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aPhysics Department, Boston University,

Boston MA 02215, U.S.A.
bCentro de F́ısica do Porto, Departamento de F́ısica e Astronomia,

Faculdade Ciências da Universidade do Porto, Portugal
cPhysics Department, Brown University,

Providence, RI 02912, U.S.A.

E-mail: brower@bu.edu, miguelc@fc.up.pt, djuric@fc.up.pt,

timothy raben@brown.edu, chung-i tan@brown.edu

Abstract: From the perspective of AdS/CFT the Pomeron is identified with a Reggeized Gravi-

ton, while the Odderons correspond to Reggeized anti-symmetric AdS5 Kalb-Ramond tensor-

fields. In this paper, we consider the strong coupling expansion of the dimension of the leading

twist operators dual to these Regge trajectories, ∆(j), to determine its analytic continuation

in j beyond the diffusion limit. In particular, we compute the strong coupling expansion of

the intercept to order λ−3, where λ is the t’Hooft coupling, for both the Pomeron, which is

C = +1 crossing-even, and the “Odderons”, which are the leading C = −1 crossing-odd Regge

singularities. We discuss the spectral curves of the class of single-trace operators to which these

string modes couple.

Keywords: Gauge-gravity correspondence, AdS-CFT Correspondence, Strong Coupling Ex-

pansion

ArXiv ePrint: 1409.2730

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP02(2015)104

mailto:brower@bu.edu
mailto:miguelc@fc.up.pt
mailto:djuric@fc.up.pt
mailto:timothy_raben@brown.edu
mailto:chung-i_tan@brown.edu
http://arxiv.org/abs/1409.2730
http://dx.doi.org/10.1007/JHEP02(2015)104


J
H
E
P
0
2
(
2
0
1
5
)
1
0
4

Contents

1 Introduction 1

2 Conformal Regge representation 4

3 Conformal Pomeron 8

3.1 Pomeron spin versus anomalous dimensions at strong coupling 9

3.2 Explicit results for N = 4 SYM 13

4 Conformal Odderon 14

4.1 Odderon intercepts in strong coupling 16

5 Conclusions 20

1 Introduction

AdS/CFT correspondence [1–4], has provided a useful perspective on several domains of non-

perturbative QCD, such as heavy ion collisions, low-energy meson dynamics, and high energy

scattering. In particular, at strong coupling the leading Pomeron exchange has been identified

as a Reggeized AdS Graviton, in the planar approximation to N = 4 Super Yang Mills (SYM)

Theory [5].

A crucial observation made in [5] is the role played by the analytic continuation in the

∆ − j plane for anomalous dimensions, γ(j) = ∆(j) − j − τ , for the leading twist operators as

a function of j and the ’t Hooft coupling λ = g2Nc. In a conformal field theory, the inverse

curve in the “Dimension-j” plane, j(∆), plays a central role analogous to the traditional Regge

pole trajectory α(t) in “Energy-j” plane. As a spectral curve, ∆(j) has a remarkable symmetry

due to conformal invariance: the inverse curve, j(∆), is symmetric under ∆ ↔ 4 −∆,1 with a

minimum at ∆ = 2, as shown in figure 1 for the leading twist-2 spectral curve. At integer j this

symmetry relates operators to shadow operators in the conformal field theory. The value of j

at this minimum, j0(λ), corresponds to the location of the conformal Regge intercept associated

with a given spectral curve ∆(j). In strong coupling, the Pomeron intercept [5, 6],

αP = j0(λ) = 2− 2

λ1/2
+O(1/λ) , (1.1)

1More succinctly stated, conformal symmetry implies a j-plane trajectory as a function of ∆(∆−4) = M2
adsR

2
ads

just as Lorentz invariance implies Regge j-plane trajectories as a function of α′t. We will occasionally refer to

j(∆) as the “conformal Reggeon spin”, or simply “Reggeon spin”.
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Figure 1. The conformal Regge trajectory reproduced from ref. [5]: schematic form of the ∆− j relation

for twist-2 spectral curve at weak (λ� 1) and strong coupling (λ� 1).

was determined by perturbing the spectral curve ∆P (j) about the graviton at j = 2 in the

super-gravity limit. The same principle can be applied to weak coupling, with the minimum

identified with the BFKL Pomeron intercept [7–11]

αP = j0(λ) = 1 +
4 ln 2

π
λ+O(λ2) . (1.2)

A major challenge in N = 4 SYM is to determine this intercept j0(λ) for all λ in the large Nc

approximation and to apply this analysis to other trajectories [12].

In this paper we apply an expansion procedure for spectral curves, that describes short

strings in AdS [13–15], to improve the strong coupling expansion for both the leading conformal

Pomeron (C =+1) and Odderon (C= -1) trajectories. For the Pomeron this is a simple extension

of earlier results [16–19], while the application to the Odderon trajectory [20, 21] is new. For

N = 4 SYM, the C= +1 exchange is associated with exchange of local operators with ± light-

cone components,

O±P (j, k) = Tr[F±⊥(D±)j−2F±⊥Z
k] + · · · , (1.3)

with j = 2, 4, 6, · · · and k = 0, 1, · · · . Here, Z is a scalar field with SU(4) R-charge. The

leading Pomeron has k = 0, but we extend known results to the case of R-charge exchange

with k 6= 0. Due to super-symmetry, the analysis can be simplified by relating the relevant

spectral curves to that for single-trace operators in the sl(2) sector, symbolically expressed as

Tr[(D±)j−2Zk+2] + · · · [22, 23]. For the case of the C = −1 Odderon trajectory, we shall show

how similar techniques can also be applied.2

We shall restrict our attention to the pure conformal limit and begin here by briefly de-

scribing the Regge limit in the context of conformal field theories [16, 24–26]. Consider the

connected component for a four point correlation function of primary operators Oi of dimension

∆i. Defining xij = xi − xj , we have

A(xi) = 〈O1(x1)O2(x2)O3(x3)O4(x4)〉c =
1

(x2
12)∆1(x2

34)∆3
F (u, v) , (1.4)

2Preliminary result was first reported at the “Low-x Workshop”, 2013, Rehovot and Eilat, Israel [21].
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Figure 2. Conformal compactification of the light-cone showing points taken to null infinity in the Regge

limit. In light-cone coordinates (x+, x−, x⊥) we take −x+1 ∼ x+2 →∞ and −x−3 ∼ x−4 →∞, keeping xi⊥
fixed.

where

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

, (1.5)

are the cross ratios and for simplicity we have assumed ∆1 = ∆2 and ∆3 = ∆4. We need

to examine the double light-cone limit of vanishing x2
12 and x2

34, which corresponds to u → 0

and v → 1 in a Minkowski setting. From the perspective of light-cone OPE, this limit can

be reached by scaling x+
1 → λx+

1 , x+
2 → λx+

2 , x−3 → λx−3 , x−4 → λx−4 with λ → ∞, keeping

the causal relations x2
14, x

2
23 < 0, as illustrated in figure 2. In a frame where x1⊥ = x2⊥ and

x3⊥ = x4⊥, this corresponds to approaching the respective null infinity while keeping the relative

impact parameter

b⊥ = x1⊥ − x3⊥ , (1.6)

fixed. In terms of the cross ratios, this corresponds to u→ 0 and v → 1, with (1− v)/
√
u fixed.

Alternatively, defining u = zz̄ and v = (1 − z)(1 − z̄) with z = σeρ and z̄ = σe−ρ, the precise

Regge limit can be specified by σ → 0 for fixed ρ.

Using Regge theory the leading behavior of the reduced correlation functions F can be

determined by the intercept j0, computed from the corresponding leading spectral curve ∆(j)

described earlier, with a general form

F (σ, ρ) ≈ f(ρ)
σ1−j0

| lnσ|3/2 . (1.7)

This is entirely analogous to conventional Regge theory where the spectrum of Regge trajectories

determines high energy scattering amplitudes.

The paper is organized as follows. In section 2, we will review the dictionary that translates

the Regge description from the language of CFT and OPE into scattering amplitudes in AdS

space. This will allow us to proceed directly within the framework of CFT’s without explicit

recourse to the AdS/CFT correspondence. Nonetheless reference to AdS space can and will be

– 3 –
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made to provide additional intuition. In section 3, we analyze the Pomeron intercept beyond the

“diffusion limit”, (1.1), leading to a systematic expansion for the Pomeron intercept in λ−1/2.

A similar analysis is done for Odderons in section 4. In particular, we clarify how one of the

Odderon solutions has intercept that remains fixed at 1 to all orders in 1/
√
λ. These results

are summarized and discussed in section 5 where we also clarify further the all-coupling formula

proposed by Basso in [15], and its possible generalization. We also provide additional comments

relating to the weak coupling limit and other issues.

