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1 Introduction and summary

1.1 Modular invariance in CFT

For conformal field theories in two dimensions, modular invariance — the invariance under

large conformal transformations in Euclidean signature — strongly constrains the spectrum

of the theory. Famously, Cardy showed that it determines the asymptotic density of states

at high energy universally [1]. In later work, modular invariance was used to obtain sublead-

ing corrections to this behavior [2], information about states of intermediate energy [3, 4],

and the phase diagram of the free energy [5]. What all these results have in common is that

they only use invariance under a single element of the modular group — S duality — which

states that the finite temperature partition function is invariant under T → 1/T . In this pa-

per we will study more generally the constraints placed by invariance under the full modular

group. We will do so by understanding better the structure of the space of non-holomorphic

modular-invariant functions, using a method inspired by the AdS3/CFT2 correspondence.

The partition function of a CFT2 is

Z(τ, τ̄) =
∑

qh−c/24q̄h̄−c/24, q = e2πiτ (1.1)

where the sum is over all states in the spectrum, and (h, h̄) are the left- and right-moving

conformal dimensions. These dimensions are normalized so that the vacuum state has

(h, h̄) = (0, 0). Since h+ h̄ and h− h̄ are the energy and angular momentum of the state,

respectively, Im τ can be regarded as the inverse temperature and Re τ as a thermodynamic

potential associated with angular momentum. The statement of modular invariance is that

Z(τ, τ̄) = Z(τ |γ , τ̄ |γ) (1.2)

for any element γ =
(
a b
c d

)
∈ SL(2,Z), where

τ |γ =
aτ + b

cτ + d
. (1.3)

This follows from the fact that Z(τ, τ̄) can be interpreted as the partition function of the

CFT on the torus z ∼ z+ 1 ∼ z+ τ , whose conformal structure is invariant under τ → τ |γ .

We will find it convenient to write the partition function as

Z(τ, τ̄) =

∫ ∞
0

dhdh̄ ρ(h, h̄) qh−c/24q̄h̄−c/24 (1.4)

where ρ(h, h̄) is a spectral density. Modular invariance then translates into a set of con-

straints on ρ(h, h̄). For a CFT with a discrete spectrum ρ(h, h̄) is a sum of delta functions,

but it is often useful to approximate ρ(h, h̄) by a continuous density of states. The goal

of the present paper is to study the space of modular invariant functions Z(τ, τ̄) and their

corresponding density of states ρ(h, h̄).
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1.2 AdS3/CFT2

The holographic correspondence [6] relates two dimensional conformal field theories to three

dimensional theories of gravity in AdS3. In this correspondence the CFT central charge is

c = 3l/2G (1.5)

where l is the AdS radius and G is Newton’s constant. It is natural to ask what modular

invariance corresponds to on the gravity side. The authors of [7] proposed the following:

modular invariance arises from the sum over saddle points of a gravitational path integral.

In particular, one can compute the torus partition function of the CFT by summing over

three dimensional Euclidean geometries whose asymptotic boundary is a torus. One such

geometry is Euclidean AdS3 with the Euclidean time direction periodically identified; this

is the “thermal AdS” geometry describing a finite temperature ensemble in AdS3. Another

such geometry is the Euclidean BTZ black hole [8]. There are in fact an infinite number

of such geometries, each labelled by an element of the modular group SL(2,Z)1 [9]. The

path integral therefore includes a sum over the modular group SL(2,Z), which renders the

partition function modular invariant.

From the CFT point of view, one way of understanding this sum is to start with the

contribution

qh−c/24q̄h̄−c/24 (1.6)

to the partition function of a state with dimension (h, h̄). On its own, this contribution is

not modular invariant. However, the sum over SL(2,Z)∑
γ∈SL(2,Z)

qh−c/24q̄h̄−c/24|γ (1.7)

is modular invariant, provided that the sum makes sense. Expressions like (1.7) are known

as Poincaré series. Starting with the original state (1.6), the non-trivial SL(2,Z) images

in the sum (1.7) will lead to new states in the spectrum. We seek to understand these new

states.

In the simplest case, one starts with the contribution |q|−c/12 = exp
{
cπ3 Im τ

}
of the

vacuum state. In the gravitational language, this is interpreted as the semi-classical con-

tribution to the partition function of thermal AdS3; with our normalization, empty AdS3

has energy −c/6, and Euclidean time is periodically identified with period 2π Im τ . The

sum over geometries then leads to the Poincaré series (1.7) with h = h̄ = 0. We would like

to interpret the new states arising from the SL(2,Z) sum as black hole states. To begin,

let us recall that a BTZ black hole of mass M and spin J can be interpreted as a CFT

state with (see e.g. [10])

h− c/24 =
1

2
(Ml − J), h̄− c/24 =

1

2
(Ml + J) . (1.8)

The black hole will have a smooth horizon only if it satisfies the cosmic censorship condition

|J | ≤ Ml. So a state can be interpreted as a black hole only if h and h̄ are both greater

1More precisely, the group in question is a subgroup of SL(2,Z). We will make this statement more

precise in section 3.
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Figure 1. The censored region P with ξ = c−1
24 , and the shifted energy and spin e = ∆ + ∆̄,

j = ∆− ∆̄.

than c/24. We will show that — up a a subtlety discussed below — the new states coming

from the SL(2,Z) sum do indeed have this property.

One important subtlety is that we only wish to interpret primary states as black

holes. Descendant states are interpreted as perturbative excitations built out of non-trivial

diffeomorphisms — known as boundary gravitons — applied to a primary state, which

could either be the vacuum or a black hole state. This will modify the above statements

somewhat. Indeed, each primary state will be dressed by an infinite tower of descendant

states, which must be added to the contribution (1.6) of that state to the partition function.

Including these states, a primary of dimension (h, h̄) will give a contribution

q∆q̄∆̄|η(τ)|2 (1.9)

to the partition function. Here

∆ = h− ξ, ∆̄ = h̄− ξ, ξ =
c− 1

24
(1.10)

are the shifted dimensions which include an additional contribution coming from descen-

dants. In fact, we will argue below that it is the states with ∆, ∆̄ positive which should be

interpreted as black holes, rather than those with h− c/24 and h̄− c/24 positive. Indeed,

equation (1.8) is valid only in the semi-classical (large c) limit, so a correction of this form

is expected due to one-loop effects. So this discrepancy can be interpreted as a shift of the

renormalized mass of the lightest BTZ black hole at one-loop.

To state our results more precisely, let us define a censored state as one contained in

the set

P = {(h, h̄) : h < ξ or h̄ < ξ} . (1.11)

These are the states which, in the gravitational language, cannot be interpreted as BTZ

black holes. These states will play a special role for modular invariant partition functions,

somewhat similar to that played by polar states in the theory of modular forms or weak

Jacobi forms. We will not call such states polar though, as this name is more natural for

states with h + h̄ < c
12 (i.e. those states which give a divergent contribution as τ → i∞).

States which are not in P will be called uncensored.
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One of our main results is that the Poincaré images will give a contribution to ρ(h, h̄)

which lies in the uncensored region. Thus we can really interpret them as black holes. On

a formal level this is easy to see. As we will explain in section 3, the Poincaré series (1.7) is∑
γ:c≥0,(c,d)=1

qh−c/24q̄h̄−c/24|γ . (1.12)

Consider this as a function of two independent complex variables τ and τ̄ . Since the only

γ in the sum with c = 0 is the identity element, the exponent remains finite in the limit

τ → i∞ for all images in the sum. This means that all of the new states which appear must

have h − c/24 ≥ 0. Once the contributions of the descendants are included, this becomes

∆ ≥ 0. The same argument holds of course for τ̄ and h̄. The problem with this argument

is that Poincaré series (1.7) is divergent and needs to be regularized. Regulating such a

sum is quite subtle and in some cases can change properties that one would naively expect

(see e.g. [11]). We will discuss the regularization in detail and show that it does not change

this basic property.

1.3 Partition functions and free energy

We can now state our main result. Given a primary state of weight (∆, ∆̄), we construct

a partition function Z∆,∆̄(τ) with the following properties:

• Z∆,∆̄(τ) is invariant under SL(2,Z).

• The spectrum ρ(h, h̄) of Z∆,∆̄(τ) is a continuous function of the energy h + h̄, and

delta function supported at integer values of the angular momentum h− h̄.

