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1 Introduction

Over the last years the AdS/CFT correspondence [1–3] has proved to be a powerful tool to

describe gauge theories at strong coupling regime, where standard perturbative methods

fail to work, by mapping them to a dual gravitational theory in higher dimensions whose

treatment is tipically much easier. For that reason, it has found a wide range of applications

in different areas of theoretical physics going from condensed matter systems to quantum

chromodynamics. In particular, if the strongly coupled gauge theory is at zero temperature,

it is well known that the dual gravity description involves a purely AdS space, while a finite

temperature field theory requires the presence of an asymptotically AdS black hole. An

interesting implication of this equivalence will be investigated in the present work, namely,

the process of black hole formation in AdS space as the analog of nonequilibrium dynamics

that leads a system towards thermal equilibrium after a sudden injection of energy.

One of the most interesting scenarios where these ideas have been applied is to describe

properties of the quark-gluon plasma (QGP) formed in heavy ion colliders such as the RHIC

and LHC. Recent results suggest that the QGP behaves as an ideal fluid with a very small

shear viscosity over entropy density ratio (η/s) [4]. This implies that the QGP takes

place at a strong coupling regime and therefore is amenable to a dual gravity treatment.

Indeed, holographic calculations using the prototypical N = 4 SU(N) supersymmetric

Yang-Mills (SYM) theory at finite T and its string theoretical AdS gravity dual show

that there seems to be a small and universal lower limit for the ratio η/s for all theories

with gravity duals [5, 6]. This is one of the most prominent predictions of AdS/CFT at

the moment. However, while the near-equilibrium dynamics (e.g., transport coefficients

such as viscosity and electrical conductivity [7] and more general aspects of dissipative
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hydrodynamics [8, 9]) of the QGP is well known, the far from equilibrium process of

formation of QGP after a heavy ion collision, often referred to as thermalization, is not

well understood. The thermalization time scale observed at RHIC is considerably shorter

than expected according to perturbative techniques [10], reinforcing the need of a strong

coupling description of the thermalization process.

Some attempts were made in the literature to address this problem from a holographic

point of view as a dual process of black hole formation via gravitational collapse in AdS

space [11–19]. A slightly different and simpler model for holographic thermalization was in-

troduced by Balasubramanian et al. in [20, 21], which despite its simplicity captures many

important features of the thermalization process. It consists in the collapse of a thin shell

of matter described by an AdS-Vaidya metric that interpolates between pure AdS space at

early times and Schwarzschild-AdS black hole at late times. The authors used the dynami-

cal background of the collapsing shell to study the time evolution of nonlocal thermalization

probes of the boundary conformal field theory with well known dual gravity descriptions

in terms of geometric quantities. They considered equal-time two-point correlation func-

tions of local gauge invariant operators, expectation values of Wilson loop operators, and

entanglement entropy which correspond in the gravity side to minimal lengths, areas, and

volumes in AdS space, respectively. They found that the thermalization is a top-down

process (i.e., UV modes thermalize first while IR modes thermalize later), in contrast to

the predictions of bottom-up thermalization from perturbative approaches [22]. This has

a clear and intuitive interpretation from the AdS/CFT perspective: UV modes correspond

to small distance scales in the boundary of AdS space and, therefore, they do not capture

much of the details of the collapse process happening deep into the bulk. IR modes, on the

other hand, penetrate deeper into the bulk and for that reason are naturally more sensible

to details of the bulk dynamics, therefore they should thermalize later. In addition, the

authors found that the thermalization time scales typically as ttherm ∼ `/2, where ` is the

characteristic length of the probe.

A natural extension of this model was proposed in [23] (see also [24]) to include the

effect of a non-vanishing chemical potential µ, which is usually the case in real heavy ion

collision processes. The authors considered the collapse of a thin shell of charged matter

in the bulk described by an AdS-Vaidya-like metric leading to a thermal equilibrium con-

figuration given by a Reissner-Nordström-AdS black hole. They argue that varying the

charge of the final state black hole from zero to the extremal value allows to explore the

full range of chemical potential per temperature ratio µ/T in the dual strongly coupled

QGP. Their main conclusion was that as the charge is increased, the thermalization time

for renormalized geodesic lengths and minimal area surfaces becomes larger. Further in-

vestigations were made later to include Gauss-Bonnet higher curvature corrections [25, 26],

angular momentum [27], noncommutative [28], Lifshitz and hyperscaling violating geome-

tries [29, 30], de Sitter boundary field theories [31], as well as more elaborated dynamics for

the collapsing shell [32–34] and a discussion on spectral functions of boundary two-point

correlators [35]. Related work can also be found in [36–42].

In this paper we propose a further study of holographic thermalization with a chemical

potential using Einstein gravity coupled to Born-Infeld (BI) nonlinear electrodynamics
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in the bulk. This is a natural generalization of the discussion initiated in [23], since it

accomodates more elaborated dynamics for the gauge field including (all order) higher-

derivatives of Aµ and, therefore, it may give rise to interesting effects on the chemical

potential of the dual boundary theory that are not captured by the Maxwell description.

Although BI electrodynamics has its origin a long time ago [43] as an attempt to obtain

a finite self-energy of point-like charged particles, currently a renewed interest has been

raised due to recent developments in superstring theory. In particular, it is well known

that the low energy behavior of the vector modes of open strings is governed by the BI

action [44, 45], while the low energy dynamics of D-branes is given by a similar non-Abelian

version of the BI action [46] (see also [47, 48]). Consequently, BI electrodynamics provides

a promising scenario to explore deviations from Maxwell electrodynamics, specially from

the point of view of AdS/CFT calculations where string theory plays a prominent role

(see [49–58] for an incomplete list of previous works in this direction).

The paper is structured as follows. In section 2 we review the black hole solutions of

Einstein-Born-Infeld theory in AdS space and construct their Vaidya-like extensions mod-

elling the collapse of a thin charged shell, to be used in the sequence. Section 3 is devoted

to the holographic setup for the non-local observables chosen as probes of thermalization,

namely, the equal-time two-point correlators and the expectation value of Wilson loops.

In section 4 we give details of the numerical calculations and present all the results with

the effects of the chemical potential and BI parameter on the thermalization curves and

velocities. Finally, section 5 contains our concluding remarks.

