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1 Introduction

The AdS/CFT correspondence has provided us a useful approach to describe strongly

interacting systems holographically through weakly coupled gravitational duals [1–3]. One

of the mostly studied gravity dual is the holographic superconductor, which is constructed

by a scalar field coupled to a Maxwell field in an AdS black hole background [4–6]. It

shows that the black hole becomes unstable and the scalar field condensates on the black

hole background when the Hawking temperature of a black hole drops below a critical

value. According to the holographic theory, this instability in the (d+1) dimensional AdS

black hole corresponds to a d dimensional metal/superconductor phase transition on the

boundary. Generally speaking, this phase transition belongs to the second order. Since then

a lot of holographic duals have been established in various gravity theories and the models

turns out to be quite successful in giving the qualitative properties of superconductivity.

Some other recent progress on holographic superconductors can be found in [7]–[26].

With a very complete holographic superconductor model in AdS black hole, it was

announced in [27] that the scalar operator as a function of the temperature is always

continuous. The instability of this gravity system corresponds to the second order phase

transition. Lately, it was stated in [28, 29] that the holographic superconductor with the

spontaneous breaking of a global U(1) symmetry via the Stückelberg mechanism allows

the first order discontinuous phase transition to occur. Some further studies were carried

out in [30–32, 49] by considering the matter fields’ backreaction on the background. It

was found in [32] that the light backreaction can trigger the first order phase transition

but the heavy backreaction suppresses the first order phase transition in the AdS black

hole background. Generally speaking, the phase transition is between normal state and

superconducting state. Very recently a ψ2 + ζψ6 Stückelberg mechanism was discussed in

the AdS soliton spacetime [50], which in particular admits new types of phase transitions

between superconducting states. So it is very interesting to extend this new Stückelberg

mechanism to the metal/superconductor system to explore the rich properties of holo-

graphic superconductors.
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The entanglement entropy is usually applied to study the degrees of freedom in strongly

interacting systems when other methods might not be available. Ryu and Takayanagi [33,

34] have presented a simple and elegant way to calculate the entanglement entropy of

a strongly interacting system from a gravity dual. The entanglement entropy has been

applied to study the properties of phase transitions in various gravity theories and proved

to be a good probe to give us new insights into the holographic superconductor models [35]–

[45]. In the AdS black hole background, Albash and Johnson observed in [46] that the

entanglement entropy as a function of temperature has a discontinuous slop at the transition

temperature Tc corresponding to the second order metal/superconductor phase transition.

In contrast, there is a jump in the entanglement entropy when allowing the first order phase

transition [46–49], which means that the entanglement entropy can be used to disclose the

order of phase transitions. When considering a new Stückelberg model with a ψ2 + ζψ6

term in the AdS soliton background [50], the solutions in particular admits richer structures

for the insulator/superconductor phase transition diagram. As a further step along this

line, it is of great interest to generalize the investigation in [50] to AdS black hole and

study general features of the metal/superconductor phase transitions through entanglement

entropy approach in such a ψ2 + ζψ6 Stückelberg holographic superconductor model.

At zero temperature, it was found in [51] that different energy states appear for the

scalar condensation in the AdS black hole background. Superconductor solutions corre-

sponding to different states were also mentioned with the behaviors of the scalar fields away

from the zero temperature limit [52]. When applying the discussion to holographic insula-

tor/superconductor system, different states will turn out by increasing the critical chemical

potential from zero to critical values with other parameters fixed [53]. It concluded in [53]

that the second and third states are less stable due to the oscillations of scalar field in the

radial direction and the first state is related to the superconductor solutions in the AdS

soliton spacetime [54]. It is interesting to extend the discussion to examine whether there

are different states in more general holographic superconductor models and also further

explore the stability of various possible states.

The next section is organized as follows. In part A, we introduce a Stückelberg holo-

graphic model in the four dimensional AdS black hole background. And in part B, we

discuss in detail the scalar condensation and the holographic entanglement entropy of the

system in superconductor phase. Part C is devoted to the stability of various solutions

with different energy states. We summarize and discuss our main results in section III.