2 Conformal Regge representation

While a conformal Regge analysis can be presented entirely in a CFT language [16, 24–26], it is

often useful to follow the earlier derivations in invoking a scattering process in AdS [5, 27–30].

Although both approaches are equivalent, they offer separate intuitive frameworks.

Regge theory from CFT partial wave expansion: the t-channel OPE conformal partial-

wave expansion for the connected component of a 4-point function is given by a sum over

conformal blocks,

F (u, v) =
∑
j

∑
α

C
(12),(34)
α,j G(j,∆α(j);u, v) . (2.1)

For the Regge limit (on the light cone), these are Minkowski conformal blocks, defined with

appropriate boundary conditions, or equivalently, as analytic continuation from Euclidean space

as explained in refs. [24, 25, 31]. Although, for planar N = 4 SYM in the Regge limit, we shall

restrict the sum to single-trace conformal primary operators, a completely general representation

can be found by introducing basis function for the principle unitary conformal representation

and expanding the amplitude as

F (u, v) =
∑
j

∫ ∞
−∞

dν

2π
a(j, ν)G(j, ν;u, v) . (2.2)

This group representation combines a discrete sum in the spin j and a Mellin transform in a

complex ∆-plane, with ∆ = 2 + iν, as explained by Mack [32] and others.3 The conformal

harmonics, G(j, ν;u, v), are eigen-functions of the quadratic Casimir operator of SO(4, 2). To

recover the standard conformal block expansion, it is conventional to close the contour in the

lower-half ν-plane,4 (equivalently, closing the contour in ∆-plane to the right), picking up only

dynamical poles in a(j, ν), at ν(j) = −i(∆(j)−2). After summing over these pole contributions,

3We have absorbed factors coming from Plancherel measure, etc., into the partial-wave amplitude a(j, ν)

and will also normalize the conformal harmonics, G(j, ν;u, v), so it eventually leads to conformal blocks with

conventional normalization. It has also been demonstrated in [32] how the CFT “Mellin-representation” can be

expressed in this group-theoretic form.
4Due to conformal invariance, the integrand is even in ν, or, equivalently, symmetric in ∆↔ 4−∆. The contour

can be closed either in the upper or the lower half ν-plane. The poles in the upper half ν-plane corresponds to

“shadow” operators.

– 4 –
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one arrives at the conformal partial wave expansion (2.1), which also serves as an OPE. These

dynamical poles correspond to all allowed conformal primaries, O∆(j), with spin j and dimension

∆(j).

We are now faced with a discrete sum over spin j. A distinguishing feature of the Regge

limit is the fact that the conformal harmonics,

G(j, ν;u, v) ∼ σ1−jΩiν(ρ) , Ωiν(ρ) =
1

4π2

ν sin(νρ)

sinh ρ
, (2.3)

are more and more divergent for increasing j > 1 as σ → 0. Therefore one cannot take the Regge

limit term by term in (2.2). The traditional Regge hypothesis is that this sum can be evaluated

by representing the partial wave expansion by the Sommerfeld-Watson transform in the analytic

j-plane. For conformal Regge theory, this step leads to a double-Mellin representation [24–26],

F (u, v) = −
∫ i∞

−i∞

dj

2πi

1± e−iπj
sinπj

∫ ∞
−∞

dν

2π
a(j, ν) G(j, ν;u, v) , (2.4)

where the contour in j is to stay to the right of singularities of a(j, ν). Note that in (2.4)

we must consider separate expressions for even or odd spin values, which will correspond to

C = ±1 contributions respectively. While a direct proof of this j-plane representation is lacking

for CFT’s in general, it has been shown to hold at strong coupling on the basis of the AdS/CFT

correspondence for N = 4 SYM [5] and at weak coupling in the BFKL limit [24, 25]. Moreover

it is a natural assumption in order that non-conformal deformation give back the traditional

Regge representation. This double-Mellin representation for conformal Regge theory leads to a

meromorphic representation in the ν2− j plane, with poles specified by the collection of allowed

spectral curves, ∆α(j). Still we should emphasize that this conformal “Regge pole hypothesis”

is similar but is neither identical or a consequence of the conventional Regge theory. The

conventional Regge j-plane analyticity with moving singularities in the j − t plane, is replaced

by analyticity and moving singularities in this j − ν2 plane. In ref. [5] this distinction is clearly

delineated by introducing a confining deformations of the Poincare patch of AdS space which

interpolate smoothly between conformal and non-conformal Regge theory.

As an illustration, let us re-consider the C = +1 case and focus on the contribution from a

single conformal Pomeron pole in ν2,

a(j, ν) =
r(j)

ν2 + (∆(j)− 2)2
, (2.5)

characterized by a spectral curve ∆(j), with the residue r(j) which vanishes at j = 0,−2,−4, · · · .
Closing the contour first in the lower-half ν-plane, (2.4) leads to a single-Mellin representation

F (u, v) ≈ −
∫

dj

2πi

1 + e−iπj

sinπj
r(j) σ1−j e

(2−∆(j))ρ

sinh ρ
, (2.6)

where we have taken the limit of
√
u = σ small, with (1− v)/

√
u ≈ 2 cosh ρ fixed. In this limit,

the dominant contribution comes from the right-most singularity in the j-plane, which enters

– 5 –
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through ∆(j). Consider next the spectral curve ∆(j) for Pomeron exchange and focus on the

strong coupling limit where one has ∆(j) = 2 +
√

2λ1/4
√
j − j0, with j0 given by (1.1). Observe

that this gives a fixed branch-cut in the j-plane. In the limit σ → 0, by pushing the j-contour

to the left and picking up the contribution from the branch-cut at j = j0, (2.6) leads directly to

the singular behavior (1.7), as promised. A similar result is also obtained if one considers the

weak coupling expansion of the spectral curve ∆(j), but now j0 in (1.7) is given by the BFKL

expansion (1.2).

AdS Impact parameter representation: now let us turn to a momentum space treatment

for the Regge limit in CFT. Consider the Fourier transform of the connected correlation function

defined in (1.4),

(2π)4 δ(4)
(∑

pj

)
i T (p1, p2, p3, p4) = 〈O1(p1)O2(p2)O3(p3)O4(p4)〉c . (2.7)

The amplitude T (pj) can be expressed as a function of Mandelstam invariants s, t, and p2
j . The

Regge limit corresponds to s large, which defines a light-cone direction, with t < 0 and p2
j fixed.

In this limit, the momentum transfer is asymptotically transverse, with t = (p1 + p2)2 ≈ −q2
⊥.

Using conformal symmetry, it is possible to express the amplitude T (pj) in an AdS impact

parameter representation, which in the Regge limit takes the form [24, 25, 29, 30]

T (s, t, p2
i ) ≈

∫
dz

z5

dz′

z′5
Φ1(z, p2

1)Φ2(z, p2
2)G(s, t, z, z′) Φ3(z′, p2

3)Φ4(z′, p2
4) ,

G(s, t, z, z′) = (zz′)2s

∫
d2b⊥
4π2

eiq⊥ · b⊥T (S,L) , (2.8)

with b⊥ the two-dimensional impact parameter introduced earlier (1.6). The amplitude T =

T (S,L) encodes all dynamical information and, due to conformal symmetry, depends only on

the variables

S = zz′s , coshL =
z2 + z′2 + b2⊥

2zz′
. (2.9)

The same representation was obtained through direct AdS/CFT considerations [5, 27, 28],

via generalized Witten diagrams, string vertex operators, etc., leading to a Regge kernel,

K(s, b⊥, z, z
′). Up to irrelevant constants, this kernel is related to the amplitude T (S,L) by5

K(s, b⊥, z, z
′) ∼ N2 (zz′)2 s T (S,L) . (2.10)

The Regge limit is now S → ∞ with fixed L. It is important to note that the conformal

representation (2.8) of the amplitude is valid for any value of the coupling constant, since it

relies only on conformal invariance. However, it is quite natural from the view point of the

dual AdS scattering process, where transverse space is precisely a three-dimensional hyperbolic

space H3, whose boundary is conformal to the physical transverse space R2. The cross ratio

5The 1/N2 dependence in T (S,L), expected for AdS gravitational interactions, is normally removed from K.

In [27, 28], a reduced variable s̃ = S = zz′s was used extensively. One occasionally also used η or ξ, instead of L.

