary and a fixed-order calculation suffices.

• SCETI: pT ∼ Q1/2T 1/2

This case was discussed in ref. [53]. The collinear and soft modes, shown in the

left panel of figure 2, interact. The SCETI scale hierarchy implies that the soft

radiation contributes only to T (its contribution to pT is power suppressed), whereas
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the collinear radiation contributes both to the pT and the T measurement. This

collinear radiation is described by fully-unintegrated parton distribution functions

(PDFs) [53–56], which depend on all momentum components of the colliding parton.

By contrast, the standard PDFs only depend on the momentum fraction x.

• SCET+: pT ∼ Q1−rT r with 1/2 < r < 1

As pT is lowered, the collinear modes can no longer interact with the soft mode. They

“split off” collinear-soft modes that do interact with the soft modes, see figure 2.

(To have a distinct mode contribution requires sufficient distance from the SCETI

and SCETII boundaries.) In this scenario, the collinear radiation only contributes

to pT , the soft radiation only to T , and the collinear-soft radiation enters in both

measurements. The SCET+ power counting will be given below in table 1.

• SCETII: pT ∼ T
As pT is reduced further, the soft mode “absorbs” the two collinear-soft modes. In the

resulting theory there are no interactions between the collinear and the soft modes,

as shown in the left panel of figure 2. The collinear radiation, which in the SCETII

case is described by transverse-momentum dependent (TMD) PDFs, only affects pT ,

whereas now the soft mode contributes to both measurements.

• Z+forward jet: pT � Q1/2T 1/2

As pT exceeds this bound, the QCD radiation becomes (much) more energetic than

the invariant mass Q of the Z boson. This cannot be described as initial-state

radiation, but rather as Z production in association with an energetic forward jet.

• Terra incognita: pT � T
Unlike the previous regions, the cross section no longer receives a contribution from

a single emission. There is a small NNLO contribution from the region of phase

space where the two emissions are (almost) back-to-back in the transverse plane.

In double parton scattering (DPS) the production of the Z and the two jets are

(largerly) independent of each other, causing the jets to naturally be back-to-back.1

The contribution from DPS is therefore also important. As the proper method for

combining single and double parton scattering is still under debate [59–64], we leave

this for future work.

In this paper, we also show how to combine the SCETI, SCET+ and SCETII regions

to achieve NNLL resummation throughout. The corresponding next-to-leading order cross

section is calculated, providing a check of our results.

In most earlier studies of multi-dimensional observables in SCET, such as refs. [65, 66],

the measurements concerned different regions of phase space (hemispheres, jets, etc.).

There, resummation is achieved by assuming a single parametric relation between the

observables, to avoid so-called non-global logarithms [67, 68]. In ref. [34] the two boundary

theories for the measurement of two angularities on a single jet were identified. There an

1This feature is exploited to extract DPS experimentally, see e.g. refs. [57, 58].
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Figure 2. The modes in SCETI, SCET+ and SCETII: collinear (green), collinear-soft (blue) and

soft (orange). Interactions between modes in the effective theory are shown with wiggly lines. These

are removed by the decoupling transformations in eq. (2.7).

interpolating function across the intermediate region was derived, by requiring it to be con-

tinuous and have a continuous derivative at the boundaries. We revisit their NLL results

and find a discrepancy at O(α2
s) in the bulk. It is worth mentioning that in this case both

boundaries involve SCETI-type theories, to which our framework can be applied as well.

The paper is structured as follows. In section 2.1 we introduce SCET+, perform the

matching of QCD onto SCET+ currents, and comment on the (dis)similarities with the

theory introduced in ref. [52]. Section 2.2 contains the factorization formulae for the Drell-

Yan cross section with a simultaneous measurement of pT and T in the SCETI, SCET+

and SCETII regions of phase space, as well as the field-theoretic definitions of the matrix

elements involved. We calculate/collect all the ingredients necessary to achieve NNLL

accuracy in section 3 and discuss the (all-order) matching of SCETI, SCET+ and SCETII

in section 4. The corresponding NLO cross section is calculated in section 5, providing a

verification of our resummed predictions. In section 6 we calculate the double angularity

measurement on a single jet and compare with ref. [34]. Conclusions and outlook are

presented in section 7.

2 Factorization

2.1 Effective theory for the region between SCETI and SCETII boundaries

Soft-Collinear Effective Theory (SCET) [48–51] describes the collinear and soft limits of

QCD. For a pedagogical introduction see e.g. refs. [69, 70]. SCET captures QCD in the

infrared regime up to corrections that are suppressed by powers of the SCET expansion

parameter λ � 1, in exchange for enabling the resummation of large logarithms of λ. As

discussed in section 1, both the process and measurement determine which modes give the

leading contributions to the cross section in a specific kinematic regime. In figure 2 we

summarize the scalings and interactions between different degrees of freedom leading to the

physical picture in section 1. These modes need to be well-separated, in order for λ to be

small. The decoupling of modes in the SCET Lagrangian (at leading power) allows one to
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Figure 3. The µ-evolution resums double logarithms from separations in virtuality (between

hyperbolae), while the ν-evolution resums single logarithms related to separations in rapidity (along

hyperbolae). The collinear, collinear-soft and soft modes are depicted in green, blue and orange,

respectively.

Mode: Scaling (−,+,⊥)

n-collinear Q(1, λ2r, λr) ∼ (Q, p2
T /Q, pT )

n̄-collinear Q(λ2r, 1, λr) ∼ (p2
T /Q,Q, pT )

n-collinear-soft Q(λ2r−1, λ, λr) ∼ (p2
T /T , T , pT )

n̄-collinear-soft Q(λ, λ2r−1, λr) ∼ (T , p2
T /T , pT )

soft Q(λ, λ, λ) ∼ (T , T , T )

Table 1. Modes and power counting in SCET+ with λ ∼ T /Q ∼ (pT /Q)1/r.

factorize multi-scale cross sections into products (or convolutions) of single-scale functions

for each mode. At its natural scale, each of these function contains no large logarithms. By

applying the renormalization group (RG) evolution from these natural scales to a common

scale µ, we achieve resummation of logarithms of λ in the cross section. For modes that are

not separated in virtuality but only in rapidity, we will sum the corresponding single loga-

rithms through the ν-evolution of the rapidity renormalization group [71, 72].2 Pictorially,

the µ-evolution sums logarithms related to the separation between the mass hyperbolae of

the modes, whereas the ν-evolution sums the logarithms related to the separation along

them, see figure 3.

We will now discuss SCET+ in some detail, focussing on modes, matching of QCD

onto SCET+ and factorization. We refrain from performing a full formal construction of

the effective theory. Factorization means there are no interactions between the various

modes, and each mode is described by a (boosted) copy of QCD. In particular, one can

use the standard QCD Feynman rules (rather than e.g. the collinear effective Lagrangian

of ref. [49]) to carry out the computations for each sector.

The measurement of beam thrust T and transverse momentum pT , with pT ∼ Q1−rT r
and 1/2 < r < 1,3 suggests that the relevant modes are those listed in table 1 and shown

2For alternative approaches to rapidity resummation in SCET, see e.g. refs. [14, 73].
3Note that our analysis is independent of the parameter r, as is clear from the second way of writing

the modes in table 1. However, we prefer to use a single power counting parameter λ.
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in the center panel of figure 2, with power counting parameter

λ ∼ T
Q
∼
(pT
Q

)1/r
. (2.1)

A collinear mode only affects the pT -distribution, as the contribution to T from its small

light-cone component is power suppressed. Similarly, a soft mode only contributes to T ,

whereas the collinear-soft modes contributes to both measurements. These on-shell modes

are uniquely specified by these features. Of course, additional (redundant) modes may be

included, as long as the double counting is removed (for example by an appropriate zero-bin

subtraction [74]). As usual, we will assume the cancellation of (off-shell) Glauber modes.

These account for initial-state hadron-hadron interactions taking place before the collision,

which would ruin factorization [75]. This cancellation has only been rigorously proven for

inclusive Drell-Yan [76], and could be spoiled due to our pT and T measurements [77].

The QCD quark and gluon fields are decomposed into several SCET fields which scale

differently with respect to the expansion parameter λ. By matching quark currents from

QCD onto SCET+ we obtain

Ψ̄ Γ Ψ = C(Q2, µ) ξ̄n̄Wn̄S
†
n̄X
†
n̄Vn̄ ΓV †nXnSnW

†
nξn . (2.2)

The matching coefficient C(Q2, µ) captures the effect of hard virtual gluon exchanges not

present in the effective theory. In eq. (2.2), ξn and ξ̄n̄ are the fields for collinear (anti-)

quarks moving in the n (n̄) direction and Γ denotes a generic Dirac structure. The Wilson

line Wn arises from n-collinear gluons emitted by Ψ̄ (which itself is n̄-collinear) [50]

Wn = P exp

[
ig

∫ 0

−∞
du n̄·An(u n̄)

]
. (2.3)

The Wilson line Vn is its direct analog for n-collinear-soft gluons (obtained by replacing

An → Ancs). Soft gluons emitted by Ψ are summed into the Wilson line Sn [51]

Sn = P exp

[
ig

∫ 0

−∞
dun·As(un)

]
, (2.4)

and the analog for n-collinear-soft gluons is Xn.

To fix the ordering of Wilson lines, we exploit gauge invariance of SCET+. In order to

preserve the scaling of the fields, separate collinear, collinear-soft and soft gauge transfor-

mations have to be introduced, see e.g. refs. [51, 52]. Only the n-collinear fields transform

under n-collinear gauge transformations. The other fields are taken far off-shell and are thus

unable to resolve the local change induced by this gauge transformation. This causes W †nξn
and ξ̄n̄Wn̄ to be grouped together. Under a n-collinear-soft gauge transformation Uncs

W †nξn →W †nξn , Sn → Sn , Vn → UncsVn , Xn → UncsXn ,

ξ̄n̄Wn̄ → ξ̄n̄Wn̄ , Sn̄ → Sn̄ , Vn̄ → Vn̄ , Xn̄ → Xn̄ , (2.5)

which groups V †nXn together. Similarly, X†n̄Vn̄ must be grouped together by n̄-collinear-soft

gauge invariance. The effect of a soft gauge transformation Us is given by

W †nξn →W †nξn , Sn → UsSn , Vn → UsVnU
†
s , Xn → UsXnU

†
s ,

ξ̄n̄Wn̄ → ξ̄n̄Wn̄ , Sn̄ → UsSn̄ , Vn̄ → UsVn̄U
†
s , Xn̄ → UsXn̄U

†
s . (2.6)
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The soft gluon field acts as smooth background for collinear-soft modes, implying that the

effect of a soft gauge transformation on collinear-soft modes is similar to a global color rota-

tion. This almost fixes the ordering in eq. (2.2). There are still a few other possibilities that

satisfy the constraints from gauge invariance, such as ξ̄n̄Wn̄S
†
n̄V
†
nXn ΓX†n̄Vn̄SnW

†
nξn. How-

ever, these can be ruled out by considering the tree-level matching of QCD onto SCET+.

At this point the soft fields still interact with the collinear-soft fields, as indicated in

the middle panel of figure 2. By performing the analog of the BPS field redefinition [51],

we decouple the soft fields from the collinear-soft fields,

Vn → SnVnS
†
n , Xn → SnXnS

†
n ,

Vn̄ → Sn̄Vn̄S
†
n̄ , Xn̄ → Sn̄Xn̄S

†
n̄ . (2.7)

This leads to

Ψ̄ Γ Ψ = C(Q2, µ) ξ̄n̄Wn̄X
†
n̄Vn̄S

†
n̄ ΓSnV

†
nXnW

†
nξn . (2.8)

The various modes in this matching equation no longer interact and the derivation of

factorization formulae now follows the standard procedure in SCET. In particular, estab-

lishing factorization to all orders in αs requires decoupling of the different modes in the

Lagrangian, for which we refer to ref. [52].

One expects that this matching receives power corrections of the size λ2r−1 ∼ p2
T /(QT )

and λ2−2r ∼ T 2/p2
T , which measure the distance from the respective SCETI and SCETII

boundary regions of phase space. In our NLO calculation in section 5 we find corrections

of the first type but not of the second. However, we expect that this will no longer be the

case at higher orders.

Finally, we briefly comment on the (dis)similarities of our theory with the SCET+

introduced in ref. [52]. In that paper the dijet invariant mass (mj1j2) distribution for nearby

jets is calculated, with the hierarchy mj1 ,mj2 � mj1j2 � Q. Their collinear-soft modes

can resolve the two nearby jets, whereas the soft modes do not, and the collinear modes

are restricted to the individual jets. Their factorization theorem involves convolutions

through the small collinear light-cone component. Since we consider different type of

observables, our convolutions of collinear-soft modes with either collinear or soft radiation

have a different structure. The matching in ref. [52] was (also) performed in two steps,

where in the first step the two nearby jets are not resolved from each other. Nevertheless,

the similarities between the modes and Wilson lines in our and their approach seemed

sufficient to us to adopt the same name for our effective theory.

2.2 Factorization formulae

We now discuss SCET factorization formulae for Drell-Yan cross sections that are differ-

ential both in T and pT , both at the SCETI and SCETII phase space boundaries and in

the SCET+ “bulk”. In Drell-Yan production, pp → Z/γ∗ → `+`−, the lepton pair has a

large invariant mass Q. A proof of factorization at leading power in ΛQCD/Q has been

given by Collins, Soper and Sterman [9], for any value of the transverse momentum pT
of the lepton pair, namely for both pT ∼ Q and pT � Q. Here we impose in addition a

– 8 –
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veto on hard central jets through a cut on beam thrust T in the center-of-mass frame of

the pp collision [1], see eq. (1.1). We consider different kinematic regimes for pT and T ,

as discussed in the introduction. We will not perform the joint resummation of threshold

logarithms that becomes important as Q approaches the total CM energy Ecm [78].

If ΛQCD � pT ∼ (T Q)1/2 � Q (SCETI case), we have the following leading-power

factorization formula [46, 53]

d4σ

dQ2 dY dp 2
T dT =

∑
q

σ̂0
q H(Q2, µ)

∫
dt1 dt2

∫
d2~k1⊥ d2~k2⊥

∫
dk+ S(k+, µ)

×
[
Bq(t1, x1,~k1⊥, µ)Bq̄(t2, x2,~k2⊥, µ) + (q ↔ q̄)

]
× δ
(
T − e−Y t1 + eY t2

Q
− k+

)
δ
(
p 2
T − |~k1⊥ +~k2⊥|2

)
, (2.9)

whose ingredients we will describe below. The sum extends over the various quark flavors, Y

is the total rapidity of the leptons, and the momentum fractions of the colliding partons are

x1 =
Q

Ecm
eY , x2 =

Q

Ecm
e−Y . (2.10)

The quantities e−Y t1/Q, eY t2/Q and k+ in eq. (2.9) are the contributions to T from the n-

collinear, n̄-collinear and soft radiation. For n-collinear radiation, we always have p+
i < p−i ,

for n̄-collinear radiation, p+
i > p−i , whereas the soft radiation can go into both hemispheres

(p+
i < p−i and p+

i > p−i ).

At leading order in the electroweak interactions,

σ̂0
q =

4πα2
em

9Q2E2
cm

[
Q2
q +

(v2
q + a2

q)(v
2
` + a2

` )− 2Qqvqv`(1−m2
Z/Q

2)

(1−m2
Z/Q

2)2 +m2
ZΓ2

Z/Q
4

]
, (2.11)

where Qq is the quark charge in units of |e|, v`,q and a`,q are the standard vector and

axial couplings of the leptons and quarks, and mZ and ΓZ are the mass and width of the

Z boson.