2 A general model of superconductor in AdS black hole

2.1 Equations of motion and boundary conditions

We begin with a generalized Stückelberg Lagrange density containing a Maxwell field and

a scalar field,

L = R+
6

L2
− γ

[
1

4
FµνFµν + (∂ψ)2 +m2|ψ|2 +G(ψ)(∂p−A)2

]
, (2.1)
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where Aµ and ψ are the Maxwell field and a charged scalar field with mass m2, respectively.

−3/L2 is the negative cosmological constant, where L is the AdS radius which will be scaled

unity in our calculation. γ is the backreaction parameter describing the effects of matter

fields on the background. When γ → 0, the backreaction of the matter fields on the back-

ground becomes negligible and the metric solutions reduce to the pure AdS black hole space-

time. We will establish a general Stückelberg holographic model in AdS black hole by con-

sidering a simple form G(ψ) = ψ2+ζψn with n ∈ N , where ζ is the model parameter. With

the gauge symmetries A → A+∂Λ and p → p+Λ, we fix p = 0 in the following discussion.

The metric and other fields of interest are parameterized as follows:

ds2 = −g(r)e−χ(r)dt2 +
dr2

g(r)
+ r2(dx2 + dy2),

A = φ(r)dt, (2.2)

ψ = ψ(r).

With this ansatz, the Hawking temperature of the black hole is given by

TH =
g′(r+)e

−χ(r+)/2

4π
, (2.3)

where r+ corresponds to the horizon of the black hole satisfying g(r+) = 0.

We can obtain equations of motion from the action

χ′ + γ

[
rψ′2 +

r

g2
eχφ2G(ψ)

]
= 0, (2.4)

g′ −
(
3r

L2
− g

r

)
+ γrg

[
1

2
ψ′2 +

1

4g
eχφ′2 +

m2

2g
ψ2 +

1

2g2
eχφ2G(ψ)

]
= 0, (2.5)

φ′′ +

(
2

r
+

χ′

2

)
φ′ − 2G(ψ)

g
φ = 0, (2.6)

ψ′′ +

(
2

r
− χ′

2
+

g′

g

)
ψ′ − m2

g
ψ +

1

2g2
eχφ2G′(ψ) = 0, (2.7)

where G′(ψ) represents the derivative of ψ. Since the equations are coupled and nonlinear,

we have to solve these equations by numerically integrating them from the horizon out to

the infinity.

By considering behaviors of solutions at the horizon r+, we find that there are four

independent parameters r+, ψ(r+), φ
′(r+) and χ(r+) at the horizon. The scaling symmetry

r → ar, t → at, φ → aφ, g → a2g, (2.8)

can be used to set r+ = 1. These equations are also invariant under another scaling,

e−χ → b2e−χ, t → bt, φ → φ/b, (2.9)

which enable us to choose an arbitrary value of χ(r+). With this eq. (2.9), we set χ(r →
∞) = 0 to recover the AdS boundary.
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Near the asymptotic AdS boundary (r → ∞), the asymptotic behaviors of the scalar

and Maxwell fields are

ψ =
ψ−

rλ−

+
ψ+

rλ+
+ · · ·, φ = µ− ρ

r
+ · · ·, (2.10)

with λ± = (3±
√
9 + 4m2)/2, where µ and ρ can be interpreted as the chemical potential

and charge density in the dual theory respectively. When ψ(r) = 0, we get the analytic

solutions in normal phase, a Reissner-Nordstrom-AdS black hole, which is given by

g =
r2

L2
− 2M

r
+

γρ2

4r2
, χ = 0, φ = ρ

(
1

r+
− 1

r

)
, (2.11)

where M is the integration constant that can be interpreted as the mass of the black hole.

It is known that the black hole is unstable when the temperature T is smaller than a critical

temperature Tc. For low temperature T < Tc, a hairy black hole with ψ(∞) = 0 appears.