– 6 –
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L is then identified with the geodesic distance between two points in H3 that are separated by

b⊥ along R2 and have radial coordinates z and z′. The other cross ratio S = zz′s measures

the local energy squared of the scattering process in AdS, since z and z′ define the local AdS

scales for each incoming particle. Moreover, the functions Φi(z, p
2
i ) are AdS bulk to boundary

propagators with a plane wave source of momentum pi created by the gauge theory operator

at the boundary z → 0. To define on-shell scattering for non-conformal amplitudes, T (s, t), as

introduced in ref. [5], one deforms the dual AdS space in the IR, breaking conformal symmetry,

and replaces Φi(z, p
2
i ) by normalizable wave functions for “hadronic” (or glueball) eigenstates.6

By considering the radial Fourier decomposition in the AdS impact parameter space H3,

one can derive a double Mellin representation of the kernel, as done earlier for CFT analysis

in a coordinate representation, eq. (2.4). This radial decomposition simply considers harmonic

functions Ωiν on H3, given by (2.3), which satisfy (∇2 + 1 + ν2) Ωiν = 0, where ∇2 is the H3

Laplacian. This is equivalent to introducing R2 harmonic functions, eiq⊥b⊥ , in the standard

impact parameter decomposition. The only difference is that now we have a scattering process

in AdS space. From a CFT point of view, this representation can also be derived by writing

the conformal partial wave decomposition of the amplitude T (S,L), and then taking the Regge

limit. Thus, as before, the ν-integral reflects conformal invariance due to dilatation, and the

j-integral represents a coherent sum of t-channel spin fields, as was done earlier for the OPE sum

via a Sommerfeld-Watson transform. To be more explicit, since the Pomeron/Odderon kernels

receive contributions respectively from all even/odd spins, these kernels can be expressed as

K±(s, b2⊥, z, z
′) = −(zz′)

∫
dj

2πi

1± e−iπj
sinπj

∫ ∞
−∞

dν

2π
Sj G±(j, ν) Ωiν(L) . (2.11)

This representation is a consequence of conformal invariance, which must next be supplemented

by dynamics, i.e., specifying the Pomeron/Odderon propagator G(j, ν).

By examining Witten diagrams for exchanging spin-j fields in the Regge limit and also their

string duals, one is led to G(j, ν) having a simple pole in the ν2-plane, determined by the spectral

curve ∆(j) associated with these fields, exactly as in coordinate treatment (2.5). Here G(j, ν)

can be related to the ν-transform of a transverse scalar bulk-bulk propagator with an effective

j-dependent AdS mass. The residue at this pole can be related to the local AdS coupling of

the exchanged fields to the external states. Upon closing the ν-contour, one picks up a factor

G(j, b⊥, z, z
′) ∼ e−(∆(j)−2)L/sinhL . Finally, for Pomeron(Odderon) exchange, by identifying the

j-plane branch-point at j0 associated with the Pomeron(Odderon) spectral curve, from (2.11)

one has for S large, by pulling the contour to the left,

K(s, b2⊥, z, z
′) ≈ (zz′)f̃(L)

Sj0

| lnS|3/2 , (2.12)

just as in the coordinate representation (1.7).

6Note that at weak coupling the product of wave functions Φ1Φ2 and Φ3Φ4 are similarly replaced by the

dipole parton distributions for the external particles [25], so that this impact parameter representation (2.8) is

maintained.
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Regge dictionary for CFT: we have therefore two representations of the correlation function

in the Regge limit. One derived from the CFT analysis in position space F (u, v), given by (2.4),

and another from a computation in momentum space with a clear geometrical interpretation as

a scattering process in AdS, given by (2.11). This establishes a dictionary, where, in the Regge

limit,

F (u, v) ↔ T (S,L) = N−2 (zz′)−2s−1K(s, b2⊥, z, z
′) ,

σ =
√
u ↔ S−1 = (zz′s)−1 ,

cosh ρ ≈ 1− v
2
√
u
↔ coshL =

b2⊥ + z2 + z′2

2zz′
. (2.13)

Although it is possible to carry out a more formal analysis in establishing this equivalence, we

will not pursue this here [26]. It suffices to emphasize the exact equivalence of the two approaches

to identify the spectral curve, ∆(j) in figure 1, which serves as the common link between them.

3 Conformal Pomeron

The Pomeron spectral curve ∆P (j) in the strong coupling limit, figure 1, can be obtained

by an intuitive derivation based on a flat-space leading closed-string linear trajectory. Through

AdS/CFT, this simple result can be understood as a perturbation about the traceless-transverse

graviton mode, ∇2hMN = 0, with j = 2 and ∆ = 4 in the λ = ∞ super-gravity limit. Here

∇2 is the tensor Laplacian on AdS5. Let us now consider the limit of j → 2 and λ → ∞ with√
λ(j − 2) fixed. This limit can be understood by introducing a Reggeon vertex operator, V±,

on the string world sheet in a weakly curved target AdS5 × S5 space [5]. This Reggeon vertex

operator depends on (j, ν, t) for the O(4, 2) Casimir, and on k = τ−2 in case we wish to consider

exchange of SO(6) R-charge. The effect of the Reggeon operator is to resum the exchange of

all modes in the leading Regge trajectory with even positive integral spins, which leads to the

effective Regge spin

j = 2− τ2 + ν2

2
√
λ

. (3.1)

Then the world-sheet Virasoro on-shell condition, L0V± = L̄0V± = V±, establishes the relation

∆P (j, τ) = 2 + iν (3.2)

where ∆P (j, τ) is the continuation of the anomalous dimension curve for the exchanged gauge

theory operators in the leading Regge trajectory O±P (j, τ) given in (1.3). By following this

procedure, one relates the exchange of AdS higher spin fields to the dual gauge theory operators

with spectral curve ∆P (j, τ).

In the above double limit the Regge spin has a quadratic dependence in the dimension ν,

also known as the diffusion limit (in a weak coupling expansion we may also consider such a

diffusion limit). The terminology stems from the fact that the kernel in momentum space takes

– 8 –
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on a diffusion form at t = 0, with diffusion time ln(zz′s) fixed by the AdS energy S = zz′s [5].

In this limit we can already observe that the spectral curve ∆P (j, τ) has a branch point at j0,

∆P (j) = 2 +
√

2λ1/2
√
j − j0 . (3.3)

where

j0 = 2− τ2

2
√
λ
, (3.4)

which generalizes (1.1) for the case of twist τ .

Beyond the diffusion limit (3.1) the Reggeon spin j = j(ν, τ) admits the strong coupling

expansion

j(ν, τ) = 2− τ2 + ν2

2
√
λ

(
1 +

∞∑
n=2

j̃n(ν2, τ)

λ(n−1)/2

)
, (3.5)

which is a simple generalisation to arbitrary twist τ of the results presented in [16, 24] (such

that at infinite coupling, for j = 2, the dimension of the operator is given by the protected value

of 2+τ). Notice that j(ν, τ) must be an even function of ν to implement the symmetry property

∆P (j, τ) ↔ 4 − ∆P (j, τ). The function j̃n(ν2, τ), defined for n ≥ 2, is a polynomial of degree

n− 2,

j̃n(ν2, τ) =
n−2∑
k=0

cn,kν
2k , (3.6)

with τ -dependent coefficients cn,k. This follows from the requirement that the AdS amplitude

has a well defined flat space limit [24]. Consistency with the strong coupling expansion of

the spectral curve ∆P (j, τ) further restricts this polynomials to have smaller degree [16], more

precisely, for n ≥ 4

cn,k = 0 for
[n

2

]
≤ k ≤ n− 2 , (3.7)

as also confirmed in [18].

Eq. (3.5) corresponds to an expansion for the Reggeon spin about the symmetry point

∆ = 2, (ν2 = 0), in the strong coupling limit, subject to the constraint that j = 2 at ν2 = −τ2.

In the next subsection we review recent results for the strong coupling expansion of the spectral

curve ∆P (j, τ) about j = 2 that will allow us to compute the pomeron spin j(ν), i.e., the inverse

of the spectral curve ∆(j), with ∆ and ν related by (3.2), beyond the diffusion limit at arbitrary

twist τ . The discussion leads to a unified picture that can also be applied to the Odderon Regge

trajectories, in section 4.