The hard function H(Q2) is the square of the Wilson coefficient C(Q2) for the matching

of QCD onto SCET vector and axial quark currents4

H(Q2, µ) = |C(Q2, µ)|2 . (2.12)

It does not depend on pT , since we only consider pT � Q.5 Since lepton masses are

neglected, there is no contribution from gluon operators in the matching of the (axial)

currents [46]. The gluon PDF only appears through its contribution to the quark beam

function, see eq. (3.2).

Due to the SCETI hierarchy of scales, the effect of soft radiation on the pT -distribution

is power suppressed, so only the fully-unintegrated (FU) PDFs account for the recoil of

the energetic initial-state radiation against the final-state leptons. Because we consider

4As compared to eq. (2.2), in SCETI only collinear and (ultra-)soft Wilson lines enter the matching.
5The leptonic tensor in the Drell-Yan process does not depend on pT at leading order.
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perturbative pT , T � ΛQCD, we will refer to these as FU beam functions in the following.

At the bare level, these are defined as the following proton matrix element of collinear

fields [53]

Bq(t, x,~k⊥) =
〈
pn(p−)

∣∣∣χ̄n(0)
n̄/

2

[
δ(k−−p−+P−) δ(t−k−P+) δ2(~k⊥−~P⊥)χn(0)

] ∣∣∣pn(p−)
〉
.

(2.13)

The light-like vector nµ is along the direction of the incoming proton (i.e. pµ = Ecmn
µ/2)

and the operator P returns the momentum of the intermediate state.6 By boost invariance

along the n-direction, these functions only depend on the momentum fraction x = k−/p−,

the transverse virtuality −t = k−k+ of the colliding parton, and the transverse momentum
~k⊥ [53, 79].

The (ultra-)soft radiation is described by the beam thrust soft function S(k) [46]. This

is given in terms of a soft Wilson-line correlator as

S(k+) =
1

Nc
〈0|Tr

[
T(S†n(0)Sn̄(0)) δ(k+ −P+

1 −P−2 ) T(S†n̄(0)Sn(0))
]
|0〉 , (2.14)

where (T) T denotes (anti)time ordering and the operator P1 (P2) gives the momentum

of the soft radiation going into the hemisphere defined by p+
i < p−i (p+

i > p−i ).

In the region of phase space described by SCET+ (ΛQCD � T � pT � (T Q)1/2 � Q),

d4σ

dQ2 dY dp 2
T dT =

∑
q

σ̂0
q H(Q2, µ)

∫
d2~k1⊥ d2~k2⊥ d2~kcs

1⊥ d2~kcs
2⊥

∫
dk+

1 dk+
2 dk+ S(k+, µ)

×Bq(x1,~k1⊥, µ, ν)Bq̄(x2,~k2⊥, µ, ν)S
(
k+

1 ,
~kcs

1⊥, µ, ν
)
S
(
k+

2 ,
~kcs

2⊥, µ, ν
)

× δ
(
T − k+

1 − k+
2 − k+

)
δ
(
p 2
T − |~k1⊥ +~k2⊥ + ~kcs

1⊥ +~kcs
2⊥|2

)
+(q ↔ q̄) .

(2.15)

The contribution from collinear radiation is now encoded in TMD beam functions,

Bq(x,~k⊥) =
〈
pn(p−)

∣∣∣χ̄n(0)
n̄/

2

[
δ(k− − p− + P−) δ2(~k⊥ − ~P⊥)χn(0)

] ∣∣∣pn(p−)
〉

(2.16)

Their naive definition using dimensional regularization is known to suffer from light-cone

singularities (rapidity divergences), which we regulate following refs. [71, 72]. There are

separate but identical collinear-soft functions for the n and n̄ direction,

S (k+,~k⊥) =
1

Nc
〈0|Tr

[
T(X†n(0)Vn(0)) δ(k+−P+) δ2(~k⊥−~P⊥)T(V †n (0)Xn(0))

]
|0〉 ,

=
1

Nc
〈0|Tr

[
T(V †n̄ (0)Xn̄(0)) δ(k+−P−) δ2(~k⊥−~P⊥) T(X†n̄(0)Vn̄(0))

]
|0〉 , (2.17)

which are also affected by rapidity divergences.

For the hierarchy ΛQCD � pT ∼ T � Q, soft modes have the same virtuality and

transverse momentum as the collinear ones, and contribute both to T and pT measure-

ments. The corresponding SCETII factorization theorem has the form

6We can avoid using the label-momentum formalism employed in e.g. refs. [53, 79] since after factorization

the collinear sector is simply a boosted copy of QCD.
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d4σ

dQ2 dY dp 2
T dT =

∑
q

σ̂0
q H(Q2, µ)

∫
d2~k1⊥ d2~k2⊥ d2~k⊥

∫
dk+ δ

(
p 2
T−|~k1⊥+~k2⊥+~k⊥|2

)
δ
(
T −k+

)
×
[
Bq(x1,~k1⊥, µ, ν)Bq̄(x2,~k2⊥, µ, ν) + (q ↔ q̄)

]
S(k+,~k⊥, µ, ν) . (2.18)

The new ingredient is given by the FU soft function, which is defined as

S(k+,~k⊥) =
1

Nc
〈0|Tr

[
T(S†n(0)Sn̄(0)) δ(k+ −P+

1 −P−2 ) δ2(~k⊥ − ~P⊥) T(S†n̄(0)Sn(0))
]
|0〉 .

(2.19)

It is natural to ask to what extent our approach can be used to calculate non-global

logarithms, which arise when different restrictions are applied to distinct regions of phase

space [67, 68]. If instead of the transverse momentum of the Z boson one measures the

pT,ISR of the initial-state radiation that recoils against it, we could e.g. restrict ourselves

to the ISR in one hemisphere. In this case the factorization theorem in the region of phase

space described by SCET+ is simply modified to

d4σ

dQ2 dY dp 2
T,ISR dT =

∑
q

σ̂0
q H(Q2, µ)

∫
dt2

∫
d2~k1⊥ d2~kcs

1⊥

∫
dk+

1 dk+ S(k+, µ)

×Bq(x1,~k1⊥, µ, ν)Bq̄(t2, x2, µ)S
(
k+

1 ,
~kcs

1⊥, µ, ν
)

(2.20)

× δ
(
T − k+

1 −
eY t2
Q
− k+

)
δ
(
p 2
T,ISR − |~k1⊥ + ~kcs

1⊥|2
)
+(q ↔ q̄) .

However, this does not address the problem arising when the soft function contains multiple

scales (see for example [80–82]), which occurs when e.g. the beam thrust measurement is

restricted to one hemisphere.

3 Ingredients at NNLL

In this section we collect the expressions for the ingredients entering the factorization

formulae in section 2.2, to the accuracy needed for NNLL resummations: the hard function

at one loop is discussed in section 3.1, the FU and TMD beam function in section 3.2, the

FU and beam thrust soft function in section 3.3 and the collinear-soft function in section 3.4.

The FU soft function and collinear-soft function are calculated for the first time. RG

equations and anomalous dimensions for NNLL resummation are given in section 3.5 and

appendix B. The anomalous dimensions of the collinear-soft function and FU soft function

satisfy the consistency requirement imposed by the µ and ν independence of the factorized

cross sections in eqs. (2.15) and (2.18). In section 3.6 we combine these ingredients to

obtain a compact expression for the NLL cross section.

3.1 Hard function

The one-loop Wilson coefficient C(Q2, µ) from matching the quark current in QCD onto

SCET was computed in refs. [83, 84]. Here Q2 is the square of the partonic center of mass
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energy. The matching is the same for SCETI, SCET+ and SCETII, because all effective

field theory diagrams are scaleless and vanish in dimensional regularization. At one loop,

H(Q2, µ) =
∣∣C(Q2, µ)

∣∣2 = 1 +
αsCF

2π

[
− ln2

(
Q2

µ2

)
+ 3 ln

(
Q2

µ2

)
− 8 +

7π2

6

]
. (3.1)

3.2 Beam functions

The FU beam function was defined in eq. (2.13), and its arguments t and ~k 2
⊥ are restricted

to be of the same parametric size. As we assume that these scales are perturbative, the

FU beam function can be matched onto PDFs [16, 46, 53, 79]

Bq(t, x,~k⊥, µ)=
∑

j=u,ū,d,g...

∫ 1

x

dx′

x′
Iqj
(
t,
x

x′
,~k⊥, µ

)
fj(x

′, µ)

[
1 +O

(
Λ2

QCD

t
,
Λ2

QCD

~k 2
⊥

)]
. (3.2)

Because of the kinematic bound ~k 2
⊥ ≤ (1− x)t/x (see eq. (1.1) of ref. [53]), the renormal-

ization is the same as the standard beam function and∫
d2~k⊥Bq(t, x,~k⊥, µ) = Bq(t, x, µ) . (3.3)

Up to NLO, the matching coefficients in eq. (3.2) are [53]

I(0)
qq (t, x,~k⊥, µ) = δ(t) δ(1− x) δ2(~k⊥) ,

I(0)
qg (t, x,~k⊥, µ) = 0 ,

I(1)
qq (t, x,~k⊥, µ) =

αs(µ)CF
2π2

{
2

µ2
L1

(
t

µ2

)
δ(1−x) δ(~k 2

⊥)

+
1

µ2
L0

(
t

µ2

)
(1+x2)L0(1−x) δ

(
~k 2
⊥−

(1−x)t

x

)
+ δ(t) δ(~k 2

⊥)

[
(1+x2)L1(1−x)− π2

6
δ(1− x)− 1+x2

1−x lnx+ 1− x
]}

,

I(1)
qg (t, x,~k⊥, µ) =

αs(µ)TF
2π2

{[
1

µ2
L0

(
t

µ2

)
δ

(
~k 2
⊥−

(1−x)t

x

)
+ δ(t) δ(~k 2

⊥) ln
1− x
x

]
×
[
x2+(1−x)2

]
+ 2 δ(t) δ(~k 2

⊥)x(1− x)

}
, (3.4)

where some additional factors of 1/π are due to

δ2(~k⊥) =
1

π
δ(~k 2
⊥) . (3.5)

The matching coefficients at NNLO have recently been calculated in ref. [85].

The TMD beam function satisfies a similar equation [9, 14, 72, 86]

Bq(x,~k⊥, µ, ν) =
∑
j

∫ 1

x

dx′

x′
Iqj
(
x

x′
,~k⊥, µ, ν

)
fj(x

′, µ)

[
1 +O

(Λ2
QCD

~k 2
⊥

)]
, (3.6)
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with coefficients [87]

I(0)
qq (x,~k⊥, µ, ν) = δ(1− x) δ2(~k⊥) ,

I(0)
qg (x,~k⊥, µ, ν) = 0 ,

I(1)
qq (x,~k⊥, µ, ν) =

αsCF
2π2

{
1

µ2
L0

(~k 2
⊥
µ2

)[
(1+x2)L0(1−x) + 2 δ(1−x) ln

p−

ν

]
+ δ(~k 2

⊥)(1−x)

}
,

I(1)
qg (x,~k⊥, µ, ν) =

αsTF
2π2

{
1

µ2
L0

(~k 2
⊥
µ2

)[
x2 + (1− x)2

]
+ 2 δ(~k 2

⊥)x(1− x)

}
. (3.7)

Most approaches (such as in refs. [14, 17, 88]) do not (need to) separate the TMD beam

and TMD soft function. In the SCET+ regime, instead, we need the TMD beam function

but have a different soft function.

3.3 Soft functions

The (beam) thrust soft function was determined at NLO in refs. [46, 89, 90]

S(k+, µ) = δ(k+) +
αsCF

2π

[
− 8

µ
L1

(
k+

µ

)
+
π2

6
δ(k+)

]
+O(α2

s) . (3.8)

The NNLO contribution is known as well [80, 81].

We now calculate the FU soft function, which is differential in both k+ and ~k⊥, with

k+ ∼ |~k⊥|.7 Starting from the definition in eq. (2.19), the tree-level result is

S(0)(k+,~k⊥) = δ(k+) δ2(~k⊥) . (3.9)

7This differs from the FU soft function in ref. [56], because their k+ measurement is independent of the

hemisphere the gluon goes into.
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Using the rapidity regulator of refs. [71, 72], at one-loop order we find

S(1)(k+,~k⊥) =
4g2w2CF
(2π)3−2ε

(
eγEµ2

4π

)ε
νη
∫

dd` θ(`0)δ(`2)
|2`3|−η
`−`+

× δ2(~̀⊥ − ~k⊥) δ
(
`+θ(`− − `+) + `−θ(`+ − `−)− k+

)
= αsw

2CF
21−η eεγE µ2ε νη

π2−ε

∫
d−2ε`ε

1

~k 2
⊥ + ~̀2

ε

×
∫ ∞

0
d`3

(`3)−η√
~k 2
⊥ + ~̀2

ε + (`3)2

δ
(√

~k 2
⊥ + ~̀2

ε + (`3)2 − `3 − k+
)

= αsw
2CF

2 eεγE µ2ε νη

π2−ε
1

(k+)1−η

∫
d−2ε`ε

θ
(
~k 2
⊥ − (k+)2 + ~̀2

ε

)
(~k 2
⊥ + ~̀2

ε )[~k 2
⊥ − (k+)2 + ~̀2

ε ]η

= αsw
2CF

2 eεγE µ2ε νη

π2 Γ(−ε)
1

(k+)1−η(~k 2
⊥)1+ε+η

∫ ∞
0

dx
θ(x+ 1− (k+)2/~k 2

⊥)

x1+ε(x+1)[x+1−(k+)2/~k 2
⊥]η

= αsw
2CF

2 eεγE µ2ε+η νη

π2 Γ(−ε)

{
1

η
δ(k+)

1

(~k 2
⊥)1+ε+η

∫ ∞
0

dx
1

x1+ε(x+ 1)1+η

+
1

µ
L0

(
k+

µ

)
1

(~k 2
⊥)1+ε

[
θ(~k 2
⊥ − (k+)2)

∫ ∞
0

dx
1

x1+ε(x+ 1)

+ θ((k+)2 − ~k 2
⊥)

∫ ∞
(k+)2/~k 2

⊥−1
dx

1

x(x+ 1)

]
+O(η, ε)

}
~k 2
⊥>0
=

αsw
2CF
π2

{
2

η

[
− 1

ε
δ(~k 2
⊥) +

1

µ2
L0

(~k 2
⊥
µ2

)]
δ(k+) +

2

ε2
δ(~k 2
⊥)δ(k+)

+
2

ε
ln
µ

ν
δ(~k 2
⊥)δ(k+) + 2θ(~k 2

⊥ − (k+)2)
1

µ
L0

(
k+

µ

)
1

µ2
L0

(~k 2
⊥
µ2

)
+ δ(k+)

[
− 2

µ2
L1

(~k 2
⊥
µ2

)
+

2

µ2
L0

(~k 2
⊥
µ2

)
ln
ν

µ
− π2

6
δ(~k 2
⊥)

]
+O(η, ε)

}
~k 2
⊥≥0→ αsw

2CF
π2

{
2

η

[
− 1

ε
δ(~k 2
⊥) +

1

µ2
L0

(~k 2
⊥
µ2

)]
δ(k+) +

1

ε2
δ(~k 2
⊥)δ(k+)

+
2

ε
ln
µ

ν
δ(~k 2
⊥)δ(k+) +

2

µ3
L∆

(
k+

µ
,
~k 2
⊥
µ2

)
+ δ(k+)

[
− 2

µ2
L1

(~k 2
⊥
µ2

)
+

2

µ2
L0

(~k 2
⊥
µ2

)
ln
ν

µ
− π2

12
δ(~k 2
⊥)

]
+O(η, ε)

}
. (3.10)

Here longitudinal momenta get regulated by η, which can be thought of as the analog for

rapidity divergences of the UV regulator ε, with the dimensionful parameter ν acting like

a renormalization scale. Both 1/η and 1/ε divergences get absorbed in renormalization

constants and give rise to µ- and ν-RG equations. The bookkeeping parameter w is used

to derive the anomalous dimensions (see eq. (3.12)) and will be eventually set equal to 1.

