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1 Introduction

There are several reasons to be concerned about an N = 4 superconformal mechanics in

one dimension. One the one hand, the N -extended d = 1 supersymmetry has a number

of peculiar features which are strikingly distinct from higher dimensional analogues. In

particular, some of the N = 4, d = 1 supermultiplets cannot be obtained by dimensional

reduction from d > 1 off-shell supermultiplets. Constraints describing on-shell supermulti-

plets in higher dimensions may lead to d = 1 off-shell supermultiplets after a dimensional

reduction. The number of physical bosonic degrees of freedom does not have to match the

number of physical fermions.

On the other hand, it was conjectured in [1, 2] that the study of superconformal models

in d=1 might provide a new insight into a microscopic description of extremal black holes.

In particular, this proposal stimulated extensive resent studies of the N = 4 superconformal

Calogero models [3]–[11].

Another line of research on the superconformal mechanics motivated by the work

in [1, 2] concerns the construction of superconformal particles propagating on the near

horizon extremal black hole backgrounds (see e.g. [12]–[19] and references therein). It

turns out that such systems can be viewed as the conventional superconformal mechanics

written in another coordinate basis [12]–[16]. It is believed that these models will help

to better understand a precise relation between the supergravity Killing spinors and the

supersymmetry charges of the superparticles propagating on the curved backgrounds.

It should be mentioned that the superalgebra su(1, 1|2) which we discuss in this work

is a particular instance of the most general N = 4, d = 1 superconformal algebra cor-

responding to the exceptional one-parameter supergroup D(2, 1;α). Various dynamical

realizations of D(2, 1;α) have been recently studied in [20]–[29]. As far as the proposals
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in [1, 2] are concerned, the status of the D(2, 1;α)-superconformal mechanics is still to be

better understood.

There are several competing approaches to the construction of a superconformal me-

chanics. These include the superfield approach, the method of nonlinear realizations, and

the direct construction of a representation of the su(1, 1|2)-superalgebra within the Hamil-

tonian framework. While the superfield formulation seems to be the most powerful means,

the Hamiltonian approach automatically yields an on-shell component formulation which

is free from non-dynamical auxiliary fields. In some cases it also offers notable technical

simplifications in describing interacting N = 4, d = 1 supermultiplets [6, 7].

The goal of this work is to reconsider the issue of constructing an N = 4 supercon-

formal mechanics in one dimension with a special emphasis put on the possible dynamical

realizations of the su(2)-subalgebra in the full su(1, 1|2)-superalgebra. In section 2 we

demonstrate that any representation of su(2) in terms of phase space functions can be au-

tomatically extended to a representation of the full su(1, 1|2)-superalgebra. In section 3 we

discuss various examples which yield the N = 4, d = 1 supermultiplets of the type (1, 4, 3),

(3, 4, 1), and (4, 4, 0) as well as construct interacting systems which describe couplings of

the former supermultiplets to (n copies) of the (0, 4, 4)-supermultiplet. In section 4 we

discuss a link to superparticles propagating near the black hole horizons and identify a

curved background associated with the supermultiplet of the type (4, 4, 0) with the near

horizon limit of the d = 5, N = 2 supergravity interacting with one vector multiplet. Con-

cluding section 5 contains the summary and the outlook. Our spinor conventions are given

in appendix A. Some technical details related to the realizations of the su(2)-algebra in

terms of phase space functions are gathered in appendix B.

2 Extending su(2) to su(1, 1|2)

Let us consider a phase space parametrized by the canonical pairs (θA, pθA), A = 1, . . . , n,

which obey the conventional Poisson brackets1

{θA, pθB} = δAB (2.1)

and assume that on such a phase space one can construct the functions Ja = Ja(θ, pθ),

a = 1, 2, 3, which obey the structure relations of su(2)

{Ja, Jb} = εabcJc, (2.2)

where εabc is the Levi-Civita totally antisymmetric symbol with ε123 = 1. Then one can

construct an su(2)-invariant dynamical system by identifying its Hamiltonian with the

Casimir element of the algebra

H0 =
1

2
JaJa. (2.3)

As is well known, su(2) is the R-symmetry subalgebra of the superalgebra su(1, 1|2).

