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Abstract: A classification of spinor fields according to the associated bilinear covariants

is constructed in arbitrary dimensions and metric signatures, generalizing Lounesto’s 4D

spinor field classification. In such a generalized classification a basic role is played by the

geometric Fierz identities. In 4D Minkowski spacetime the standard bilinear covariants can

be either null or non-null — with the exception of the current density which is invariably

different from zero for physical reasons — and sweep all types of spinor fields, including

Dirac, Weyl, Majorana and more generally flagpoles, flag-dipoles and dipole spinor fields.

To obtain an analogous classification in higher dimensions we use the Fierz identities, which

constrain the covariant bilinears in the spinor fields and force some of them to vanish. A

generalized graded Fierz aggregate is moreover obtained in such a context simply from

the completeness relation. We analyze the particular and important case of Riemannian

7-manifolds, where the Majorana spinor fields turn out to have a quite special place. In

particular, at variance with spinor fields in 4D Minkowski spacetime that are classified in

six disjoint classes, spinors in Riemannian 7-manifolds are shown to be classified, according

to the bilinear covariants: (a) in just one class, in the real case of Majorana spinors; (b)

in four classes, in the most general case. Much like new classes of spinor fields in 4D

Minkowski spacetime have been evincing new possibilities in physics, we think these new

classes of spinor fields in seven dimensions are, in particular, potential candidates for new

solutions in the compactification of supergravity on a seven-dimensional manifold and its

exotic versions.
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1 Introduction

Generalizing Fierz identities in 4D Minkowski spacetime has led to new interesting results

on spinor fields, with respect to the textbook ones, and unexpected applications likewise.

It is therefore natural to try to do the same in higher dimensions. Fierz identities for form-

valued spinor bilinears were considered in arbitrary dimensions and metric signatures [1, 2],

using the geometric algebra, being also based in the developments [3, 4]. The most general

Fierz identities were further used to construct independent effective four-fermion interac-

tions that contain spin-3/2 chiral fields [5]. Besides, the existence of two natural bilinear

forms on the space of spinors were shown in [6] to be related with elements of the exterior

algebra. All the Fierz identities can be reduced to a single equation using the extended

Cartan map [7]. Reciprocally, spinors are reconstructed from Fierz identities [8] and quan-

tum tomography for Dirac spinors were considered in this context as well [9]. General

Fierz identities were further used to find completeness and orthogonality relations [10, 11],

where an equivalence between spinor and tensor representations of various quantities have

been also constructed. Moreover, Fierz identities are useful to calculate scattering ampli-

tudes [12], being thus employed to calculate electroweak interactions. The inverse problem

can be solved likewise by using the Fierz identities [13]. Various Fierz identities are further

needed to show the invariance of the D = 11, N = 1 supergravity action under a local

supersymmetry transformation, and the supercovariance of the fermion field equation [14].

In supersymmetric gauge theories, supersymmetry constraints imply the existence of cer-

tain Fierz identities for real Clifford algebras [15]. These identities hold merely for 2, 4, 8

and 16 supercharges [16]. Fierz identities were also generalized for non-integer dimensions

in [17].

The prominent relevance of Fierz identities can be moreover measured by their role

on the recent emergence of new kinds of spinor fields. The subject concerning those new
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spinor fields and their applications has been widening, mainly since the middle of the

last decade. Fierz identities were used by Lounesto to classify spinor fields in Minkowski

spacetime according to the bilinear covariants [18]. Indeed, Lounesto showed that spinor

fields can be accommodated in six disjoint classes, that encompass all the spinor fields in

Minkowski spacetime. The first three types of spinor fields in such classification are named

Dirac spinor fields: this is actually a generalization, as it does not restrict to the standard

Dirac spinor field, which is an eigenspinor of the parity operator, providing hence further

physical solutions for the Dirac equation. Indeed such three classes of regular spinor fields

appear as solutions of the Dirac equation in different contexts. They are characterized

by either the scalar or the pseudoscalar (or even both) bilinear covariants being nonzero.