In eq. (3.10) we introduce x = ~̀2
ε /
~k 2
⊥ in intermediate steps, to simplify notation. In

the second to last step, we first assume ~k 2
⊥ > 0 to simplify the expansion in ε. We then

extend the distributions to include ~k 2
⊥ = 0 and fix the coefficient of the δ(k+)δ(~k 2

⊥) by
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integrating the unexpanded result. The finite terms contain the following two-dimensional

plus distribution

L∆(x1, x2) = lim
β→0

d

dx1

d

dx2

[
θ(x2 − x2

1)θ(x1 − β) lnx1 (lnx2 − lnx1)

+
1

4
θ(x2

1 − x2)θ(x2 − β2) ln2 x2

]
. (3.11)

The 1/ε and 1/η poles are renormalized. We obtain the one-loop anomalous dimension in

eq. (3.25) by using [71, 72]

dαs
d lnµ

= −2ε αs +O(α2
s) ,

dw

d ln ν
= −η

2
w +O(w2) , (3.12)

and setting w = 1 afterwards. These are the same as for the TMD soft function. The

renormalized FU soft function is given by the remaining finite terms,

S(1)(k+,~k⊥, µ, ν) =
αsCF
π2

{
2

µ3
L∆

(
k+

µ
,
~k 2
⊥
µ2

)
+ δ(k+)

[
− 2

µ2
L1

(~k 2
⊥
µ2

)
+

2

µ2
L0

(~k 2
⊥
µ2

)
ln
ν

µ
− π2

12
δ(~k 2
⊥)

]}
. (3.13)

Its integral over k+ reproduces the TMD soft function in refs. [72, 87]

∫
dk+ S(1)(k+,~k⊥, µ, ν) =

αsCF
π2

[
− 1

µ2
L1

(~k 2
⊥
µ2

)
+

1

µ2
L0

(~k 2
⊥
µ2

)
ln
ν2

µ2
− π2

12
δ(~k 2
⊥)

]
= S(1)(~k⊥, µ, ν) , (3.14)

which parallels eq. (3.3) for the FU beam function. Here we used that for x2
1 > x2,∫ x1

0
dx′1 L∆(x′1, x2) = lim

β→0

d

dx2

[
1

4
θ(x2 − β2) ln2 x2

]
=

1

2
L1(x2) . (3.15)

3.4 Collinear-soft function

The calculation of the collinear-soft function, defined in eq. (2.17), is actually quite similar

to that of the FU soft function. The main difference is that collinear-soft radiation only

goes into one hemisphere, leading to the change

δ
(
`+θ(`− − `+) + `−θ(`+ − `−)− k+

)
→ δ(`+ − k+) . (3.16)

We conveniently separate out a contribution 1
2S

(1)(k+,~k⊥) from the hemisphere where the

measurement in the FU soft function and collinear-soft function are the same. The remain-
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der does not contain rapidity divergences, allowing us to set η = 0 from the beginning,

S (1)(k+,~k⊥) =
4g2w2CF
(2π)3−2ε

(
eγEµ2

4π

)ε
νη
∫

dd` θ(`0)δ(`2)
|2`3|−η
`−`+

δ2(~̀⊥ − ~k⊥) δ
(
`+ − k+

)
=

1

2
S(1) + αsw

2CF
eεγE µ2ε

π2−ε

∫
d−2ε`ε

1

~k 2
⊥ + ~̀2

ε

×
∫ ∞

0
d`3

δ
(√

~k 2
⊥ + ~̀2

ε + (`3)2 + `3 − k+
)√

~k 2
⊥ + ~̀2

ε + (`3)2

=
1

2
S(1) + αsw

2CF
eεγE µ2ε

π2−ε
1

k+

∫
d−2ε`ε

θ
(
(k+)2 − ~k 2

⊥ − ~̀2
ε

)
~k 2
⊥ + ~̀2

ε

=
1

2
S(1) + αsw

2CF
eεγE µ2ε

π2 Γ(−ε)
θ(k+ − |~k⊥|)

k+

∫ (k+)2−~k 2
⊥

0
d~̀2
ε

1

(~̀2
ε )1+ε(~k 2

⊥ + ~̀2
ε )

=
1

2
S(1) + αsw

2CF
eεγE µ2ε

π2 Γ(1− ε)
θ(k+ − |~k⊥|)

[(k+)2/~k 2
⊥ − 1]εk+ (~k 2

⊥)1+ε

× 2F1

(
1,−ε, 1− ε, 1− (k+)2

~k 2
⊥

)
(3.17)

=
1

2
S(1) +

αsw
2CF
π2

{
1

2ε2
δ(k+)δ(~k 2

⊥)− 1

ε

1

µ
L0

(
k+

µ

)
δ(~k 2
⊥) +

1

µ3
L∇
(
k+

µ
,
~k 2
⊥
µ2

)
+ δ(k+ − |~k⊥|)

[
2

µ
L1

(
k+

µ

)
− 1

2

1

µ2
L1

(~k 2
⊥
µ2

)]
− π2

12
δ(k+)δ(~k 2

⊥) +O(ε)

}
=
αsw

2CF
π2

{
1

η

[
− 1

ε
δ(~k 2
⊥) +

1

µ2
L0

(~k 2
⊥
µ2

)]
δ(k+) +

1

ε2
δ(k+)δ(~k 2

⊥)

− 1

ε

1

µ
L0

(
k+

µ

)
δ(~k 2
⊥) +

1

ε
ln
µ

ν
δ(~k 2
⊥)δ(k+) +

1

µ
L0

(
k+

µ

)
1

µ2
L0

(~k 2
⊥
µ2

)
+ δ(k+)

[
− 1

µ2
L1

(~k 2
⊥
µ2

)
+

1

µ2
L0

(~k 2
⊥
µ2

)
ln
ν

µ
− π2

12
δ(~k 2
⊥)

]
+O(η, ε)

}
.

The expansion in ε is again subtle at (k+,~k 2
⊥) = (0, 0). Similar to section 3.3, we first

expand assuming k+ > 0 and then extend the plus distributions to k+ = 0, fixing the

coefficient of δ(k+)δ(~k 2
⊥) by integration. In an intermediate expression, the following two-

dimensional plus distribution arises

L∇(x1, x2) = lim
β→0

d

dx1

d

dx2

[
θ(x2

1 − x2)θ(x2 − β2)

(
lnx1 −

1

4
lnx2

)
lnx2

+ θ(x2 − x2
1)θ(x1 − β) ln2 x1

]
. (3.18)

In the final expression this combines with L∆ in eq. (3.10) to give

L∆(x1, x2) + L∇(x1, x2) = L0(x1)L0(x2) . (3.19)
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The divergences in eq. (3.17) lead to the one-loop anomalous dimensions in eq. (3.26).

This satisfies the relation among anomalous dimensions required by consistency of the

factorization theorem in eq. (2.15) at this order. The finite terms give

S (1)(k+,~k⊥, µ, ν) =
αsCF
π2

{
1

µ
L0

(
k+

µ

)
1

µ2
L0

(~k 2
⊥
µ2

)
+ δ(k+)

[
− 1

µ2
L1

(~k 2
⊥
µ2

)
+

1

µ2
L0

(~k 2
⊥
µ2

)
ln
ν

µ
− π2

12
δ(~k 2
⊥)

]}
. (3.20)

3.5 Renormalization and anomalous dimensions

In this section we write down the RG equations (RGEs) for all these ingredients, which are

well-known except for the FU soft function and collinear-soft function. Their anomalous

dimensions are constrained by consistency of the factorization theorems in section 2.2 and

agree with the one-loop calculations in sections 3.3 and 3.4. For completeness we give the

expressions for both the quark and gluon case, as indicated by an additional index i = q, g

in this section. The anomalous dimensions involve the cusp anomalous dimension Γicusp

and non-cusp anomalous dimensions γiH , γ
i
J , γ

i
ν , which are tabulated in appendix B.

The anomalous dimension of the Wilson coefficient C is

µ
d

dµ
C(Q2, µ) = γH(Q2, µ)C(Q2, µ) ,

γH(Q2, µ) = Γqcusp(αs) ln
−Q2 − i0

µ2
+ γqH(αs) , (3.21)

from which the evolution of the hard function H(Q2, µ) = |C(Q2, µ)|2 directly follows.

The FU beam function satisfies the following RGE8

µ
d

dµ
Bi(t, x,~k⊥, µ) =

∫ t

0
dt′ γiB(t− t′, µ)Bi(t

′, x,~k⊥, µ) ,

γiB(t, µ) = −2Γicusp(αs)
1

µ2
L0

(
t

µ2

)
+ γiJ(αs) δ(t) . (3.22)

The TMD beam function also involves a ν evolution (rapidity resummation)9

µ
d

dµ
Bi(x,~k⊥, µ, ν) = γiB(p−, µ, ν)Bi(x,~k⊥, µ, ν) ,

ν
d

dν
Bi(x,~k⊥, µ, ν) =

∫
d2~k′⊥ γ

i
ν(~k⊥ − ~k′⊥, µ)Bi(x,~k

′
⊥, µ, ν) ,

γiB(p−, µ, ν) = 2Γicusp(αs) ln
ν

p−
+ γiJ(αs) ,

γiν(~k⊥, µ) = −Γicusp(αs)
1

π

1

µ2
L0

(~k 2
⊥
µ2

)
+ γiν(αs) δ

2(~k⊥) . (3.23)

8The additional spin structure [56] for the gluon beam function does not mix under renormalization and

satisfies the same RGE.
9Its non-cusp µ-anomalous dimension has not yet been calculated at two loops and is not fixed by

consistency. However, the remaining degeneracy is irrelevant, since the TMD beam function has the same

µ scale as the collinear-soft function (in SCET+) or FU soft function (in SCETII).
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The RGE of the (beam) thrust soft function is given by

µ
d

dµ
Si(k

+, µ) =

∫ k+

0
dk′

+
γiS(k+− k′+, µ)Si(k

′+, µ) ,

γiS(k+, µ) = 4Γicusp(αs)
1

µ
L0

(
k+

µ

)
− 2
[
γiH(αs) + γiJ(αs)

]
δ(k+) , (3.24)

and for the FU soft function it is given by,

µ
d

dµ
Si(k

+,~k⊥, µ, ν) = γiS(µ, ν)Si(k
+,~k⊥, µ, ν) ,

ν
d

dν
Si(k

+,~k⊥, µ, ν) = −2

∫
d2~k′⊥ γ

i
ν(~k⊥ − ~k′⊥, µ)Si(k

+,~k′⊥, µ, ν) ,

γiS(µ, ν) = 4Γicusp(αs) ln
µ

ν
− 2
[
γiH(αs) + γiJ(αs)

]
, (3.25)

with γiν given in eq. (3.23).

The anomalous dimensions of the n-collinear-soft function and n̄-collinear-soft function

are identical. Using the µ and ν independence of the cross section in eq. (2.15), they are

constrained by consistency to be

µ
d

dµ
Si(k

+,~k⊥, µ, ν) =

∫ k+

0
dk′

+
γiS (k+− k′+, µ, ν)Si(k

′+,~k⊥, µ, ν) ,

ν
d

dν
Si(k

+,~k⊥, µ, ν) = −
∫

d2~k′⊥ γ
i
ν(~k⊥ − ~k′⊥, µ)Si(k

+,~k′⊥, µ, ν)

γiS (k+, µ, ν) = −2Γicusp(αs)

[
1

µ
L0

(
k+

µ

)
+ ln

ν

µ
δ(k+)

]
. (3.26)

3.6 NLL cross section

At NLL, the cross section is generated by evolving the tree-level functions from their

natural scale10

µH = −iQ ,

µB = pT , νB = Q ,

µS = pT , νS = p2
T /T ,

µS = T . (3.27)

to a common scale using the RG equations in section 3.5. Evolving all functions to the

collinear-soft scale (µS , νS ), using results from refs. [72, 90, 95–99], we obtain∫ pT

0
dp′T

∫ T
0

dT ′ dσ

dQ2 dY dp′T dT ′

=
∑
q

σ̂(0)
q

[
fq(x1, µB)fq̄(x2, µB) + fq̄(x1, µB)fq(x2, µB)

]
× Γ(1− ηB) eRe(KH)+KB+KS−2γE ηB−γE ηS

Γ(1 + ηB)Γ(1 + ηS)

∣∣∣∣(−Q2 − i0

µ2
H

)ηH ∣∣∣∣( pTµB
)2ηB

( T
µS

)ηS
, (3.28)

10The inclusion of the factor of −i in the hard scale µH follows from eq. (3.21) and allows us to resum a

series of π2-terms [91–94], thereby improving convergence.
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where x1,2 = (Q/Ecm)e±Y and Re(. . . ) denotes the real part of a complex number. The

evolution kernels are given by

KH(µH , µS ) = −4Kq
Γ(µH , µS ) + 2KγqH

(µH , µS ) , ηH(µB, µS ) = 2ηqΓ(µB, µS ) ,

KB(νB, νS ) = 2γqν(αs) ln
(νS
νB

)
, ηB(νB, νS ) = −2ηqΓ(νB, νS ) ,

KS(µS , µS ) = −4Kq
Γ(µS , µS ) +KγqS

(µS , µS ) , ηS(µS , µS ) = 4ηqΓ(µS , µS ) , (3.29)

in terms of functions given in appendix B. Since µB = µS there is no µ-evolution for

the beam functions. Because the scale of αs in the ν-evolution is µ, the evolution of the

non-cusp ν-anomalous dimension takes the simpler form shown in KB.

It is worth emphasizing that eq. (3.28) continuously merges with the SCETI and

SCETII boundaries. This is no longer automatically achieved at NNLL, but can still be

arranged, as discussed in the next section. We also stress that eq. (3.27) represents a naive

choice of scales as these do no smoothly turn off at the boundaries leading to a discontinuity

in the derivative of the cross section (see also the discussion around eq. (6.14)). This will

be remedied by using profile functions [97, 100] in ref. [101], where a full analysis at NNLL

will be presented.

4 Matching the effective theories

We now show that the continuous description of the cross section across the SCETI, SCET+

and SCETII regions discussed in section 3.6 can naturally be extended to all orders. Specif-

ically, in the SCET+ region of phase space,

Iij(t, x,~k⊥, µ) =

∫
d2~k′⊥ Iij(x,~k′⊥, µ, ν)S (t/p−,~k⊥ − ~k′⊥, µ, ν) ,

S(k+,~k⊥, µ, ν) =

∫
d2~k′⊥

∫
dk′+ dk′′+ S (k′+,~k′⊥, µ, ν)S (k′′+,~k⊥− ~k′⊥, µ, ν)

× S(k+− k′+− k′′+, µ) , (4.1)

up to power corrections of O(~k 2
⊥/t) and O((k+)2/~k2

⊥), respectively. This follows directly

from the consistency of the factorization theorems in section 2.2: when the resummation is

turned off, i.e. a common renormalization scale is chosen for all functions in the factorization

theorem, the SCETI and SCETII factorization theorems simply produce the full fixed-

order cross section up to power corrections. As the SCET+ regime involves an additional

expansion, its fixed-order cross section can be obtained from either. Due to the many

common ingredients between the SCET+, SCETI and SCETII factorization theorems, this

then implies eq. (4.1).