• If (∆, ∆̄) is uncensored, then the spectrum Z∆,∆̄(τ) has no censored states. If (∆, ∆̄)

is censored, then it is the only censored primary state in the spectrum.

• If (∆, ∆̄) is censored, −(∆ + ∆̄) is large enough, and |∆ − ∆̄| is not too large, then

the density of states in the spectrum is positive.

• If instead of a primary field we take the vacuum, then the spectral density ρ(h, h̄) is

continuous and the identity is the only censored primary state. Moreover, at large c

the density ρ(h, h̄) is positive with the exception of an O(1) number of states with

∆ = ∆̄ = 0.

We obtain Z∆,∆̄(τ) by computing the Poincaré series (1.7) explicitly. We will use a version

of the construction of [12], modified slightly to ensure that the density of states is positive.

From these properties various results follow. First, note that given any censored spec-

trum, by a linear combination of the above results we can always obtain a modular invariant

function with that particular censored spectrum. In this sense our results are an existence

proof. They are not, however, a uniqueness result: we will argue that in general there are

a great many modular invariant functions with a given censored spectrum.

It is useful to compare this to the case of holomorphic modular functions, which would

be relevant if we were studying the partition function of a chiral CFT or the elliptic genus
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of an N = 2 SCFT. As far as existence is concerned, the censored region is very similar to

the polar region in the case of holomorphic modular functions: for any given choice of polar

states, there is always a modular invariant function which has this polar spectrum. For

uniqueness, however, the situation is completely different: in the holomorphic case, the po-

lar part (in which we also include the constant term for convenience) fixes the modular func-

tion completely. For non-holomorphic modular functions this is not the case. To put it an-

other way, there are a great many non-holomorphic modular functions whose censored spec-

trum vanishes. A very simple example which will play a role later on is the Eisenstein series

E(τ, s) =
∑
γ

ys|γ . (1.13)

Of course, if we want to interpret our modular functions as partition functions of

physical theories, we must also demand that the density of states is positive. Ensuring this

is more subtle, and there is no reason to believe that an arbitrary censored configuration

will give a positive spectrum. In general, however, if there are not too many censored states

of high spin, we will show that the density of states is indeed positive. In particular for

diagonal theories — theories that only have scalar censored primary fields — the density

of states will be positive.

Our methods also allow us to determine certain features of the free energy from the

censored part of the spectrum. Let us begin by considering the holomorphic case, where the

free energy can be determined exactly from the polar part of the spectrum. The partition

function Z(τ) is a meromorphic function on the quotient H/SL(2,Z) whose only pole is at

τ = i∞. The polar part of the partition function takes the form Zpol(τ) =
∑c/24

k=1 a−kq
−k

for some constants a−k. To turn this polar part into a modular invariant function, we

perform the holomorphic version of the Poincaré series, known as a Rademacher sum. The

function Z̃pol(τ) so obtained still has polar part Zpol(τ). It follows that Z(τ)− Z̃pol(τ) is a

bounded, holomorphic function on the compact space H/SL(2,Z), hence it is a constant.

Thus the free energy is determined exactly from the Rademacher sum of the polar part.

In the non-holomorphic case we will proceed along similar lines, constructing the

Poincaré series of the censored part of Z(τ, τ̄). This Poincaré series will agree with the

original Z(τ, τ̄) up to a function which is bounded on H/SL(2,Z). However, because the

function is not holomorphic, it is not necessarily constant. In fact the space of bounded

modular functions is infinite dimensional. Nevertheless, we can still use the Poincaré series

to determine the free energy up to a function which is bounded as τ → i∞. In other words,

the Poincaré series determines the free energy up to a finite piece.

1.4 Pure gravity

These results have interesting implications for the potential existence of “pure” theories of

quantum gravity in AdS3, i.e. theories which contain only a metric and no other degrees

of freedom. In [12] the partition function of pure Einstein gravity was, under certain

plausible assumptions, shown to be precisely the Poincaré series starting with the vacuum

state described above. It was further argued that the resulting partition function does not

have a sensible quantum mechanical interpretation, as it cannot be interpreted as the trace
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over a discrete Hilbert space with positive norm. We can now refine this result, and show

that the resulting partition function is nonsensical in precisely two ways:

• The spectrum ρ(h, h̄) is continuous.

• The spectrum ρ(h, h̄) is not positive definite.

We will argue that both of these problems can be fixed by adding a correction to the

partition function which is subleading in the large central charge limit. In particular, this

new correction term can be interpreted as an intrinsically quantum mechanical contribution

to the partition function which is invisible in the semi-classical limit. While we are not

able to give a bulk interpretation for this additional contribution, this may suggest that a

small modification of the gravitational path integral could give a sensible quantization of

Einstein gravity in three dimensions.

1.5 Modular bootstrap and gaps

Our results connect to the conformal bootstrap program for the partition function started

in [3] and continued in [13, 14]. The ultimate goal of this program is to classify all modular

invariant partition functions that could come from 2d CFTs. This would give all possible

CFT spectra. One important feature of the spectrum is the size of the gap, i.e. the confor-

mal weight ∆1 := h + h̄ of the lowest lying non-vacuum primary. In [3], S-invariance was

used to bound the gap as a function of the central charge:

∆1 <
c

6
+ 0.474 . (1.14)

In [14] this bound was improved in a systematic way. For small c these bootstrap methods

converged rapidly, but for large c the problem becomes numerically more difficult. One

would like to find the strongest possible bound on ∆1, or at least to obtain a lower bound for

the bound. In holomorphically factorized theories, the product of two extremal partition

functions (as defined in [15]) gives a partition function whose lowest primary has ∆1 =
c

24 + 1. Holomorphic factorization is a very strong constraint, so we expect that general

theories might have larger gaps.

Our results give a lower bound for the bound: by constructing explicit examples of

partition functions with ∆1 = 2ξ, we show that no bound derived from modular invariance

alone can be stronger than that. In [16] it was already argued that no stronger bound than

2ξ can be obtained by requiring the partition function Z(τ) to be invariant under S. Our

results imply that imposing full SL(2,Z) invariance cannot improve on the situation.

1.6 Summary

Since the full Poincaré series is somewhat technical, we will begin by discussing a finite baby

version of the sum in section 2. This avoids all issues related to regularization, but still

exhibits many of the most important features of the full sum. We also use the opportunity

to discuss how our results relate to the bootstrap program. In section 3 we extend the

analysis of [12] to compute explicit expressions for the Poincaré series. In section 4 we

– 7 –
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∆1

cc = 1

ruled out

?

explicit constructions

2ξ

Figure 2. The space of modular invariant partition functions, plotting the conformal weight ∆1

of the lowest primary against the central charge c of the theory. The red region is ruled out by

conformal bootstrap methods. For the green region we construct explicit examples of partition

functions. The status of the white wedge between is still an open question.

compute the inverse Laplace transform of those expressions to obtain the spectrum, and

show that it satisfies the properties listed above. In section 5 we discuss in more detail the

implications of our results for the existence of pure gravity in AdS3.

2 Warmup: self-reciprocal functions

As a warmup, rather than considering the full modular invariance of the partition function,

we will consider the invariance under the S transformation S : τ → −1/τ . Functions which

are invariant under S are sometimes called self-reciprocal functions. In this case the “sum

over images” is finite (having only two terms) so there are no issues of regularization. It

turns out that most of the structure we find is the same as for the full Poincaré series.