The other three classes of (singular) spinors are known as flag-dipole, flagpole and dipole

spinor fields, and have both the scalar and pseudoscalar bilinear covariants vanishing. The

latter classes contain, besides a rich geometric structure, spinor fields with new dynamics.

Flagpole spinor fields have been recently considered in cosmology [19], being explored as

candidates for dark matter in various contexts [20–23], wherein Elko and Majorana spinor

fields evince prominent roles [24]. Flag-dipole ones are typified for instance by recently

found new solutions of the Dirac equation in ESK gravities [25]. Dipole spinor fields include

Weyl spinor fields as their most known representative. All the spinor classes have been

lately thoroughly characterized [26]. A complete overview of this classification with further

applications in field theory and gravitation can be found in [27], being also further explored

in the context of black hole thermodynamics [28]. Indeed, black hole tunnelling methods

were studied for Elko spinor fields as special type of flagpoles [28], which play an essential

role in constructing various theories of gravity naturally arising from supergravity [29, 30].

Flagpoles spinor fields and Lounesto spinor field classification are moreover discussed in

the context of the instanton Hopf fibration [31], and experimental signatures of the type-5

spinors in such a classification are related to the Higgs boson at LHC [32]. An up-to-date

overview on a special class of such spinor fields can be found in [33] and references therein.

Fierz identities make it possible to deduce a classification of spinors on the spinor

bundle associated to manifolds of arbitrary dimensions, departing from the case proposed

by Lounesto, that holds solely for Minkowski spacetime [18]. The aim of the present

paper is two-fold: besides generalizing Lounesto’s spinor field classification for spacetimes

of arbitrary dimension and metric signatures and proposing a graded Fierz aggregate, we

focus in particular on the noteworthy case of spinor fields on seven-dimensional manifolds,

in particular those on the 7-sphere. This is motivated by their wide physical applications,

for instance, in D = 11 supergravity [34–36]. In fact, spontaneous compactifications of

D = 11 supergravity [34] on Riemannian 7-manifolds are well-known to contain all the

degrees of freedom of the massless sector of gauged N = 8 supergravity theory [36]. Explicit

forms of the Killing spinors can be also obtained in the supergravity theory that admits

AdS4×S
7 solutions. S7 spinors and the Kač-Moody algebra of S7 were also considered on

the parallelizable 7-sphere [37, 38].

We use the Fierz identities constraining bilinear covariants constructed by spinor fields

in arbitrary dimensions [1], that force some of the respective bilinear covariants to be zero

and study the important case of seven dimensions, in particular classifying Majorana spinor
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fields. New kinds of classes of spinor fields are hence obtained, which are hidden if one

considers only the real spin bundle on Riemannian 7-manifolds.

This paper is organized as follows: in section II, the bilinear covariants are used to

revisit the classification of spinor fields in Minkowski spacetime, according to the Lounesto’s

classification prescription, and the Fierz aggregate and its related boomerang are defined.

In section III, the bilinear covariants associated to spinor fields in arbitrary dimensions

and metric signatures are introduced and all the possibilities for them are listed. In section

IV, the geometric Fierz identities are employed and from the admissible pairings between

spinor fields the number of classes in the spinor field classification are constrained. We

study the case of Majorana spinor fields on Riemannian 7-manifolds and define the graded

Fierz aggregate as a particular case of the completeness condition. We conclude that

Majorana spinors in seven dimensions pertain to solely one class, according the bilinear

covariants, as some of these bilinears are identically zero. Spinor fields on these 7-manifolds

can be classified in four classes, departing from the classification for the real spin bundle.

One of the new classes encompasses the Majorana spinor fields and the others provide new

candidates for physical solutions, for instance, in supergravity.