3.1 Pomeron spin versus anomalous dimensions at strong coupling

Much attention has been paid in recent years to the study of anomalous dimensions for composite

operators of N = 4 SYM. Because of supersymmetry, many related operators share the same

anomalous dimensions. It is generally believed that, due to integrability [33], scaling dimensions

for gauge invariant operators can be efficiently calculated for all ’t Hooft coupling, in the large-

N planar limit, via the so-called TBA/Y-system and its generalizations [34]. These operators
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and their cousins can be treated as generalized Heisenberg spin chains. For instance, the weak-

coupling one-loop anomalous dimension γ(S, τ) of single-trace operators in the sl(2) sector,

symbolically expressed as Tr[DS
±Z

τ ] + · · · , can be calculated explicitly, with ∆(S, τ) = S + τ +

γ(S, τ) their scaling dimension. However, beyond one-loop, and particularly for short operators

(S and τ small), analytic solutions have been difficult to obtain. For strong coupling, conformal

dimensions can be calculated semi-classically in a world-sheet sigma model approach around

soliton solutions [35–37], as semi-classical treatment for GKP strings. This leads to a strong

coupling loop-expansion, with 1/
√
λ playing the role of ~,

∆ = λ1/4

(
δ0 +

δ1

λ1/2
+
δ2

λ
+

δ3

λ3/2
+
δ4

λ2
+ · · ·

)
, (3.8)

with S and τ dependence entering the `-loop contribution δ` through a scaling hypothesis.7

However, calculation beyond 1-loop is impractical. In most approaches of this type, the emphasis

has been on long strings.

One analysis of particular interest to us is the expansion for the spectral curve about the

point S = 0,

∆Z(S, τ) = τ + α1(τ, λ)S + α2(τ, λ)S2 + α3(τ, λ)S3 + · · · (3.9)

where ∆Z(0, τ) = τ , since the operator is 1/2-BPS and its dimension is protected. The form

of the “slope function”, α1(λ, τ), has recently been conjectured by Basso for all ’t Hooft cou-

pling [15] (see also [40, 41]), which can be expressed in a compact form in terms of Bessel

functions,

α1(λ, τ) =

√
λ

τ
Yτ (
√
λ) , (3.10)

for all λ, with Yτ (x) = I ′τ (x)/Iτ (x), where Iτ (x) is the τ -th modified bessel function. At weak

coupling, α1(λ, τ) = 1 + O(λ), and at the strong coupling, α1(λ, τ) =
√
λ/τ + O(1/

√
λ). This

result was first derived for τ = 2 as a solution to the “asymptotic Bethe ansatz” (ABA) equations.

It has been argued in [15], with further support in [40, 41], that this holds for all τ > 2, for the

configurations with “minimum mode numbers”.8 More recently, the second coefficient, α2(λ, τ),

has also been calculated numerically, but it is not possible at this moment to express it in a

closed form in terms of elementary functions [19, 42]. Due to super-symmetry, it is known that

the Pomeron spectral curve9 is directly related to ∆Z(S, τ) at τ = 2 by [22, 23]

∆P (j) = 2 + ∆Z(j − 2, 2) . (3.11)

Therefore, these recent analyses, appropriately generalized, can be applied to our study of

conformal Pomeron and Odderon, particularly in the large λ limit.

7δ` is assumed to be a function of S = S/
√
λ and T = τ/

√
λ. Occasional discussions for small S and/or small

τ are typically based on extrapolation under this scaling hypothesis. As such, less attention has been paid in the

past to the symmetry property in ∆. For an alternative but related study, see [38, 39].
8We will return to a discussion on this and related issues in sections 4 and 5.
9In order to avoid notational confusion, in what follows, instead of S, we shall switch to j = S + 2, e.g., for

the sl(2) sector, we have Tr[Dj−2
± Zτ ], instead of Tr[DS

±Z
τ ].
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For planar N = 4 SYM, it is possible to generalize our discussion for the Pomeron spectral

curve to include CFT operators with R charges, which through AdS/CFT, amounts to allow

fluctuations in S5. For our purpose, as already described in (1.3), the relevant CFT operators are

OP (j, τ) = Tr
[
FµσDρ1 · · ·DρsFσνZ

τ−2
]

+ · · · , (3.12)

with τ ≡ 2 + k ≥ 2. For the leading Regge singularity, we will be dealing with the light-

cone components Tr
[
F±⊥D± · · ·D±F⊥±Zτ−2

]
+ · · · . The generalized Pomeron spectral curve

∆P (j, τ) can be expanded using (3.11) and (3.9) around j = 2, leading to

∆P (j, τ) = 2 + τ + α1(λ, τ)(j − 2) + α2(λ, τ)(j − 2)2 + α3(λ, τ)(j − 2)3 + · · · . (3.13)

where (3.10) applies.

Because of the symmetry under ∆P (j, τ) ↔ 4 − ∆P (j, τ), we again require the function

∆P (j, τ) to have a square-root singularity at j0(τ), with j0(τ) = 2 − O(λ−1/2). This branch

point renders the expansion (3.13) with a radius of convergence which vanishes as λ−1/2, leading

to expansion coefficients which grow as αn ∼ O(λn/2). Nevertheless, a convergent expansion can

be achieved by considering the symmetric combination
(
∆P (j, τ) − 2

)2
= −ν2, for which this

square-root branch point is absent. This in turn leads to a convergent expansion in the strong

coupling limit,(
∆P (j, τ

)
− 2)2 = τ2 + β1(λ, τ)(j − 2) + β2(λ, τ)(j − 2)2 + β3(λ, τ)(j − 2)3 + · · · , (3.14)

where β1(λ, τ) = 2τα1(λ, τ), β2(λ, τ) = α1(λ, τ)2 + 2τα2(λ, τ), etc. Based partly on semi-

classical analysis of GKP strings [35–37], one expects a radius of convergence of the order

O(λ1/2). Consistency with (3.3) and the existence of a smooth super-gravity limit then require

that βn ∼ O(λ(2−n)/2), so that each coefficient βn(λ) in turn admits an expansion,

βn = 2λ
2−n
2

(
bn,0 +

bn,1

λ1/2
+
bn,2
λ

+
bn,3

λ3/2
+ · · ·

)
, (3.15)

where we have taken the factor of 2 out so that later on the expansion will be normalized with

b1,0 = 1, and the coefficients bn,m are in general τ -dependent. The viability of the strong coupling

treatment done by Basso in [15] relies on this rapidly convergent expansion.10 It is now a simple

exercise to check that, since βn starts at order λ(2−n)/2, we have

(
∆P (j, τ)− 2

)2
= τ2 + 2

√
λ(j − 2)

(
1 +

∞∑
k=1

λ−
k
2Hk(j − 2, τ)

)
, (3.16)

with

Hk(j − 2, τ) =
k∑

n=0

bn+1,k−n(j − 2)n . (3.17)

10It is worth noting that the expansion for β1 in 1/
√
λ can be identified with the GKP-loop expansion, i.e., the

coefficient b1,m is a m-loop contribution. The same no longer holds for βn, n > 1. In general, each coefficient

bn,m mixes contributions from different loop orders.
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a polynomial of degree k in (j − 2). The form of this expansion should be compared with (3.5)

for the function j(ν, τ). Both expansions make explicit that we are doing a strong coupling

expansion around the diffusion limit j → 2 and λ→∞ with
√
λ(j − 2) fixed.

Let us now relate the expansions (3.14) and (3.16) for the dimension ∆P (j, τ), to the ex-

pansion (3.5) for the Reggeon spin j(ν, τ). For simplicity we consider first the computation of

the intercept. Since β1(λ, τ) > 0 the function j(ν, τ) has a minimum at ν = 0 (∆ = 2). This

minimum determines the Pomeron intercept j0 = j(0, τ). Thus, setting ∆P (j0, τ) = 2 in (3.14)

we learn that the intercept is fixed by

0 =
(
∆P (j0, τ)− 2

)2
= τ2 +β1(λ, τ)(j0− 2) +β2(λ, τ)(j0− 2)2 +β3(λ, τ)(j0− 2)3 + · · · , (3.18)

with βn given by the expansion (3.15). Replacing the expansion for the intercept, as defined

by (3.5), It is now possible to find j0 iteratively in an expansion

j0 = 2 +
c1

λ1/2
+
c2

λ
+

c3

λ3/2
+
c4

λ2
+ · · · . (3.19)

Note that the coefficients ci are already defined in the expansion (3.5) of the Reggeon spin

function, more precisely we have c1 = −τ2/2 and cn = c1cn,0 for n ≥ 2. Substituting (3.19)

and (3.15) into (3.18), and collecting all terms in powers of 1/
√
λ, one can determine cn it-

eratively. To illustrate how this goes, we list here the first few coefficients (note that we set

b10 = 1),

c1 = −τ2/2 ,

c2 = −b1,1c1 ,

c3 = −
[
b1,1c2 + b1,2c1 + b2,0c

2
1

]
,

c4 = −
[
b1,1c3 + b1,2c2 + b1,3c1 + 2b2,0c1c2 + b2,1c

2
1

]
, (3.20)

c5 = −
[
b1,1c4 + b1,2c3 + b1,3c2 + b1,4c1 + b2,0(c2

2 + 2c1c3) + 2b2,1c1c2 + b2,2c
2
1 + b3,0c

3
1

]
,

c6 = −
[
b3,1c

3
1 + b2,3c

2
1 + 3b3,0c2c

2
1 + b1,5c1 + 2b2,2c2c1 + 2b2,1c3c1 + 2b2,0c4c1 + b2,1c

2
2

+ b1,4c2 + b1,3c3 + 2b2,0c2c3 + b1,2c4 + b1,1c5

]
.