2.1 The Cardy contribution

To make our computations a bit more specific, we consider a CFT which does not possess an

extended chiral algebra, and assume that the Virasoro representations do not contain null

states. This is the generic situation for a CFT with c > 1. A primary state of dimension

(h, h̄), along with all of its descendants, will give a contribution to the partition function

of the form2

Z(τ) = · · ·+ qh−ξ q̄h̄−ξ|η(τ)|−2 + . . . (2.1)

Here we have used the fact that the Ln descendants are enumerated by the infinite product∏
n(1−qn)−1 = q−1/24η(τ). Inspired by (2.1), we define the partition function of primaries,

Zp, by

Zp(τ) = Z(τ)y1/2|η(τ)|2 (2.2)

2For brevity we will typically denote the partition function Z(τ, τ̄) as Z(τ), even though it is not (unless

otherwise indicated) necessarily a holomorphic function of τ .
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where τ = x+ iy. Zp counts the number of primary states in the theory. For convenience

we define ∆ = h− ξ and ∆̄ = h̄− ξ, so that Zp(τ) is

Zp(τ) = y1/2

q−ξ q̄−ξ|1− q|2 +
∑

primaries

q∆q̄∆̄

 . (2.3)

In this expression we have separated out the contribution of the vacuum, which is SL(2,R)

invariant and hence annihilated by L−1 (leading to the factor of |1− q|2), from those of the

other primaries. Since y1/2|η(τ)|2 and Z(τ) are both modular invariant, Zp(τ) is modular

invariant as well. The contribution to Zp of a primary (h, h̄) is

F p
∆,∆̄

(τ) = y1/2q∆q̄∆̄ . (2.4)

The basic S-invariant function constructed from F p
∆,∆̄

is then given by the sum over

images:

Zp
∆,∆̄

(τ) = F p
∆,∆̄

(τ) + F p
∆,∆̄

(−1/τ) = F p
∆,∆̄

(τ) +

∫ ∞
0

d∆′d∆̄′ρ∆,∆̄(∆′, ∆̄′)F p
∆′,∆̄′

(τ) . (2.5)

Here ρ∆,∆̄ is the density of states coming from the image. As we will see below, the support

of ρ∆,∆̄ is indeed in R+ × R+. In other words, the image only contains uncensored states.

To compute ρ∆,∆̄ explicitly, introduce new variables (u1, u2) := (
√

2∆,
√

2∆̄) and define

fτ (~u) = y1/2eπiτu
2
1e−πiτ̄u

2
2 = F p

∆,∆̄
(τ) . (2.6)

We claim that f−1/τ is simply the two dimensional Fourier transform of fτ . This is straight-

forward to check using the Gaussian integral∫
d2ufτ (~u)e2πi~u·~v = y1/2

∫
du1e

πiτ(u21+2u1v1/τ+v21/τ
2)e−πiv

2
1/τ × (v1 → v2)

= y1/2|iτ |−1e−πiv
2
1/τeπiv

2
2/τ̄ = f−1/τ (~v) . (2.7)

Note that this argument works regardless of whether ~v is real or imaginary, since the

integral converges in both cases. Moreover the integral is over real ~u in both cases, so that

the density is non-vanishing only for ∆′, ∆̄′ > 0. We find

ρ∆,∆̄(∆′, ∆̄′) =
1

4
|u1u2|g(u1, u2) (2.8)

where for convenience we choose g to be even,

g(u1, u2) = cosh(2πiu1v1) cosh(2πiu2v2) . (2.9)

If we choose ∆, ∆̄ < 0, then ρ∆,∆̄ is positive, otherwise it oscillates.

At first sight, it is tempting to identify∑
(∆,∆̄)≤0

Zp
∆,∆̄

(τ) (2.10)

– 9 –
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as the full partition function of the theory; the sum here is only over those states in the

censored region P. This function is S-invariant, and the censored part of its spectrum

agrees with that of the full partition function. The uncensored part of its spectrum is then

fully determined by S-invariance. Unfortunately, (2.10) can not tell the full story. First,

it is not invariant under the full modular group. We will address this in the next section

by modifying Zp
∆,∆̄

(τ) to include the full sum over SL(2,Z) images, rather than just S.

More importantly, ρ∆,∆̄ describes a continuous, rather than discrete, spectrum. Thus, by

itself (2.10) does not describe a sensible CFT spectrum. Indeed, we will see that (2.10)

is not the only possible partition function whose censored part matches that of the full

CFT: there are many different partition functions whose censored parts agree, but whose

uncensored parts differ. Thus in the full CFT partition function ρ∆,∆̄ must be augmented

by additional terms which render the spectrum discrete.3

2.2 Non-uniqueness

We will now show that there are non-vanishing S-invariant functions whose censored spec-

trum vanishes. This means that, in particular, the simple inclusion of S-images of the

censored states does not completely determine the partition function.

A simple example is obtained by repeating the above analysis for a state with ∆, ∆̄ > 0.

More generally, take a partition function with an even spectrum g(~u). We can then compute

its S-transform:

Z(−1/τ) =

∫
R2

d2ug(~u)

∫
d2vfτ (~v)e2πi~u·~v =

∫
R2

d2vfτ (~v)ĝ(~v) (2.11)

where ĝ is the Fourier transform of g. To get Z(τ) = Z(−1/τ) we can require

g = ĝ . (2.12)

It follows that any even function in two variables that is invariant under Fourier transfor-

mation gives a modular invariant function with positive support.

This computation may at first seem paradoxical, since it seems to imply that the

modular transform of both censored and uncensored states only ever gives an uncensored

spectrum. This would clearly contradict the observation that there are invariant partition

functions with censored states. The resolution is that we have implicitly assumed that the

Fourier transform of g exists, which is not the case if, for instance, g is not bounded. The

resolution is that the modular transform of a censored state gives a density of states which

does not have a Fourier transformation, as can be seen from (2.9) directly.

This shows that the classification of modular invariant functions can be rather subtle.

Naively one could argue that the above computation tells us that invariant uncensored func-

tions are in one-to-one correspondence with Fourier-invariant functions. There is of course

a well-known eigenbasis of the Fourier transform with eigenvalues in, the Hermite functions

ψn. It thus seems enough to simply project on to Hermite functions of eigenvalue 1. Indeed

3The only exception to this is the case of a CFT which is fully holomorphically factorized, in which case

the sum over images becomes a Rademacher sum, which gives a discrete spectrum. This will be reviewed

in more detail below.
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we know that the ψn span the space L2 of square integrable functions. The problem is that

we also need to allow for spectra that are not square-integrable. The most obvious examples

of this are compact CFTs, where the spectrum is given by a sum of Dirac delta functions.

2.3 Connection to the modular bootstrap

We now describe the relation between this analysis and the modular bootstrap program

of [3, 13, 14]. Using modular bootstrap methods, an upper bound for the dimension of the

lowest non-vacuum primary field of a theory was obtained. We are primarily interested in

the case of large c, so it is safe to neglect the missing L−1 descendants and take the reduced

vacuum character to be Zτ (−ξ,−ξ). From (2.9) we can read off the image density gC

gC(~u) = cosh(2πu1

√
2ξ) cosh(2πu2

√
2ξ) . (2.13)

We call this the Cardy density, since it is the simplest continuation of the Cardy regime

all the way to 2ξ. Clearly ρC has a gap of size 2ξ, since

h+ h̄ =
u2

1 + u2
2

2
+ 2ξ ≥ 2ξ . (2.14)

The question is whether we can construct a density with a larger gap by subtracting a

function g from gC . To put it another way, if can we find a Fourier invariant function g

such that

gC − g =

{
0 : ~u ∈ D
≥ 0 : ~u ∈ Dc (2.15)

with the disc D = {u2 < x2}, then the new density gC − g will have a gap of size 2ξ+ 1
2x

2.

Mathematically, the spectrum is a distribution, so we need the (2.15) to hold when inte-

grated against test functions. The second line, for instance, means that for test functions

V = {ϕ(~u) ≥ 0 : ~u ∈ Dc} (2.16)

we have ∫
Dc

(gC − g)ϕ ≥ 0 . (2.17)

Define V − as the space of anti-selfdual even test functions in V , that is functions for which

ϕ̂ = −ϕ. From the condition on g we have that, for any ϕ ∈ V −,

0 =

∫
R2

gϕ =

∫
D
gCϕ+

∫
Dc

gϕ ≤
∫
R2

gCϕ , (2.18)

where the first equality comes from the fact that ϕ is anti-selfdual and the last inequality

from (2.15). The problem thus reduces to this: can we construct an anti-selfdual test

function ϕ which is positive outside D which contradicts (2.18), i.e. for which

(gC , ϕ) < 0 ? (2.19)

If we can, then 2ξ + 1
2x

2 is an upper bound for the gap. The entire approach thus reduces

to finding appropriate test functions. In practice the main issue is checking positivity.
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In fact, this approach is equivalent to [3, 14]: one way to choose test functions is

as linear combinations of Hermite functions, which are indeed a eigenbasis of the Fourier

transform. To ensure the positivity condition (2.16), we need to check positivity of Her-

mite polynomials. Those polynomials are the same as the ones obtained from differential

operators in the bootstrap literature, and we recover the same bound, which goes as 4ξ for

large c. In view of (2.14), one might hope that one could improve this bound using other

families of test functions. Unfortunately we were not able to do so.