To get the hairy black hole, we will fix ψ− = 0 and the phase transition in the dual CFT

is described by the operator ψ+ =< O+ > in the following discussion. For m2 > −9
4 above

the BF bound [55], the second scalar operator ψ+ is always normalizable. For each fixed

value ψ(r+) at the horizon, we take φ′(r+) as the shooting parameter to search for the

solutions satisfying the boundary conditions ψ− = 0.

2.2 The scalar condensation in AdS black hole

It was stated that a ψ2 + ζψ6 Stückelberg mechanism brings richer physics in the holo-

graphic insulator/superconductor phase transitions in the AdS soliton spacetime [50]. In

the holographic metal/superconductor phase transition, we find the results are qualitative

similar when n > 5. So we will focus on the case of n = 6 in this paper similar to the

discussions in ref. [50] for simplicity. We start with studying the free energy of the system.

The free energy of the field theory is determined by the integral of the lagrange density

eq. (1) evaluated on-shell or F = −T S̃, where S̃ = 1
V

∫
LdV . However, this integration will

in general be divergent and suitable counterterms have to be added [12, 23]. The interesting

quantity is the difference in free energy between the superconductor and normal phases.

∆F = Fsuperconductor − Fnormal. (2.12)

We show the free energy as a function of temperature in figure 1 with γ = 0.1, m2 = −2

and various ζ. It can be seen from (a), (b) and (c) in figure 1 that, for the small model

parameters (ζ = 0, 0.2 or 0.3), ∆F decreases smoothly near the critical temperature Tc

indicating the second order phase transitions from normal state into superconducting state.

What’s more, in (c) the plot with ζ = 0.3, besides the second order phase transition at the

critical temperature Tc, the free energy develops a “swallow tail” at T ≈ 0.0506, a typical

signal for a first order phase transition, indicating that there is a new phase transition

within the superconducting phase. (d) of figure 1 shows that as ζ increases to 0.6, ∆F

develops a discontinuity in the first derivative of the free energy with respect to temperature

at critical temperature Tc, which implies that a strong Stückelberg mechanism with ζ = 0.6

triggers the first order phase transition.
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Figure 1. (Color online) The free energy as a function of T with µ = 1, m2 = −2, γ = 0.1 and

various ζ: (a) the case ζ = 0, (b) the case ζ = 0.2, (c) the case ζ = 0.3, (d) the case ζ = 0.6. The

blue dashed line in each panel corresponds to the free energy of a black hole in normal state. And

the green solid points in each panel indicate the critical phase transition point Tc between normal

and superconductor phase.

We could also detect the properties of phase transitions by studying the condensation

of the scalar operator for different values of ζ. In figure 2, we can see that the operator

〈O+〉1/λ+ is monotonically as a function of temperature in (a) with ζ = 0 and (b) with ζ =

0.2 around the phase transition point. However, in (c) as we choose the parameter ζ = 0.3,

the curve starts from 〈O+〉1/λ+ = 0 at the critical temperature Tc signaling a second order

phase transition, and a dump of the scalar operator appears at T ≈ 0.0506 corresponding

to the first order discontinuity in (c) of figure 1. In cases that the transition occurs at Tc,

the normal phase transfers into superconducting phase as we decrease the temperature.

When the phase transition is second order, we have checked the mean field exponents and

find the condensate approaches zero as < O+ >∝ (Tc − T )1/2. This is reasonable since

G(ψ) = ψ2 + ζψ6
≈ ψ2 (or independent of ζ) around the phase transition point Tc. For

example, the curves in (a), (b) and (c) of figure 2 correspond to < O+ >≈ 2.4(Tc − T )1/2

around Tc. As the model parameter ζ grows up, it can be seen in (d) of figure 2. that the

operator 〈O+〉1/λ+ starts from a finite value 0.49 at Tc, which means the transition from

the normal phase to the superconductor belongs to the first order phase transition.