In the diffusion limit, the intercept reduces to αP (τ) ≡ j0(τ) = 2 − τ2/2
√
λ, as stated above.

As for the leading twist case, τ = 2, this intercept corresponds to the location of a square-root

branch point for the spectral curve ∆P (j, τ), and it approaches j = 2 in the limit of λ→∞.

More generally, we can relate the coefficients of the polynomials Hk(j − 2, τ) entering

the expansion (3.16) of ∆P (j, τ), with the coefficients of the polynomials j̃n(ν2, τ) entering

the expansion (3.5) of j(ν, τ). These functions are simply related by the inversion formula

∆P

(
j(ν, τ), τ

)
= 2 + iν given in (3.2). This is a mechanical computation, so we only give here

the relation between the first coefficients without further explanations (excluding the coefficients
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cn,0 already given above)

c3,1 = b2,0/2 , c4,1 =
[
− 3b1,1b2,0 + b2,1

]
/2 , c4,2 = 0 ,

c5,1 =
[
6b21,1b2,0 − 3b1,2b2,0 + 2τ2b22,0 − 3b1,1b2,1 + b2,2 − τ2b3,0

]
/2 ,

c5,2 =
[
2b22,0 − b3,0

]
/4 , c5,3 = 0 , (3.21)

c6,1 =
[
− 10b31,1b2,0 + 12b1,1b1,2b2,0 − 3b1,3b2,0 − 10τ2b1,1b

2
2,0 + 6b21,1b2,1 − 3b1,2b2,1 + 4τ2b2,0b2,1

− 3b1,1b2,2 + b2,3 + 4τ2b1,1b3,0 − τ2b3,1
]
/2 ,

c6,2 =
[
− 10b1,1b

2
2,0 + 4b2,0b2,1 + 4b1,1b3,0 − b3,1

]
/4 , c6,3 = c6,4 = 0 .

3.2 Explicit results for N = 4 SYM

It is now clear that we can use the known results for the spectral curve ∆P (j, τ) for j ∼ 2 to

extract information about the strong coupling expansion Pomeron spin j(ν, τ), and in particular

to compute the Pomeron intercept for τ ≥ 2. We begin by noting that, since β1(λ, τ) =

2τα1(λ, τ) is known analytically, it can be easily expanded in powers of 1/
√
λ, with the result [15]

β1(λ, τ) = 2λ
1
2

(
1− 1

2λ1/2
+

4τ2 − 1

8λ
+

4τ2 − 1

8λ3/2
+
−16τ4 + 104τ2 − 25

128λ2
+
−16τ4 + 56τ2 − 13

32λ5/2
+· · ·

)
.

(3.22)

From this expansion it is straightforward to extract the coefficients b1,m. This is enough to fix

c1 and c2 in the computation of the intercept (3.20), and in particular agrees with the diffusion

limit result c1 = −τ2/2.11

To find the intercept coefficients cn for n > 2, knowledge of the coefficients bn,m for higher

βn are required. As mentioned earlier, (3.13) is an expansion with increasingly divergent co-

efficients, i.e. αn = O(λn/2). Clearly, very special cancellations must take place in moving

from (3.13) to (3.14) for convergence. Recently, explicit expressions for α2(λ, τ), τ = 2 and 3,

have been obtained [19]. With the aid of numerical analysis, together with consistency matching

with (3.22), [19] also gives strong coupling expressions for arbitrary τ , up to order λ−3/2,

α2(λ, τ) = − λ

2τ3
+
λ1/2

2τ3
+

1

4τ
+

1− τ2
(
24ζ(3) + 1

)
16τ3λ1/2

− 8τ4 + τ2
(
72ζ(3) + 11

)
− 4

32τ3λ

+
24τ4

(
16ζ(3) + 20ζ(5)− 7

)
− 48τ2

(
31ζ(3) + 20ζ(5) + 7

)
+ 75

256τ3λ3/2
+O(λ−2) . (3.23)

It is then possible to calculate expansions for β2, with relevant low order coefficients b2,m ex-

tracted from the expansions of α1 and α2,

β2(λ, τ) = 2

(
3

4
− 3ζ(3)− 3/8

2λ1/2
− τ2 + 9ζ(3)− 5/8

4λ3/2

+
τ2
(
3ζ(3) + 15ζ(5)/4− 27/16

)
− 15ζ(5)/2− 93ζ(3)/8− 3/16

2λ2
+ · · ·

)
. (3.24)

11The all coupling expansion carries more information about the coefficients cn,k of the j(ν, τ) expansion (3.5).

Indeed, it is simple to check that the combination
∑n−2
k=0 (−1)kτ2kcn,k is entirely fixed by the coefficients b1,m with

m < n.
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The expansions of βn for n > 2 are currently not known to high order. However, as discussed

in section 6.3 of [19], from an analysis of classical energy, with semi-classical corrections, it is

in principle possible to extract the τ -independent coefficients bn,0 and bn,1 for all n. For our

calculation of the intercepts we use b3,0 = −3/16 and b3,1 =
(
60ζ(3) + 60ζ(5) − 17

)
/32. Note

that all coefficients bn,m are polynomials in τ , regular at τ = 0. We have also identified, for each

coefficient, its order in a string loop-expansion [35–37]. With these coefficients it is possible to

fix the cn up to n = 6. Thus, from (3.20), we find that the generalized Pomeron intercept is

given by

αP (λ, τ) = j0(λ, τ) = 2− τ2

2λ1/2
− τ2

4λ
+
τ2(−3 + τ2)

16λ3/2
− τ2

[
−12 + τ2

(
11 + 24ζ(3)

)]
64λ2

+
τ2
[
−63 + 6τ2

(
19 + 48ζ(3)

)
− 2τ4

]
256λ5/2

(3.25)

+
τ2
[
−216 + τ2

(
637 + 1536ζ(3) + 480ζ(5)

)
− 2τ4

(
17 + 36ζ(3) + 60ζ(5)

)]
512λ3

+ · · · .

For τ = 2 notice that the ζ(5) term is absent from c6 due to cancellation, but it is in general

present. We will show in the next section that just by varying τ , we can use this equation to

calculate the Odderon intercept to the same order as above.

We may also compute, with the above information, the remaining coefficients cn,k up to

n = 6, by using (3.21). Such non-vanishing coefficients are12

c3,1 =
3

8
, c4,1 = 3

7− 8ζ(3)

32
, c5,1 =

59− 144ζ(3)− 2τ2

64
, c5,2 =

21

64
,

c6,1 =
291− 480ζ(5)− 76τ2 − 48ζ(3)(32 + 7τ2)

256
, c6,2 =

137− 204ζ(3)− 60ζ(5)

128
. (3.26)

4 Conformal Odderon

It is appropriate to begin by first mentioning that the importance of Pomeron lies partly in the

fact that all high energy hadron-hadron total cross sections σT continue to rise from collider to

cosmic ray energies. This universal behavior can be understood as driven initially by the leading

1/Nc power law growth, σT ∼ sαP−1 for the Pomeron intercept αP > 1. Eventual agreement

with the Froissart bound σT ∼ log2s requires a re-summation of higher order terms in 1/N2
c

expansion.13 The importance of the leading C = −1 component, generically referred to as the

Odderon [43–46], lies in the fact that it contributes to the difference of the antiparticle-particle

and particle-particle total cross sections, ∆σT (s) ∼ sαO−1.

In the weak coupling limit, the Pomeron [7–11] can be associated with 2-gluon exchange

whereas Odderons can be thought as a C = −1 composite of a three-gloun system [47–53]. Two

12Actually, since [19] also computes b4,0 = 31/128 and b4,1 =
(
901− 5520ζ(3)− 5120ζ(5)− 3640ζ(7)

)
/1024, we

can determine c7,3 = 391/1024 and c8,4 =
(
15081− 27120ζ(3)− 12320ζ(5)− 3640ζ(7)

)
/8192.

13One often adopts an eikonal sum. Alternatively, the data is sometimes fitted directly by σT ∼ log2s, the

maximally allowed asymptotic term consistent with saturating the Froissart unitarity bound. A more thorough

discussion can be found in [20] and references therein.
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leading Odderons have been identified. One has an intercept slightly below one [47–49], with

αO,a ≈ 1−O(λ), and the second has an intercept exactly at one, αO,b ≈ 1, up to third order in

the ’t Hooft coupling [50]. It has also been suggested recently, for N = 4 SYM, that the latter

remains exactly at j = 1, to all orders in weak coupling [54, 55]. Interestingly, these correspond

nicely with strong coupling analysis in the diffusion limit [20, 56].