3 Poincaré series for the partition function

We now consider the invariance under the full modular group,

Z(τ) = Z(γτ), γ ∈ SL(2,Z) . (3.1)

For a given state of dimension (∆, ∆̄) we introduce the energy E and angular momentum J

E = ∆ + ∆̄, J = ∆− ∆̄ ∈ Z . (3.2)

We will write τ = x + iy. Let us compute the Poincaré series Zp
∆,∆̄

(τ) that we obtain

from the contribution of a primary field of weight (∆, ∆̄) and its descendants. We want to

generalize (2.5) to a sum over the modular group SL(2,Z)

Zp
∆,∆̄

(τ) =
∑

γ∈SL(2,Z)

F p
∆,∆̄

(τ |γ) , τ |γ =
aτ + b

cτ + d
. (3.3)

The sum (3.3) is divergent for two reasons. First, since J ∈ Z, Zp is already invariant under

τ 7→ τ + 1. It is easy to remove this divergence: we should only sum over SL(2,Z)/Γ∞,

where Γ∞ is the stabilizer of the cusp at i∞ generated by T : τ 7→ τ + 1. The resulting

series however is still divergent. The problem is with the imaginary part of τ |γ :

Im (τ |γ) =
y

|cτ + d|2
, (3.4)

which goes to 0 for large c and d. So the sum diverges like
∑
|cτ + d|−1 and must be

regularized. A priori there are several possible ways to do so. We will use the one that is

suggested by the above remarks: the sum over ysq∆q̄∆̄,

E(τ, s,∆, ∆̄) =
∑

γ∈SL(2,Z)/Γ∞

(
ysq∆q̄∆̄

)
γ
, (3.5)

converges if Re (s) > 1. Since E(τ, s,∆, ∆̄) is analytic in s in that region, we can try to

analytically continue to s = 1/2, and define this to be the regularization of (3.3),

Zp
∆,∆̄

(τ) = E(τ, 1/2,∆, ∆̄) . (3.6)

It was proven in [12] (and we will show below) that the analytic continuation of (3.5) is

indeed regular at s = 1/2, so that this regularization scheme works. This regularization
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scheme is certainly not unique, so one should ask whether it is the right one to use for a

given physical problem. We will return to this in section 5. For the moment it is enough

for us to know that it gives a well-defined answer which is modular invariant.

Since the result is invariant under T we can write a Fourier expansion

E(τ, s,∆, ∆̄) = ysq∆q̄∆̄ +
∑
j

e2πijxEj(s, E, J) , (3.7)

where the first term corresponds to the identity element of SL(2,Z) and the Ej contain the

other images. The advantage of this approach is that we can find explicit expressions for

the Ej(s, E, J), which allow us to check their physical properties. This approach was first

described in [12], though our results will be a bit more detailed.

First, note that the sum over SL(2,Z)/Γ∞ in (3.5) can be written as a sum over

relatively prime integers c, d with c ≥ 0, or, defining d = d′ + ĵc, as a triple sum over

c ≥ 0, d′ ∈ Z/cZ, ĵ ∈ Z. Next we can perform a Poisson resummation, which gives a sum

over spins j of the Fourier transform of the summand. This gives (3.7), where Ej includes

a sum over c and d′. This in turn we expand in a power series in E, summing over m,

Ej(s, E, J) =

∞∑
m=0

Ej,m(s, E, J) =

∞∑
m=0

Ij,m(s, E, J)y1−m−sZj,J(m+ s) . (3.8)

The sum over c and d′ has been absorbed in the Kloosterman zeta function

Zj,J(m+ s) =

∞∑
c=1

c−2(m+s)S(j, J ; c) , (3.9)

which is a sum over Kloosterman sums

S(j, J ; c) =
∑

d∈(Z/cZ)∗

exp

{
2πi

jd+ Jd−1

c

}
. (3.10)

Note that Z converges if s is large enough. Appendix B contains additional information

about Kloosterman zetas and their analytic continuation. The Fourier integral

Ij,m(s, E, J) =
(2π)m

m!

∫ ∞
−∞

dTe−2πijTy(1 + T 2)−m−s(−E − iJT )m , (3.11)

also converges for large s. The Fourier transform from T to y comes from the Poisson

resummation mentioned above. We can compute Ej,m(s, E, J) by evaluating the integral

Ij,m and the Kloosterman Z explicitly for large s, and then continue them analytically to

s = 1/2 to obtain expressions for

Ej,m(E, J) := Ej,m(1/2, E, J) . (3.12)

We will now discuss the various cases in detail.
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3.1 J = 0, j = 0

Let us first discuss the case J = 0 and j = 0. From (3.11) we obtain

I0,m(s, E, 0) =
2mπm+1/2Γ(−1

2 +m+ s)

m!Γ(m+ s)
(−E)m . (3.13)

Note that for the m = 0 term the s regularization was needed, since it diverges for s = 1/2.

The Kloosterman zeta function can be evaluated explicitly as in (B.4), giving

E0,m(s, E, 0) =
ζ(2(m+ s)− 1)

ζ(2(m+ s))

2mπm+1/2Γ(−1
2 +m+ s)

m!Γ(m+ s)
(−E)my1−m−s . (3.14)

We can now take the limit s → 1
2 . As pointed out above, the only problematic term is

m = 0, where the integral I0,m diverges. This is cancelled by a zero of the Kloosterman

sum, since Γ(s− 1/2)/ζ(2s)→ 2. We find

E0,0(E, 0) = −y1/2 (3.15)

E0,m(E, 0) =
ζ(2m)

ζ(2m+ 1))

2mπm+1/2

mΓ(m+ 1/2)
(−E)my1/2−m (3.16)

where we have used ζ(0) = −1/2.

3.2 J = 0, j 6= 0

For the terms with non-vanishing spin j it is useful to define

Ij,m(s) = Ij,m(s,−1, 0) =
(2π)m

m!

∫ ∞
−∞

dTe−2πijTy(1 + T 2)−m−s (3.17)

so that Ij,m(s, E, 0) = (−E)mIj,m(s). Since j 6= 0, for any m ≥ 0 the integral converges for

s = 1/2, so there is no need for regularization. Defining

cm =
2m+1π2m+1/2

m!Γ(m+ 1/2)
=

23m+1π2m

(2m)!
, (3.18)

we obtain

Ij,m(1/2) = cm|j|mymKm(2πy|j|) , (3.19)

where Km is a modified Bessel function of the second kind. The Kloosterman zeta function

Zj,0 can be evaluated explicitly (B.3) and makes the m = 0 term vanish. We find

Ej,0(E, 0) = 0 (3.20)

Ej,m(E, 0) =
σ2m(j)

|j|2mζ(2m+ 1)
cm|j|m(−E)my1/2Km(2πy|j|) . (3.21)
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3.3 J 6= 0, j = 0

Let us now the case where the original state has spin J 6= 0. The terms with j = 0 can

again be evaluated explicitly. For J 6= 0 and j = 0 the integral is

I0,m(s, E, J)=
(2π)mJm

m!Γ(m+s)

(
cos
(mπ

2

)
Γ

(
1+m

2

)
Γ

(
m−1

2
+s

)
2F1

(
m−1

2
+s,−m

2
;

1

2
;
E2

J2

)
−m sin

(mπ
2

)
Γ
(m

2

)
Γ
(m

2
+ s
) E
J

2F1

(
1 −m

2
,
m

2
+ s;

3

2
;
E2

J2

))
,

(3.22)

and the Kloosterman zeta gives

Z0,J(m+ s) =
σ2(m+s)−1(J)

J2(m+s)−1ζ(2(m+ s))
. (3.23)

For m = 0 we again need to be careful about divergences. From (3.22) we obtain

E0,0(s, E, J) =
σ2s−1(J)

J2s−1ζ(2s)

√
πΓ(s− 1/2)

Γ(s)
y1−s →s→1/2 2σ0(J)y1/2 . (3.24)

For m > 0, we can set s = 1/2 directly to obtain

I0,m(E, J) =
2πm+1/2Jm

mΓ(m+ 1/2)

(
cos
(mπ

2

)
2F1

(
m

2
,−m

2
;
1

2
;
E2

J2

)
−m sin

(mπ
2

) E
J

2F1

(
1−m

2
,
m

2
+ 1/2;