2 Vaidya AdS black hole solutions in Einstein-Born-Infeld theory

The starting point is the (d+1)-dimensional Einstein gravity action with a negative cosmo-

logical constant Λ = −d(d− 1)/2l2 (being l the AdS curvature radius) minimally coupled

to Born-Infeld electrodynamics

S =
1

16πG

∫
dd+1x

√
−g
[
R− 2Λ + LBI(F )

]
, (2.1)

where LBI(F ) is given by

LBI(F ) = 4β2

(
1−

√
1 +

FµνFµν

2β2

)
. (2.2)

The constant β is the BI parameter with dimension of mass.1 It is defined in such a way

that the limit β →∞ corresponds to the standard Maxwell Lagrangian. We choose units

in which 16πG = 1, G being the Newton’s constant in (d+ 1) dimensions.

The charged black hole solution to the equations of motion coming from the ac-

tion (2.1), first obtained in [59] (see also [60]), reads

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2dΩ2

d−1 , (2.3)

1In the context of string theory, β appears tipically in terms of the string parameter α′ via β = 1/2πα′.
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where dΩ2
d−1 denotes the metric on the unit sphere Sd−1 and

V (r) = 1− M

rd−2
+

[
4β2

d(d− 1)
+

1

l2

]
r2 − 2

√
2β

d(d− 1)rd−3

√
2β2r2d−2 + (d− 1)(d− 2)Q2

+
2(d− 1)Q2

dr2d−4 2F1

[
d− 2

2d− 2
,
1

2
;
3d− 4

2d− 2
;−(d− 1)(d− 2)Q2

2β2r2d−2

]
. (2.4)

In the above equation 2F1(a, b; c;x) is the hypergeometric function and M,Q are integration

constants related to the ADM mass M̃ and charge Q̃ of the black hole via2

M̃ = (d− 1)ωd−1M ,

Q̃ = 2
√

2(d− 1)(d− 2)ωd−1Q ,

ωd−1 being the volume of the Sd−1. There is also a purely electric gauge field given by

A =

(
−

√
d− 1

2(d− 2)

Q

rd−2 2F1

[
d− 2

2d− 2
,
1

2
;
3d− 4

2d− 2
;−(d− 1)(d− 2)Q2

2β2r2d−2

]
+ Φ

)
dt , (2.5)

where Φ is a constant corresponding to the electrostatic potential at r → ∞, which will

be related to the chemical potential in the dual gauge theory according to the AdS/CFT

correspondence. It is defined such that the gauge field vanishes at the horizon, i.e.,

Φ =

√
d− 1

2(d− 2)

Q

rd−2
h

2F1

[
d− 2

2d− 2
,
1

2
;
3d− 4

2d− 2
;−(d− 1)(d− 2)Q2

2β2r2d−2
h

]
. (2.6)

The electric field associated to (2.5) is finite at the origin r = 0, which is a key feature

of BI theories. The black hole function (2.4), on the other hand, is in general singular at the

origin. Such a singularity is hidden behind an event horizon provided the free parameters

are chosen so that the equation V (rh) = 0 admits a real positive solution. We should also

mention that taking the limit β → ∞ in (2.4) gives the well known Reissner-Nordström-

AdS black hole studied in [61].

The solution (2.3) has the topology of R× Sd−1 at the AdS boundary r →∞. In the

context of the AdS/CFT correspondence it is interesting to consider the limit where the

AdS boundary is R1,d−1 instead, since one is often interested in dual gauge theories living

on flat space. This procedure is known in the literature as the “infinite volume limit”, and

it arises only due to the presence of a negative cosmological constant [61]. The idea is to

introduce a dimensionless parameter λ (which will be set to∞) and rescale all dimensionful

quantities as r → λ1/dr, t → λ−1/dt,M → λM,Q → λ(d−1)/dQ, β → β, l → l while at the

same time blow up the Sd−1 as l2dΩ2
d−1 → λ−2/d

∑d−1
i=1 dx

2
i . This leaves the (t, r) block

of the metric almost invariant (except for the contribution of the constant term in (2.4)).

Finally, taking λ→∞ yields

ds2 = −U(r)dt2 +
dr2

U(r)
+
r2

l2

d−1∑
i=1

dx2
i , (2.7)

2For simplicity, we will keep referring to M and Q hereinafter simply as “mass” and “charge” parameters

of the black hole without any risk of confusion.
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where U(r) ≡ V (r) − 1. Notice that now the horizon, defined by U(rh) = 0, is planar

instead of spherical, so we should refer to (2.7) as a black brane instead of a black hole.

In order to avoid the coordinate singularity at r = rh it will be interesting to express

the metric in Eddington-Finkelstein coordinates by introducing a new time coordinate v

defined by dv = dt+ dr/U(r), and also it will be convenient to work with an inverse radial

coordinate z = l2/r such that the AdS boundary stays at z = 0 while the singularity r = 0

sits at infinity. The resulting metric is

ds2 =
l2

z2

[
−f(z)dv2 − 2dvdz +

d−1∑
i=1

dx2
i

]
, (2.8)

where we have defined

f(z) =
z2

l2

[
V

(
l2

z

)
− 1

]
. (2.9)

Notice that f(z)→ 1 near the AdS boundary z = 0.

The Hawking temperature of a black hole in the context of AdS/CFT can be viewed as

the equilibrium temperature of the dual field theory living on the boundary. It is obtained

as usual by continuing the black hole metric to its Euclidean version via t = −itE and

demanding the absence of conical singularities at the horizon. This results in a periodic

Euclidean time tE whose period is identified with the inverse Hawking temperature. For

the AdS Einstein-Born-Infeld black brane (2.7) this calculation gives

T =
1

4πrh

[(
4β2

d− 1
+
d

l2

)
r2

h −
2
√

2β

(d− 1)rd−3
h

√
2β2r2d−2

h + (d− 1)(d− 2)Q2

]
. (2.10)

This expression reduces to the Hawking temperature of the Reissner-Nordström-AdS black

hole in the Maxwell limit β → ∞ [23]. When T = 0, the black brane is called extremal.