Recall that, in a weak coupling BFKL treatment, the spectral curve is obtained by an

expansion about j = 1 in the weak coupling αs, i.e., j ≈ 1 − αsEN
(
∆; {`N}

)
, where EN can

be identified with the spectrum for a system of N -reggeon states [57–59], labelled by additional

indices {`N}. For N = 2, this leads to

j = 1 + αs

{
2Ψ(1)−Ψ

((n+ 3)−∆

2

)
−Ψ

(∆− (n+ 1)

2

)}
(4.1)

where there is a single index, n = 0, 1, · · · , labelling the principal series representation of SL(2, C).
The leading Pomeron corresponds to n = 0. Note that this representation is a perturbation

about j = 1, and the right-hand side develops singularities due to poles of the Ψ-function.

This representation therefore cannot be extended to the region of large j and ∆. For N = 3,

appropriate for the Odderons, one solution coincides with that for N = 2, with n = 1 and ∆ = 2,

leading to an Odderon intercept j = 1, as indicated above.

In this section, we examine these strong coupling results, going beyond the diffusion limit.

In particular, we clarify how for the special Odderon solution, αO,b = 1 at k = 0, can hold to all

order in 1/
√
λ.

For the Odderon, the large λ difusion limit corresponds to setting λ→∞ and j → 1, with√
λ(j− 1) fixed. In this limit the Odderon propagator can be obtained by perturbing about the

EOM for the anti-symmetric Kalb-Ramond field, BMN in AdS: (−�Maxwell + m2
ads)BMN = 0.

Here �Maxwell stands for the Maxwell operator. Its exact form can be found in [20], and it can

again be diagonalized in terms of O(4, 2) Casimir. The result is that all modes with odd positive

integral j contribute to the exchange, and one arrives at an effective propagator in the ν2 − j
plane of the form

GO(j, ν) ∼ 1

ν2 +m2
AdS + 2

√
λ(j − 1)

. (4.2)

As for the Pomeron, the relevant string modes can be represented by on-shell world-sheet

Reggeon vertex operators V±O in AdS. The on-shell condition, L0V±O = L̄0V±O = V±O , in analogy

with (3.2), leads to ∆O(j) = 2 + iν. It follows that the Odderon spectral curve in the strong

coupling diffusion limit, given by the pole locations of GO(j, ν), is

(
∆O(j)− 2

)2
= m2

AdS + 2
√
λ(j − 1) . (4.3)

Denoting αO(λ) for the Odderon intercept, it follows that

∆O(j) = 2 +
√

2λ1/4
√
j − αO , (4.4)
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where in the diffusion limit

αO(λ) = 1− m2
AdS

2
√
λ
. (4.5)

We also stress that because of super-symmetry the anomalous dimension at j = 1 is zero, more

precisely, ∆O(1) = 2 + mAdS, for any value of the coupling. In the diffusion limit, the spectral

curve ∆O(j) is again parabolic.

From the SUGRA modes, we see that there are two sets of solutions, a set with m2
AdS,a =

(4 + k)2 which we dub as set (a), and a set (b) for which m2
AdS,b = k2 with k = 0, 1, 2, · · · . For

k 6= 0, these modes can be associated with fluctuations in S5. For the k = 0 mode of set (b),

at j = 1, it is known that it can be gauged away since its coupling is through the field-strength

which vanishes [60–62]. However, in the diffusion limit of λ large but finite, one moves away

from j = 1 with the perturbation introducing an effective AdS mass so that the field-strength no

longer vanishes and the mode is now physical. We will return later to discuss this mode further.

For each mode k of the S5, the two distinct AdS masses directly lead to two distinct Odderon

trajectories with intercept given by (4.5) with the associated mass,

αO(λ) = 1−
m2

AdS,a/b

2
√
λ

. (4.6)

From the perspective of OPE, at j = 1, there are two sets of conformal primaries, each

indexed by integer k, with protected conformal dimensions,14

∆
(a)
O (1) = 2 + τa = 2 +mAdS,a = 6 + k , (4.7)

∆
(b)
O (1) = 2 + τb = 2 +mAdS,b = 2 + k. (4.8)

Candidate dual CFT operators dual to these protected string modes are Tr(F⊥±F
2Zk) + · · ·

and Tr(F⊥±Z
k), respectively. As usual, one expects that higher spin operators in the leading

Regge trajectory can be obtained by acting with derivatives D±, leading to operator dimensions

∆
(a)
O (2n+ 1) and ∆

(b)
O (2n+ 1) respectively, at j = 2n+ 1, n = 1, 2 · · · . However, these can only

be obtained meaningfully beyond the diffusion limit.

4.1 Odderon intercepts in strong coupling

To go beyond the diffusion limit, let us return to (3.14). In analogy to that equation and (3.16),

we expand
(
∆O(j, τ)− 2

)2
about j = 1,(

∆O(j, τ)− 2
)2

= τ2
O + β

(−)
1 (j − 1) + β

(−)
2 (j − 1)2 + β

(−)
3 (j − 1)3 + · · · . (4.9)

We have also added a superscript to the expansion coefficients, β
(−)
n , to remind ourselves that

we are dealing with the C = −1 sector. Recall that (4.9) properly reflects the symmetry in

∆O ↔ 4−∆O. To match the diffusion limit, we require

β
(−)
1 (λ, τO) = 2

√
λ+O(1) . (4.10)

14Of course, each contributes only to correlation functions with appropriate R-charge.
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As is the case with the Pomeron, j(∆O) has a minimum at ∆O(αO, τ) = 2, which defines the

Odderon intercept. This, of course, is also equivalent to the existence a square-root singular-

ity, (4.4). We further assume that, as the case for the Pomeron, in the strong coupling limit, the

radius of convergence for (4.9) is O(λ1/2), and, β
(−)
n = O(λ(2−n)/2). Correspondingly, we can

develop a systematic expansion for β
(−)
n (λ) in 1/

√
λ,

β(−)
n = 2λ

2−n
2

(
b
(−)
n,0 +

b
(−)
n,1

λ1/2
+
b
(−)
n,2

λ
+
b
(−)
n,3

λ3/2
+ · · ·

)
. (4.11)

We are now in the position to carry out a similar analysis for Odderon intercepts beyond

the diffusion limit. Consider the expansion for the intercept

α0(λ) = 1 +
c

(−)
1

λ1/2
+
c

(−)
2

λ
+
c

(−)
3

λ3/2
+
c

(−)
4

λ2
+
c

(−)
5

λ5/2
+ · · · . (4.12)

The coefficients in this expansion can be found by solving ∆O(αO, τ) = 2 iteratively. Observe

that the situation in nearly identical to that for the Pomeron. It follows that c
(−)
i are given

exactly by the corresponding coefficients ci for the Pomeron intercept, eq. (3.20), with the

replacements of τ by mAdS, ci by c
(−)
i and bn,i by b

(−)
n,i . For simplicity, we shall drop the

superscript in what follows.

In the diffusion limit, our two sets of Odderon solutions are structurally similar. However,

there is no particular reason why these two sets remain similar in higher orders and we shall treat

them separately in what follows. We shall first consider type-(a), characterized by τa = mAdS =

4 + k, k = 0, 1, 2, · · · , before treating the case for type-(b). It is worth mentioning again that

the all-coupling formula (3.10) was derived from ABA equations, without the so-called wrapping

corrections. It is surprising that they do not appear in the present context as one would expect

them especially in the small spin limit. The physical motivation for their absence is not fully

understood.15 Furthermore, it is supposed to hold only for the sl(2) sector for the configuration

with “minimum mode numbers”, which should correspond to the spectral curve with minimum

scaling dimension. It is indeed possible to generalize the solution of ABA for “non-minimum

string modes”. However, no systematic attempt has been made [40, 41]. Further discussion will

be provided in section 5.

I — Type-(a) Odderons: as pointed out earlier, the j = 1 mode survives in the supergravity

limit, and it can be identified with the protected CFT operator of the type Tr(F⊥±F
2Zk)+ · · · .

This conformal primary, just as the case for the Pomeron, can formally be considered as a

descendent of super-conformal primary in the sl(2) sector. However, there can be many spectral

curves emanating from this protected configuration at j = 1, for λ finite. We assume that the

all-coupling formula (3.10) for the slope function applies to the set ∆O,a, corresponding to the

“minimum twist” set, and we shall proceed to calculate the Odderon intercept to higher orders

in 1/
√
λ under this assumption. The validity of this assumption will be examined in the next

section.
15See [40, 41] for a discussion and comparison to ABJM theory.
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Figure 3. Odderon-a intercept at strong coupling. The solid green-line is to first order in 1/
√
λ, the dotted

brown-line is to second order, the dashed blue-, orange- and grey-line are to third order, fourth order and fifth

order respectively. Finally the solid black-line is the intercept up to sixth order.