3

2
;
E2

J2

))
=

2πm+1/2Jm

mΓ(m+ 1/2)
2F1

(
m,−m, 1

2
;
1 + E/J

2

) (3.25)

where in the last line we have used the quadratic transformation (28) in 2.1.5 of [17]. We

can write this in terms of Chebyshev polynomials of the first kind Tn(x),

Tn(x) = 2F1

(
− n, n;

1

2
;
1− x

2

)
=

(x−
√
x2 − 1)n + (x+

√
x2 − 1)n

2
= cosh(n cosh−1(x)) ,

(3.26)

where the last representation is only valid for x ≥ 1. In total we get

I0,m(E, J) =
2πm+1/2Jm

mΓ(m+ 1/2)
Tm(−E/J) , (3.27)

which gives

E0,0(E, J) = 2σ0(J)y1/2 (3.28)

E0,m(E, J) =
2πm+1/2σ2m(J)

mΓ(m+ 1/2)|J |mζ(2m+ 1)
Tm(−E/|J |)y1/2−m , (3.29)

where we have used that Tm(−x) = (−1)mT (x).
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3.4 J 6= 0, j 6= 0

Using (3.17) we can write

Ij,m(s, E, J) =

(
−E + J(2πj)−1 d

dy

)m
Ij,m(s) . (3.30)

This is allowed because for s ≥ 1/2 and m ≥ 1 the integral and its derivatives converge

absolutely. Again we can set s = 1/2 without any convergence issues. Unfortunately we

are no longer able to simplify the Kloosterman zeta further. Moreover for m = 0, we need

to continue Zj,J(s) analytically to s = 1/2. As we discuss in appendix B, the continuation

never has a pole at s = 1/2, so that this regularization gives indeed a finite result. We obtain

Ej,m(E, J) = Zj,J(m+ 1/2)cm|j|my1/2−m
(
−E + J(2πj)−1 d

dy

)m
ymKm(2πy|j|) . (3.31)

4 Inverse Laplace transforms and the spectrum

We will now describe the spectrum of primary states which come from the modular image

of a given primary of dimension (∆, ∆̄). We will write the primary counting partition

function Zp
∆,∆̄

coming from the Poincaré images of the (∆, ∆̄) state as

Z∆,∆̄(τ) = |η(τ)|−2

q∆q̄∆̄ +
∑
j

∫ ∞
0

deρ(e, j)e2πixje−2πye

 . (4.1)

Here e and j are the energy and angular momentum of the new states coming from Poincaré

series, while E and J are used to denote the energy and angular momentum of the original

“seed” primary state. The density of states ρ(e, j) is related to Ej(1/2,∆, ∆̄) by an inverse

Laplace transform

y−1/2Ej(1/2, E, J) =

∫ ∞
0

dee−2πyeρ(e, j) , (4.2)

or, using the decomposition into m,

y−1/2Ej,m(E, J) =

∫ ∞
0

dee−2πyeρj,m(e) , (4.3)

where

ρ(e, j) =
∞∑
m=0

ρj,m(e) . (4.4)

So we need to find the inverse Laplace transform of y−1/2Ej,m. In this section we will explic-

itly compute ρ(e, j) and prove that it satisfies the properties claimed in the introduction.

Our goal is to show that all new primaries obtained from the Poincaré series satisfy

cosmic censorship, that is

ρ(e, j) = 0 if |j| > e (4.5)
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for any E and J . This is already visible from the asymptotic behavior of the Ej,m(E, J).

The Laplace transform of a function ρ(e, j) which vanishes for e < j decays as e−2πjy for

y →∞. The asymptotic behavior of the Ej,m is given by the Bessel function

Ej,m ∼ Km(2πy|j|) ∼ e−2πy|j| , (4.6)

from which we expect that the ρj,m(e) should satisfy (4.5). This will be shown explicitly

below.

We also want to check positivity, i.e. under what condition a primary contributes only

positive terms to the spectral density ρ(e, j). This question is more difficult to answer.

We will show that, after a minor modification of the regularization scheme, for −E large

enough and |J | not too big, the contributions to the spectral density are indeed positive.

4.1 Spinless primary fields J = 0

For j = 0, using

L−1(y−m) = (2π)m
em−1

(m− 1)!
(4.7)

the ρ0,m are:

ρ0,0 = −δ(e) , ρ0,m = 2m−1 ζ(2m)

ζ(2m+ 1))
cm(−E)mem−1 . (4.8)

For j 6= 0 we need to find the inverse Laplace transform of modified Bessel functions. It

is useful to define the variable s = 2πy|j|, and its Laplace dual variable t = e/|j|. We

then denote the Laplace transform as h̃(s) = L(h(t)) =
∫∞

0 dth(t)e−st, so that ρ(e) =

|j|−1L−1(y−1/2Ej,m)(e/|j|). We can then use equation (12) in section 5.15 of [18] to write

L−1(Km(s)) = fm(t) with

fm(t) =

{
0 : 0 < t < 1

(t2 − 1)−1/2 cosh(m cosh−1(t)) : 1 < t
(4.9)

Note that we can also express this in terms of Chebyshev polynomials Tn(x) defined

in (3.26). It follows that

ρj,0(e) = 0 , ρj,m(e) =
σ2m(j)

|j|2mζ(2m+ 1)
cm|j|m−1(−E)mfm(e/|j|) . (4.10)

Again from the form of fm it follows that ρj,m satisfies (4.5).

4.2 Positivity

Let us now discuss the positivity of the spectrum. From the expressions above we see that

if we choose E < 0, i.e. a primary state in the censored region, then all the individual

contributions ρj,m other than ρ0,0 are positive. Here we have used that both Γ and ζ are

positive for the arguments given, and that σ2m(j) = σ2m(−j) ≥ 0. The only problem is

ρ0,0, which gives minus a delta distribution at the origin.
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We can compensate for this by adding a primary field with e = 0 and j = 0. A

modular invariant way of doing so is, for instance, to add the partition function of a free

boson compactified on an S1 at the self-dual radius:

Z =
1

|η(τ)|2
∑
k,l∈Z

q(l+k)2/4q̄(l−k)2/4 . (4.11)

We know that this is modular invariant and has manifestly positive coefficients. Moreover

all primary fields in this partition function have ∆, ∆̄ ≥ 0, so they lie in the uncensored

region. The primary l = 0, k = 0 then exactly cancels the delta distribution, so that the

total sum has positive spectrum.

4.3 Primaries with spin J 6= 0

Let us now turn to primaries with spin. For j = 0 it is again straightforward to invert the

Laplace transform to obtain

ρ0,0 = 2σ0(J)δ(e) ρ0,m =
σ2m(J)

|J |mζ(2m+ 1)
cmTm(−E/|J |)e−1+m . (4.12)

Clearly this satisfies (4.5). Positivity on the other hand depends on the Chebyshev poly-

nomials Tm(−E/|J |). We can use the fact that Tm(x) ≥ 0 for x ≥ 1. It follows that

ρ is indeed non-negative as long −E ≥ |J |. If |J | is outside this range the Chebyshev

polynomials oscillate and determining positivity is more subtle.

Next we need to deal with j 6= 0. Using again the variables s = 2πy|j| and t = e/|j|,
define

νj,m(e) = L−1

(
s−m

(
−E + sgn(j)J

d

ds

)m
smKm(s)

)
, (4.13)

so that

ρj,m(e) = Zj,J(m+ 1/2)cm|j|m−1νj,m(e) . (4.14)

Let us now compute νj,m. Without loss of generality we can take j > 0, since otherwise we

choose −J . We define the differential operator Ds

s−m(−E + J∂s)s
m = −E + J(∂s +ms−1) =: Ds , (4.15)

so that we can write (4.13) as νj,m = L−1(Dm
s Km(s)). Next, we compute the inverse

Laplace transform of Ds by

L−1
(

(−E + J(∂s +ms−1))h̃(s)
)

= (−E − Jt)h(t) + Jm

∫ t

0
h(t′)dt′ =: Dth(t) (4.16)

where h̃ is the Laplace transform of the function h. The Laplace transformation has thus

turned the differential operator Ds into a integral operator Dt. We then have

νj,m(t) = Dm
t L−1(Km(s)) = Dm

t fm(t) . (4.17)

From (4.16) we see that if the function h(t) vanishes for t < 1, so does Dth(t), from which

it follows that indeed νj,m(e) = 0 for |j| > e. This establishes (4.5).
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To check positivity, let us compute νj,m somewhat more explicitly. Since all the func-

tions involved vanish for t < 1, we can introduce a new variable coshu = t such that

fm(u) =
coshmu

sinhu
Θ(u) (4.18)

where Θ(u) is the Heaviside step function. In the new variable, Dt acts as

Dth(u) = (−E − J coshu)h(u) + Jm

∫ u

0
du′ sinhu′h(u′) . (4.19)

We can then evaluate

Dtfk(u) =

(
−E cosh ku

sinhu
− J

sinhu

(
coshu cosh ku− m

k
sinhu sinh ku

))
Θ(u)

= −Efk(u)− Jfk−1(u)− J

2

(
1− m

k

)
(fk+1(u)− fk−1(u)) (4.20)

From this and (4.17) it follows that

νj,m(e) =
m∑
k=0

akfk(e/|j|) , (4.21)

for some coefficients ak which are polynomials in E and J . To check positivity, we need

the first few leading terms in −E,

νj,m(e)=(−E)mfm−m(−E)m−1Jfm−1+J
2(−E)m−2m

4
((2m−1)fm−2−fm)+O((−E)m−3) .