2 Bilinear covariants in Minkowski space-time

In order to fix the notation, consider an oriented manifold (M, g), where the metric g has

signature (p, q), and its associated tangent [cotangent] bundle TM [T ∗M ], having sections

consisting of n-dimensional (n = p + q) real vector spaces. Denoting sections of the ex-

terior bundle by sec
∧

(TM), given a k-vector a ∈ sec
∧k(TM), the grade involution is

defined by â = (−1)ka and the reversion by ã = (−1)[[k/2]]a, where [[k]] stands for the

integral part of k. The conjugation is the composition of the two previous morphisms.

Moreover, when g is extended from sec
∧1(TM) = secT ∗M to sec

∧

(TM), and by consid-

ering a, b, c ∈ sec
∧

(V ), the left [right] contraction can be defined by g(ayb, c) = g(b, ã ∧

c) [g(axb, c) = g(b, a ∧ c̃)]. The Clifford product between a vector field v ∈ sec
∧1(TM)

and a multivector a ∈ sec
∧

(TM) is prescribed by v ◦ a = v ∧ a + vya. The dual Hodge

operator ⋆ : sec
∧

(TM) → sec
∧

(TM) is defined by a ∧ ⋆b = g(a, b). The Grassmann

algebra (
∧

(TM), g) endowed with the Clifford product is denoted by Cℓp,q, the Clifford

algebra associated with sec
∧1(TM) ≃ Rp,q.

When the Minkowski spacetime is considered, the set {eµ} represents sections of the

frame bundle PSOe
1,3
(M) and {θµ} is the dual basis {eµ}, namely, θµ(eµ) = δµν . Clas-

sical spinor fields are objects in the carrier space associated to a ρ = D(1/2,0) ⊕ D(0,1/2)

representation of the Lorentz group, and can be thought as being sections of the vec-

tor bundle PSpine1,3
(M) ×ρ C4. Moreover, the classical spinor fields carrying either the

D(0,1/2) or the D(1/2,0) representation of the Lorentz group are sections of the vector bun-

dle PSpine1,3
(M)×ρ′ C

2, where ρ′ stands for either the D(1/2,0) or the D(0,1/2) representation

of the Lorentz group. Given a spinor field ψ ∈ secPSpine1,3
(M)×ρC

4, the bilinear covariants
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are the following sections of the exterior algebra bundle
∧

(TM) [18, 39, 40]:

σ = ψ̄ψ , (2.1a)

J = Jµθ
µ = ψ̄γµψ θ

µ , (2.1b)

S = Sµνθ
µ ∧ θν =

1

2
iψ̄γµνψ θ

µ ∧ θν , (2.1c)

K = Kµθ
µ = iψ̄γ5γµψ θ

µ , (2.1d)

ω = −ψ̄γ5ψ , (2.1e)

where ψ̄ = ψ†γ0, γ5 := γ0γ1γ2γ3 and the set {1, γµ, γµγν , γµγνγρ, γ5} (µ < ν < ρ) is a basis

for M(4,C) satisfying γµγν + γνγµ = 2ηµν1 and the Clifford product is denoted here by

juxtaposition [40].

The space-like 1-form K designates the spin direction, the 2-form S denotes the well-

known intrinsic angular momentum, and the time-like 1-form J stands for the current of

probability. The bilinear covariants satisfy the Fierz identities [18, 39]

− (ω + σγ5)S = J ∧K, K2 + J2 = 0 = JxK, J2 = ω2 + σ2 . (2.2)

When ω = 0 = σ, a spinor field is said to be singular, and regular otherwise.

Lounesto [18] classified spinor fields into six disjoint classes. In the classes (1), (2),

and (3) beneath it is implicit that J, K and S are simultaneously different from zero, and

in the classes (4), (5), and (6) just J 6= 0:

1) ω 6= 0, σ 6= 0 4) ω = σ = 0, K 6= 0, S 6= 0

2) ω = 0, σ 6= 0 5) ω = σ = 0, K = 0, S 6= 0

3) ω 6= 0, σ = 0 6) ω = σ = 0, S = 0, K 6= 0

Spinor fields of types-1, -2, and -3 are called Dirac spinor fields whilst spinor fields of

types-4, -5, and -6 are flag-dipoles, flagpoles and dipole spinor fields, respectively [18]. It

is worthwhile to emphasize that the naming “Dirac spinors” in Lounesto’s classification

is wider than the one adopted in textbooks, where Dirac spinors are eigenstates of the

parity operator. The first physical example of flag-dipole spinor fields has been found

very recently in [25] as solutions of the Dirac equation in a f(R) background with torsion.