That is, we assume that, for type-(a) Odderons, βn(τ(a)) = βn(4 + k), with βn given by the

same functions used for the case of Pomeron. With this we can find the intercept for any k,

but for simplicity, and to study the case most relevant for QCD, we write the result in the limit

k → 0. Hence τ(a) = 4, and we take advantage of the expansion (4.12). Under the assumptions

made above, ci can be found by solving the equation

0 = 42 + β1(λ, 4)(j0 − 1) + β2(λ, 4)(j0 − 1)2 + β3(λ, 4)(j0 − 1)3 + β4(λ, 4)(j0 − 1)4 + · · · ,

iteratively. It is possible to directly adopt the calculation previously done for the Pomeron

intercept in section 3, with cn given by (3.20), by evaluating equation (3.25) at τ = 4, after

shifting the spin j by 1. One finds

αO,a = 1− 8

λ1/2
− 4

λ
+

13

λ3/2
+

96ζ(3) + 41

λ2
+

288ζ(3) + 1249
16

λ5/2
+
−720ζ(5) + 192ζ(3) + 159

4

λ3
+ · · · .
(4.13)

This intercept αO,a is illustrated in figure 3. Note that coefficients {cn} change signs, with

c1, c2 < 0, c3, c4, c5 > 0, and c6 < 0. We also note that, in the range 0 < 1/
√
λ < 0.3, where

strong coupling is expected to be useful, the intercept αO,a is below j = 1. As one increases

1/
√
λ beyond 0.2, interestingly, it begins to turn around and move towards j = 1, as it should,

only after c4 and higher terms are kept. Note as well that the intercept does not continue to

blow up, but begins to flatten out as higher orders are taken into account, e.g., with c6 < 0. This

behavior fits nicely with the expected matching behavior to first order weak coupling calculation,

at 1/
√
λ ≈ 0.3, as shown in figure 4

Notice that it is a simple exercise to determine the coefficients in an expansion of the

type (3.5) for the Odderon spin function j(ν, τ) .

II — Type-(b) Odderons and τb = k → 0: as stated earlier, although there are no obvious

structural differences between type-(a) and type-(b) Odderon spectral curves in the diffusion
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Figure 4. The Pomeron and Odderon-(a) intercepts from strong to weak coupling. The dark blue curves are

the calculated strong coupling results, the red curves are the known weak coupling intercepts, and the dashed

line is an interpolation. It is interesting to note that up to their current orders, both the Pomeron and Odderon

intercepts appear consistent with weak coupling results in the transition region. Black dashed line is for the

Odderon-(b) solution where αO,b = 1.

limit, one crucial difference is the absence of a protected local CFT operator at j = 1 at τb → 0,

in the supergravity limit. For k 6= 0, the simplest set of local operators one can identify are

Tr[(D±)j−1F±⊥Z
k]. These operators decouple however in the k → 0 limit. It is likely that

the lowest physical mode on the k = 0 spectral curve occurs at j = 3 is Tr[F±⊥F±⊥F±⊥]

and it is not protected. It has been suggested16 that, for j = 3, 5, · · · , these type-(b) modes

could be associated with local operators: Tr[Dj−3
± F±⊥F±⊥F±⊥] + · · · . However, these lead to

a different system of sl(2) spin chain, and a separate analysis is required [63–66]. An equally

interesting possibility is to consider the sequence Tr[(F±⊥F±⊥)(j−1)/2F±⊥]. Neither sequence

leads to well-defined local operators at j = 1. For this and other considerations, we do not

expect the all-coupling formula (3.10) to work for type-(b) Odderon, specially for the k = 0

mode. Therefore, we shall proceed to carry a more general analysis without assuming the Basso

formula for the slope function, α1. We shall search for, if any, universal behavior which might

survive in the limit of τb → 0.

We proceed by making the expansion for βn, (4.11), as before, and arrive at

(
∆O,b(j, τb)− 2

)2
= τ2

b + 2λ1/2

(
1− b1,1

λ1/2
+
b1,2

λ3/2
+
b1,3
λ2

+ · · ·
)

(j − 1)

+2

(
b2,0 +

b2,1√
λ

+
b2,2
λ

+
b2,3

λ3/2
+ · · ·

)
(j − 1)2

+2λ−1/2

(
b3,0 +

b3,1

λ1/2
+
b3,2
λ

+
b3,3

λ3/2
+ · · ·

)
(j − 1)3

+O
(
(j − 1)4

)
. (4.14)

16B. Basso, private communication.
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Note, with the exception of τb = k and b1,0 = 1, other coefficients bn,j are unspecified. Expanding

αO as in (4.12), after substituting into (4.14), the coefficients ci can be determined iteratively,

e.g., leading to formulas essentially given by eq. (3.20). To be more explicit, we can directly

express all coefficients ci in terms of bn,i. For the first few terms we have, from (3.20),

c1(τb) = −τ
2
b

2
,

c2(τb) =
τ2
b

2
b1,1 ,

c3(τb) =
τ2
b

2

((
−b21,1 + b1,2

)
− b2,0

τ2
b

2

)
,

c4(τb) =
τ2
b

2

((
b31,1 − 2b1,1b1,2 + b1,3

)
+ (3b1,1b2,1 − b2,1)

τ2
b

2

)
, (4.15)

c5(τ) =
τ2
b

2

((
−b41,1 + · · ·

)
+
(
−6b21,1b2,0 + · · ·

) τ2
b

2
+
(
−2b22,0 + · · ·

) τ4
b

22

)
,

c6(τb) =
τ2
b

2

((
b51,1 + · · ·

)
+
(
10b31,1b2,0 + · · ·

) τ2
b

2
+
(
10b1,1b

2
2,0 + · · ·

) τ4
b

22

)
.

From [19], we expect that bn,j to be polynomials of τ2
b . Note that in the limit τb → 0, all

coefficients vanish as τ2
b , e.g., c1 ∼ τ2

b , c2 ∼ τ2
b , etc., for arbitrary values for coefficients bn,i. It

is also easy to verify that, cn+1/cn ∼ O(1), for τb → 0. We thus arrive at an important result

where, cn = O(τ2
b ) → 0, for all n, in the limit τb → 0. It follows that the leading Odderon

intercept for the set-(b), for τb = 0, remains at

αO,b = 1 , (4.16)

without higher order correction in an 1/
√
λ expansion. This is the long promised result. To

state it more graphically, in the limit τb → 0, higher order corrections can change the shape of

the spectral curve, without changing its minimum at ∆ = 2.

For τb 6= 0, more information is required in order to determine the higher order expansion

for their intercepts, e.g., adopting the all-coupling formula (3.10). We will not engage in this

exercise here, but note that due to the generality of the above derivation, the τb = 0 result would

survive for all possible expansions of βn.

5 Conclusions

We have focussed in this study on the leading C = ±1 Regge singularities, the Pomeron and

Odderon respectively, in strong coupling. Central to our discussion is the notion of spectral

curve ∆(j) for single-trace gauge invariance operators of N = 4 SYM. Identifying ∆(j) in weak

coupling remains involved due to possible operator mixings [63]. In strong coupling, spectral

curves for leading twist can be identified with bulk degrees of freedom for D = 10 SUGRA on

AdS5 × S5 [62]. The Pomeron trajectory can be associated with the Reggeized Graviton, while
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the Odderon trajectories correspond to Reggeized anti-symmetric AdS5 Kalb-Ramond tensor-

fields. With string-vertex operators [5, 20], the relevant single-trace CFT operators and their

associated string modes for both Pomeron and Odderon sectors can be identified.

We began by first providing a general discussion on Regge limit in CFT from the perspective

of light-cone OPE, and showed how the double-Mellin transforms (2.4) and (2.11) can be used

directly in a Minkowski setting. A Regge dictionary (2.13) is established between CFT in coordi-

nate representation and that based on AdS/CFT in a momentum treatment. An important and

probably difficult theoretical problem left unresolved is to determine the conditions required in

a conformal theory to allow for this representation in the double-Mellin plane. Is this conformal

Regge representation a generic property of all 4D Lorentz invariant conformal theories, or is it

restricted to a smaller class of theories?