(4.22)

This follows from

Dk
t fm = (−E)kfm−kJ(−E)k−1fm−1+J2(−E)k−2 k(k − 1)

4(m− 1)
((2m− 1)fm−2 − fm)+O(J3) ,

(4.23)

which can be checked by recursion.

Let us now check that (4.14) is positive. There are two separate issues here, namely

positivity of νj,m and positivity of the Kloosterman zeta Zj,J(m+ 1/2). For the first note

that fm(e/|j|) ≥ fn(e/|j|) for m > n. If we choose −E much larger than J , from (4.22) we

conclude that the leading term dominates,

νj,m(e) ' (−E)mfm(e/|j|) , (4.24)

which we know is positive. As for the Kloosterman zeta, for m ≥ 1 by the remarks in

appendix B we know that Zj,J(m+1/2) is always positive. For m = 0 the situation is more

subtle since we need to continue the Kloosterman zeta analytically. It is thus conceivable

that the term with m = 0 is negative. We can show however that the combined contribution

of the m = 0 and the m = 2 term is positive. For this we use the bound

|Zj,J(1/2)| ≤ |j|2KJ (4.25)

from the appendix. The total contribution of the two terms is

ρj,0(e) + ρj,2(e) ≥ 1

2
c2|j|νj,2(e)− c0KJ |j|νj,0(e) ' |j|

(
1

2
c2(−E)2f2(e/|j|)− c0KJf0(e/|j|)

)
(4.26)

which for large enough −E is positive for all j.
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4.4 The vacuum contribution

So far we have checked that for −E large enough, the contribution of a primary field is

positive. Let us now investigate the contribution of the vacuum. This is actually slightly

different from the other primaries, due to the vanishing of the L−1 descendants. The

vacuum contribution to the primary partition function is

q∆q̄∆̄(1− q − q̄ + qq̄) (4.27)

with ∆ = ∆̄ = − c−1
24 = −ξ. Because of the missing L−1 descendants there are potential

negative contributions to the primary spectrum. We will now show that for c large enough,

the total spectrum is still positive. Setting E = −2ξ, we need to sum the contributions

ρvac(e, j) = ρ−2ξ,0 − ρ−2ξ+1,1 − ρ−2ξ+1,−1 + ρ−2ξ+2,0 . (4.28)

Let us first check the contributions to the j = 0 states. In this case we get

ρvac0,0 = −6δ(e) (4.29)

and

ρvac0,m =
(
ζ(2m)((2ξ)m + (2ξ − 2)m)− 4 · 2−mTm(2ξ − 1)

) 2m−1cm
ζ(2m+ 1)

em−1 . (4.30)

Using ζ(2m) > 1 and the fact that xm + (x− 2)m− 2−m+2Tm(x− 1) ≥ 0 for x ≥ 1, we find

that ρ0,m is indeed positive for ξ ≥ 1
2 . In fact for large ξ we expand the bracket

2−2m(2(2ξ)m − 2m(2ξ)m−1) +
1

2
m(2m− 1)(2ξ)m−2 + . . . (4.31)

The sum over the first term is exponentially supressed, and the second term gives the

expected Cardy behavior ρvac(e, 0) ∼ exp(2π
√

8ξe).

Next consider j 6= 0. From (4.10) and (4.14), the total contribution is

ρvacj,m(e) = cm|j|m−1
(
Zj,0(m+ 1/2)

(
ν−2ξ,0
j,m (e) + ν−2ξ+2,0

j,m (e)
)

− Zj,1(m+ 1/2)ν−2ξ+1,1
j,m (e)− Zj,−1(m+ 1/2)ν−2ξ+1,−1

j,m (e)
)
. (4.32)

The situation is more involved than for j = 0. In particular, it is no longer true that every

single term ρvacj,m(e) is positive. We will argue, however, that the sum over m is positive.

The reason this is possible is that, unlike the j = 0 case, for any value of e the fm(e/|j|)
are monotonically growing in m. So it is possible for terms with large m to dominate the

spectrum everywhere. For j = 0 this argument would have failed since em−1 only grows

monotonically if e > 1, so terms with small m can dominate for small e.

For ξ large, due to the prefactor cm, the sum will peak at m ∼ ξ1/2. For large m we

have Zj,J(m+ 1/2) = 1 +O(4−m−1/2), so at the peak of the sum the subleading terms are

suppressed exponentially as ∼ 4−ξ
1/2

. We will thus only keep the leading term. Using (4.22)

we find that the first two terms cancel, and the third term is positive,

ρvacj,m(e) = cm|j|m−1
((

2ξ)m − 2m(2ξ)m−1 + 2m(m− 1)(2ξ)m−2
)
fm
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+ (−2(2ξ)m + 2m(2ξ)m−1 −m(m− 1)(2ξ)m−2)fm − (2ξ)m−2m

2
((2m− 1)fm−2 − fm)

)
= cm|j|m−1(2ξ)m−2m(m− 1/2)(fm − fm−2) +O(ξm−3) . (4.33)

Since fm > fm−2 this is indeed positive.

4.5 Asymptotic behavior and comparison to Cardy

Finally let us compare our results with the usual Cardy results. We have

ρ∆,∆̄ ∼ exp(2π
√
−4∆∆′) exp(2π

√
−4∆̄∆̄′)

= exp(2π
√
−(E + J)(e+ j)) exp(2π

√
−(E − J)(e− j)) (4.34)

For spinless primaries we we can approximate the Poincaré series expression for −Ee large

enough as

ρ(e, 0) =

∞∑
m=1

ρ0,m ' (2e)−1 exp(2π
√
−4Ee) , (4.35)

which indeed agrees with (4.34). This also works for j 6= 0 but |j| � e, where we can

evaluate (4.10) using fm(t) ∼ (2t)m−1 and σ2m(j) ∼ j2m for large m to get

ρ(e, j) ∼
∑
m

23m+1π2m

(2m)!
|j|m−1fm(e/|j|) ∼ exp

(
2π
√
−2E

√
e+

√
e2 − j2

)
(4.36)

which agrees with (4.34).

Note that for a generic CFT, the Cardy behavior becomes valid only for ∆� c. In our

case for large c the behavior actually becomes valid for ∆, ∆̄ ∼ 1 already. Not surprisingly,

our partition functions with a minimal censored spectrum give an extreme example of the

extension of the Cardy regime discussed in [5].

5 Pure gravity and Farey tails

The Poincaré sum has a physical interpretation in AdS3 gravity. It is the sum over all the

saddle points of the classical Euclidean action. Each saddle is a Euclidean continuation of

a particular BTZ black hole. In the case of pure gravity — gravity without any additional

degrees of freedom — the full partition function should thus be given by the Poincaré series

of (4.27) [12].4 This sum is divergent and must be regularized. One possible regularization

was presented in section 3. Let us denote the answer so obtained by ZPpure. As was pointed

out in [12], ZPpure cannot be the partition function of a healthy dual CFT for two reasons.

First, it has a continuous spectrum. Second, it has a negative density of states at e = 0.

However, the regularization scheme we have chosen is not unique. In this section we will

ask whether there is another physically sensible way to regularize the sum which gives a

different answer, Zpure, which does not have these problems.