We now restrict our attention to NNLL, for which eq. (4.1) reduces to

I(1)
qq (t, x,~k⊥, µ) = δ(t) I(1)

qq (x,~k⊥, µ, ν) + δ(1− x)S (1)(t/p−,~k⊥, µ, ν)

I(1)
qg (t, x,~k⊥, µ) = δ(t) I(1)

qg (x,~k⊥, µ) ,

S(1)(k+,~k⊥, µ, ν) =
1

π
δ(~k 2
⊥)S(1)(k+, µ) + 2S (1)(k+,~k⊥, µ, ν) . (4.2)
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The first equations are valid up to corrections ofO(~k 2
⊥/t), whereas the last one holds exactly

for k+ < |~k⊥|. This naturally suggests the following procedure for patching together the

cross section at NNLL,11

d4σ

dQ2dY dp2
TdT =

∑
q

σ̂0
q H(Q2, µ)

∫
dt1 dt2

∫
d2~k1⊥ d2~k2⊥ d2~kcs

1⊥ d2~kcs
2⊥ d2~k⊥

∫
dk+

1 dk+
2 dk+

×
[
Bq(t1, x1,~k1⊥, µ)−S (1)

(
t1e
−Y/Q,~k1⊥, µ, ν

)]
S
(
k+

1 ,
~kcs

1⊥, µ, ν
)

×
[
Bq̄(t2, x2,~k2⊥, µ)−S (1)

(
t2e

Y/Q,~k2⊥, µ, ν
)]
S
(
k+

2 ,
~kcs

2⊥, µ, ν
)

×
[
S(k+,~k⊥, µ, ν)−2S (1)(k+,~k⊥, µ, ν)

]
δ

(
T − e

−Yt1+eYt2
Q

−k+
1 −k+

2 −k+

)
×δ
(
p 2
T − |~k1⊥ + ~k2⊥ + ~kcs

1⊥ + ~kcs
2⊥ + ~k⊥|2

)
+ (q ↔ q̄) . (4.3)

Here the S (1)-term subtracted from the beam functions (soft function) are evaluated at

the beam (soft) scale. From eq. (4.2) it follows that this reproduces the SCETI, SCET+

and SCETII factorization theorems in eqs. (2.9), (2.15) and (2.18), up to power corrections.

We now derive eq. (4.2), using cumulants to avoid subtleties related to distributions.

Starting with the boundary between SCETI and SCET+,

∫ t

0
dt′
∫ ~k 2

⊥

0
d~k
′2
⊥ I(1)

qg (t′, x,~k′⊥, µ) =
αsTF
2π2

[
ln min

{
(1− x)t

xµ2
,
~k 2
⊥
µ2

}
Pqg(x) + 2x(1− x)

]
,∫ ~k 2

⊥

0
d~k
′2
⊥ I(1)

qg (x,~k′⊥, µ, ν) =
αsTF
2π2

[
ln

(~k 2
⊥
µ2

)
Pqg(x) + 2x(1− x)

]
. (4.4)

We thus obtain the second line in eq. (4.2) for 0 < x < 1− δ, where

δ =
~k 2
⊥

t+ ~k 2
⊥
. (4.5)

In the SCET+ region of phase space, the size δ of the remaining interval 1− δ ≤ x ≤ 1 is

parametrically small, implying that the contribution from this region to the cross section

is power suppressed.

Similarly, we find that for 0 < x < 1− δ the first line of eq. (4.2) is satisfied,

∫ t

0
dt′
∫ ~k 2

⊥

0
d~k
′2
⊥ I(1)

qq (t′, x,~k′⊥, µ) =
αsCF
2π2

[
ln

(~k 2
⊥
µ2

)
Pqq(x) + 1− x

]
=

∫ ~k 2
⊥

0
d~k
′2
⊥ I(1)

qq (x,~k′⊥, µ, ν) . (4.6)

11This has a natural generalization beyond NNLL in Fourier/Laplace space, where one can take the full

inverse of S rather than the expanded version employed here.
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Although 1− δ ≤ x ≤ 1 is again parametrically small, the integral over this region is not,

due to the presence of delta functions and plus distributions at x = 1,∫ t

0
dt′
∫ ~k 2

⊥

0
d~k
′2
⊥

∫ 1

1−δ
dx I(1)

qq (t′, x,~k′⊥, µ) =
αsCF
2π2

[
ln2

(
δ t

µ2

)
− π2

6
+O(δ)

]
,∫ ~k 2

⊥

0
d~k
′2
⊥

∫ 1

1−δ
dx I(1)

qq (x,~k′⊥, µ) =
αsCF
2π2

[
2 ln

(~k 2
⊥
µ2

)
ln

(
δ p−

ν

)
+O(δ)

]
. (4.7)

The mismatch is captured by the collinear-soft function∫ t/p−

0
dk+

∫ ~k 2
⊥

0
d~k
′2
⊥ S (1)(k+,~k′⊥, µ, ν)

=
αsCF
2π2

[
−ln2

(~k 2
⊥
µ2

)
+2 ln

(~k 2
⊥
µ2

)(
ln

(
t

µp−

)
+ln

ν

µ

)
−π

2

6

]
, (4.8)

up to a power suppressed contribution∫ ~k 2
⊥

0
d~k
′2
⊥

∫ 1

1−δ
dx

[ ∫ t

0
dt′ I(1)

qq (t′, x,~k′⊥, µ)− I(1)
qq (x,~k′⊥, µ)

]
−
∫ t/p−

0
dk+

∫ ~k 2
⊥

0
d~k
′2
⊥ S (1)(k+,~k′⊥, µ, ν) =

αsCF
2π2

ln2 δt

~k 2
⊥

+O(δ) = O(δ) . (4.9)

Note that in the last line it important that δ is not arbitrary but given by eq. (4.5).

Combined with eq. (4.6), this establishes the first line of eq. (4.2).

Lastly, we consider the boundary between SCET+ and SCETII, which involves the

following ingredients∫ k+

0
dk′+

∫ ~k 2
⊥

0
d~k
′2
⊥ S

(1)(k′+,~k′⊥, µ, ν) =
αsCF
2π2

[
−2 ln2

(~k 2
⊥
µ2

)
+4 ln

(~k 2
⊥
µ2

)
ln

(
k+

µ

)
−4 ln2

(
k+

µ

)
+ 4 ln

(~k 2
⊥
µ2

)
ln
ν

µ
−π

2

6
+θ((k+)2−~k 2

⊥) ln2

( ~k 2
⊥

(k+)2

)]
,∫ k+

0
dk′+ S(1)(k′+, µ) =

αsCF
2π

[
− 4 ln2

(
k+

µ

)
+
π2

6

]
,∫ k+

0
dk′+

∫ ~k 2
⊥

0
d~k
′2
⊥ S (1)(k′+,~k′⊥, µ, ν) =

αsCF
2π2

[
−ln2

(~k 2
⊥
µ2

)
+2 ln

(~k 2
⊥
µ2

)(
ln

(
k+

µ

)
+ln

ν

µ

)
−π

2

6

]
.

(4.10)

It is straightforward to verify that for k+ < k⊥ this satisfies the last line in eq. (4.2).

5 NLO cross section

In this section we determine the NLO cross section for Z + 0 jet production, differential in

the invariant mass Q2, the rapidity Y and pT of the Z and beam thrust T . We start by

collecting the relevant ingredients in section 5.1, check the cancellation of IR divergences
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in section 5.2 and present the final result in section 5.3. In section 5.4 we verify that

this agrees with SCETI, SCET+ and SCETII, up to power corrections. This provides an

important cross check of our formalism. We will match our resummed prediction onto

these fixed-order corrections in ref. [101].

5.1 Ingredients

The partonic cross section for the one-loop real and virtual corrections in MS are given by

σ̂
(1)
q,R = Q2 σ̂(0)

q 8π αsCF

(
eγEµ2

4π

)ε 1

sqq̄g

[
sqg
sq̄g

+
sq̄g
sqg

+ 2
sqq̄sqq̄g
sqgsq̄g

− ε
(

2 +
sqg
sq̄g

+
sq̄g
sqg

)]
,

σ̂
(1)
q,V = Q2 σ̂(0)

q

αsCF
π

(
µ2

sqq̄g

)ε[
− 1

ε2
− 3

2ε
− 4 +

7π2

12
+O(ε)

]
. (5.1)

The Lorentz invariants that enter here are defined as

sij = (pi + pj)
2 = 2pi ·pj , sijk = (pi + pj + pk)

2 = sij + sik + sjk , (5.2)

using an incoming momentum convention for pi. Due to the flavor dependence of the tree-

level partonic cross section σ̂
(0)
q , we will for simplicity restrict ourselves to a single quark

flavor. The full cross section can be obtained by summing over quark flavors.

We now discuss kinematics and phase space. The incoming partons have momenta

p1 = (x1Ecm, 0, 0) , p2 = (0, x2Ecm, 0) , (5.3)

in (−,+,⊥) light-cone coordinates (see eq. (1.2)), with x1,2 the momentum fractions of the

partons with respect to the colliding hadrons. At LO the final state consists of a Z boson

with momentum qµ, and the phase space integral yields∫
dΦ

(0)
ij =

∫
dx1

x1

dx2

x2
fi(x1, µ)fj(x2, µ)

∫
ddq

(2π)d
(2π)dδ(q − p1 − p2)

× δ(Q2 − q2) δ

[
Y − 1

2 ln

(
q−

q+

)]
δ(p2

T − ~q 2
⊥) δ(T )

=
1

Q2
δ(p2

T ) δ(T ) fi

(
Q

Ecm
eY , µ

)
fj

(
Q

Ecm
e−Y , µ

)
. (5.4)

At this order, the momentum fractions x1,2 and the momentum of the Z are thus

x1 =
Q

Ecm
eY , x2 =

Q

Ecm
e−Y , q = (QeY , Qe−Y , 0) . (5.5)

At NLO, there is an additional massless parton that the Z-boson can recoil against.

To be consistent with eq. (5.1), we use an incoming convention for the momentum p3

of this parton. Assuming for simplicity that this parton goes into the right hemisphere,
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−p+
3 < −p−3 , the phase space is given by∫

dΦ
(1)
ij,R =

∫
dx1

x1

dx2

x2
fi(x1, µ)fj(x2, µ)

∫
ddq

(2π)d

∫
ddp3

(2π)d
θ(−p0

3)2πδ(p2
3)(2π)dδ(q−p1−p2−p3)

× δ(Q2 − q2) δ

[
Y − 1

2 ln

(
q−

q+

)]
δ(p2

T − ~q 2
⊥) θ(p+

3 − p−3 ) δ(T + p+
3 )

=
1

(4π)2−εΓ(1− ε)
θ(pT − T )

p2ε
T

(√
Q2 + p2

T e
Y T + p2

T

)(√
Q2 + p2

T e
−Y + T

)

× fi
(√Q2 + p2

T e
Y

Ecm
+

p2
T

EcmT
, µ

)
fj

(√Q2 + p2
T e
−Y

Ecm
+
T
Ecm

, µ

)
. (5.6)

The contribution for the other hemisphere dΦ
(1)
ij,L can be obtained in a similar manner.

From this we can read off

x1 =

√
Q2 + p2

T e
Y

Ecm
+

p2
T

EcmT
, x2 =

√
Q2 + p2

T e
−Y

Ecm
+
T
Ecm

,

q =
(√

Q2 + p2
T e

Y ,
√
Q2 + p2

T e
−Y , pT

)
, p3 =

(−p2
T

T ,−T , pT
)
. (5.7)

The (irrelevant) azimuthal angle in the transverse plane is not fixed by the measurement. It

is straightforward to evaluate the invariants in eq. (5.1) in terms of eq. (5.7). For qq̄ → Zg,

sqq̄ = x1x2E
2
cm , sqg = −x1EcmT , sq̄g = −x2Ecm

p2
T

T . (5.8)

The other cases can be obtained by permutations. For gq → Zq we have

sqq̄ = −x2Ecm
p2
T

T , sqg = x1x2E
2
cm , sq̄g = −x1EcmT , (5.9)

and for qg → Zq we have

sqq̄ = −x1EcmT , sqg = x1x2E
2
cm , sq̄g = −x2Ecm

p2
T

T . (5.10)

Lastly, there is the NLO contribution from the PDFs, which consists of pure IR poles

in dimensional regularization. This can be effectively described as

f (1)
q (x, µ) =

αs
2π

1

ε

∑
j

∫ 1

x

dx′

x′
CjPqj

(
x

x′

)
fj(x

′, µ) , (5.11)

where the color factor Cj is CF (TF ) for j = q (j = g) and the splitting functions are

Pqq(z) = (1 + z2)L0(1− z) +
3

2
δ(1− z) , Pqg(z) = (1− z)2 + z2 . (5.12)
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5.2 Cancellation of IR divergences

In this section we combine these ingredients and verify the cancellation of IR divergences.

We assume pT , T � Q to simplify the calculation, though we do not restrict to any

particular relative hierarchy between pT and T . This leads to

σ̂qq̄→Zg = Q2σ̂(0)
q 8π αsCF

(
eγEµ2

4π

)ε[ 2

p2
T

+(1−ε) p2
T

x1Ecm(x1EcmT −p2
T )T

][
1+O

(T
Q
,
p2
T

Q2

)]
σ̂gq→Zq = Q2σ̂(0)

q 8π αsTF

(
eγEµ2

4π

)ε [ 1

x1EcmT − p2
T

− 2

1− ε
p2
T

x2
1E

2
cmT 2

][
1 +O

(T
Q
,
p2
T

Q2

)]
σ̂qg→Zq = Q2σ̂(0)

q 8π αsTF

(
eγEµ2

4π

)ε x1T 2

x2p2
T (x1EcmT − p2

T )

[
1 +O

(T
Q
,
p2
T

Q2

)]
. (5.13)

For qg → Zq and gq → Zq there is a fermion minus sign from crossing eq. (5.1) and we have

taken into account that we need to average over incoming gluon polarizations and colors

instead of quark spins and colors, resulting in the overall factor 2Nc/[(2 − 2ε)(N2
c − 1)].

The phase space in eq. (5.6) simplifies as well∫
dΦ

(1)
ij,R =

1

(4π)2−εΓ(1− ε)
θ(pT − T )

Q(QT + p2
T e
−Y )p2ε

T

fi

(
QeY

Ecm
+

p2
T

EcmT
, µ

)
fj

(
Qe−Y

Ecm
, µ

)
.