It is then natural to expect that each dynamical system like (2.2), (2.3) can be extended

1Here and in what follows the vanishing Poisson brackets are omitted.
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to accommodate the full N = 4 superconformal symmetry. In order to demonstrate this,

let us extend the phase space (θA, pθA) by an extra bosonic pair (x, p), a fermionic SU(2)-

spinor variable ψα, α = 1, 2, its complex conjugate (ψα)∗ = ψ̄α, and impose the canonical

brackets

{x, p} = 1 , {ψα, ψ̄β} = −iδαβ. (2.4)

It is assumed that the Poisson brackets of the new variables with the pair (θA, pθA) vanish.

Note that in the subsequent sections (θA, pθA) and (x, p) are going to be the angular and

the radial degrees of freedom of a superconformal system.

The canonical relations (2.2) and (2.4) are all one needs to use in order to verify that

the following functions:2

H =
p2

2
+

2

x2
JaJa −

2

x2
(ψ̄σaψ)Ja +

1

4x2
ψ2ψ̄2, D = tH − 1

2
xp,

K = t2H − txp+
1

2
x2, Ja = Ja +

1

2
(ψ̄σaψ),

Qα = pψα +
2i

x
(σaψ)αJa +

i

2x
ψ̄αψ

2 , Sα = xψα − tQα,

Q̄α = pψ̄α − 2i

x
(ψ̄σa)

α
Ja +

i

2x
ψαψ̄2, S̄α = xψ̄α − tQ̄α, (2.5)

obey the structure relations of su(1, 1|2)

{H,D} = H, {H,K} = 2D,

{D,K} = K, {Ja,Jb} = εabcJc,

{Qα, Q̄β} = −2iHδα
β, {Qα, S̄β} = 2(σa)α

βJa + 2iDδα
β,

{Sα, S̄β} = −2iKδα
β, {Q̄α, Sβ} = −2(σa)β

αJa + 2iDδβ
α,

{D,Qα} = −1

2
Qα, {D,Sα} =

1

2
Sα,

{K,Qα} = Sα, {H,Sα} = −Qα,

{Ja, Qα} =
i

2
(σa)α

βQβ, {Ja, Sα} =
i

2
(σa)α

βSβ,

{D, Q̄α} = −1

2
Q̄α, {D, S̄α} =

1

2
S̄α,

{K, Q̄α} = S̄α, {H, S̄α} = −Q̄α,

{Ja, Q̄α} = − i
2
Q̄β(σa)β

α, {Ja, S̄α} = − i
2
S̄β(σa)β

α. (2.6)

In dynamical realizations H is interpreted as the Hamiltonian. D, K, Ja are treated as

the generators of dilatations, special conformal transformations, and su(2)-transformations,

respectively. Qα is the supersymmetry generator and Sα is the generator of superconformal

transformations. In verifying the structure relations (2.6), the properties of the Pauli

matrices and the spinor identities exposed in appendix A prove to be helpful.

2In eq. (2.5) σa designate the Pauli matrices. Our spinor notations are gathered in appendix A.
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Note that the dynamical realization (2.5) of the superalgebra su(1, 1|2) involves (n+1)

bosonic degrees of freedom and 4 real fermions. Thus, except for n = 3, (2.5) is an on-

shell formulation. Setting the fermions to zero and x to a constant value, one recovers the

original su(2)-invariant dynamical system governed by (2.3).

3 Examples

A trivial realization of the scheme above is provided by

Ja = 0, (3.1)

which means that the angular sector is empty. In this case there is only one dynamical boson

x and four dynamical fermions (ψα, ψ̄
α). Eq. (2.5) corresponds to a particular (on-shell)

dynamical realization of the superalgebra su(1, 1|2) in terms of the (1, 4, 3)-supermultiplet.