4This statement relies on the argument of [12] that (4.27) gives the full contribution to the partition

function of thermal AdS, at all orders in perturbation theory in 1/c. In other words, the perturbative

partition function is one-loop exact. The other terms in the Poincaré series give non-perturbative (instanton)

contributions.
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We begin by noting that there is another very natural approach to regularizing the

sum, already discussed in [12]. Consider the Laplace operator on H,

∇2 = −y2(∂2
y + ∂2

x) = Im (τ)2∂τ∂τ̄ . (5.1)

It is straightforward to show that ∆ is invariant under SL(2,Z). Moreover the Poincaré

series E(τ, s,∆, ∆̄) satisfies the following recursion relation in s,

(∇2− s(1− s))E(τ, s,∆, ∆̄) = −2π(∆ + ∆̄)sE(τ, s+ 1,∆, ∆̄) + (2π)2∆∆̄E(τ, s+ 2,∆, ∆̄) .

(5.2)

If s is such that∇2−s(1−s) is invertible, that is if λ = s(1−s) is not in its spectrum, then we

can use (5.2) to define the analytic continuation recursively: starting out with s such that

the right hand side converges, we obtain E(s) by successively applying (∇2 − s(1− s))−1.

The success of this procedure thus depends on the spectrum of∇2, which in turn depends on

space of functions on which we define its action. We review some features of the spectral the-

ory of∇2 in appendix A. It turns out that the spectrum is discrete on the space L2 of square

integrable functions on H. For such functions this recipe for analytic continuation gives

something finite and unique away from a discrete set of points in the s-plane. For ∆, ∆̄ < 0,

however, E(τ, s,∆, ∆̄) /∈ L2. For such functions it turns out that the Laplacian is not in-

vertible for any value of s, so that this regularization scheme does not give a unique answer.

To proceed, let us discuss physically what properties we should require of our regu-

larized partition function Zpure. We certainly want it to be modular invariant. Since we

are considering pure gravity, we also want no new censored states in the spectrum. This

implies that Zpure − ZPpure does not grow exponentially for y → ∞. Note that we cannot

exclude polynomial growth here. Finally note that

(∇2 − 1/4)Zpure (5.3)

is an actual physical observable which gives a finite result without any regularization. It is

the expectation value of the stress tensor, integrated over the torus. We thus require that

(∇2 − 1/4)(Zpure − ZPpure) = 0. This, together with the behavior at y → ∞, implies that

Zpure differs from ZPpure at most by a Maass form. As we discuss in appendix A, the only

Maass form with eigenvalue 1/4 is the Eisenstein series Ê(τ, 1/2). The addition of this

term to ZPpure, however, is not enough to compensate the negative term (4.29), much less

to make the spectrum discrete. This shows that there is no way to regularize the Poincaré

series which gives a healthy pure gravity partition function Zpure.

It is important to note, however, that ρpure only fails to be physical at subleading order

in c. The leading O(c) behavior is perfectly fine. As noted in section 4.2, we can easily

remove the negative term (4.29) by adding an O(1) number of primary fields. Likewise, by

shifting the weights of all states by O(1), one could obtain a modular invariant partition

function with discrete spectrum. We conclude that it is possible to find a partition function

Z ′pure which is modular invariant, has a positive discrete spectrum, no uncensored states

other than the vacuum descendants, and which differs from the Poincaré series ZPpure only

by terms which are subleading in the large central charge (i.e. bulk semi-classical) limit

Z ′pure −−−→c→∞
ZPpure +O(1) . (5.4)
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The existence of such partition functions is a central result of this paper.

TheseO(1) terms should be regarded as intrinsically quantum mechanical contributions

to the sum over geometries.5 They are distinct from the saddle point contributions to the

partition function, which have the feature that they are dominant in some region of moduli

space and exponentially subleading in other regions of moduli space. The new O(1) pieces

are sub-dominant everywhere in moduli space, and — since they are finite in the large c

limit — cannot be interpreted as contributions from semi-classical saddles. They might,

for example, come from the contribution to the path integral of a new saddle point with

Planckian curvature. Unfortunately, we not know how to study such saddles, nor do we

know of a principle which would allow one to determine the O(1) pieces uniquely. We also

note that the existence of this Z ′pure does not guarantee the existence of a corresponding

CFT. Should such a CFT exist, however, it could be interpreted as the holographic dual

of pure AdS3 gravity in the semi-classical limit.
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A Harmonic analysis

A.1 Mass forms

We will follow [20, 21]. Let H be the upper half plane such that Im (τ) > 0. It has a

natural SL(2,Z) invariant metric

ds2 = y−2(dx2 + dy2) . (A.1)

A modular function is a function f : H→ C such that

f(γτ) = f(τ) ∀γ ∈ SL(2,Z) . (A.2)

Let us call the space of such functions A. There is a natural inner product on the space of

modular functions,

〈f, g〉 =

∫
F
f(τ)ḡ(τ)y−2dxdy (A.3)

where the integral is over a fundamental region F . The space of functions L2 of square

integrable functions is a Hilbert space. Unfortunately most of the functions we consider

5Similar correction terms appear when one tries to study the partition function of pure gravity at small

central charge [19]. In this case, deviations from the semi-classical (large c) results appear because the

Virasoro representations develop null states at small c. It seems unlikely that a similar phenomenon could

be responsible for the O(1) contributions arising at large c, however.
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are not in L2. Clearly any function with a polar part diverges as y → ∞. However, even

when we eliminate the polar part there is no guarantee that the resulting function will be

square-integrable due to the prefactor y1/2 coming from the descendants. The contribution

of the a constant function for instance diverges logarithmically.

Nevertheless let us proceed with the analysis. The Laplace operator

∇2 = −y2(∂2
y + ∂2

x) = −Im (τ)2∂τ∂τ̄ (A.4)

is invariant under SL(2,Z), and symmetric with respect to the inner product. A function

f ∈ A which is an eigenfunction of the Laplace operator

(∇2 − λ)f = 0 , λ = s(1− s) , (A.5)

is called an automorphic Maass form. Let us denote by As the space of Maass forms with

eigenvalue λ = s(1− s). Ultimately the goal is thus to decompose modular functions into

Maass forms. Let us thus analyze the eigenfunctions of ∇2.

A.2 Eisenstein series

One class of such eigenfunctions can be constructed from Eisenstein series. Take ψ a

smooth function on R+. We then consider the Poincaré series

E(τ |ψ) =
∑
γ

ψ(Im (γτ)) , (A.6)

which converges absolutely if

ψ(y)� y(log y)−2 y → 0 . (A.7)

If we choose ψ(y) = ys with Re (s) > 1 then we obtain the Eisenstein series

E(τ, s) =
∑
γ

(Im (γτ))s . (A.8)

For Re (s) < 1 we can use analytic continuation. Clearly E(τ, s) is an eigenfunction of ∇2

of eigenvalue s(1− s), i.e. it is a Maass form. It is however not square integrable. For our

purposes it is actually more useful to consider the functions [22]

Ê(τ, s) = (2Λ(1/2))−1Λ(s)E(τ, s) , Λ(s) = π−sΓ(s)ζ(2s) , (A.9)

which are clearly still in As. They are regular except for simple poles at s = 0 and s = 1,

and their Fourier expansions have the explicit expressions

2Λ(1/2)Ê(τ, s) = Λ(s)ys+Λ(1−s)y1−s+2y1/2
∞∑
j=1

js−1/2σ1−2s(j)Ks−1/2(2πijy) cos(2πjx) .

(A.10)

In particular for s = 1/2 we have

Ê(τ, 1/2) = (γ − log(4π))y1/2 + y1/2
∞∑
j=1

σ0(j)K0(2πjy)(e2πijx + e−2πijx) (A.11)
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where we have used that 2Λ(1/2) = γ − log(4π) with γ the Euler constant.

We are looking for a spectral decomposition of the space L2, that is square integrable

modular functions. To this end it is useful to define various subspaces. First define B the

space of smooth bounded modular functions, which is dense in L2. Next consider Eisenstein

series where ψ is compactly supported in R+, so that E(τ |ψ) is bounded on H and hence

in B. We call such an E(τ |ψ) an incomplete Eisenstein series, and denote their space E .

We have the inclusion

E ⊂ B ⊂ L2 ⊂ A . (A.12)

Next let us consider the orthogonal complement of E in B. Any modular function f ∈ A
can be decomposed as

f(τ) =
∑
n

fn(y)e2πinx . (A.13)

Denote by C the space of all smooth bounded modular functions for which f0(y) = 0. If in

addition f is a Mass form, then we call it a cusp form. It turns out that

L2 = C ⊕ E , (A.14)

where the bar stands for the closure.