If we think of all the parameters but the charge as fixed, then we can characterize the

extremal black brane solution by a maximal value of charge Qext given by

Q2
ext =

d

(d− 2)l2

[
1 +

d(d− 1)

8l2β2

]
r2d−2

h . (2.11)

According to the AdS/CFT dictionary, the asymptotic value of the time component

At(r) of the gauge field at the AdS boundary r → ∞ (namely, the constant Φ in equa-

tion (2.5)) corresponds to the chemical potential µ in the dual quantum field theory,

µ ∼ limr→∞At(r). Actually, the precise relation should include some scale ξ with length

units since the chemical potential must have energy units (or [length]−1) while Aµ as de-

fined by the action (2.1) is dimensionless. Hence, the chemical potential per temperature

ratio of the boundary field theory is given by

µ

T
=

1

T
lim
r→∞

At(r)

ξ
=

Φ

ξT
, (2.12)

with Φ and T given by expressions (2.6) and (2.10), respectively. A remarkable feature is

that if the horizon radius rh and the BI parameter β are kept fixed, then by varying the
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charge from Q = 0 (vanishing Φ) to Q = Qext (vanishing T ) it is possible to explore the

whole range of values of the ratio µ/T in the dual field theory, i.e., from µ/T = 0 to ∞.

A Vaidya-like extension of the BI AdS black brane metric (2.7) can be constructed

by promoting the mass and charge to arbitrary functions M(v) and Q(v) of the advanced

time v. The resulting dynamical metric has the same form as in (2.8) but now with f(v, z)

instead of f(z) due to the time dependence introduced on the mass and charge. The same

also holds for the gauge field (2.5), which now becomes Aµ(v, z). Such a spacetime describes

the collapse of a thin-shell of charged dust from the boundary of the AdS space towards

the bulk interior.

Of course such a metric is not a solution of the action (2.1) anymore: there must be

some external matter action Sm sourcing the time variation of M(v) and Q(v). If we take

this external contribution into account, the Einstein-BI equations of motion become (we

restore the factors of G for a moment):

Rµν −
1

2
Rgµν + Λgµν − 2β2gµν

(
1−

√
1 + F 2/2β2

)
− 2FµαF

α
ν√

1 + F 2/2β2
= −8πGT (m)

µν (2.13)

∇µ

(
Fµν√

1 + F 2/2β2

)
= −8πGJν(m) . (2.14)

The Vaidya-BI-AdS metric above-mentioned is a solution to these equations provided the

external sources satisfy

8πGT (m)
µν =

(d− 1)zd−1

2l2d−2

[
Ṁ(v)− 2

( z
l2

)d−2

2F1

[
d− 2

2d− 2
,
1

2
;
3d− 4

2d− 2
;−(d− 1)(d− 2)Q(v)2

2β2(z/l2)2−2d

]
·Q(v)Q̇(v)

]
δvµδ

v
ν (2.15)

8πGJν(m) =

√
(d− 1)(d− 2)

2

zd+1

ld+2
Q̇(v)δνz , (2.16)

where the dot denotes ∂v. We notice that there is no β dependence on Jν(m) above, and

indeed this is exactly the same current found in [23] in the Vaidya-Reissner-Nordström-AdS

case. T
(m)
µν , on the other hand, differs from the corresponding one in the Reissner-Nordström

case due to the hypergeometric term (but naturally reduces to it in the β →∞ limit, since

2F1[a, b; c; 0] = 1).

3 Holographic thermalization

In this section we are going to study the thermalization process of a strongly coupled quan-

tum field theory whose bulk gravity dual corresponds to the Einstein-Born-Infeld system

presented in the previous section. According to the AdS/CFT correspondence, a zero tem-

perature state on the d dimensional boundary theory is dual to pure AdSd+1 in the bulk,

while a thermal state corresponds to the BI-AdS black brane (2.8). Therefore, any dynam-

ical bulk spacetime which interpolates between these two situations would be a natural

candidate to holographically model the nonequilibrium process leading to thermalization

of the boundary theory after a rapid injection of energy.
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Following [20], we choose our dynamical bulk metric to be the Vaidya-BI-AdS metric

discussed in section 2, namely (we set the AdS radius l = 1 hereafter)

ds2 =
1

z2

[
−f(v, z)dv2 − 2dvdz +

d−1∑
i=1

dx2
i

]
, (3.1)

with the mass and charge functions given by (see [62] for an interesting discussion on the

corresponding bulk null energy condition)

M(v) =
M

2

(
1 + tanh

v

v0

)
(3.2)

Q(v) =
Q

2

(
1 + tanh

v

v0

)
. (3.3)

Clearly, for v → −∞ we have pure AdS (M(v) = 0 = Q(v)) and for v → ∞ we have

M(v) = M and Q(v) = Q which is the BI-AdS black brane (2.8). Indeed, equations (3.2)–

(3.3) are just smooth versions (convenient for the numerical analysis) of the step functions

M(v) = Mθ(v) and Q(v) = Qθ(v), which represent a shock wave (a zero thickness shell

of charged matter suddenly forming at v = 0). The constant v0 represents a finite shell

thickness and for v0 → 0 we go back to the step function.

The next step is to choose a set of observables to use as probes of thermalization. Since

local observables in the boundary such as expectation values of the energy-momentum ten-

sor are not sensitive to the thermalization process, one needs to consider extended non-local

observables.3 In this work we shall focus on equal time two-point correlation functions

and expectation values of rectangular Wilson loops, which have well known holographic

descriptions in the bulk in terms of renormalized geodesic lengths and minimal area sur-

faces, respectively. A third observable that could be used is the entanglement entropy of

boundary regions, which have a very similar description in terms of minimal volumes of

codimension-two surfaces in the bulk. However, as the results of entanglement entropy

lead essentially to the same conclusions, we will not show them here in order to avoid

unnecessary repetitions.

3.1 Renormalized geodesic lengths and two-point functions

We start with the equal-time two-point correlation functions of local gauge invariant oper-

ators O(t,x) of conformal dimension ∆. The AdS/CFT correspondence provides a simple

geometrical way to compute it in the bulk gravity dual when the operator O is “heavy”,

i.e., when ∆� 1 [63]. Namely,

〈O(t,x)O(t,x′)〉 ≈ e−∆L , (3.4)

3Holography provides a geometric intuition for why local operators are insensitive to details of the

progress towards thermalization: being local, they are only sensitive to phenomena happening in their

vicinity near the AdS boundary. Thus they are not aware of the details of phenomena occurring near the

thermal scale. We need observables dual to AdS quantities that probe deeper into the bulk in order to see

signals of thermalization.
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where L stands for the length of the bulk geodesic between the points (t,x) and (t,x′)

located on the AdS boundary.4 Actually, one should be careful when doing such an ap-

proximation because the geodesic length above is divergent due to the contribution of the

AdS boundary (because the AdS metric itself diverges at the boundary z = 0). In order

to extract a meaningful quantity we need to introduce a cutoff z0. It turns out that the

divergent part of L is universal and equals to 2 ln(2/z0) [20]. Then, we define a (finite)

renormalized geodesic length Lref = L−2 ln(2/z0), which will be related to the renormalized

two-point function 〈O(t,x)O(t,x′)〉ref just as in equation (3.4).