Moreover, Majorana and Elko spinor fields reside in the class of spinors of type-5 [24],

and Weyl spinor fields are a particular case of a type-6 dipole spinor fields [18], wherein

further spinor fields have been scarcely scrutinized. It is also worth to point out that in

four and in six dimensions pure spinors coincide with Weyl spinors due to an accident in

these dimensions [18, 31], while there are quadratic constraints that pure spinors obey in

higher dimensions [41]. In particular, the constraints in ten dimensions play an important

role in Berkovits’ approach to superstrings [42, 43].

A multivector field [18]

Z = ωγ5 + iKγ5 + iS+ J+ σ (2.3)
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is called a Fierz aggregate when ω,S,K,J, σ fulfil the Fierz identities (2.2). Additionally,

if γ0Zγ0 = Z†, the Fierz aggregate is named a boomerang [18]. When singular spinor fields

are scrutinized, the Fierz identities are replaced by the most assorted expressions [39]:

ZγµZ = 4JµZ, Z2 = 4σZ, iZγµνZ = 4SµνZ,

−Zγ5Z = 4ωZ, iZγ5γµZ = 4KµZ. (2.4)

3 Bilinear forms with spinors in arbitrary dimensions and metric signa-

tures

Going to arbitrary dimensions, one starts from the spin bundle S associated to a manifold

(M, g). A crucial role is played by the Kähler-Atiyah bundle (sec
∧

(TM), ◦), where the

Clifford product shall be denoted by ◦. The spin bundle S is defined upon the even

Kähler-Atiyah bundle (˚
∧

(TM), ◦) and has module structure specified by a morphism γ :

(
∧

(TM), ◦) → (End(S), ¯ ) (for more details, see, e. g., [1, 2, 40, 44–46]). In addition,

a direct sum decomposition S = S0 ⊕ S1 is provided by an idempotent endomorphism R

∈ Γ(End(S)) (here Γ(End(S)) denotes the space of smooth sections of End(S)) — which

for some dimensions and signatures is usually identified with the volume element γn+1 [1].

The sub-bundles S0 and S1 are determined by the eigenvalues ±1 of R, and the above

direct sum decomposition is said to be non-trivial if both S0 and S1 are different from zero.

This is equivalent to saying that the Clifford algebras Cℓp,q constructed on the cotangent

bundle on each point of M are universal [47]. The restriction γ̊ : sec ˚
∧

(TM) → End(S) is

named spin endomorphism if it commutes with γ(ξ), for all ξ ∈ sec ˚
∧

(TM) [1].

Spin projectors are defined by Π± = 1
2(I ± R), where I denotes the identity operator

on S, providing the direct sum S = S+ ⊕ S−, where S± = Π±(S). The sections of S± are

called [symplectic] Majorana-Weyl spinors when p−q ≡ 0 mod 8 [p−q ≡ 4 mod 8], while

the sections of S+ are known as [symplectic] Majorana spinors when p − q ≡ 7 mod 8

[p− q ≡ 6 mod 8]. Classical spinors Sp,q of the Clifford bundle of M are well-known to be

elements of the irreducible representation space of the component of the group Spin(p, q)

connected to the identity, and their classification can be summarized in table 1.

The ring of quaternions is denoted by H. For the complex case the classification is

well-known to be simpler, being evinced by table 2.