(5.14)

To avoid subtleties related to distributions, we calculate the cumulative cross section

in pT and T ,∫ p2T

0
dp′ 2T

∫ T
0

dT ′ d4σ
(1)
q

dQ2 dY dp′ 2T dT ′

=

∫ p2T

0
dp′ 2T

∫ T
0

dT ′
{∫

dΦ
(0)
qq̄

[
1

2
σ̂

(1)
q,V + σ̂(0)

q

f
(1)
q (x1, µ)

fq(x1, µ)

]
+

∫
dΦ

(1)
qq̄,R σ̂qq̄→Zg

+

∫
dΦ

(1)
qg,R σ̂qg→Zq +

∫
dΦ

(1)
gq,R σ̂gq→Zq + (x1 ↔ x2) + (q ↔ q̄)

}
= σ̂(0)

q fq(x1, µ)fq̄(x2, µ)
αs
2π

(
CF

(
µ2

Q2

)ε[
− 1

ε2
− 3

2ε
− 4 +

7π2

12
+O(ε)

]
+

1

ε

∑
j

∫ 1

x1

dx′1
x′1

fj(x
′
1, µ)

fq(x1, µ)
CjPqj

(
x1

x′1

)

− 1

ε

∫ 1

x1

dx′1
x′1

{
fq(x

′
1, µ)

fq(x1, µ)
CF

[
2x1

(x′1 − x1)1+2ε
+ (1− ε) (x′1 − x1)1−2ε

x′1

]
+
fg(x

′
1, µ)

fq(x1, µ)
TF

[
1

(x′1 − x1)2ε
− 2

1− ε
x1(x′1 − x1)1−2ε

x′21

]}
eεγE

Γ(1− ε)

(
µ2

E2
cm

)ε
×
[

min

{
1,

T
(x′1 − x1)Ecm

,
p2
T

(x′1 − x1)2E2
cm

}]−ε
+

∫ 1

x1

dx′1
x′1

fq(x
′
1, µ)fg(x2, µ)

fq(x1, µ)fq̄(x2, µ)
TF

x′1
x2(x′1 − x1)2ε

eεγE

Γ(2− ε)

(
µ2

E2
cm

)ε
×
[

min

{
1,

T
(x′1 − x1)Ecm

,
p2
T

(x′1 − x1)2E2
cm

}]1−ε)
+ (x1 ↔ x2) + (q ↔ q̄) , (5.15)
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where in the final expression we used the shorthand notation

x1 =
Q

Ecm
eY , x2 =

Q

Ecm
e−Y , (5.16)

which should not to be confused with eq. (5.7). The contribution from dΦL is included

through (x1 ↔ x2).

We obtained eq. (5.15) by first rewriting the p′ 2T integral in terms of x′

p′ 2T = (x′1 − x1)Ecm T ′ . (5.17)

such that

∫ p2T

0
dp′ 2T =

∫ 1

x1

dx′1Ecm T ′ θ
(
p2
T − (x′1 − x1)EcmT ′

)
. (5.18)

For the subsequent T ′ integral we find

∫ T
0

dT ′ θ
(
p2
T − (x′1 − x1)EcmT ′

)
θ
(
(x′1 − x1)Ecm − T ′)

(T ′)1+ε

= −1

ε

θ(x′1 − x1)

(x′1 − x1)εEεcm

[
min

{
1,

T
(x′1 − x1)Ecm

,
p2
T

(x′1 − x1)2E2
cm

}]−ε
, (5.19)

and similarly for the term that goes like (T ′)−ε. The cancellation of IR divergences becomes

clear once we use the following expressions to expand in ε,

2x1

(x′1−x1)1+2ε
+ (1−ε) (x′1−x1)1−2ε

x′1
=

(
− 1

ε
− 3

2
+2 lnx1

)
δ

(
1−x1

x′1

)
+ Pqq

(
x1

x′1

)
+O(ε) ,

1

(x′1 − x1)2ε
− 2

1− ε
x1(x′1 − x1)1−2ε

x′21
= Pqg

(
x1

x′1

)
+O(ε) , (5.20)

which follow from eq. (A.3). Note that the lnx1 term on the first line and the corresponding

term from (x1 ↔ x2) combine with ln(E2/µ2) to give ln(Q2/µ2) = lnx1 +lnx2 +ln(E2/µ2).

5.3 Result

We now present the cross section for pp → Z + 0 jets, differential in the invariant mass

and rapidity of the Z, and with cuts on the transverse momentum of the Z and on beam

thrust. This is given by the finite O(ε0) terms in eq. (5.15), which we rearrange into the
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following form

∫ p2T

0
dp′ 2T

∫ T
0

dT ′ d4σ
(1)
q

dQ2 dY dp′ 2T dT ′

= σ̂(0)
q fq(x1, µ)fq̄(x2, µ)

αs
2π

(
2

[
ln2

(
x1Ecm

µ

)
− ln2

(
Q

µ

)]
+
∑
j

∫ 1

x1

dz1

z1

fj(x1/z1, µ)

fq(x1, µ)
CjPqj(z1) ln min

{
x2

1E
2
cm

z2
1µ

2
,
T x1Ecm

z1(1−z1)µ2
,

p2
T

(1−z1)2µ2

}

+

∫ 1

x1

dz1

z1

{
fq(x1/z1, µ)

fq(x1, µ)
CF

[
2(1+z2

1)L1(1−z1) +

(
− 4 +

π2

2

)
δ(1− z1) + 1− z1

]
+
fg(x1/z1, µ)

fq(x1, µ)
TF
[
2Pqg(z1) ln(1− z1) + 2z1(1− z1)

]}
+

∫ 1

x1

dz1

z1

fq(x1/z1, µ)fg(x2, µ)

fq(x1, µ)fq̄(x2, µ)
TF

x1

z1x2
min

{
1,

z1T
x1(1− z1)Ecm

,
z2

1p
2
T

x2
1(1− z1)2E2

cm

})
+ (x1 ↔ x2) + (q ↔ q̄) . (5.21)

Here we changed variables to z1 = x1/x
′
1.

5.4 Comparison to resummed predictions

We will now expand eq. (5.21) in the SCETI, SCET+ and SCETII regions of phase space,

and verify that this agrees with the predictions from factorization theorems, up to power

corrections. The second-to-last line of eq. (5.21) could never be produced by the factor-

ization theorems, but is power-suppressed and does not need to be considered. Since the

cross section in eq. (5.21) is a cumulative distribution, we benefit from the cumulative

expressions for the ingredients of the factorization formulae in section 4.

The minimum in eq. (5.21) cuts the z1 interval into three regions

min

{( p−1
z1µ

)2
,

T p−1
z1(1− z1)µ2

,
p2
T

(1− z1)2µ2

}
=


[p−1 /(z1µ)]2 1 ≥ z1 ≥ za
T p−1 /[z1(1− z1)µ2] za ≥ z1 ≥ zb
p2
T /[(1− z1)2µ2] zb ≥ z1 ≥ 0

(5.22)

with p−1 = x1Ecm = QeY and boundaries at

za =
1

1 + T /p−1
, zb =

1

1 + p2
T /(T p−1 )

. (5.23)

Because the size of the interval 1 ≥ z1 ≥ za is parametrically small, O(T /Q), we only

need to keep the logarithmically enhanced contributions. From the z1 → 1 behavior of

the splitting functions Pqj(z1) in eq. (5.12), it is clear that only the contribution from the
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diagonal j = q term is not suppressed:∑
j

∫ 1

za

dz1

z1

fj(x1/z1, µ)

fq(x1, µ)
CjPqj(z1) ln min

{(
p−1
z1µ

)2

,
T p−1

z1(1− z1)µ2
,

p2
T

(1− z1)2µ2

}

= 2CF ln

(
p−1
µ

)∫ 1

za

dz1 Pqq(z1)

[
1 +O

(T
Q

)]
= 2CF ln

(
p−1
µ

)[
− ln

(
(p−1 )2

T 2

)
+

3

2

][
1 +O

(T
Q

)]
= CF

[
− 4 ln2

(
p−1
µ

)
+ 3 ln

(
p−1
µ

)
+ 4 ln

(
p−1
µ

)
ln

(T
µ

)][
1 +O

(T
Q

)]
(5.24)

In the SCETI region of phase space, the interval za ≥ z1 ≥ zb is not parametrically

small. We therefore do not give the boundary zb any special treatment. It is convenient

to rewrite the remaining integral over 1 ≥ z1 ≥ x1 and subtract the contribution from

1 ≥ z1 ≥ za. This requires us to extend Pqq(z) ln(1− z) to z → 1, which we do as follows:

Pqq(z) ln(1− z)→ (1 + z2)L1(1− z) . (5.25)

We thus obtain∑
j

∫ za

x1

dz1

z1

fj(x1/z1, µ)

fq(x1, µ)
CjPqj(z1) ln min

{(
p−1
z1µ

)2

,
T p−1

z1(1− z1)µ2
,

p2
T

(1− z1)2µ2

}
(5.26)

=
∑
j

∫ 1

x1

dz1

z1

fj(x1/z1, µ)

fq(x1, µ)
CjPqj(z1)

[
ln min

{T p−1
z1µ2

,
p2
T

(1− z1)µ2

}
− ln(1− z1)

]

−
∫ 1

za

dz1CFPqq(z1)

[
ln

(T p−1
µ2

)
− ln(1− z1)

][
1 +O

(T
Q

)]
=
∑
j

∫ 1

x1

dz1

z1

fj(x1/z1, µ)

fq(x1, µ)
CjPqj(z1)

[
ln min

{T p−1
z1µ2

,
p2
T

(1− z)µ2

}
− ln(1− z1)

]

+ CF

[
3 ln2

(
p−1
µ

)
− 3

2
ln

(
p−1
µ

)
−2 ln

(
p−1
µ

)
ln

(T
µ

)
−ln2

(T
µ

)
− 3

2
ln

(T
µ

)][
1+O

(T
Q

)]
.

Combining eqs. (5.21), (5.24) and (5.26), it is straightforward to verify that this agrees

with the SCETI factorization formula in eq. (2.9), using the results in section 4.

In the SCET+ and SCETII region of phase space, the interval za ≥ z1 ≥ zb is also

parametrically small, O(p2
T /(T Q)). In fact, for SCETII both zb < za and zb > za are

allowed. We start by assuming zb < za,∑
j

∫ za

zb

dz1

z1

fj(x1/z1, µ)

fq(x1, µ)
CjPqj(z1) ln min

{(
p−1
z1µ

)2

,
T p−1

z1(1− z1)µ2
,

p2
T

(1− z1)2µ2

}

= CF

∫ za

zb

dz1 Pqq(z1)

[
ln

(T p−1
µ2

)
− ln(1− z)

][
1 +O

( p2
T

T Q
)]

= CF

{
− 8 ln

(
p−1
µ

)
ln

(T
µ

)
−4 ln2

(T
µ

)
+4 ln

(
p2
T

µ2

)[
ln

(
p−1
µ

)
+ln

(T
µ

)]
−ln2

(
p2
T

µ2

)}
×
[
1 +O

( p2
T

T Q
)]
. (5.27)
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The remainder is∑
j

∫ zb

x1

dz1

z1

fj(x1/z1, µ)

fq(x1, µ)
CjPqj(z1) ln min

{(
p−1
z1µ

)2

,
T p−1

z1(1− z1)µ2
,

p2
T

(1− z1)2µ2

}

=
∑
j

∫ 1

x1

dz1

z1

fj(x1/z1, µ)

fq(x1, µ)
CjPqj(z1)

[
ln

(
p2
T

µ2

)
− 2 ln(1− z1)

]

−
∫ 1

zb

dz1CFPqq(z1)

[
ln

(
p2
T

µ2

)
− 2 ln(1− z1)

][
1 +O

( p2
T

T Q
)]

=
∑
j

∫ 1

x1

dz1

z1

fj(x1/z1, µ)

fq(x1, µ)
CjPqj(z1)

[
ln

(
p2
T

µ2

)
− 2 ln(1− z1)

]

+ CF

{
2 ln2

(
p−1
µ

)
+ 4 ln

(
p−1
µ

)
ln

(T
µ

)
+ 2 ln2

(T
µ

)
− 2 ln

(
p2
T

µ2

)[
ln

(
p−1
µ

)
+ ln

(T
µ

)
+

3

4

]}[
1 +O

( p2
T

T Q
)]
. (5.28)

We have verified that this agrees with the SCET+ factorization formula in eq. (2.15) ex-

panded to NLO, providing an important check on our effective theory framework.

We now consider zb > za, i.e. pT < T , which is only allowed by the power counting

in the SCETII region of phase space. In contrast with eq. (5.22), we now only have two

regions: 1 ≥ z1 ≥ zc and zc ≥ z1 ≥ x1, where

zc =
1

1 + pT /p
−
1

. (5.29)

This leads to the following correction to the SCET+ result,

θ(T − pT )

{∑
j

∫ zb

za

dz1

z1

fj(x1/z1, µ)

fq(x1, µ)
CjPqj(z1)

[
ln

( T p−1
z1(1− z1)µ2

)
− ln

(
(p−1 )2

z2
1µ

2

)]

+
∑
j

∫ zc

zb

dz1

z1

fj(x1/z1, µ)

fq(x1, µ)
CjPqj(z1)

[
ln

(
p2
T

(1− z1)2µ2

)
− ln

(
(p−1 )2

z2
1µ

2

)]}

= CF θ(T − pT )

{∫ zb

za

dz1 Pqq(z1)

[
ln

( T
p−1

)
− ln(1− z1)

]

+

∫ zc

zb

dz1 Pqq(z1)

[
2 ln

(
pT

p−1

)
− 2 ln(1− z1)

]}[
1 +O

(T
Q

)]
=

1

2
CF θ(T − pT ) ln2

(
p2
T

T 2

)[
1 +O

(T
Q

)]
. (5.30)

The first line erases the earlier contributions from za < z1 < zb and the second line from

zb < z1 < zc. This agrees with the FU soft function in eq. (4.10).

We conclude this section by briefly commenting on the size of the various power cor-

rections we encountered. In section 5.2, we restricted to pT , T � Q, dropping some (but

not all) terms of O(p2
T /Q

2, T /Q). In our SCETI analysis in this section, we systemat-

ically expanded up to corrections of O(T /Q). For SCETII the power corrections were
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Mode: Scaling (−,+,⊥)

collinear Q(1, λ2r/β , λr/β)

collinear-soft Q
(
λ
αr−β
α−β , λ

(α−2)r−(β−2)
α−β , λ

(α−1)r−(β−1)
α−β

)
soft Q(λ, λ, λ)

Table 2. Modes and power counting in SCET+ for the double angularity measurement on a single

jet. The power counting parameter is λ, with λ ∼ eα ∼ e1/r
β and 1 > r > β/α.

O(T /Q ∼ p2
T /(T Q)), and for SCET+ they were O(p2

T /(T Q)) in size. Contrary to our

expectation in section 2.1, we found no O(T 2/p2
T ) power corrections at NLO. However, it

is quite possible that this changes at higher orders.

6 Measuring two angularities on one jet

We will now apply our effective field theory framework to the measurement of two angu-

larities on one jet. The angularity eα of a jet is defined as [32, 65, 102]

eα =
∑
i∈jet

Ei
Ejet

(θi
R

)α
. (6.1)

Here, Ei and θi denote the energy and angle (with respect to the jet axis) of particle i,

and Ejet and R are the jet energy and radius. To avoid the issue of recoil [28, 103–105],

we use the winner-take-all axis [105, 106]. This ensures that the direction of the collinear

radiation coincides with the jet axis.

For the measurement of two angularities eα, eβ (with α > β), the phase space is given

by e
β/α
α ≥ eβ ≥ eα at NLL. The effective field theories on the boundaries were discussed

in ref. [34], so we focus on the intermediate regime described by SCET+. The modes of

SCET+ are shown in table 2. Their power counting is fixed by the requirement that these

modes are on-shell, that the collinear mode contributes to eβ, the soft mode contribute to

eα and the collinear-soft mode contribute to both. This leads to the following factorization

formula

d2σi
deα deβ

= σ̂
(0)
i Hi(Q

2, µ)

∫
dec

βQ
βdecs

αQdecs
β Q

β des
αQJi(e

c
βQ

β, µ)Si(e
cs
αQ, e

cs
β Q

β)Si(e
s
αQ,µ)

× δ(eα − ecs
α − ec

α)δ(eβ − ec
β − ecs

β ) , (6.2)

for quark (i = q) and gluon (i = g) jets. Here, σ̂
(0)
i is the tree-level cross section, and H the

hard function describing hard virtual corrections. The jet function J , soft function S and

collinear-soft function S capture the effect of collinear, soft and collinear-soft radiation,

respectively. The first two have been defined in ref. [34] while the third is the analog of

eq. (2.17) but for the double angularity measurement. Since we only work up to NLL

order, we are allowed to consider a single jet. At higher orders we need to take the rest of

the event into account, and eq. (6.2) must accordingly be generalized to e.g. e+e− event
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shapes. We expect the power corrections to be O(eα/eβ, e
α/β
β /eα), which blow up at the

edges of the phase space, where the boundary theories should be used instead.