A more interesting example is obtained by restricting the conventional angular mo-

mentum Ja = εabcxbpc written in Cartesian coordinates to the surface of a two-dimensional

sphere of the unit radius

J1 = −pΦ cot Θ cos Φ− pΘ sin Φ, J2 = −pΦ cot Θ sin Φ + pΘ cos Φ, J3 = pΦ, (3.2)

where (Θ, pΘ) and (Φ, pΦ) form the canonical pairs. There are three bosonic dynamical de-

grees of freedom (x,Θ,Φ) and four fermions (ψα, ψ̄
α) which all together provide an on-shell

dynamical realization of the superalgebra su(1, 1|2) in terms of the (3, 4, 1)-supermultiplet.

As is known, (3.2) can be deformed to include a contribution which is physically inter-

preted as due to the magnetic monopole field. It is conventionally described by the shift

pa → pa +Aa(Θ,Φ), (3.3)

where the label a takes two values (Θ,Φ), and Aa(Θ,Φ) is the gauge field potential. Note

that the pure gauge vector potential Aa(Θ,Φ) = ∂aε(Θ,Φ), where ε(Θ,Φ) is some scalar

function, is usually ignored because it can be removed by a canonical transformation Θ′ =

Θ, p′Θ = pΘ + ∂Θε(Θ,Φ), Φ′ = Φ, p′Φ = pΦ + ∂Φε(Θ,Φ).

Given the representation (3.2), the shift (3.3) yields

Ja → J ′a = Ja +Ba(Θ,Φ), (3.4)

where the explicit form of the functions Ba(Θ,Φ) can be readily derived from Aa(Θ,Φ)

and eq. (3.2). Demanding J ′a to obey the structure relations of su(2), one obtains a system

of the first order linear partial differential equations which can be solved in full generality

(see appendix B). The result reads

J ′1 = −pΦ cot Θ cos Φ− pΘ sin Φ + e cos Φ sin−1 Θ,

J ′2 = −pΦ cot Θ sin Φ + pΘ cos Φ + e sin Φ sin−1 Θ,

J ′3 = pΦ, JaJa = p2
Θ + (pΦ − e cos Θ)2 sin−2 Θ + e2, (3.5)

where e is an arbitrary constant related to the magnetic charge which causes the magnetic

monopole field described by the vector potential Aa(Θ,Φ). The corresponding N = 4
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superconformal mechanics describes another variant of the N = 4, d = 1 supermultiplet of

the type (3, 4, 1). It has been studied in detail in ref. [20] (see also a related work [15]).

The next example is obtained from (3.5) by applying the oxidation procedure. Note

that e in (3.5) is an arbitrary constant. Let us introduce into the consideration an extra

canonical pair (Ψ, pΨ) and employ in (3.5) the substitution

e → pΨ. (3.6)

The oxidation is the converse to the reduction in which momenta associated with cyclic

variables are set to be coupling constants. The modified functions

J1 = −pΦ cot Θ cos Φ− pΘ sin Φ + pΨ cos Φ sin−1 Θ,

J2 = −pΦ cot Θ sin Φ + pΘ cos Φ + pΨ sin Φ sin−1 Θ,

J3 = pΦ, JaJa = p2
Θ + (pΦ − pΨ cos Θ)2 sin−2 Θ + p2

Ψ, (3.7)

automatically obey the structure relations of su(2) because ψ does not enter explicitly.

In eq. (3.7) one recognizes the vector fields dual to the conventional left-invariant one-

forms defined on the group manifold SU(2). Because there are four dynamical bosons

(x,Θ,Φ,Ψ) and four dynamical fermions (ψα, ψ̄
α), the corresponding superconformal me-

chanics describes N = 4, d = 1 supermultiplet of the type (4, 4, 0). This is the only off-shell

dynamical realization of su(1, 1|2) which arises within our formalism. An attempt to fur-

ther extend (3.7) by including a vector field Ba(Θ,Φ,Ψ) like in eq. (3.4) above leads to a

pure gauge vector potential.

One might as well try to consider various direct sums constructed from Ja as given in

eqs. (3.5) and (3.7) above. It turns out that in this case the metric tensor which enters the

Casimir element JaJa and controls the kinetic terms for the angular variables is degenerate.