We choose the coordinate axes for the boundary directions (t,x) such that the spatial

separation ` = |x−x′| between the points lies entirely over the x1 direction, i.e., we consider

space-like geodesics between the boundary points (t, x1 = −`/2, . . .) and (t, x′1 = +`/2, . . .),

where the ellipsis denotes the remaining coordinates (x2, . . . , xd−1) which are the same for

both points. Then, by symmetry the geodesics cannot depend on coordinates other than

x1, and we can use x1 as the geodesic parameter (we call it simply x hereinafter). The

solutions of the geodesic equations are then given by a pair of functions v(x) and z(x).

The boundary conditions at the AdS boundary z = z0 are

z(±`/2) = z0, v(±`/2) = t . (3.5)

The length functional between the referred points follows immediately from the line

element (3.1) as being

L[v, z] =

∫ `/2

−`/2
dx

√
1− 2z′(x)v′(x)− f(v, z)v′(x)2

z(x)
. (3.6)

It clearly depends on the path taken from one point to the other. The geodesic corresponds

to the functions v(x) and z(x) that minimize the length and can be found by standard

methods. The geodesic length (which we will call L) is just the value of the length functional

L evaluated at the geodesic solution.

The variational problem simplifies by noticing that the integrand in (3.6) does not

depend explicitly on x and, therefore, there is a conserved Hamiltonian H given by

H =
1

z(x)
√

1− 2z′(x)v′(x)− f(v, z)v′(x)2
. (3.7)

Using the conditions on the turning point of the geodesic,

z(0) = z∗, v(0) = v∗, z′(0) = 0, v′(0) = 0 , (3.8)

arising from the fact that the geodesic must be symmetric with respect to x = 0, the

conservation equation simplifies to√
1− 2z′(x)v′(x)− f(v, z)v′(x)2 =

z∗
z(x)

. (3.9)

4If there is more than one geodesic we should sum over them on the right-hand side.
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The advantage of working with the boundary conditions (3.8) instead of the original

ones (3.5) is that we can use the conservation equation above to write the geodesic

length (3.6) as

L = 2

∫ `/2

0
dx

z∗
z(x)2

. (3.10)

Hence, after solving the equations of motion and finding the geodesic functions v(x) and

z(x) for a given pair of initial conditions (v∗, z∗) it is a trivial task to use the relations (3.5)

to read the corresponding values of boundary separation ` and time t, as well as obtain-

ing the corresponding renormalized geodesic length Lref = L − 2 ln(2/z0) by means of

expression (3.10).

The hard part is to find the geodesic, which means to solve the Euler-Lagrange equa-

tions for z(x) and v(x). With the help of the conservation equation (3.9) they can be

written, respectively, as

2− 2v′(x)2f(v, z)− 4v′(x)z′(x)− 2z(x)v′′(x) + z(x)v′(x)2∂zf(v, z) = 0

(3.11a)

z(x)v′′(x)f(v, z) + z(x)z′′(x) + z(x)z′(x)v′(x)∂zf(v, z) +
1

2
z(x)v′(x)2∂vf(v, z) = 0 .

(3.11b)

This is a set of coupled, highly nonlinear differential equations and for that reason it is quite

hard to handle with analitical methods. However, for a given pair (v∗, z∗) it is possible to

find a numerical solution subject to the boundary conditions (3.8). Indeed, by solving for

sufficiently many pairs of initial conditions (v∗, z∗) (carefully chosen in order to give the

same boundary separation ` and different times), we can track time after time the whole

evolution of the geodesics in the Vaidya-BI-AdS spacetime. In particular, if we calculate

the renormalized geodesic length of each of these solutions using (3.10) we will be able to

see the full time evolution of Lref towards thermalization. This will be done in section 4,

where we provide a detailed explanation of the numerical procedure as well as the choice

of parameters and show our results.

3.2 Minimal area surfaces and Wilson loops

We now study a second class of thermalization probes, namely the expectation values of

Wilson loop operators in the boundary field theory. The Wilson loop is a non-local gauge-

invariant observable defined as the path-ordered integral of the gauge field over a closed

path C:
W (C) =

1

N
Tr
(
Pe

∮
C Aµdxµ

)
, (3.12)

where N is the number of colors and Aµ is the non-abelian gauge field. Wilson loops contain

useful information about the non-perturbative behavior of non-abelian gauge theories, such

as whether they exhibit confinement or not. It is possible, in principle, to express all gauge-

invariant functions of Aµ in terms of Wilson loops by appropriate choices of the path C,
but unfortunately they are in general hard to compute.
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The AdS/CFT correspondence again provides an elegant way to compute the expec-

tation value of Wilson loops of a strongly coupled gauge theory with a gravitational dual

in terms of a geometrical quantity in the bulk [64]:

〈W (C)〉 ≈ e−
1
α′A(Σ0) , (3.13)

where α′ is the inverse string tension, Σ0 denotes the minimal area bulk surface whose

boundary is the original contour C, and A(Σ0) is the area of that surface. Σ0 will be a

solution of the bosonic part of the string action (the Nambu-Goto action), which is nothing

but the area of the classical world-sheet with C as its boundary. Indeed, equation (3.13) has

its origin in a saddle-point approximation of the string theory partition function around

the classical solution, which is only valid when the dual gauge theory has strong coupling.

Now we proceed to compute the minimal area surfaces in the Vaydia-BI-AdS spacetime

as described before just as we did for the geodesic lengths. We will focus on a spacelike

rectangular Wilson loop on the boundary. The rectangle C can always be chosen to lie on

the x1–x2 plane, centered at the origin, with sides ` on the x1 direction and R on the x2

direction. One also assumes translational invariance along x2, such that the shape of the

bulk surface depends only on x1 and again we can use x1 ≡ x to parametrize the functions

v(x) and z(x) that characterize the surface. The boundary conditions at the AdS boundary

z = z0 are again given by equations (3.5).