Due to integrability, these spectral curves can in principle be determined [34], with their

inverse j(∆) being symmetric under ∆ ↔ 4 − ∆, due to conformal invariance. In this study,

we have focussed on “short strings” where each spectral curve takes on a relatively simple form

in the large λ limit while maintaining the ∆ ↔ 4 − ∆ symmetry. In particular, by adopting

the approach advocated in [14, 15, 40, 41], higher order expansion in 1/
√
λ for the Pomerom

intercept has been carried out recently [16, 17, 19]. We have generalized this analysis for the

Pomeron sector to include non-zero R charge, (3.25), and have also extended the treatment to

the case of Odderons, (4.13) and (4.16). For the case of the Pomeron with large classical R

charge, it would be interesting to see the appearance of this trajectory in the Regge limit of

four-point functions of heavy operators computed in [67] at strong coupling.

It is important to emphasise that our analysis has been carried out in the context of

AdS/CFT, appropriate for a strong coupling expansion in the large-Nc limit. Simplicity in

the complex ∆− j plane is achieved partly due to the ability to identify modes of SUGRA with

protected gauge-invariant YM operators in the limit of λ → ∞, as discussed in section 1 and

also in section 4.1. This in turn allows us to treat leading ∆(j, τ) curves which dominate the

Regge limit through the double-Mellin representation discussed in section 2. It is expected [5]

that additional sub-dominate spectral curves exist, leading to “fine-structure” to the complex

∆ − j plane. It is interesting to note in this connection that anomalous dimensions of higher-

twist Wilson operators in generic gauge theories have previously been investigated and a robust

structure, particularly at large j, has been found, e.g., a band of trajectories of width growing

logarithmically with spin-j [68]. At large-j, anomalous dimensions increase with spin as ln j,

with leading coefficients given by “cusp-anomalous dimensions”. The analysis in [68] was carried

out for physical integral j-values, in the framework of asymptotic Baxter equation and also based

on semiclassical expansion. It is reasonable to expect that this “band-like” structure identified

for higher-twist sectors should persist at low-j values, and it is interesting to ask how a smooth

connection can be achieved.17 Clearly, this can only be discussed meaningfully in the context

17It is also appropriate to point out that, in the case of a theory with a mass gap, the analytic continuation

in j is unique for the partial-wave amplitudes, following what is known as the “Froissart-Gribov” procedure. We
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of the large-Nc limit where the j-plane structure is expected to be simplified, e.g., adopting the

approach of quantum spectral curves, advocated in [12, 19]. More immediately, the all coupling

analysis in [14, 15, 40, 41], which focuses on the small spin region, and is also based on the

asymptotic Bethe ansatz, can shed light on this issue.

Since our result depends crucially on the small spin expansion (3.9), it is worth first adding

a brief comment on the slope function α1(λ, τ), (3.10), as promised earlier. We first note that

the set of gauge invariant operators in the sl(2) sector, designated symbolically by Tr(DS
+Z

τ ),

should be interpreted as a collections of operators, Tr(Ds1
+ ZD

s2
+ Z · · ·Dsτ

+ Z), with
∑τ

j=1 sj = S.

In the large N limit, the dilation operator closes on this subspace, leading to a set of spectral

curves, ∆Z,k(S, τ), labelled by an index k. Our focus here is for strong coupling, where, in the

diffusion limit, ∆Z ≈ τ + (
√
λ/τ)S. Therefore, all these curves are degenerate in this limit.

The degeneracy is lifted by going beyond the leading 1/
√
λ limit. Expanding ∆Z,k(S, τ) for S

small, i.e., ∆Z,k(S, τ) = τ + α1,k(τ, λ)S +O(S2), these slope functions, α1,k(τ, λ), can be found

via ABA, without “wrapping corrections”, where the index k can be specified by a set of filling

fractions [15, 40, 41].18 The “minimum filling”, (or “minimum mode” configuration), leads to the

original Basso formula. Clearly, there are many additional lower spectral curves, corresponding

to other allowed filling fractions. It would be interesting if these additional spectral curves can

be identified with those found at high-j and at weak coupling [63–66, 68]. It is also interesting

to find out how these can be related to the mode number in the discussion of GKP strings. In

our current treatment, the minimum filling solution has been used for both the Pomeron and the

type-(a) Odderon sectors. Note that for both the Pomeron and the type-(a) Odderon keeping

the O(1/
√
λ) result for the intercept stemming from the Basso formula agrees with the Pomeron

and Odderon intercepts found independently by perturbing about the supergravity limit [5, 20].

Let us turn next to the type-(b) Odderon. As we have stated earlier, in the super-gravity

limit, the k = 0 mode decouples at j = 1, and, for λ finite, its physical modes begin at

j = 3, 5, · · · . In section 4.1, we have carried out a more generally analysis without invoking the

all-coupling formula (3.10). Our treatment is based on the structure of large λ expansion. Given

the diffusion result of αO,b = 1, for k = 0, eq. (4.16) follows to all orders. The phenomenon

of decoupling also has its counter part in flat space string theory. For d = 4, Kalb-Ramond

tensor field does not lead to a spin-1 massless particle since Bµν has only one independent

transverse component. As a 4-d Regge trajectory, its higher string recurrences at j = 3, 5, · · ·
are physical. Therefore, the issue of decoupling can be accomplished by an appropriate vanishing

of the coupling, while the dynamics of the whole trajectory remains. (Instead, at t = 0, Bµν

leads to a spin-0 state, the “axion”.) A more detailed analysis will be presented elsewhere.

In this study, we have not fully explored the consequence of super-symmetry, in particular

the possibility of more general symmetry patterns for spectral curves ∆Z(S, τ). A useful study

fully expect a similar procedure can be carried out for generic CFTs, e.g., by adopting, for instance, the Mack

representation [32] as a starting point of discussion. As a consequence, there is a unique analytic continuation for

∆(j, τ) away from integral j and τ values. This will be discussed in a future treatment.
18To be more explicit, k ≡ {κm}, where

∑
m 6=0 κm = 1. Since ∆Z ≈ τ + (

√
λ/τ)S in the diffusion limit, it

follows that there exists another constraint
∑
m |m|κm = 1. Minimal filling corresponds to κ1 = κ−1 = 1/2.
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is a careful examination for the spectral curves for other modes of SUGRA, e.g., scalars, vectors,

etc. A preliminary finding involves the possibility of having a more complex structure, e.g., the

symmetry about ∆ = 2 is realized by a pairing of spectral curves, with one symmetric about

∆ = 0 and the other about ∆ = 4. Equally interesting is the question for the Odderon intercept

in strong coupling from a brane construct alone, without imposing super-symmetry, and its

relation to results obtained in weak coupling.

As stressed in [40], ∆Z(S, τ) is in general a complicated function of S, τ , λ, and also of other

quantum numbers. It can in principle possess infinitely many branches, connected through

the so-called “crossing-point singularities,” i.e., the phenomenon of level-crossings, leading to

root-type branch point in ∆Z(S, τ). Indeed, in perturbing about the supergravity limit, the

multi-valued property of ∆Z seems to play an important in ensuring ∆→ ∆− 4 symmetry. It

should be stressed that these crossing-point singularities do not lead to branch points for the

analytically continued conformal partial-wave amplitude, eq. (2.2). This type of crossing-point

singularities has also been noted previously in a weak coupling treatment for Odderons via

BFKL-like analysis. As mentioned earlier in section 4, in such a treatment, the spectral curve is

obtained by an expansion about j = 1, i.e., j ≈ 1− αsEN (∆; {`}), where EN can be identified

with the spectrum for a system of N -reggeon states [57–59]. It can be shown that, for N ≥ 3,

level-crossing occurs, leading to crossing-point branch points. However, it is unclear if there is a

correspondence for such singularities at weak and strong coupling. Making a precise connection

between the strong and weak coupling Odderon solutions remains a challenge.19 The approach

of quantum spectral curve [12, 19] holds the promise of further progress in this direction.

We have focused in this study on the leading planar limit. Note that, in the planar limit, the

conformal amplitude growth with a power of s, or, equivalently, 1/
√
u, which would violate the

flat-space Froissart bound. Clearly, in order to address the issue of Froissart bound for CFT’s,

one must consider the extension to higher orders in 1/N2. One such re-summation is given by

the eikonal approximation. From the perspective of light-cone OPE, one must begin including

multiple-trace primaries in order to carry out such analysis. It is also interesting to examine the

effect of confinement deformation. Since scale invariance is broken in the IR, adopting Poincare-

patch for AdS is most suitable for such a treatment. Instead of spectral curves ∆(j), one now

has ordinary Regge singularities α(t) at positive t, leading to discrete physical states at integral

j, e.g., glueballs. One also finds that our double-Mellin representation, (2.4) and (2.11), reduces

to a single Mellin (Regge) representation, with a sum over Regge trajectories. These and other

related issues will be addressed in future publications.
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