This means that some of the degrees of freedom are not described by the conventional

second order ordinary differential equations. By this reason, in what follows we disregard

such a possibility. The examples above thus seem to exhaust all the realizations of su(2)

which can be constructed in terms of bosonic variables.

Our next example is provided by a pair of complex conjugate fermions χα, χ̄α = (χα)∗,

α, β = 1, 2, which obey the canonical bracket {χα, χ̄β} = −iδαβ. These can be contracted

with the Pauli matrices to yield the following realization of su(2):

J̃a =
1

2
(χ̄σaχ). (3.8)

While one cannot consistently combine two bosonic realizations of su(2) within a consis-

tent dynamical system with the su(1, 1|2)-superconformal symmetry, the direct sum of Ja
in (3.1), or (3.5), or (3.7) with J̃a in (3.8) is admissible. The resulting (on-shell) models can

be interpreted as describing a particular interaction of the (0, 4, 4)-supermultiplet realized
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on the pair (χα, χ̄
α) with either the (1, 4, 3)-, or (3, 4, 1)-, or (4, 4, 0)-supermultiplet. Below

we display the corresponding (on-shell) Lagrangian formulations in the explicit form.3

Combining J̃a in (3.8) with Ja in (3.1) and considering the Legendre transform of

the Hamiltonian in (2.5) with respect to the bosonic momenta, one finds the (on-shell)

Lagrangian describing an interaction of the (0, 4, 4)-, and (1, 4, 3)-supermultiplets

S =

∫
dt

(
1

2
ẋ2 +

i

2
ψ̄αψ̇α −

i

2
˙̄ψαψα +

i

2
χ̄αχ̇α −

i

2
˙̄χαχα −

1

4x2
ψ2ψ̄2 +

3

4x2
χ2χ̄2

− 1

x2
(ψ̄ψ)(χ̄χ)− 2

x2
(ψ̄χ)(χ̄ψ)

)
. (3.9)

In a similar fashion one can build the (on-shell) Lagrangian describing a particular

coupling of the (0, 4, 4)-, and (3, 4, 1)-supermultiplets

S =

∫
dt

(
1

2
ẋ2 +

i

2
ψ̄αψ̇α −

i

2
˙̄ψαψα +

i

2
χ̄αχ̇α −

i

2
˙̄χαχα +

1

8
x2
(

Θ̇2 + Φ̇2 sin2 Θ
)
− 2e2

x2

+eΦ̇ cos Θ +
1

2

(
ψ̄σaψ − χ̄σaχ

)
La −

1

x2
ψ2ψ̄2 − 1

2x2

[(
ψ̄σaψ − χ̄σaχ

)
λa
]2)

, (3.10)

where

L1 = −Θ̇ sin Φ− Φ̇ sin Θ cos Θ cos Φ +
4e

x2
sin Θ cos Φ,

L2 = Θ̇ cos Φ− Φ̇ sin Θ cos Θ sin Φ +
4e

x2
sin Θ sin Φ,

L3 = Φ̇ sin2 Θ +
4e

x2
cos Θ (3.11)

and λa is the vector parameterizing a point on the unit sphere

λa = (cos Φ sin Θ, sin Φ sin Θ, cos Θ). (3.12)

For an interaction of the N = 4, d = 1 supermultiplets of the type (0, 4, 4) and (4, 4, 0)

the scheme yields

S =

∫
dt

(
1

2
ẋ2 +

i

2
ψ̄αψ̇α −

i

2
˙̄ψαψα +

i

2
χ̄αχ̇α −

i

2
˙̄χαχα+

+
1

8
x2

(
Θ̇2 + Φ̇2 sin2 Θ +

(
Ψ̇ + Φ̇ cos Θ

)2
)

+
1

2

(
ψ̄σaψ − χ̄σaχ

)
La −

1

x2
ψ2ψ̄2

)
,

(3.13)