For the rich phases structure in the boundary theory in figure 1, in the gravity side

we can use the gravity solotions to characterize the difference between these phases. In

figure 3, fixing the coordinate r = r0 = 5 (outside the horizon or r0 > r+), we depict
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Figure 2. (Color online) The scalar operator as a function of T . We take µ = 1, m2 = −2, γ = 0.1

and ζ varies as: (a) the case ζ = 0, (b) the case ζ = 0.2, (c) the case ζ = 0.3, (d) the case ζ = 0.6.

The red solid line in each panel corresponds to the superconductor phase.

the metric g(r0) as a function of temperature T. In (a), (b) and (c) of figure 3, we find

g(r0) has a discontinuous slop with respect to T at the temperature T = 0.05286, which

corresponding to the second order phase transition points in (a), (b) and (c) of figure 1.

Further, in the first order phase transition points in (c) and (d) between superconducting

phases in figure 1, we find jumps of g(r0). Then we concluded that the discontinuity in the

first derivative of g(r0) corresponds to the second order phase transition and the jump of

g(r0) corresponds to the first order phase transition.

In the following discussion, we pay our attention to the holographic entanglement

entropy(HEE) of the phase transition system. The authors in refs. [33, 34] have presented

a proposal to compute the entanglement entropy of conformal field theories (CFTs) from

the minimal area surface in gravity side. We consider a subsystem Ã with a straight strip

geometry described by − l
2 6 x 6

l
2 , 0 ≤ y ≤ L̃, where l is defined as the size of region

Ã, and L̃ is a regulator which is set to be infinity. Minimizing the area of hypersurface γÃ
whose boundary is the same as the stripe Ã, the entanglement entropy for a belt geometry

can be expressed as [46]

S =

∫ z∗

ε
dz

z2∗
z2

1√
(z4∗ − z4)z2g(z)

− 1

ε
, (2.13)

with
l

2
=

∫ z∗

ε
dz

z2√
(z4∗ − z4)z2g(z)

, (2.14)
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Figure 3. (Color online) The metric solution g(r0) as a function of T with r0 = 5, µ = 1,

m2 = −2, γ = 0.1 and various ζ: (a) the case ζ = 0, (b) the case ζ = 0.2, (c) the case ζ = 0.3, (d)

the case ζ = 0.6.

where z∗ satisfies the condition dz
dx |z∗ = 0 with z = 1

r and the UV cutoff r = 1
ε has been

taken into consideration.

Now we exhibit properties of the phase transition through behaviors of the entangle-

ment entropy. We plot the entanglement entropy as a function of the temperature T in

figure 4 with µ = 1, γ = 0.1 and various ζ. The blue dashed lines describe the HEE of the

normal phase as a function of temperature, while the red solid lines correspond to the HEE

of the superconducting phase. In (a) with ζ = 0 and (b) with ζ = 0.2 of figure 4, the holo-

graphic entanglement entropy decreases continuously as temperature decreases, and there

are discontinuous slops at the transition temperature Tc, which imply the phase transitions

at the critical temperature Tc are second order. In (c) with ζ = 0.3, the entanglement en-

tropy continuously decreases at phase transition point Tc indicating a second order phase

transition, and it also has a jump around T = 0.0506 which corresponds to the “swallow

tail” in free energy ∆F in (c) of figure 1 and the dump in the order operator in (c) of

figure 2, which implies a first order phase transition in the superconducting phase. When

we set the parameter ζ = 0.6 in (d), we can see that at the critical temperature Tc the en-

tanglement entropy develops a discontinuous jump implying a first order phase transition.

From above discussion, we note that the Stückelberg mechanism provides richer physics in

metal/superconductor phase transitions. The entanglement entropy can be used to distin-

guish the order of phase transitions in our general holographic superconductor model.
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Figure 4. (Color online) The entanglement entropy as a function of the temperature T for µ = 1

and l = 2. The blue dashed line in each panel corresponds to the entanglement entropy of a pure

AdS black hole. The red solid curves show the entanglement entropy of the superconductor phase.