Below we collect what is needed for NLL resummation. The RG equation and the

anomalous dimension of the hard function are

µ
d

dµ
Hi(Q

2, µ) = γiH(Q2, µ)Hi(Q
2, µ) ,

γiH(Q2, µ) = Γicusp(αs) ln
Q2

µ2
+ γiH(αs) . (6.3)

For the jet function we have

µ
d

dµ
Ji(eβQ

β, µ) =

∫ eβ

0
de′β Q

β γiJ(eβQ
β − e′βQβ, µ) Ji(e

′
βQ

β, µ) ,

γiJ(eβQ
β, µ) = − 2

β − 1
Γicusp(αs)

1

µβ
L0

(
eβQ

β

µβ

)
+ γiJ(αs) δ(eβQ

β) , (6.4)

and the soft function satisfies

µ
d

dµ
Si(eαQ,µ) =

∫ eα

0
de′αQγ

i
S(eαQ− e′αQ,µ)Si(e

′
αQ,µ) ,

γiS(eαQ,µ) =
2

α− 1
Γicusp(αs)

1

µ
L0

(
eαQ

µ

)
+ γiS(αs) δ(eαQ) . (6.5)

The anomalous dimension of the collinear-soft function is constrained by consistency of

the cross section in eq. (6.2). These anomalous dimensions involve Γicusp(αs), given in

appendix B, and the non-cusp parts

γiX(αs) =
∑
n

γiX,n

(
αs
4π

)n+1

, (6.6)

with X = H,J, S. At NLL we only need the leading coefficients,

γqH,0 = −6CF , γgH,0 = −2β0 , γiJ,0 = −γiH,0 , γiS,0 = 0 , (6.7)

where β0 = 11
3 CA − 4

3 TF nf .

We now evaluate the double cumulative distribution at NLL order by inserting the

tree-level expressions

Hi(Q
2, µ) = 1 , Ji(eβQ

β, µ) = δ(eβQ
β) ,

Si(eαQ, eβQ
β) = δ(eαQ) δ(eβQ

β) , Si(eαQ,µ) = δ(eαQ) , (6.8)

in eq. (6.2) and evolving them to the collinear-soft scale µS . This results in

Σi(eα, eβ) =

∫ eα

0
de′α

∫ eβ

0
de′β

∂2σ

∂e′α∂e
′
β

= σ̂
(0)
i

eK
i
H+Ki

J+Ki
S−γE η

i
J−γE η

i
S

Γ(1 + ηiJ)Γ(1 + ηiS)

(
Q

µH

)2ηiH
(
e

1/β
β Q

µJ

)β ηiJ(eαQ
µS

)ηiS
. (6.9)
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The evolution kernels that enter here are

Ki
H(µH , µS ) = −2Ki

Γ(µH , µS ) +KγiH
(µH , µS ) , ηiH(µJ , µS ) = ηiΓ(µJ , µS ) , (6.10)

Ki
J(µJ , µS ) = − 2β

1− β K
i
Γ(µJ , µS ) +KγiJ

(µJ , µS ) , ηiJ(µJ , µS ) =
2

1− β η
i
Γ(µJ , µS ) ,

Ki
S(µS , µS ) =

2

1− α K
i
Γ(µS , µS ) , ηiS(µS , µS ) = − 2

1− α η
i
Γ(µS , µS ) ,

in terms of Ki
Γ, ηiΓ and KγiX

defined in eq. (B.1). As starting point for the RG evolution

we use the canonical (natural) scales

µH = Q ,

µJ = e
1/β
β Q = µJ→J ,

µS =
(
e1−β
α eα−1

β

)1/(α−β)
Q = µJ→S ,

µS = eαQ = µS→S . (6.11)

which we identified with the interpolating scales µJ→J , µJ→S and µS→S of ref. [34] (see

also appendix C of ref. [37]) to simplify the comparison.

This mostly agrees with the conjecture made in ref. [34]

Σ
ref. [34]
i (eα, eβ) =

e−R(eα,eβ)−γE R̃(eα,eβ)

Γ(1 + R̃(eα, eβ))
(6.12)

where

R(eα, eβ)
NLL
= −Ki

H(µH , µS )−Ki
J(µJ , µS )−Ki

S(µS , µS ) ,

R̃(eα, eβ)
NLL
= ηiJ(µJ , µS ) + ηiS(µS , µS ) . (6.13)

The only difference12 with our result in eq. (6.9) is in the denominator, where we have

Γ(1 + ηiJ)Γ(1 + ηiS) instead of Γ(1 + ηiJ + ηiS). These factors agree with each other on the

boundary, since either ηiJ or ηiS vanishes there, but lead to O(α2
s ln2) differences in the bulk.

(An analogous conjecture to eq. (6.12) in Laplace space does agree with our result.13)

According to ref. [34], the leading difference between their interpolation and the true

NLL cross section is expected to be α4
s ln4. However, this is based on boundary conditions

for the differential cross section, which do not affect the logarithmic accuracy of their

calculation in the bulk. Specifically, their differential cross section satisfies the condition

at the boundary eα = e
α/β
β through the addition of terms that are power suppressed.

Since these terms are power suppressed in the bulk, they cannot improve the logarithmic

accuracy there.

In ref. [101], we will discuss how a more sophisticated scale choice than eq. (6.11)

provides a natural way to satisfy the derivative boundary condition. In addition to requiring

12Ignoring differences beyond NLL order and power suppressed contributions.
13We thank D. Neill for pointing this out.
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µS to merge with µJ or µS on the respective boundaries, one can also require a continuous

derivative,

∂

∂eα
µJ(eα, eβ)

∣∣∣
eβ=e

β/α
α

=
d

deα
µJ(eα, e

β/α
α ) ,

∂

∂eβ
µJ(eα, eβ)

∣∣∣
eβ=e

β/α
α

= 0 ,

∂

∂eα
µS (eα, eβ)

∣∣∣
eβ=e

β/α
α

=
d

deα
µJ(eα, e

β/α
α ) ,

∂

∂eβ
µS (eα, eβ)

∣∣∣
eβ=e

β/α
α

= 0 ,

∂

∂eα
µS(eα, eβ)

∣∣∣
eβ=e

β/α
α

=
d

deα
µS(eα, e

β/α
α ) ,

∂

∂eβ
µS(eα, eβ)

∣∣∣
eβ=e

β/α
α

= 0 , (6.14)

and similarly for the boundary at eα = eβ. These equations closely resemble those imposed

on R and R̃ in ref. [34] and follow from the same steps. Note that there is a redundancy

in the constraints in eq. (6.14), as e.g. the second equation on the first line implies the

first. The scale choice in transitioning to a region where resummation is turned off has

been studied for single variables in e.g. refs. [97, 100], and also in ref. [52].

7 Conclusions

In this paper we studied the resummation of double differential measurements. We focussed

on two examples: Drell-Yan production with a (beam-thrust) jet veto where the pT of the

lepton pair is measured, and the measurement of two angularities on one jet. Concerning

the latter, in ref. [34] resummation on the two phase space boundaries was achieved, and

an interpolation was built to smoothly connect them. We go beyond this by identifying

the factorization formula needed to achieve resummation in the intermediate regime. This

involves additional collinear-soft modes, and the corresponding collinear-soft function was

calculated at one loop. The relations between FU PDFs, collinear-soft functions and (FU)

soft functions were investigated. The consistency of our factorization theorem was verified

by checking that the anomalous dimensions cancel between the various ingredients, and

by comparing to an analytic NLO calculation of the cross section. We also showed how

to combine the factorization theorems on the boundaries and interior, to achieve NNLL

precision throughout. At variance with ref. [34] we found a universal factorization formula

that describes the cross section in all three phase space regions up to power corrections.

Numerical results, including the matching to fixed order, will be presented in ref. [101].

If the hierarchy of scales for the individual variables is not that large, such that the

resummation of them is only marginally important, there may be not enough room for a

distinct SCET+ region of phase space. (This can be seen in figure 1, where you have to

go deeper into the resummation region for SCET+.) Even in this case, one benefits from

knowing the correct description of the intermediate regime in building the interpolation

between boundaries, as illustrated by the O(α2
s ln2) difference between our NLL results and

the interpolation conjectured in ref. [34].

Looking forward, we hope the results presented here will stimulate the development of

more realistic analytic resummations and more robust Monte Carlo descriptions of LHC

events. The framework presented here has natural generalizations to resummation in more

than two variables. Finally, finding a proper description of the “terra incognita” in figure 1
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is important for resolving a long-standing issue over double counting between higher-order

corrections and double parton scatterings.
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A Plus distributions

The standard plus distribution for some function g(x) can be defined as

[
θ(x)g(x)

]
+

= lim
β→0

d

dx

[
θ(x− β)G(x)

]
with G(x) =

∫ x

1
dx′ g(x′) , (A.1)

satisfying the boundary condition
∫ 1

0 dx [θ(x)g(x)]+ = 0. Two special cases we need are

Ln(x) ≡
[
θ(x) lnn x

x

]
+

= lim
β→0

[
θ(x− β) lnn x

x
+ δ(x− β)

lnn+1β

n+ 1

]
,

Lη(x) ≡
[
θ(x)

x1−η

]
+

= lim
β→0

[
θ(x− β)

x1−η + δ(x− β)
xη − 1

η

]
. (A.2)

In our calculations, we use the following expansion in plus distributions

θ(x)

x1+ε
= −1

ε
δ(x) + L0(x)− εL1(x) +O(ε2) . (A.3)

Rescaling and convolution identities for Ln(x) and Lη(x) can be found in appendix B

of ref. [97].

B Renormalization group evolution

The functions Ki
Γ(µ0, µ), ηiΓ(µ0, µ) and KγiX

(µ0, µ) that enter in the RGE solutions are

defined by

Ki
Γ(µ0, µ) =

∫ αs(µ)

αs(µ0)

dαs
β(αs)

Γicusp(αs)

∫ αs

αs(µ0)

dα′s
β(α′s)

, ηiΓ(µ0, µ) =

∫ αs(µ)

αs(µ0)

dαs
β(αs)

Γicusp(αs) ,

KγiX
(µ0, µ) =

∫ αs(µ)

αs(µ0)

dαs
β(αs)

γiX(αs) . (B.1)
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Expanding the beta function and anomalous dimensions in powers of αs,

β(αs) = −2αs

∞∑
n=0

βn

(αs
4π

)n+1
, Γicusp(αs) =

∞∑
n=0

Γin

(αs
4π

)n+1
,

γiX(αs) =
∞∑
n=0

γiX,n

(αs
4π

)n+1
, (B.2)

their explicit expressions at NNLL order are

Ki
Γ(µ0, µ) = − Γi0

4β2
0

{
4π

αs(µ0)

(
1− 1

r
− ln r

)
+

(
Γi1
Γi0
− β1

β0

)
(1− r + ln r) +

β1

2β0
ln2 r

+
αs(µ0)

4π

[(
β2

1

β2
0

− β2

β0

)(1− r2

2
+ ln r

)
+

(
β1Γi1
β0Γi0

− β2
1

β2
0

)
(1− r + r ln r)

−
(

Γi2
Γi0
− β1Γi1
β0Γi0

)
(1− r)2

2

]}
,

ηiΓ(µ0, µ) = − Γi0
2β0

[
ln r +

αs(µ0)

4π

(
Γi1
Γi0
− β1

β0

)
(r−1)

+
α2
s(µ0)

16π2

(
Γi2
Γi0
− β1Γi1
β0Γi0

+
β2

1

β2
0

− β2

β0

)
r2−1

2

]
,

KγiX
(µ0, µ) = −

γiX,0
2β0

[
ln r +

αs(µ0)

4π

(
γiX,1
γiX,0

− β1

β0

)
(r − 1)

]
. (B.3)

Here, r = αs(µ)/αs(µ0) and the running coupling is given by the three-loop expression

1

αs(µ)
=

X

αs(µ0)
+

β1

4πβ0
lnX +

αs(µ0)

16π2

[
β2

β0

(
1− 1

X

)
+
β2

1

β2
0

(
lnX

X
+

1

X
− 1

)]
, (B.4)

where X = 1 + αs(µ0)β0 ln(µ/µ0)/(2π).

The coefficients of the beta function [107, 108], cusp anomalous dimension [109, 110],

non-cusp anomalous dimensions of the hard function and jet function [1, 110–117] and non-

cusp anomalous dimension of the rapidity resummation [10, 13, 14, 118] are given below in

the MS scheme. At this order Γgi = (CA/CF )Γqi , which are therefore not separately shown.

β0 =
11

3
CA −

4

3
TF nf , (B.5)

β1 =
34

3
C2
A −

(
20

3
CA + 4CF

)
TF nf ,

β2 =
2857

54
C3
A +

(
C2
F −

205

18
CFCA −

1415

54
C2
A

)
2TF nf +

(
11

9
CF +

79

54
CA

)
4T 2

F n
2
f ,

Γq0 = 4CF ,

Γq1 = 4CF

[(
67

9
− π2

3

)
CA −

20

9
TF nf

]
,

Γq2 = 4CF

[(
245

6
− 134π2

27
+

11π4

45
+

22ζ3

3

)
C2
A +

(
− 418

27
+

40π2

27
− 56ζ3

3

)
CA TF nf

+

(
− 55

3
+ 16ζ3

)
CF TF nf −

16

27
T 2
F n

2
f

]
, (B.6)

– 34 –



J
H
E
P
0
2
(
2
0
1
5
)
1
1
7

γqH 0 = −6CF , (B.7)

γqH 1 = −CF
[(

82

9
− 52ζ3

)
CA + (3− 4π2 + 48ζ3)CF +

(
65

9
+ π2

)
β0

]
,

γqH 2 = −2CF

[(
66167

324
− 686π2

81
− 302π4

135
− 782ζ3

9
+

44π2ζ3

9
+ 136ζ5

)
C2
A

+

(
151

4
− 205π2

9
− 247π4

135
+

844ζ3

3
+

8π2ζ3

3
+ 120ζ5

)
CFCA

+

(
29

2
+ 3π2 +

8π4

5
+ 68ζ3 −

16π2ζ3

3
− 240ζ5

)
C2
F

+

(
− 10781

108
+

446π2

81
+

449π4

270
− 1166ζ3

9

)
CAβ0

+

(
2953

108
− 13π2

18
− 7π4

27
+

128ζ3

9

)
β1 +

(
− 2417

324
+

5π2

6
+

2ζ3

3

)
β2

0

]
,

γgH 0 = −2β0 ,

γgH 1 =

(
− 118

9
+ 4ζ3

)
C2
A +

(
− 38

9
+
π2

3

)
CA β0 − 2β1 ,

γgH 2 =

(
− 60875

162
+

634π2

81
+

8π4

5
+

1972ζ3

9
− 40π2ζ3

9
− 32ζ5

)
C3
A

+

(
7649

54
+

134π2

81
− 61π4

45
− 500ζ3

9

)
C2
A β0 +

(
466

81
+

5π2

9
− 28ζ3

3

)
CA β

2
0

+

(
− 1819

54
+
π2

3
+

4π4

45
+

152ζ3

9

)
CA β1 − 2β2 , (B.8)

γqJ 0 = 6CF ,

γqJ 1 = CF

[(
146

9
− 80ζ3

)
CA + (3− 4π2 + 48ζ3)CF +

(
121

9
+

2π2

3

)
β0

]
,

γqJ 2 = 2CF

[(
52019

162
− 841π2

81
− 82π4

27
− 2056ζ3

9
+

88π2ζ3

9
+ 232ζ5

)
C2
A

+

(
151

4
− 205π2

9
− 247π4

135
+

844ζ3

3
+

8π2ζ3

3
+ 120ζ5

)
CACF

+

(
29

2
+ 3π2 +

8π4

5
+ 68ζ3 −

16π2ζ3

3
− 240ζ5

)
C2
F

+

(
− 7739

54
+

325

81
π2 +

617π4

270
− 1276ζ3

9

)
CAβ0

+

(
− 3457

324
+

5π2

9
+

16ζ3

3

)
β2

0 +

(
1166

27
− 8π2

9
− 41π4

135
+

52ζ3

9

)
β1

]
, (B.9)

γgJ 0 = 2β0 ,

γgJ 1 =

(
182

9
− 32ζ3

)
C2
A +

(
94

9
− 2π2

3

)
CA β0 + 2β1 ,
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γgJ 2 =

(
49373

81
− 944π2

81
− 16π4

5
− 4520ζ3

9
+

128π2ζ3

9
+ 224ζ5

)
C3
A

+

(
− 6173

27
− 376π2

81
+

13π4

5
+

280ζ3

9

)
C2
A β0 +

(
− 986

81
− 10π2

9
+

56ζ3

3

)
CA β

2
0

+

(
1765

27
− 2π2

3
− 8π4

45
− 304ζ3

9

)
CA β1 + 2β2 , (B.10)

γqν,0 = 0 ,

γqν,1 = CF

[(
64

9
− 28ζ3

)
CA + 32ζ3CF +

56

9
β0

]
, (B.11)

γgν,0 = 0 ,

γgν,1 = CA

[(
64

9
+ 4ζ3

)
CA +

56

9
β0

]
. (B.12)
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[35] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05

(2006) 026 [hep-ph/0603175] [INSPIRE].