3Note that within the Hamiltonian formalism the canonical bracket {ψα, ψ̄β} = −iδαβ is conventionally

understood as the Dirac bracket {A,B}D = {A,B} − i{A, λα}{λ̄α, B} − i{A, λ̄α}{λα, B} associated with

the fermionic second class constraints λα = pψ
α − i

2
ψ̄α = 0 and λ̄α = pψ̄α − i

2
ψα = 0. Here (pψ

α, pψ̄α)

stand for the momenta canonically conjugate to the variables (ψα, ψ̄
α), respectively. Choosing the right

derivative for the fermionic degrees of freedom, the action functional, which reproduces the Dirac bracket

for the fermionic pair, reads S =
∫
dt
(
i
2
ψ̄αψ̇α − i

2
˙̄ψαψα

)
. Similar consideration applies to the fermionic

pair (χα, χ̄
α).
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where we abbreviated

L1 = −Θ̇ sin Φ + Ψ̇ sin Θ cos Φ, L2 = Θ̇ cos Φ + Ψ̇ sin Θ sin Φ,

L3 = Φ̇ + Ψ̇ cos Θ. (3.14)

In the latter case, when shuffling between the Lagrangian and Hamiltonian formulations,

it proves helpful to use the identity

Ja =
x2

4
La −

1

2

(
χ̄σaχ− ψ̄σaψ

)
, (3.15)

which relates Ja in (3.7) and La in (3.14).

Note that one can readily generalize the analysis above to include N copies of the

(0, 4, 4)-supermultiplet. It suffices to introduce into the consideration N canonically con-

jugate fermionic pairs χAα, χ̄αA = (χAα)∗, {χAα, χ̄βB} = −iδαβδAB, A,B = 1, . . . , N , and to

modify J̃a in (3.8) in the evident way

J̃a =
1

2

N∑
A=1

(χ̄AσaχA) . (3.16)

The resulting models will describe a particular interaction of N copies of the (0, 4, 4)-

supermultiplet with each other and with one supermultiplet of the type (1, 4, 3), or (3, 4, 1),

or (4, 4, 0).

4 A link to near horizon black hole geometries

As is known since the work in [12–14], superconformal mechanics can be written in another

coordinate basis, conventionally called the AdS basis, which provides an interesting link

to massive superparticles propagating near the extreme black hole horizons. So far such

a relation has been established for the N = 4, d = 1 superconformal mechanics based on

the supermultiplet of the type (3, 4, 1) and the massive N = 4 superparticle moving near

the horizon of an extreme Reissner-Nordström black hole carrying both the electric and

magnetic charges [14, 15]. In this section, we generalize the previous studies and provide

the universal formulae valid also for the N = 4, d = 1 supermultiplet of the type (4, 4, 0).

In the latter case we also identify the corresponding curved background. For notational

simplicity below we denote coordinates in the AdS and conformal bases by the same letters.

Consider a phase space which has the same structure as described in the beginning of

section 2 and a dynamical system governed by the Hamiltonian:

H =
x

M2

(√
b2 + (xp)2 + JaJa + b

)
− x

M2

((
ψ̄σaψ

)
Ja −

1

8
ψ2ψ̄2

)(√
b2 + (xp)2 + JaJa − b

)−1

, (4.1)

where b and M are real constants. Making use of the canonical relations (2.2) and (2.4),

the properties of the Pauli matrices and the spinor algebra exposed in the appendix A, one

– 7 –
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can verify that the following functions:

D = tH + xp, K = t2H + 2txp+
M2

x

(√
b2 + (xp)2 + JaJa − b

)
,

Sα = ψα

(
2M2

x

(√
b2 + (xp)2 + JaJa − b

)) 1
2

− tQα,

S̄α = ψ̄α
(

2M2

x

(√
b2 + (xp)2 + JaJa − b

)) 1
2

− tQ̄α,

Qα = −
2
(
(xp)ψα − i(σaψ)αJa −

i
4 ψ̄αψ

2
)(

2M2

x

(√
b2 + (xp)2 + JaJa − b

)) 1
2

,

Q̄α = −
2
(
(xp)ψ̄α + i

(
ψ̄σa

)α
Ja − i

4ψ
αψ̄2

)(
2M2

x

(√
b2 + (xp)2 + JaJa − b

)) 1
2

,

Ja = Ja +
1

2
(ψ̄σaψ), (4.2)

along with the Hamiltonian (4.1) do obey the structure relations of the superalgebra

su(1, 1|2).