The cases are: (a) ζ = 0, m2 = −2, γ = 0.1, (b) ζ = 0.2, m2 = −2, γ = 0.1, (c)ζ = 0.3, m2 = −2,

γ = 0.1 and (d) ζ = 0.6, m2 = −2, γ = 0.1.

According to the above discussions, we conclude that the Stückelberg mechanism trig-

gers the second order phase transition at Tc for small ζ. When we choose a larger ζ, an

additional first order phase transition may appear in the superconducting phase, whereas

the phase transition at Tc still corresponds to the second order. However, there is only the

first order phase transition at Tc for very large ζ. We define two parameters ζ̄ and ζ̃ as

threshold values, for ζ 6 ζ̃ the second order phase transition appears at the critical temper-

ature Tc. And for ζ̃ < ζ < ζ̄, the system experiences a second order phase transition at Tc

and an additional first order transition in the superconducting phase. When ζ > ζ̄, there is

only the first order phase transition at the critical temperature. Table 1 shows the values of

ζ̃ and ζ̄ for various m2 and γ. From the table, we obtain an approximate relation ζ̄ ≈ 2ζ̃. In

order to see the effects of the backreaction γ and mass m2 on the condensation more clearly,

we show ζ̃ and ζ̄ as a function of m2 with γ = 0.1 in the left panel of figure 5 and reach the

conclusion that a less negative mass makes the first order phase transition easier to happen

(or smaller threshold parameters ζ̃ and ζ̄). With a fixed m2 and various γ, the right panel

of figure 5 signals that strong backreaction promote the appearance of first order phase

transitions. From the pictures, we also mention that the relation ζ̄ ≈ 2ζ̃ holds very well.
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Figure 5. (Color online) The behaviors of the threshold values of ζ (red) and ζ̃ (blue). The left

panel corresponds to the case of γ = 0.1 and various m2. The right one shows the case m2 = −2

and various γ.

γ = 0.1,m2 = −2 γ = 0.2,m2 = −2 γ = 0.1,m2 = −1

ζ̃ 0.25 0.19 0.12

ζ 0.51 0.39 0.23

Table 1. The values of ζ̃ and ζ̄ for various m2 and γ.

We would like to give a glance at the effects of the scalar mass on the phase transition

from the equations of motion. Let us rewrite eq. (7) into the following form:

ψ′′ +

(
2

r
− χ′

2
+

g′

g

)
ψ′ −

[
m2 − 1

g
eχφ2

(
1 + 3ζψ4

) ]ψ
g
= 0. (2.15)

We consider the last term in the left side as the effective mass m2
eff(ψ) = m2 −

1
ge

χφ2
(
1 + 3ζψ4

)
. For ζ = 0, it returns to the model without Stückelberg mechanism.

For ζ above the threshold parameters, this term deforms the scalar field to prompt the

appearance of first order phase transition. When we choose a more negative scalar mass

m2, the effective mass is mostly dominated by the scalar mass. For a less negative mass

m2 ≈ 0, the parameter ζ will play a dominant role in the scalar condensation and we need

a smaller parameters ζ̃ and ζ̄ to trigger the first order phase transitions.

2.3 The stability of various solutions

For each value ψ(r+), we find discrete values φ′(r+) satisfying the boundary conditions

ψ− = 0. As we choose various ψ(r+), we obtained different families of solutions for ψ(r) that

satisfying the asymptotic boundary condition. The solutions can be labeled by the number

of times that ψ(r) vanishes. The plots in figure 6 show the scalar fields corresponding to the

first three states with γ = 0.1,m2 = −2, ζ = 0 and ψ(r+) = 0.1. The scalar field of the first

state in figure 6 starts from ψ(1) = 0.1 at the horizon and decreases monotonically to zero as
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Figure 6. (Color online) The behaviors of the scalar fields ψ(z) with z = 1

r
and ψ(1) = 0.1.