Using the Vaidya-BI-AdS metric (3.1), the Nambu-Goto action (or area functional

divided by 2π) becomes

ANG[v, z] =
R

2π

∫ `/2

−`/2
dx

√
1− 2z′(x)v′(x)− f(v, z)v′(x)2

z(x)2
. (3.14)

Notice that an obvious consequence of our assumption of translational invariance is that

the length R factorizes. Since we are interested just in the ` dependence, we can study

ANG/R instead of ANG itself and forget about R in what follows. As for the geodesics, the

pair of functions (v(x), z(x)) that minimizes the Nambu-Goto action will be the minimal

surface Σ0. The on-shell value of the Nambu-Goto action (i.e., ANG[Σ0]), which we call A,

will be our object of interest.

The subsequent calculation is closely analogous to the geodesics case. There is again

a conserved Hamiltonian associated to (3.14) and we can introduce the alternative bound-

ary conditions on the turning point of the minimal surface, which are the same as equa-

tions (3.8), to find an expression similar to (3.9) for the conservation equation. Replacing

this back into (3.14), the on-shell Nambu-Goto action becomes

A =
R

π

∫ `/2

0
dx

z2
∗

z(x)4
, (3.15)

which can be used to easily obtain the minimal area surface once we have solved the

equations of motion and found the functions v(x) and z(x) for a given pair of initial

conditions (v∗, z∗). The corresponding values of boundary separation ` and time t can be

read from the original conditions (3.5) as well. Here again we have to face the problem that
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the area A diverges due to the contribution near the AdS boundary, but we can regularize

the divergent part using again a cutoff z0 and subtract it from A to define the renormalized

minimal area Aref = A−R/πz0 [20].

The functions z(x) and v(x) are found by solving the Euler-Lagrange equations coming

from the action (3.14). The simplified equations of motion (after using the conservation

equation) are, respectively

z(x)v′(x)2∂zf(v, z)− 4v′(x)2f(v, z)− 2z(x)v′′(x)− 8v′(x)z′(x) + 4 = 0 (3.16a)

v′(x)z′(x)∂zf(v, z) +
1

2
v′(x)2∂vf(v, z) + v′′(x)f(v, z) + z′′(x) = 0 . (3.16b)

As before, for a given pair (v∗, z∗) we can solve this set of equations numerically subject

to the boundary conditions (3.5). Thus, for some chosen length ` of the Wilson loop, by

iterating for enough pairs (v∗, z∗) we can track the whole time evolution of the minimal

surfaces and, in particular, of their renormalized areas Aref towards thermalization. This

will be the aim of section 4.

4 Numerical results

4.1 Renormalized geodesic lengths

In this section, we numerically solve the geodesic equations of motion (3.11) in order to

find how the geodesic length evolves with time. Afterwards, we explore how the charge of

the black hole and BI parameter affect the thermalization time. For the latter it will be

convenient in the numerical calculations to use an inverse BI parameter b = 1/β instead

of the original β, such that the Maxwell limit is b → 0 and increasing b accounts for

increasingly nonlinear electrodynamics.

First of all, we fix the free parameters. We will take the shell thickness and AdS space

UV cut-off to be v0 = 0.01 and z0 = 0.01, respectively. Since the effect of the number of

spacetime dimensions and boundary separation on the thermalization probes has already

been analyzed in previous works [20, 21, 23], we focus here in the case d = 4 (namely, AdS5

space, which is dual to a 4-dimensional gauge theory) and a fixed boundary separation

` = 4. The mass M of the final state black brane can be expressed in terms of the radius

of its event horizon using the definition of rh, i.e., the largest solution of U(rh) = 0. Then,

if we choose to fix the horizon at rh = 1,5 the mass is given by

M = 1 +
1

3b2

(
1−

√
1 + 3b2Q2

)
+

3

2
2F1

[
1

3
,
1

2
;
4

3
;−3b2Q2

]
, (4.1)

which of course only holds provided that b and Q take values consistent with the existence

of an event horizon. For a given b this means that Q is allowed to take values from Q = 0

to the extremal value (2.11), which now reads

Qext(b) =
√

2 + 3b2 . (4.2)

5This will be interesting to compare the thermalization for different values of Q and b, since the black

hole will always form at the same location for all Q, b.
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Figure 1. The chemical potential per temperature ratio in the d = 4 field theory as a function of

the charge Q of the black hole for different values of the inverse BI parameter: b = 0 (dashed blue),

b = 0.4 (green), b = 0.7 (black), b = 1 (red). The dashed curve represents the Maxwell limit case.

As we pointed out in section 2, for each b, considering values of charge 0 ≤ Q ≤ Qext(b)

we can study all the range 0 ≤ µ/T ≤ ∞ in the dual gauge theory. It is instructive to

illustrate this fact here by looking at the form of expression (2.12) in the present case (we

choose the scale ξ = 1 for simplicity), namely,

µ

T
=

3
√

3πb2Q 2F1

[
1
3 ,

1
2 ; 4

3 ;−3b2Q2
]

2 + 6b2 − 2
√

1 + 3b2Q2
. (4.3)

A plot of this as a function of the charge for distinct values of b is shown in figure 1, showing

that indeed all the range of µ/T is covered. We also notice that for small values of charge

(up to ∼ 0.5) the BI parameter has no effect on the chemical potential since all the curves

agree, so we will concern only about charges above this value in what follows.

Now we proceed to investigate the effects of Q and b on the thermalization process. We

choose the test values b = 0, 0.4, 1 and Q = 0.5, . . . , Qext(b) for the numerical analysis. The

procedure is the following: for a given (b,Q) pair we solve the geodesic equations (3.11)

subject to the boundary conditions (3.8) characterized by a pair of values (v∗, z∗). We

do this recursively for various pairs of initial conditions and collect from these just those

yielding a boundary separation ` = 4.6 Each of these collected solutions correspond to a

different stage of the motion of the geodesics, as we may check by computing the corre-

sponding boundary time t via equation (3.5). We then calculate the renormalized geodesic

length Lref of each of these collected solutions and construct a list of points (t,Lref(t))

which contains all the information about the time evolution of the renormalized geodesic

length. Actually, it will be convenient to divide all the lengths by ` in order to obtain a

dimensionless, `-independent quantity L̃ = Lref
` . In addition, we subtract from this the

final (thermal) value just to force all thermalization curves to end at zero, so that the

quantity to be plotted is L̃ − L̃thermal versus t.