Note that discarding the fermions ψα in (4.1) one obtains a bosonic system whose

structure looks typical for a massive relativistic particle propagating on a curved back-

ground. A link between the AdS basis (4.1), (4.2) and the conformal basis (2.5) is provided

by the canonical transformation (for more details see [14–16])

x′ =

[
2M2

x

(√
b2 + (xp)2 + JaJa − b

)] 1
2

,

p′ = −2xp

[
2M2

x

(√
b2 + (xp)2 + JaJa − b

)]− 1
2

,

J ′a = Ja, ψ′α = ψα, (4.3)

where the prime denotes the coordinates in the conformal basis.

Let us discuss which curved backgrounds there correspond to the bosonic realizations

of su(2) given in section 3. The second and third examples yield the model of an N = 4

superparticle propagating near the horizon of an extreme Reissner-Nordström black hole

which carries either electric, or both the electric and magnetic charges [14, 15]. This can

be seen by redefining e → ep in eq. (3.5) above, where p is a constant, and inserting the

following values:

b = mM = eq, M =
√
q2 + p2 (4.4)

into the formulae (4.1), (4.2). The parameters m and e are interpreted as the mass of a

particle probe and its electric charge, while M , q, p denote the mass of the black hole, and

its electric and magnetic charges, respectively.

A curved background associated with the realization (3.7) of su(2) has not yet been

discussed in the literature. In the remaining part of this section we dwell on this issue.
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Because the fermionic degrees of freedom are inessential for identifying the background, in

what follows we disregard them.

Taking into account the conventional form of the action functional which describes a

massive relativistic particle coupled to a curved background and a vector potential one-form

S = −
∫

(mds+ eA) , (4.5)

where m is the mass and e is the electric charge of a particle, one can readily obtain the

metric and the vector potential which lead to the Hamiltonian (4.1) with JaJa given in (3.7)

ds2 = gmndx
mdxn =

( r
M

)2
dt2 −

(
M

r

)2

dr2 −M2dΩ2
3, A = Andx

n =
r

M
dt,

dΩ2
3 = dΘ2 + sin2 ΘdΦ2 + (dΨ + cos ΘdΦ)2. (4.6)

The particle (4.5) thus propagates on the AdS2 × S3 background with the two-form flux.

It is straightforward to verify that (4.6) does not solve the vacuum Einstein-Maxwell

equations in five dimensions. Yet, one can consistently extend the configuration (4.6) by

other (matter) fields which all together provide a solution of an extended Einstein-Maxwell

system. Because a massive relativistic particle does not couple to those fields, any such

background is consistent.

Our first example is provided by the bosonic sector of the d = 5, N = 2 supergravity

interacting with one vector multiplet [30]4

S = −
∫
d5x
√
g

(
R+

1

2
e

2
3
ϕFnmF

nm +
1

2
e−

4
3
ϕGnmG

nm − 1

3
∂nϕ∂

nϕ

− 1

2
√

2g
εmnpqrFmnFpqBr

)
, (4.7)

where R is the scalar curvature, ϕ is a scalar field, and Fnm = ∂nAm − ∂mAn, Gnm =

∂nBm − ∂mBn. The corresponding equations of motion read

Rmn −
1

2
gmnR+ e

2
3
ϕ

(
FmkFn

k − 1

4
gmnF

2

)
+ e−

4
3
ϕ

(
GmkGn

k − 1

4
gmnG

2

)
−1

3

(
∂mϕ∂nϕ−

1

2
gmn∂kϕ∂

kϕ

)
= 0,

∇m
(
e

2
3
ϕFmn − 1√

2g
εmnpqrFpqBr

)
= 0,

∇m
(
e−

4
3
ϕGmr

)
+

1

4
√

2g
εmnpqrFmnFpq = 0, ∇2ϕ+

1

2
e

2
3
ϕF 2 − e−

4
3
ϕG2 = 0, (4.8)

where we denoted F 2 = FnmF
nm, G2 = GnmG

nm. One can readily verify that an extension

of (4.6) by

B = Bndx
n =

r√
2M

dt, ϕ = 0 (4.9)

does yield a solution of (4.8).