We have ∇2 : C → C and ∇2 : E → E . It turns out that ∇2 has pure point spectrum in

C, i.e. C is spanned by cusp forms, whereas on E the eigenpacket of the continuous spectrum

is spanned by the Eisenstein series E(τ, s) analytically continued to Re (s) = 1/2, and some

point spectrum on the segment 1/2 < s ≤ 1. This means that for any modular function

f ∈ L2 we have the spectral decomposition

f(τ) =
∑
j

〈f, uj〉uj(τ) +
1

4π

∫ ∞
−∞

dr〈f,E(·, 1/2 + ir)〉E(τ, 1/2 + ir) , (A.15)

where the uj(τ) are eigenfunctions of ∇2 with discrete eigenvalues λj . It turns out in the

case at hand with SL(2,Z) 1/4 is not in the point spectrum of C, so that Ê(τ, 1/2) is indeed

the only Maass form of eigenvalue 1/4.

B Kloosterman sums

Define the Kloosterman zeta as

Zj,J(m+ s) =
∞∑
c=1

c−2(m+s)S(j, J ; c) , (B.1)

which is a sum over Kloosterman sums

S(j, J ; c) =
∑

d∈(Z/cZ)∗

exp

{
2πi

jd+ Jd−1

c

}
. (B.2)

Clearly we have Zj,J(s) = ZJ,j(s). In some special cases we can evaluate Z explicitly,

namely6

Z0,J(m+ s) =

∞∑
c=1

c−2(m+s)S(0, J ; c) =
σ2(m+s)−1(J)

J2(m+s)−1ζ(2(m+ s))
(B.3)

6Recall the divisor function σx(n) =
∑

d|n d
x, from which it follows σ−x(n) = n−xσx(n).
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and

Z0,0(m+ s) =
ζ(2(m+ s)− 1)

ζ(2(m+ s))
. (B.4)

There are a few estimates for Zj,J(m + s). Note that S(j, J, 1) = 1, and that trivially

|S(j, J, c)| ≤ c. For s = 1/2 and m ≥ 1 we can thus estimate

|Zj,J(m+ 1/2)− 1| ≤
∞∑
c=2

c−2m <

∫ ∞
1

dcc−2m =
1

2m− 1
, (B.5)

from which in particular it follows that Zj,J(m+ 1/2) is positive for m ≥ 1.

B.1 Analytic continuation of the Kloosterman zeta

We will now use the spectral theory presented in appendix s:Laplace to analytically continue

Z(s) to s = 1/2. In this we follow Selberg’s original paper [23] and also [24, 25]. For m > 0

let us define the auxiliary Poincaré series

Pm(τ, s) =
∑

γ∈Γ/Γ∞

e2πimγ(τ) ys

|cτ + d|2s
. (B.6)

Like the ordinary Eisenstein series, this converges for Re (s) > 1. When expanding this

series, we will encounter Kloosterman zeta functions just as we did in the analysis. We

can thus read off the analytic continuation of Z(s) from the analytic continuation of Pm.

Crucially, becausem > 0, Pm is square integrable, unlike the Poincaré series we encountered

in the main body of this article. (To deal with the case m < 0, following a remark in [25],

we take instead the function Pm(τ, s), which is again in L2.) Analogous to (5.2) we have

the recursion relation

Pm(τ, s) = 4πmsRs(1−s)(Pm(τ, s+ 1)) (B.7)

for Re (s) > 1, where

Rs(1−s) = (∇2 − s(1− s))−1 . (B.8)

This means that unless s happens to lead to an eigenvalue λ = s(1 − s) of the Laplacian,

we can take (B.7) to define the analytic continuation of Pm(τ, s) to Re (s) ≤ 1. To do this

in practice, we use the spectral decomposition (A.15) into eigenfunctions of ∇2, on which

the resolvent Rs(1−s) acts by simple multiplication.

Note that unlike the case discussed in section 5 this works because this time we can

restrict to L2 functions, for which the spectral decomposition (A.15) makes sense. Let

us first discuss the cusp part of Pm, i.e. the part of the decomposition coming from the

discrete part of the spectrum. The general idea is that for H/SL(2,Z), 1/2 is not a discrete

eigenvalue of the Laplacian, so that the contribution from the cusp part is regular. In a

more detailed computation, [24] use this fact to provide upper bounds in the more general

case for the analytically continued Zj,J(s), but they are not valid for s = 1/2. The reason

for this is that for a general Fuchsian group s = 1/2 can indeed be a discrete eigenvalue

of the Laplacian. We can easily repeat their analysis, in particular keeping track of the
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explicit j dependence of their bound. In the following we will use the usual O(·) notation

with the understanding that the implied constant will never depend on any of the variables

in the expression.

First let us evaluate Lemma 1 in [24]. We have∫
F
|Pm(τ, 1/2)|2dxdy

y2
≤ 4π2m2|R1/4|2

∫
F
|Pm(τ, 3/2)|2dxdy

y2
= O(m2) (B.9)

where we have used that integral converges, and that the smallest eigenvalue discrete of

∇2 on H/SL(2,Z) is of order λ1 ' 90 so that |R1/4| ≤ |1/4 − 90|−1. To apply Lemma 2,

we need to bound R(s). We have

|Rm,n(1/2, c)| ≤
∫ ∞

0

∫ ∞
−∞

y2

(x2 + 1)1/2

∣∣∣∣exp

(
− 2πim

x− i
yc2(x2 + 1)

)
− 1

∣∣∣∣ e−2πny dxdy

y
(B.10)

The square of the absolute value we evaluate as the sum of

sin2 2πm
x

yc2(x2 + 1)
exp(− 2πm

yc2(x2 + 1)
) ≤

(
2πmx

yc2(x2 + 1)

)2

(B.11)

and((
1− cos

2πmx

yc2(x2 + 1)

)
exp

(
− 2πm

yc2(x2 + 1)

)
+

(
1− exp

(
− 2πm

yc2(x2 + 1)

)))2

≤

(
1

2

(
2πmx

yc2(x2 + 1)

)2

+
2πm

yc2(x2 + 1)
)

)2

(B.12)

In total we can thus bound |Rm,n(1/2, c)| = O(c−2m2), which together with Zm,n(3/2) ≤ 1

yields

R(1/2) = O(m2) . (B.13)

Combining (B.9) and (B.13) with Lemma 2 then gives

Zm,n(1/2) = O(n2m2) . (B.14)

This in particular shows that the contribution from the cusp part is regular at s = 1/2.

As we pointed above however, we also need to worry about the contributions from the

continuous part of the spectrum. A more detailed argument [20] shows however that the

contribution at s = 1/2 of the continuous part of the spectrum vanishes, so that Z(1/2)

is indeed regular. We thus conjecture that (B.14) continues to hold when one takes into

account the continuous spectrum. (Note that for our general argument to hold, a weaker

bound is sufficient: it is enough for Zm,n to only grow polynomially in m.)
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[8] M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time,

Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

[9] J.M. Maldacena and A. Strominger, AdS3 black holes and a stringy exclusion principle,

JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].

[10] P. Kraus, Lectures on black holes and the AdS3/CFT2 correspondence, Lect. Notes Phys. 755

(2008) 193 [hep-th/0609074] [INSPIRE].

[11] J. Manschot and G.W. Moore, A modern Farey tail, Commun. Num. Theor. Phys. 4 (2010)

103 [arXiv:0712.0573] [INSPIRE].

[12] A. Maloney and E. Witten, Quantum gravity partition functions in three dimensions, JHEP

02 (2010) 029 [arXiv:0712.0155] [INSPIRE].

[13] C.A. Keller and H. Ooguri, Modular constraints on Calabi-Yau compactifications, Commun.

Math. Phys. 324 (2013) 107 [arXiv:1209.4649] [INSPIRE].

[14] D. Friedan and C.A. Keller, Constraints on 2D CFT partition functions, JHEP 10 (2013)

180 [arXiv:1307.6562] [INSPIRE].

[15] E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359 [INSPIRE].

[16] D. Friedan, A. Konechny and C. Schmidt-Colinet, Lower bound on the entropy of boundaries

and junctions in 1 + 1d quantum critical systems, Phys. Rev. Lett. 109 (2012) 140401

[arXiv:1206.5395] [INSPIRE].
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