6There is a small subtlety here. ` is determined numerically, via equation (3.5), after we have solved the

equations using the modified boundary conditions (3.8), hence we must establish a criterion for what we

mean by “` = 4”. We adopt the convention of 0.0005 tolerance, meaning that “` = 4” here corresponds to

` ∈ (3.9995, 4.0005).
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Before showing the thermalization curves, in figure 2 we present an intuitive simple

view of the effect of the BI parameter on the thermalization. It consists of a sequence

of snapshots of the time evolution of geodesic profiles as well as the shell of charged dust

described by the Vaidya-BI-AdS metric to form a black brane at zh = 1 at late times, for

different values of the inverse BI parameter b and fixed charge Q = 1. Each column, top

to bottom, corresponds to the time evolution for a given value of b. It is found that at the

early stages of the evolution, up to t ∼ 1, the value of b has little effect on the dynamics.

After that, b plays a crucial role in the evolution. We see that the bigger b is (i.e., columns

to the right), the sooner the black hole is formed. This is clear from the bottom line of

the picture, corresponding to boundary time t = 1.82, where the b = 1 black brane has

just formed while the b = 0.4 one is about to form and the b = 0 one still needs some time

to do so. This is a hint that the thermalization of the dual boundary field theory occurs

sooner as b increases, what indeed will be confirmed in figure 4.

In figures 3 and 4 we show the thermalization curves for the renormalized geodesic

lengths with varying charge at fixed b and varying b at fixed charges, respectively. Instead

of plotting point by point all the results obtained as described above, we find more in-

structive to fit those points using some polynomial function and plot the resulting curve.

Details about the fits will be given below. We use dashed curves in all the plots hereinafter

to highlight the Maxwell limiting case studied in [23]. The thermalized (final) state cor-

responding to the completely formed black brane is reached in each case when the curve

touches the zero point of the vertical axis. The effect of the charge Q on the thermalization

is clear from figure 3. As Q grows, the thermalization time increases, meaning that the

dual field theory thermalizes later. This had already been pointed out in [23] for the case

of Maxwell electrodynamics (b = 0), and now we show that the same holds for BI nonlinear

electrodynamics. Since the charge corresponds to the chemical potential, this means that

the smaller the chemical potential is, the faster is the pair production and the screening

effect takes over in an easier way. This is compatible with lower dimensional models, where

screening effects are known to prevail over confinement [65, 66]. The second, more inter-

esting result, is the effect of the inverse BI parameter b shown in figure 4. As one can

see, increasing b decreases the thermalization time, which means that the more nonlinear

the bulk theory is, the sooner its dual field theory thermalizes. This confirms our intu-

ition coming from the analysis of the geodesic profiles and shell motion in figure 2. Such

a behavior is similar to the effect of the Gauss-Bonnet parameter on the thermalization

reported in [25]. As we discuss in the conclusions, this seems to be a general feature of

introducing extra derivatives in the bulk theory. The numerical values obtained for the

thermalization times are summarized in table 1.

Having smooth fit functions for all the sets of numerical data we can use them to study

the thermalization velocities d
dt(L̃−L̃thermal) aiming for more details of the nonequilibrium

process. These are plotted in figure 5 (only for the cases Q = 1 fixed and b = 0.4 fixed,

respectively, to avoid unnecessary repetitions). We notice from the velocity curves the

existence of a phase transition point at the middle stage of the thermalization, which

divides the process into an accelerating and a decelerating phase. Furthermore, we see

that the phase transition point is shifted depending on the values of b and Q. Figure 5a

shows that increasing the value of b causes a delay in the phase transition point, meaning
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-2 -1 0 1 2

0.0

0.5

1.0

1.5

2.0

(b) b = 0.4 at t = 0.37.

-2 -1 0 1 2

0.0

0.5

1.0

1.5

2.0

(c) b = 1 at t = 0.37.

-2 -1 0 1 2

0.0

0.5

1.0

1.5

2.0
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(i) b = 1 at t = 1.54.
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(j) b = 0 at t = 1.82.
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(l) b = 1 at t = 1.82.

Figure 2. A sequence of snapshots of the time evolution of geodesic profiles and the shell of

charged dust described by the Vaidya-BI-AdS metric to form a black brane at zh = 1 at late times,

for different values of the inverse BI parameter b and fixed charge Q = 1. In all cases the separation

of the boundary points is ` = 4. Each column, from top to bottom, indicates the time evolution for

a given value of b. The cyan line indicates the position of the shell in each case, while the dashed

red line is an imaginary line denoting the position of the (still to be formed) black brane horizon.

that the accelerated phase lasts longer for the b = 1 theory. This is to be contrasted with

the fact that the b = 1 theory is the first to thermalize, indicating that the dynamical

process in this case consists of a slowly accelerating phase followed by a quick deceleration

towards the equilibrium state. On the other hand, figure 5b shows that the charge has

the opposite effect, i.e., as Q increases the phase transition point arrives earlier. In other

words, for large values of Q (or µ/T in the boundary field theory) the thermalization

process consists of a quick accelerating phase followed by a slowly decelerating phase to

the final state.
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(b) b = 0.4.
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(c) b = 1.

Figure 3. Thermalization curves of the renormalized geodesic lengths in the Vaidya-BI-AdS space-

time at fixed values of b for different charges Q, from Q = 0.5 to the corresponding extremal value

Qext(b) =
√

2 + 3b2. Figure (a) shows the Maxwell limiting case, with Q = 0.5 (yellow) in the top,

Q = 1 (orange) in the middle and Q =
√

2 (magenta) in the bottom. In (b) and (c) we have the

same values of charge together with the extremal values Q =
√

2.48 (gray) and Q =
√

5 (black),

respectively. The spatial separation of the boundary points is ` = 4 for all the cases.
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(b) Q = 1.
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Figure 4. Thermalization curves of the renormalized geodesic lengths in the Vaidya-BI-AdS space-

time at fixed charges Q for different inverse BI parameters b. Here b = 0 (dashed blue) is always

the bottom curve, b = 0.4 (green) is the middle curve, and b = 1 (red) is the top one. The spatial

separation of the boundary points is ` = 4.

b = 0 b = 0.4 b = 1

Q = 0.5 1.728 1.717 1.712

Q = 1 1.863 1.852 1.796

Q =
√

2 2.108 2.048 1.887

Q =
√

2.48 — 2.116 —

Q =
√

5 — — 2.156

Table 1. Summary of the numerical values obtained for the thermalization times of the renormal-

ized geodesic length curves shown in figures 3 and 4.