[36] M. Bahr et al., HERWIG++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639

[arXiv:0803.0883] [INSPIRE].

[37] A.J. Larkoski, J. Thaler and W.J. Waalewijn, Gaining (Mutual) Information about

Quark/Gluon Discrimination, JHEP 11 (2014) 129 [arXiv:1408.3122] [INSPIRE].

[38] S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower

simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].

[39] Z. Nagy and D.E. Soper, Matching parton showers to NLO computations, JHEP 10 (2005)

024 [hep-ph/0503053] [INSPIRE].

[40] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower

simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].

[41] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO

calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043

[arXiv:1002.2581] [INSPIRE].

[42] S. Alioli et al., Combining Higher-Order Resummation with Multiple NLO Calculations and

Parton Showers in GENEVA, JHEP 09 (2013) 120 [arXiv:1211.7049] [INSPIRE].

[43] K. Hamilton, P. Nason, E. Re and G. Zanderighi, NNLOPS simulation of Higgs boson

production, JHEP 10 (2013) 222 [arXiv:1309.0017] [INSPIRE].

[44] S. Alioli et al., Matching Fully Differential NNLO Calculations and Parton Showers, JHEP

06 (2014) 089 [arXiv:1311.0286] [INSPIRE].

[45] S. Hoeche, Y. Li and S. Prestel, Drell-Yan lepton pair production at NNLO QCD with

parton showers, arXiv:1405.3607 [INSPIRE].

[46] I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: From PDFs

to Initial State Jets, Phys. Rev. D 81 (2010) 094035 [arXiv:0910.0467] [INSPIRE].

– 38 –

http://dx.doi.org/10.1007/JHEP02(2012)093
http://arxiv.org/abs/1108.2701
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.2701
http://dx.doi.org/10.1088/1126-6708/2005/03/073
http://arxiv.org/abs/hep-ph/0407286
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0407286
http://dx.doi.org/10.1007/JHEP06(2013)108
http://arxiv.org/abs/1305.0007
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.0007
http://dx.doi.org/10.1007/JHEP12(2014)009
http://dx.doi.org/10.1007/JHEP12(2014)009
http://arxiv.org/abs/1409.6298
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.6298
http://dx.doi.org/10.1088/1126-6708/2008/07/092
http://arxiv.org/abs/0806.0023
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.0023
http://dx.doi.org/10.1103/PhysRevD.79.074017
http://dx.doi.org/10.1103/PhysRevD.79.074017
http://arxiv.org/abs/0807.0234
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.0234
http://dx.doi.org/10.1007/JHEP09(2013)137
http://arxiv.org/abs/1307.1699
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.1699
http://dx.doi.org/10.1007/JHEP09(2014)046
http://arxiv.org/abs/1401.4458
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.4458
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://arxiv.org/abs/hep-ph/0603175
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0603175
http://dx.doi.org/10.1140/epjc/s10052-008-0798-9
http://arxiv.org/abs/0803.0883
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.0883
http://dx.doi.org/10.1007/JHEP11(2014)129
http://arxiv.org/abs/1408.3122
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.3122
http://dx.doi.org/10.1088/1126-6708/2002/06/029
http://arxiv.org/abs/hep-ph/0204244
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0204244
http://dx.doi.org/10.1088/1126-6708/2005/10/024
http://dx.doi.org/10.1088/1126-6708/2005/10/024
http://arxiv.org/abs/hep-ph/0503053
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0503053
http://dx.doi.org/10.1088/1126-6708/2007/11/070
http://arxiv.org/abs/0709.2092
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.2092
http://dx.doi.org/10.1007/JHEP06(2010)043
http://arxiv.org/abs/1002.2581
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.2581
http://dx.doi.org/10.1007/JHEP09(2013)120
http://arxiv.org/abs/1211.7049
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.7049
http://dx.doi.org/10.1007/JHEP10(2013)222
http://arxiv.org/abs/1309.0017
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.0017
http://dx.doi.org/10.1007/JHEP06(2014)089
http://dx.doi.org/10.1007/JHEP06(2014)089
http://arxiv.org/abs/1311.0286
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.0286
http://arxiv.org/abs/1405.3607
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.3607
http://dx.doi.org/10.1103/PhysRevD.81.094035
http://arxiv.org/abs/0910.0467
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.0467


J
H
E
P
0
2
(
2
0
1
5
)
1
1
7

[47] F.J. Tackmann, J.R. Walsh and S. Zuberi, Resummation Properties of Jet Vetoes at the

LHC, Phys. Rev. D 86 (2012) 053011 [arXiv:1206.4312] [INSPIRE].

[48] C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in B → Xsγ in

effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].

[49] C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear

and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336]

[INSPIRE].

[50] C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett.

B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].

[51] C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory,

Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

[52] C.W. Bauer, F.J. Tackmann, J.R. Walsh and S. Zuberi, Factorization and Resummation for

Dijet Invariant Mass Spectra, Phys. Rev. D 85 (2012) 074006 [arXiv:1106.6047] [INSPIRE].

[53] A. Jain, M. Procura and W.J. Waalewijn, Fully-Unintegrated Parton Distribution and

Fragmentation Functions at Perturbative kT , JHEP 04 (2012) 132 [arXiv:1110.0839]

[INSPIRE].

[54] J.C. Collins, T.C. Rogers and A.M. Stasto, Fully unintegrated parton correlation functions

and factorization in lowest-order hard scattering, Phys. Rev. D 77 (2008) 085009

[arXiv:0708.2833] [INSPIRE].

[55] T.C. Rogers, Next-to-Leading Order Hard Scattering Using Fully Unintegrated Parton

Distribution Functions, Phys. Rev. D 78 (2008) 074018 [arXiv:0807.2430] [INSPIRE].

[56] S. Mantry and F. Petriello, Factorization and Resummation of Higgs Boson Differential

Distributions in Soft-Collinear Effective Theory, Phys. Rev. D 81 (2010) 093007

[arXiv:0911.4135] [INSPIRE].

[57] ATLAS collaboration, M. Myska, Measurement of the double parton scattering in W + 2

jets production at
√
s = 7 TeV with the ATLAS detector, EPJ Web Conf. 60 (2013) 20013

[INSPIRE].

[58] CMS collaboration, Study of double parton scattering using W + 2-jet events in

proton-proton collisions at
√
s = 7 TeV, JHEP 03 (2014) 032 [arXiv:1312.5729] [INSPIRE].

[59] M. Cacciari, G.P. Salam and S. Sapeta, On the characterisation of the underlying event,

JHEP 04 (2010) 065 [arXiv:0912.4926] [INSPIRE].

[60] M. Diehl, D. Ostermeier and A. Schafer, Elements of a theory for multiparton interactions

in QCD, JHEP 03 (2012) 089 [arXiv:1111.0910] [INSPIRE].

[61] M.G. Ryskin and A.M. Snigirev, A Fresh look at double parton scattering, Phys. Rev. D 83

(2011) 114047 [arXiv:1103.3495] [INSPIRE].

[62] A.V. Manohar and W.J. Waalewijn, What is Double Parton Scattering?, Phys. Lett. B 713

(2012) 196 [arXiv:1202.5034] [INSPIRE].

[63] J.R. Gaunt, Single Perturbative Splitting Diagrams in Double Parton Scattering, JHEP 01

(2013) 042 [arXiv:1207.0480] [INSPIRE].

[64] B. Blok, Y. Dokshitzer, L. Frankfurt and M. Strikman, Perturbative QCD correlations in

multi-parton collisions, Eur. Phys. J. C 74 (2014) 2926 [arXiv:1306.3763] [INSPIRE].

– 39 –

http://dx.doi.org/10.1103/PhysRevD.86.053011
http://arxiv.org/abs/1206.4312
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.4312
http://dx.doi.org/10.1103/PhysRevD.63.014006
http://arxiv.org/abs/hep-ph/0005275
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0005275
http://dx.doi.org/10.1103/PhysRevD.63.114020
http://arxiv.org/abs/hep-ph/0011336
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0011336
http://dx.doi.org/10.1016/S0370-2693(01)00902-9
http://dx.doi.org/10.1016/S0370-2693(01)00902-9
http://arxiv.org/abs/hep-ph/0107001
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0107001
http://dx.doi.org/10.1103/PhysRevD.65.054022
http://arxiv.org/abs/hep-ph/0109045
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0109045
http://dx.doi.org/10.1103/PhysRevD.85.074006
http://arxiv.org/abs/1106.6047
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.6047
http://dx.doi.org/10.1007/JHEP04(2012)132
http://arxiv.org/abs/1110.0839
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.0839
http://dx.doi.org/10.1103/PhysRevD.77.085009
http://arxiv.org/abs/0708.2833
http://inspirehep.net/search?p=find+EPRINT+arXiv:0708.2833
http://dx.doi.org/10.1103/PhysRevD.78.074018
http://arxiv.org/abs/0807.2430
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.2430
http://dx.doi.org/10.1103/PhysRevD.81.093007
http://arxiv.org/abs/0911.4135
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.4135
http://dx.doi.org/10.1051/epjconf/20136020013
http://inspirehep.net/search?p=find+J+00776,60,20013
http://dx.doi.org/10.1007/JHEP03(2014)032
http://arxiv.org/abs/1312.5729
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.5729
http://dx.doi.org/10.1007/JHEP04(2010)065
http://arxiv.org/abs/0912.4926
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.4926
http://dx.doi.org/10.1007/JHEP03(2012)089
http://arxiv.org/abs/1111.0910
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.0910
http://dx.doi.org/10.1103/PhysRevD.83.114047
http://dx.doi.org/10.1103/PhysRevD.83.114047
http://arxiv.org/abs/1103.3495
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.3495
http://dx.doi.org/10.1016/j.physletb.2012.05.044
http://dx.doi.org/10.1016/j.physletb.2012.05.044
http://arxiv.org/abs/1202.5034
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.5034
http://dx.doi.org/10.1007/JHEP01(2013)042
http://dx.doi.org/10.1007/JHEP01(2013)042
http://arxiv.org/abs/1207.0480
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.0480
http://dx.doi.org/10.1140/epjc/s10052-014-2926-z
http://arxiv.org/abs/1306.3763
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.3763


J
H
E
P
0
2
(
2
0
1
5
)
1
1
7

[65] S.D. Ellis, C.K. Vermilion, J.R. Walsh, A. Hornig and C. Lee, Jet Shapes and Jet

Algorithms in SCET, JHEP 11 (2010) 101 [arXiv:1001.0014] [INSPIRE].

[66] T.T. Jouttenus, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The Soft Function for

Exclusive N-Jet Production at Hadron Colliders, Phys. Rev. D 83 (2011) 114030

[arXiv:1102.4344] [INSPIRE].

[67] M. Dasgupta and G.P. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B

512 (2001) 323 [hep-ph/0104277] [INSPIRE].

[68] M. Dasgupta and G.P. Salam, Resummed event shape variables in DIS, JHEP 08 (2002)

032 [hep-ph/0208073] [INSPIRE].

[69] I.W. Stewart, Lectures on the Soft-Collinear Effective Theory, MIT Open Course Ware,

Effective Field Theory (Spring 2013), http://ocw.mit.edu/courses/physics/8-851-effective-

field-theory-spring-2013/lecture-notes/MIT8 851S13 scetnotes.pdf.

[70] T. Becher, A. Broggio and A. Ferroglia, Introduction to Soft-Collinear Effective Theory,

arXiv:1410.1892 [INSPIRE].

[71] J.-y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, The Rapidity Renormalization Group, Phys.

Rev. Lett. 108 (2012) 151601 [arXiv:1104.0881] [INSPIRE].

[72] J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A Formalism for the Systematic Treatment

of Rapidity Logarithms in Quantum Field Theory, JHEP 05 (2012) 084 [arXiv:1202.0814]

[INSPIRE].

[73] J.-y. Chiu, F. Golf, R. Kelley and A.V. Manohar, Electroweak Corrections in High Energy

Processes using Effective Field Theory, Phys. Rev. D 77 (2008) 053004 [arXiv:0712.0396]

[INSPIRE].

[74] A.V. Manohar and I.W. Stewart, The zero-bin and mode factorization in quantum field

theory, Phys. Rev. D 76 (2007) 074002 [hep-ph/0605001] [INSPIRE].

[75] G.T. Bodwin, S.J. Brodsky and G.P. Lepage, Initial State Interactions and the Drell-Yan

Process, Phys. Rev. Lett. 47 (1981) 1799 [INSPIRE].

[76] J.C. Collins, D.E. Soper and G.F. Sterman, Soft Gluons and Factorization, Nucl. Phys. B

308 (1988) 833 [INSPIRE].

[77] J.R. Gaunt, Glauber Gluons and Multiple Parton Interactions, JHEP 07 (2014) 110

[arXiv:1405.2080] [INSPIRE].

[78] E. Laenen, G.F. Sterman and W. Vogelsang, Recoil and threshold corrections in short

distance cross-sections, Phys. Rev. D 63 (2001) 114018 [hep-ph/0010080] [INSPIRE].

[79] I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The Quark Beam Function at NNLL,

JHEP 09 (2010) 005 [arXiv:1002.2213] [INSPIRE].

[80] R. Kelley, M.D. Schwartz, R.M. Schabinger and H.X. Zhu, The two-loop hemisphere soft

function, Phys. Rev. D 84 (2011) 045022 [arXiv:1105.3676] [INSPIRE].