4We use the mostly minus signature convention for the metric gmn and set g = det gmn.
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Our second example is provided by a variant of the Einstein-Maxwell-dilaton system

governed by the action functional

S = −
∫
d5x
√
g

(
R+ U(ϕ)FnmF

nm − 1

2
∂nϕ∂

nϕ+ V (ϕ)

)
, (4.10)

where Fnm = ∂nAm − ∂mAn and U(ϕ), V (ϕ) are scalar potentials to be fixed below. In

this case the equations of motion read

Rmn−
1

2
gmnR+ 2U(ϕ)

(
FmkFn

k− 1

4
gmnF

2

)
− 1

2

(
∂mϕ∂nϕ−

1

2
gmn

[
∂kϕ∂

kϕ−2V (ϕ)
])

= 0,

∇m (U(ϕ)Fmn) = 0, ∇2ϕ+ U ′(ϕ)F 2 + V ′(ϕ) = 0.

(4.11)

The rightmost relation entering the second line in (4.11) and the fact that for A in (4.6)

the square of the field strength reads F 2 = − 2
M2 prompts one to choose the potential V (ϕ)

in the form

V (ϕ) =
2

M2
U(ϕ) + V0, (4.12)

where V0 is a constant. Then it is straightforward to verify that a constant value of the

scalar field ϕ

ϕ = ϕ0, (4.13)

along with (4.6) yield a solution of the full system (4.11), provided

V0 = − 3

2M2
(4.14)

and the potential U(ϕ) is chosen so as to obey the initial condition

U(ϕ0) =
3

4
. (4.15)

Note that, while a background geometry originating from the conformal mechanics

based on the (4, 4, 0)-supermultiplet does not seem to be unique, the d = 5, N = 2

supergravity interacting with one vector multiplet seems to be the most natural candidate.

In this case the supersymmetry doubling occurs near the horizon [30] and the number

of the supercharges in the N = 4 mechanics matches the number of the Killing spinors

characterizing the background geometry. A possibility to interpret the second example

above as a supersymmetric solution deserves a further investigation.

5 Conclusion

To summarize, in this work we reconsidered the issue of constructing an N = 4 supercon-

formal mechanics in one dimension with a special emphasis put on the role played by the

su(2)-subgroup. Possible realizations of su(2) in terms of bosonic and fermionic degrees of

freedom have been considered. It was demonstrated that arranging the su(2)-generators

so as to include both bosons and fermions one can construct novel dynamical realizations

– 10 –
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of the superalgebra su(1, 1|2). They can be interpreted as describing an interaction of the

N = 4, d = 1 supermultiplet of the type (0, 4, 4) with one of the supermultiplets of the

type (1, 4, 3), or (3, 4, 1), or (4, 4, 0). A relation between the N = 4, d = 1 superconformal

mechanics and the massive superparticles propagating near the black hole horizons has

been discussed. The background geometry associated with the superconformal mechanics

based on the (4, 4, 0)-supermultiplet has been identified with the near horizon limit of the

d = 5, N = 2 supergravity interacting with one vector multiplet.

There are several directions in which the present work can be extended. First of all,

it would be interesting to construct off-shell superfield formulations for the component

actions presented in section 3. In this respect it is important to understand whether the

coupling of the (1, 4, 3)-, and (0, 4, 4)-supermultiplets constructed in section 3 can be linked

to the superfield models presented in [31] (see also an earlier related work [32]). Note that

the field content of the systems presented in section 3 indicates that they might exhibit

hidden N = 8 superconformal symmetry (in this respect see also [31]). The latter issue

deserves a special investigation. A possibility to extend the present analysis to the case

of D(2, 1;α)-supergroup is worth studying as well (see a related recent work [33]). Our

analysis in section 4 did not cover the cases of the N = 4, d = 1 supermultiplets of the

type (1, 4, 3) and (2, 4, 2) because on the curved background side there is no room for the

rotation symmetry (the two-dimensional and three-dimensional backgrounds, respectively).