The three curves correspond to the solutions: the 1st state φ′(1) = 3.929 (Red), the 2nd state

φ′(1) = 7.809 (Green) and the 3rd state φ′(1) = 9.916 (Blue) with γ = 0.1, m2 = −2 and ζ = 0.
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Figure 7. (Color online) The condensation of the scalar operators. The left panel corresponds to

the case of γ = 0.1, m2 = −2 , Tc = 0.0149 and ζ varies as ζ = 0 (Red), ζ = 0.01 (Green), ζ = 0.02

(Blue). The right one shows the case γ = 0.1, m2 = −2 , Tc = 0.0041 and ζ varies as ζ = 0 (Red),

ζ = 0.003 (Green), ζ = 0.004 (Blue).

approaching the boundary. And the higher states of the green and blue curves correspond to

scalar fields with oscillations, which are similar to the case in AdS soliton background [53].

Now we turn to study behaviors of the scalar operator with γ = 0.1, m2 = −2 and

various model parameters ζ in figure 7. We find the Stückelberg mechanism can trigger first

order discontinuities in scalar condensation of all states. For the second state in the left

panel of figure 7 is with 0.01 < ζ̃ < 0.02 and the third state in the right panel of figure 7,

0.003 < ζ̃ < 0.004. Compared with the results ζ̃ = 0.25 of the first state in table 1, we

find the solutions with a lower state corresponds to a larger threshold model parameter ζ̃,

above which first order phase transitions will appear in the superconducting phase. That

is to say the superconductor solutions with higher states changes dramaticly with a small

perturbation of the model parameter ζ.

In order to study the stability of the states, we show the free energy of the systems

corresponding to different states with γ = 0.1, m2 = −2 and ζ = 0 in figure 8. We find

that the higher state corresponds to larger free energy. So we can label superconductor so-

lutions as the first, the second and the third energy states through various increasing grand
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Figure 8. (Color online) The picture is for the behaviors of free energy with respect to the

temperature with γ = 0.1, m2 = −2 and ζ = 0. The curves from bottom to top correspond to

the first (red), the second (green) and the third (blue) superconducting states. We have choose the

chemical potential µ = 1 in both states. The blue dashed line shows the free energy of the pure

AdS black hole. The black solid points correspond to the critical phase transition point between

normal and superconductor phase.

canonical free energy. The solution in (a) of figure 1, figure 2 and figure 4 corresponding

to the bottom red line in figure 8 has the lowest free energy and is thus the stable phase,

whereas the solutions with higher free energy are unstable.

3 Conclusions

We investigated a general class of holographic superconductors via Stückelberg mech-

anism in the background of AdS black hole. We obtained richer structure in the

metal/superconductor phase transitions. We observed that the model parameter coupled

with the scalar mass and backreaction can determine the order of phase transitions. We

found two threshold values ζ̃ and ζ̄ for each pairs of scalar mass m2 and backreaction pa-

rameter γ. When the model parameter satisfying ζ 6 ζ̃, there is only the second order phase

transition at Tc. If ζ̃ < ζ < ζ̄, the phase transition at Tc is still the second order. However,

an additional first order phase transition appears in the superconducting phase. When

ζ > ζ̄, it is the typical first order phase transition at the phase transition point Tc. We also

tried to disclose the properties of the phase transitions by analyzing the entanglement en-

tropy of the metal/suoerconductor system. We argued that the entanglement entropy serves

as a good probe to the order of the phase transitions and the jump of the entanglement en-

tropy would be a quite general feature for the first order phase transition in the AdS black

hole background. In addition, we examined effects of the scalar mass and backreaction on

the scalar condensation. We found that the less negative mass and stronger backreaction

make all types of first order phase transitions easier to happen. Furthermore, we arrived

at a relation ζ ≈ 2ζ̃ between the threshold parameters. With the shooting method, we ob-

tained various superconductor solutions corresponding to different energy states. At last,

we disclosed the stability of various energy states with the behaviors of the free energy. We
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concluded that the usually studied holographic superconductor solutions corresponding to

the lowest energy state is stable, whereas the higher energy state is unstable.
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