[81] A. Hornig, C. Lee, I.W. Stewart, J.R. Walsh and S. Zuberi, Non-global Structure of the

O(α2
s) Dijet Soft Function, JHEP 08 (2011) 054 [arXiv:1105.4628] [INSPIRE].

[82] A. Hornig, C. Lee, J.R. Walsh and S. Zuberi, Double Non-Global Logarithms In-N-Out of

Jets, JHEP 01 (2012) 149 [arXiv:1110.0004] [INSPIRE].

[83] A.V. Manohar, Deep inelastic scattering as x→ 1 using soft collinear effective theory, Phys.

Rev. D 68 (2003) 114019 [hep-ph/0309176] [INSPIRE].

– 40 –

http://dx.doi.org/10.1007/JHEP11(2010)101
http://arxiv.org/abs/1001.0014
http://inspirehep.net/search?p=find+EPRINT+arXiv:1001.0014
http://dx.doi.org/10.1103/PhysRevD.83.114030
http://arxiv.org/abs/1102.4344
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.4344
http://dx.doi.org/10.1016/S0370-2693(01)00725-0
http://dx.doi.org/10.1016/S0370-2693(01)00725-0
http://arxiv.org/abs/hep-ph/0104277
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0104277
http://dx.doi.org/10.1088/1126-6708/2002/08/032
http://dx.doi.org/10.1088/1126-6708/2002/08/032
http://arxiv.org/abs/hep-ph/0208073
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0208073
http://ocw.mit.edu/courses/physics/8-851-effective-field-theory-spring-2013/lecture-notes/MIT8_851S13_scetnotes.pdf
http://ocw.mit.edu/courses/physics/8-851-effective-field-theory-spring-2013/lecture-notes/MIT8_851S13_scetnotes.pdf
http://arxiv.org/abs/1410.1892
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.1892
http://dx.doi.org/10.1103/PhysRevLett.108.151601
http://dx.doi.org/10.1103/PhysRevLett.108.151601
http://arxiv.org/abs/1104.0881
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.0881
http://dx.doi.org/10.1007/JHEP05(2012)084
http://arxiv.org/abs/1202.0814
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.0814
http://dx.doi.org/10.1103/PhysRevD.77.053004
http://arxiv.org/abs/0712.0396
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.0396
http://dx.doi.org/10.1103/PhysRevD.76.074002
http://arxiv.org/abs/hep-ph/0605001
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0605001
http://dx.doi.org/10.1103/PhysRevLett.47.1799
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,47,1799
http://dx.doi.org/10.1016/0550-3213(88)90130-7
http://dx.doi.org/10.1016/0550-3213(88)90130-7
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B308,833
http://dx.doi.org/10.1007/JHEP07(2014)110
http://arxiv.org/abs/1405.2080
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.2080
http://dx.doi.org/10.1103/PhysRevD.63.114018
http://arxiv.org/abs/hep-ph/0010080
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0010080
http://dx.doi.org/10.1007/JHEP09(2010)005
http://arxiv.org/abs/1002.2213
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.2213
http://dx.doi.org/10.1103/PhysRevD.84.045022
http://arxiv.org/abs/1105.3676
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.3676
http://dx.doi.org/10.1007/JHEP08(2011)054
http://arxiv.org/abs/1105.4628
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.4628
http://dx.doi.org/10.1007/JHEP01(2012)149
http://arxiv.org/abs/1110.0004
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.0004
http://dx.doi.org/10.1103/PhysRevD.68.114019
http://dx.doi.org/10.1103/PhysRevD.68.114019
http://arxiv.org/abs/hep-ph/0309176
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0309176


J
H
E
P
0
2
(
2
0
1
5
)
1
1
7

[84] C.W. Bauer, C. Lee, A.V. Manohar and M.B. Wise, Enhanced nonperturbative effects in Z

decays to hadrons, Phys. Rev. D 70 (2004) 034014 [hep-ph/0309278] [INSPIRE].

[85] J.R. Gaunt and M. Stahlhofen, The Fully-Differential Quark Beam Function at NNLO,

JHEP 12 (2014) 146 [arXiv:1409.8281] [INSPIRE].

[86] J.C. Collins and D.E. Soper, Parton Distribution and Decay Functions, Nucl. Phys. B 194

(1982) 445 [INSPIRE].

[87] M. Ritzmann and W.J. Waalewijn, Fragmentation in Jets at NNLO, Phys. Rev. D 90

(2014) 054029 [arXiv:1407.3272] [INSPIRE].

[88] J. Collins, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology.

Book 32: Foundations of perturbative QCD, Cambridge University Press, Cambridge U.K.

(2011).

[89] M.D. Schwartz, Resummation and NLO matching of event shapes with effective field theory,

Phys. Rev. D 77 (2008) 014026 [arXiv:0709.2709] [INSPIRE].

[90] S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Top Jets in the Peak Region:

Factorization Analysis with NLL Resummation, Phys. Rev. D 77 (2008) 114003

[arXiv:0711.2079] [INSPIRE].

[91] G. Parisi, Summing Large Perturbative Corrections in QCD, Phys. Lett. B 90 (1980) 295

[INSPIRE].

[92] G.F. Sterman, Summation of Large Corrections to Short Distance Hadronic Cross-Sections,

Nucl. Phys. B 281 (1987) 310 [INSPIRE].

[93] L. Magnea and G.F. Sterman, Analytic continuation of the Sudakov form-factor in QCD,

Phys. Rev. D 42 (1990) 4222 [INSPIRE].

[94] T.O. Eynck, E. Laenen and L. Magnea, Exponentiation of the Drell-Yan cross-section near

partonic threshold in the DIS and MS-bar schemes, JHEP 06 (2003) 057 [hep-ph/0305179]

[INSPIRE].

[95] C. Balzereit, T. Mannel and W. Kilian, Evolution of the light cone distribution function for

a heavy quark, Phys. Rev. D 58 (1998) 114029 [hep-ph/9805297] [INSPIRE].

[96] M. Neubert, Renormalization-group improved calculation of the B → Xsγ branching ratio,

Eur. Phys. J. C 40 (2005) 165 [hep-ph/0408179] [INSPIRE].

[97] Z. Ligeti, I.W. Stewart and F.J. Tackmann, Treating the b quark distribution function with

reliable uncertainties, Phys. Rev. D 78 (2008) 114014 [arXiv:0807.1926] [INSPIRE].

[98] A.V. Manohar and W.J. Waalewijn, A QCD Analysis of Double Parton Scattering: Color

Correlations, Interference Effects and Evolution, Phys. Rev. D 85 (2012) 114009

[arXiv:1202.3794] [INSPIRE].

[99] L.G. Almeida et al., Comparing and counting logs in direct and effective methods of QCD

resummation, JHEP 04 (2014) 174 [arXiv:1401.4460] [INSPIRE].

[100] R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Thrust at N3LL with

Power Corrections and a Precision Global Fit for αs(mZ), Phys. Rev. D 83 (2011) 074021

[arXiv:1006.3080] [INSPIRE].

[101] M. Procura, W.J. Waalewijn and L. Zeune, in preparation.

[102] C.F. Berger, T. Kucs and G.F. Sterman, Event shape/energy flow correlations, Phys. Rev.

D 68 (2003) 014012 [hep-ph/0303051] [INSPIRE].

– 41 –

http://dx.doi.org/10.1103/PhysRevD.70.034014
http://arxiv.org/abs/hep-ph/0309278
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0309278
http://dx.doi.org/10.1007/JHEP12(2014)146
http://arxiv.org/abs/1409.8281
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.8281
http://dx.doi.org/10.1016/0550-3213(82)90021-9
http://dx.doi.org/10.1016/0550-3213(82)90021-9
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B194,445
http://dx.doi.org/10.1103/PhysRevD.90.054029
http://dx.doi.org/10.1103/PhysRevD.90.054029
http://arxiv.org/abs/1407.3272
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.3272
http://dx.doi.org/10.1103/PhysRevD.77.014026
http://arxiv.org/abs/0709.2709
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.2709
http://dx.doi.org/10.1103/PhysRevD.77.114003
http://arxiv.org/abs/0711.2079
http://inspirehep.net/search?p=find+EPRINT+arXiv:0711.2079
http://dx.doi.org/10.1016/0370-2693(80)90746-7
http://inspirehep.net/search?p=find+J+Phys.Lett.,B90,295
http://dx.doi.org/10.1016/0550-3213(87)90258-6
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B281,310
http://dx.doi.org/10.1103/PhysRevD.42.4222
http://inspirehep.net/search?p=find+J+Phys.Rev.,D42,4222
http://dx.doi.org/10.1088/1126-6708/2003/06/057
http://arxiv.org/abs/hep-ph/0305179
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0305179
http://dx.doi.org/10.1103/PhysRevD.58.114029
http://arxiv.org/abs/hep-ph/9805297
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9805297
http://dx.doi.org/10.1140/epjc/s2005-02141-1
http://arxiv.org/abs/hep-ph/0408179
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0408179
http://dx.doi.org/10.1103/PhysRevD.78.114014
http://arxiv.org/abs/0807.1926
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.1926
http://dx.doi.org/10.1103/PhysRevD.85.114009
http://arxiv.org/abs/1202.3794
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.3794
http://dx.doi.org/10.1007/JHEP04(2014)174
http://arxiv.org/abs/1401.4460
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.4460
http://dx.doi.org/10.1103/PhysRevD.83.074021
http://arxiv.org/abs/1006.3080
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.3080
http://dx.doi.org/10.1103/PhysRevD.68.014012
http://dx.doi.org/10.1103/PhysRevD.68.014012
http://arxiv.org/abs/hep-ph/0303051
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0303051


J
H
E
P
0
2
(
2
0
1
5
)
1
1
7

[103] S. Catani, G. Turnock and B.R. Webber, Jet broadening measures in e+e− annihilation,

Phys. Lett. B 295 (1992) 269 [INSPIRE].

[104] Y.L. Dokshitzer, A. Lucenti, G. Marchesini and G.P. Salam, On the QCD analysis of jet

broadening, JHEP 01 (1998) 011 [hep-ph/9801324] [INSPIRE].

[105] A.J. Larkoski, D. Neill and J. Thaler, Jet Shapes with the Broadening Axis, JHEP 04

(2014) 017 [arXiv:1401.2158] [INSPIRE].

[106] D. Bertolini, T. Chan and J. Thaler, Jet Observables Without Jet Algorithms, JHEP 04

(2014) 013 [arXiv:1310.7584] [INSPIRE].

[107] O.V. Tarasov, A.A. Vladimirov and A.Y. Zharkov, The Gell-Mann-Low Function of QCD

in the Three Loop Approximation, Phys. Lett. B 93 (1980) 429 [INSPIRE].

[108] S.A. Larin and J.A.M. Vermaseren, The Three loop QCD β-function and anomalous

dimensions, Phys. Lett. B 303 (1993) 334 [hep-ph/9302208] [INSPIRE].

[109] G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the

Leading Order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].

[110] S. Moch, J.A.M. Vermaseren and A. Vogt, The Three loop splitting functions in QCD: The

Nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].

[111] S. Moch, J.A.M. Vermaseren and A. Vogt, The Quark form-factor at higher orders, JHEP

08 (2005) 049 [hep-ph/0507039] [INSPIRE].

[112] S. Moch, J.A.M. Vermaseren and A. Vogt, Three-loop results for quark and gluon

form-factors, Phys. Lett. B 625 (2005) 245 [hep-ph/0508055] [INSPIRE].

[113] A. Vogt, S. Moch and J.A.M. Vermaseren, The Three-loop splitting functions in QCD: The

Singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [INSPIRE].

[114] A. Idilbi, X.-d. Ji, J.-P. Ma and F. Yuan, Threshold resummation for Higgs production in

effective field theory, Phys. Rev. D 73 (2006) 077501 [hep-ph/0509294] [INSPIRE].

[115] A. Idilbi, X.-d. Ji and F. Yuan, Resummation of threshold logarithms in effective field

theory for DIS, Drell-Yan and Higgs production, Nucl. Phys. B 753 (2006) 42

[hep-ph/0605068] [INSPIRE].

[116] T. Becher, M. Neubert and B.D. Pecjak, Factorization and Momentum-Space Resummation

in Deep-Inelastic Scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [INSPIRE].

[117] T. Becher and M.D. Schwartz, Direct photon production with effective field theory, JHEP

02 (2010) 040 [arXiv:0911.0681] [INSPIRE].

[118] T. Gehrmann, T. Luebbert and L.L. Yang, Calculation of the transverse parton distribution

functions at next-to-next-to-leading order, JHEP 06 (2014) 155 [arXiv:1403.6451]

[INSPIRE].

– 42 –

http://dx.doi.org/10.1016/0370-2693(92)91565-Q
http://inspirehep.net/search?p=find+J+Phys.Lett.,B295,269
http://dx.doi.org/10.1088/1126-6708/1998/01/011
http://arxiv.org/abs/hep-ph/9801324
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9801324
http://dx.doi.org/10.1007/JHEP04(2014)017
http://dx.doi.org/10.1007/JHEP04(2014)017
http://arxiv.org/abs/1401.2158
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.2158
http://dx.doi.org/10.1007/JHEP04(2014)013
http://dx.doi.org/10.1007/JHEP04(2014)013
http://arxiv.org/abs/1310.7584
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.7584
http://dx.doi.org/10.1016/0370-2693(80)90358-5
http://inspirehep.net/search?p=find+J+Phys.Lett.,B93,429
http://dx.doi.org/10.1016/0370-2693(93)91441-O
http://arxiv.org/abs/hep-ph/9302208
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9302208
http://dx.doi.org/10.1016/0550-3213(87)90277-X
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B283,342
http://dx.doi.org/10.1016/j.nuclphysb.2004.03.030
http://arxiv.org/abs/hep-ph/0403192
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0403192
http://dx.doi.org/10.1088/1126-6708/2005/08/049
http://dx.doi.org/10.1088/1126-6708/2005/08/049
http://arxiv.org/abs/hep-ph/0507039
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0507039
http://dx.doi.org/10.1016/j.physletb.2005.08.067
http://arxiv.org/abs/hep-ph/0508055
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0508055
http://dx.doi.org/10.1016/j.nuclphysb.2004.04.024
http://arxiv.org/abs/hep-ph/0404111
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0404111
http://dx.doi.org/10.1103/PhysRevD.73.077501
http://arxiv.org/abs/hep-ph/0509294
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0509294
http://dx.doi.org/10.1016/j.nuclphysb.2006.07.002
http://arxiv.org/abs/hep-ph/0605068
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0605068
http://dx.doi.org/10.1088/1126-6708/2007/01/076
http://arxiv.org/abs/hep-ph/0607228
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0607228
http://dx.doi.org/10.1007/JHEP02(2010)040
http://dx.doi.org/10.1007/JHEP02(2010)040
http://arxiv.org/abs/0911.0681
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.0681
http://dx.doi.org/10.1007/JHEP06(2014)155
http://arxiv.org/abs/1403.6451
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.6451

	Introduction
	Factorization
	Effective theory for the region between SCET(I) and SCET(II) boundaries
	Factorization formulae

	Ingredients at NNLL
	Hard function
	Beam functions
	Soft functions
	Collinear-soft function
	Renormalization and anomalous dimensions
	NLL cross section

	Matching the effective theories
	NLO cross section
	Ingredients
	Cancellation of IR divergences
	Result
	Comparison to resummed predictions

	Measuring two angularities on one jet
	Conclusions
	Plus distributions
	Renormalization group evolution