It should be stressed that in this work, in contrast to the authors of [26], we find

no evidence for a negative thermalization velocity at initial times. They argue that the

velocity should be negative in the very beginning of the evolution corresponding to a

“quantum” stage of the nonequilibrium process, which soon becomes “classical” once the

velocity becomes positive. In our case (Figure 5) all the thermalization velocities start from

zero and increase monotonically until the phase transition point, indicating that nothing
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Figure 5. Thermalization velocities of the renormalized geodesic lengths at both fixed charge and

fixed b. The dashed blue, green, and red curves in (a) correspond respectively to b = 0, 0.4, 1. The

curves in (b) correspond to Q = 0.5 (yellow), Q = 1 (orange), Q =
√

2 (magenta) and Q =
√

2.48

(gray). The spatial separation of the boundary points is ` = 4.
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Figure 6. A comparison between the numerical results and the polynomial fits for the geodesic

lengths. The inset emphasizes the constant behavior of the curve at initial times.

particularly odd seems to happen at the initial stages of the thermalization process. This is

also clear from the comparison of the numerical results with the fitting functions presented

in figure 6. The zoomed region shows that the numerical points sit all over a horizontal

line for initial times (up to ∼ 0.2) and therefore there is no reason for a non-vanishing

slope at such stage. For that reason, we use for our fit functions degree 9 polynomials

f(t) =
∑9

n=0 αnt
n with the first powers of t (α1, α2) set to zero in order to ensure the

strictly constant behavior f(t) ∼ α0 up to t ∼ 0.2. This allows us to make an accurate

fit of the whole set of numerical points, which after all are the ones carrying the physical

information.

4.2 Renormalized minimal area surfaces

In this section, we numerically solve the equations of motion (3.16) for the minimal area

surfaces in order to track their time evolution. The strategy will follow closely that of the

renormalized geodesic lengths done in the previous subsection, so we will not repeat all the

details on the numerical procedure as well as the fixing of free parameters since they are

essentially identical.

Again we choose the test values b = 0, 0.4, 1 and Q = 0.5, . . . , Qext(b) for the numerical

analysis. The procedure is the same as before, i.e., for a given (b,Q) pair we solve the
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geodesic equations (3.16) subject to the boundary conditions (3.8) characterized by a pair

of values (v∗, z∗). We repeat this for various pairs of (v∗, z∗) and collect just those yielding

a Wilson loop with side ` = 2 (keep in mind that the other side R does not influence in our

analysis).7 Each of the collected solutions will correspond to a different stage of the time

evolution determined by calculating the boundary time t via equation (3.5). Then we inte-

grate each of the collected solutions using equation (3.15), subtract the universal divergent

part to obtain Aref , and construct a list of points (t, Ã − Ãthermal) to be plotted against t.

Here Ã ≡ Aref/(R`π
−1) is a dimensionless quantity independent of the dimensions of the

boundary Wilson loop and Ãthermal is the corresponding thermal value.

A sequence of snapshots of the time evolution of the minimal area surfaces as well as

the shell of charged dust described by the Vaidya-BI-AdS metric is shown in figure 7 for

different values of the inverse BI parameter b and a fixed charge Q =
√

2. Each column,

from top to bottom, follows the time evolution for a given value of b. Again we can see that

up to t ∼ 1.0 the value of b has little effect on the dynamics, while at the final stages of the

evolution b plays a decisive role. This is clear from the bottom row at t = 1.54, where we

see that the b = 1 black brane has already formed while the other two are about to form.

That illustration suggests that increasing the value of b makes the black hole form earlier,

which indeed will be confirmed below.

The thermalization curves for the renormalized minimal area surfaces are shown in

figures 8 and 9 for varying Q at fixed values of b and varying b at fixed charges, respectively.

All the curves are polynomial fits of the numerical points (see below) and the zero point

of the vertical axis corresponds to the final state of the process, i.e., the static Einstein-

BI black brane fully formed. We immediately notice that all the effects are less evident

than those displayed before for the geodesic lengths (the reason why we show the insets in

figure 9) due to our choice of ` = 2 as the characteristic scale in the boundary, in contrast to

the ` = 4 used for the geodesics. This just illustrates the argument made in the beginning

that the holographic thermalization is a top-down process. Figure 8 shows that for a given

b the effect of the charge Q is to delay the thermalization process as it is increased, that is

to say, as the chemical potential in the dual field theory grows, the time needed to reach

the thermal state also raises. This reinforces the conclusions drawn from the analysis of

the renormalized geodesic lengths in the previous subsection. The effect of the inverse BI

parameter b for fixed charges can be inferred from figure 9, namely, the larger b is, the

shorter the thermalization time is. This implies that the boundary field theory is easier

to thermalize in the nonlinear case, which is in perfect agreement with our results from

the previous subsection. The numerical values obtained for the thermalization times are

summarized in table 2.

Just as we did before, we also use the fit functions to study the thermalization velocities

for the minimal area surfaces, d
dt(Ã− Ãthermal), which are plotted in figure 10 for the cases

Q =
√

2 fixed and b = 1 fixed, respectively. The plots confirm the results obtained from

the geodesics in what concerns the different stages of the dynamical process. Namely, there

7Remember that ` is determined from the numerics, via equation (3.5), so we again use he same criterion

of ±0.0005 for what we mean by “` = 2”.
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(a) b = 0 at t = 0.45. (b) b = 0.4 at t = 0.45. (c) b = 1 at t = 0.45.

(d) b = 0 at t = 0.96. (e) b = 0.4 at t = 0.96. (f) b = 1 at t = 0.96.

(g) b = 0 at t = 1.54. (h) b = 0.4 at t = 1.54. (i) b = 1 at t = 1.54.