It is of interest to study an N < 4 superconformal mechanics associated with the d < 4

near horizon backgrounds.
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A Spinor conventions

Throughout the text SU(2)-spinor indices are raised and lowered with the use of the in-

variant antisymmetric matrices

ψα = εαβψβ, ψ̄α = εαβψ̄
β,

where ε12 = 1, ε12 = −1. Introducing the notation for the spinor bilinears

ψ2 = (ψαψα) , ψ̄2 =
(
ψ̄αψ̄

α
)
, ψ̄ψ =

(
ψ̄αψα

)
,

one gets

ψαψβ =
1

2
εαβψ

2, ψαχ̄β − ψβχ̄α = εαβ(χ̄ψ),

ψ̄αψ̄β =
1

2
εαβψ̄2, ψαχ̄β − ψβχ̄α = −εαβ(χ̄ψ).
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The Pauli matrices (σa)α
β are chosen in the standard form

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
,

which obey

(σaσb)α
β + (σbσa)α

β = 2δabδα
β , (σaσb)α

β − (σbσa)α
β = 2iεabc(σc)α

β ,

(σaσb)α
β = δabδα

β + iεabc(σc)α
β , (σa)α

β(σa)γ
ρ = 2δα

ρδγ
β − δαβδγρ ,

(σa)α
βεβγ = (σa)γ

βεβα , εαβ(σa)β
γ = εγβ(σa)β

α ,

where εabc is the totally antisymmetric tensor, ε123 = 1. Throughout the text we denote

ψ̄σaψ = ψ̄α(σa)α
βψβ. Our conventions for complex conjugation read

(ψα)∗ = ψ̄α,
(
ψ̄α
)∗

= −ψα,
(
ψ2
)∗

= ψ̄2,
(
ψ̄σaχ

)∗
= χ̄σaψ.

B Magnetic monopole field from su(2)

Let us consider the set of functions

J ′a = Ja +Ba(θ, ϕ),

with Ja given in eq. (3.2) above, and require J ′a to obey the structure relations of su(2).

This yields the system of the first order linear partial differential equations

∂ϕB2 − ∂θB3 cosϕ+ ∂ϕB3 cot θ sinϕ−B1 = 0,

∂ϕB1 + ∂θB3 sinϕ+ ∂ϕB3 cot θ cosϕ+B2 = 0,

∂θB1 cosϕ− ∂ϕB1 cot θ sinϕ+ ∂θB2 sinϕ+ ∂ϕB2 cot θ cosϕ−B3 = 0.

Multiplying the first equation by − cosϕ, the second equation by sinϕ, and taking the

sum, one gets

∂θB3 = ∂ϕ(B2 cosϕ−B1 sinϕ) ⇒ B2 cosϕ−B1 sinϕ = ∂θε(θ, ϕ), B3 = ∂ϕε(θ, ϕ),

where ε(θ, ϕ) is an arbitrary function. In a similar fashion, the sum of the first equation,

which is multiplied by sinϕ, and the second equation, which is multiplied by cosϕ, gives

∂ϕ(B1 cosϕ+B2 sinϕ+B3 cot θ) = 0 ⇒ B1 cosϕ+B2 sinϕ+B3 cot θ = λ(θ),

with arbitrary function λ(θ). It is then straightforward to verify that the third equation

entering the system above reduces to the ordinary differential equation

λ′(θ) + cot θλ(θ) = 0 ⇒ λ(θ) = e sin−1 θ,

where e is an arbitrary constant. At this stage, B1 and B2 can be found by purely alge-

braic means

B1 = e cosϕ sin−1 θ − ∂ϕε cot θ cosϕ− ∂θε sinϕ,

B2 = e sinϕ sin−1 θ − ∂ϕε cot θ sinϕ+ ∂θε cosϕ,

B3 = ∂ϕε.

Comparing these expressions with (3.2), one concludes that ε(θ, ϕ) generates a pure gauge

vector potential which can be discarded, while the rest yields (3.5).
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