Figure 7. A sequence of snapshots of the time evolution of the minimal area surface and the

shell of charged dust described by the Vaidya-BI-AdS metric for different values of the inverse BI

parameter b and fixed charge Q =
√

2. In all cases the boundary Wilson loop has sides ` = 2 in

the x direction and R = 3 in the y direction. Each column, from top to bottom, indicates the time

evolution for a given value of b. The cyan plane indicates the position of the shell in each case,

while the gridded plane at z = 1 denotes the position of the (still to be formed at late times) black

brane horizon.

is always a phase transition instant at the middle stage of the evolution where the process

changes from an accelerating phase to a decelerating phase. Such a phase transition point

is reached later as we increase b for a fixed charge (see figure 10a), or sooner as the charge Q

is increased for a given b (see figure 10b). In other words, the thermalization of expectation

values of Wilson loops in the dual field theory consists in a slow (quick) accelerating phase

followed by a quick (slow) decelerating phase towards the final state as the nonlinearity

parameter b (the charge Q, or chemical potential µ/T ) is increased.

Once more we point out that our velocity plots do not provide any evidence of a

negative thermalization velocity at initial times, in contrast to [26]. This can also be

seen from figure 11, where we show a comparison of the numerical results with the fitting
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(b) b = 0.4.
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(c) b = 1.

Figure 8. Thermalization curves of the renormalized minimal area surfaces in the Vaidya-BI-

AdS spacetime at fixed values of b for different charges Q, from Q = 0.5 to the extremal charge

Qext(b) =
√

2 + 3b2. In (a) we show Q = 0.5 (yellow) in the top, Q = 1 (orange) in the middle,

and Q =
√

2 (magenta) in the bottom. In (b) and (c) the same values appear together with the

extremal values Q =
√

2.48 (gray) and Q =
√

5 (black), respectively. The relevant side of the

boundary Wilson loop is ` = 2.
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Figure 9. Thermalization curves of the renormalized minimal area surfaces in the Vaidya-BI-AdS

spacetime for different inverse BI parameters b at fixed values of charge. In each case we have

b = 0 (dashed blue) in the bottom, b = 0.4 (green) in the middle, and b = 1 (red) in the top. The

insets show details of the curves right before thermalization. The side of the boundary Wilson loop

is ` = 2.

b = 0 b = 0.4 b = 1

Q = 0.5 1.427 1.426 1.423

Q = 1 1.499 1.490 1.475

Q =
√

2 1.571 1.564 1.528

Q =
√

2.48 — 1.584 —

Q =
√

5 — — 1.622

Table 2. Summary of the numerical values obtained for the thermalization times of the renormal-

ized minimal area surfaces shown in figures 8 and 9.

functions. The zoomed region shows that at the initial times, up to t ∼ 0.1, all the

numerical points lie over a horizontal line and thus the curve must have vanishing slope

in that region. We should mention that the fitting functions used here were degree 7

polynomials f(t) =
∑7

n=0 αnt
n with the linear term (α1) set to zero to ensure the strictly

constant behavior f(t) ∼ α0 up to t ∼ 0.1 as required by the numerical data.
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Figure 10. Thermalization velocities of the renormalized minimal area surfaces at both fixed charge

and fixed b. The dashed blue, green, and red curves in (a) correspond respectively to b = 0, 0.4, 1.

The curves in (b) correspond to Q = 0.5 (yellow), Q = 1 (orange), Q =
√

2 (magenta), and Q =
√

5

(black). The side of the boundary Wilson loop is ` = 2.
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Figure 11. A comparison between the numerical results and the polynomial fits for the minimal

area surfaces. The inset emphasizes the constant behavior of the curve at initial times.

5 Conclusions

The effect of the chemical potential and the inverse BI parameter on the thermalization time

of the dual boundary field theory is studied using the Vaidya-like toy model of a collapsing

shell of charged dust. The bulk spacetime is dynamical, constructed to interpolate between

a pure AdS space at initial times and a charged Einstein-Born-Infeld AdS black brane

at late times. We use as thermalization probes the equal-time two-point functions and

expectation values of Wilson loops, which have well defined dual gravity descriptions in

terms of renormalized geodesic lengths and minimal area surfaces in the bulk. Another

class of nonlocal observables, the entanglement entropy of boundary regions, which also

have well known holographic descriptions in terms of minimal volumes of codimension-2

surfaces in the bulk, can also be used as a third thermalization probe. However, as the

results are similar, we focus only on the first two since they are enough to capture all the

relevant effects.

We conclude that as the charge (or, equivalently, the chemical potential) grows, the

thermalization time is also increased. The inverse BI parameter, on the other hand, has

the opposite effect, i.e., the larger is the value of b, the shorter the thermalization time is.

At the initial stages of the thermalization we find that Q and b have little effect on the

time evolution, becoming important only from the middle stage on. We arrive at the same
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results independently for both the renormalized geodesic lengths and minimal area surfaces.

In each case they can be seen just by looking to a sequence of snapshots of the motion

profiles of the geodesics and minimal surfaces as the time goes by or, alternatively, from the

thermalization curves obtained from the full numerical analysis. The effect of the charge

happens to be the same found in [23] using Einstein-Maxwell theory and [26], where Gauss-

Bonnet curvature corrections were included. The outcome of introducing a nonvanishing

b, on the other hand, is a new result. In particular, the effect is the same as that of the

Gauss-Bonnet parameter reported in [26]. Since BI electrodynamics consists essentially of

higher order derivatives of the gauge field, we suggest that this may be a general feature of

introducing extra derivatives in the bulk, i.e., that boundary gauge theories whose gravity

dual carry more than two derivatives tend to thermalize sooner than two-derivative theories

after a sudden injection of energy. It would be interesting to explore this idea with other

theories possessing this characteristic in order to have definite answers.

Moreover, by fitting the numerical data with smooth functions we were also able to

study the thermalization velocities associated to each curve. Although this is not rigorous,

it reveals some interesting features of the dynamical process of thermalization and how

they are affected by Q and b. We notice the existence of a phase transition point at the

middle stage of the thermalization, which divides the process into an accelerating and a

decelerating phase. The phase transition point is shifted depending on the values of b

and Q. Namely, as Q increases, the phase transition point arrives earlier. This indicates

that for large values of chemical potential the thermalization process consists of a quick

accelerating phase followed by a slowly decelerating phase to the final state. Increasing the

value of b, oppositely, causes a delay in the phase transition point. This is to be contrasted

with the fact that nonlinear theories thermalize first, indicating that the dynamical process

for non-vanishing b consists of a slowly accelerating phase followed by a quick deceleration

towards the equilibrium state. We also show from the velocity plots that the thermalization

process is monotonic and the velocity is always positive at the initial stages, in contrast to

the claim by the authors of [26] that there should be a negative thermalization velocity at

the very beginning of the evolution.
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