Now consider the complex structure J ∈ Γ(End(S)), which in particular is given by

J = ±γn+1 = ±γ1 ¯ · · · ¯ γn when p− q ≡ 3, 7 mod 8 [1], and an endomorphism D on the

spin bundle that satisfies for all ξ ∈ sec
∧

(TM) the following expressions [1, 48]

D ¯ D = (−1)
1+p−q

4 I, D ¯ γ(ξ) = γ(ξ̂) ¯ D . (3.1)

Such expressions are taken into account hereupon, being essential to define both the clas-

sification of spinor fields and the graded Fierz aggregate as well.

Starting from an orthonormal local coframe {ea}na=1 ⊂ PSOe
p,q
(M), recall from [49]

that a non-degenerate bilinear pairing B on the spin bundle S is named admissible if

the following requirements hold: a) B is either symmetric or skew-symmetric; b) if p −

q ≡ 0, 4, 6, 7 mod 8, then S+ and S− are either isotropic or orthogonal with respect to
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p− q

mod 8
0 1 2 3

R2[(n−1)/2]

Sp,q ⊕ R2[(n−1)/2]
C2[(n−1)/2]

H2[(n−1)/2]−1

R2[(n−1)/2]

p− q

mod 8
4 5 6 7

H2[(n−1)/2]−1

Sp,q ⊕ H2[(n−1)/2]−1
C2[(n−1)/2]

R2[(n−1)/2]

H2[(n−1)/2]−1

Table 1. Classical Spinors Classification table — Real case (p+ q = n).

n = 2k C2k−1
⊕ C2k−1

n = 2k + 1 C2k

Table 2. Classical Spinors Classification table — Complex case.

B [1]; c) for any ξ ∈ sec
∧

(TM) one has the transpose relation γ(ξ)⊺ = γ(
˜
ξ) if and only

if B(γ(ξ)ψ, ψ′) = B(ψ, γ(
˜
ξ)ψ′), where

˜
ξ stands for either the usual reversion ξ̃, if B is

symmetric, or the Clifford conjugation ξ̄ otherwise.

A more general pairing can be taken into account, by complexifying its restriction to

the real bundle S+. In fact, by adopting hereon the notation ψ, ψ′ ∈ Γ(S), where Γ(S)

denotes the space of smooth sections of the spin bundle S, the bilinear pairing β0 on S is

obtained [1]

β0(ψ, ψ
′) = B

(

(Re)ψ, (Re)ψ′
)

−B
(

(Im)ψ, (Im)ψ′
)

+ i
[

B
(

(Re)ψ, (Im)ψ′
)

+B
(

(Im)ψ, (Re)ψ′
)]

, (3.2)

where (Re)ψ = 1
2(ψ +D(ψ)) and (Im)ψ = 1

2(ψ −D(ψ)) are the real and imaginary parts of

ψ, respectively [1].

For an ordered set of indexes (α1, . . . , αk), 1 ≤ αk ≤ n = p+ q, the notation eα1...αk =

eα1 ∧ · · · ∧ eαk and γα1...αk = γα1 ¯ · · · ¯ γαk shall be adopted hereupon, with analogous

expressions for their respective contravariant counterparts. The product “ ¯ ” may be also

denoted by juxtaposition, being used explicitly solely when we want to emphasize the

underlying structure.

In the previous section the usual spinor conjugate ψ̄ = ψ†γ0 represents the spinor dual

to ψ. In Minkowski spacetime it has this form in order to produce a Lorentz invariant

quantity. In arbitrary dimensions it can have a much more general form, which plays a

prominent role in the framework of bilinear forms. In fact, a spin-invariant product can

always be written as [47]

β(ψ, ψ′) = a−1ψ̃ψ′ = ψ†a−1ψ′,

– 6 –
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where ψ, ψ′ are spinor fields and a ∈ Γ(End(S)). Since ã = a and
˚̊
b = ab†a−1, where˚̊indi-

cates an arbitrary adjoint involution, then a† = a [47]. In this way, the spinor conjugation

can be written more generally as ψ̄ = a−1ψ̃ = ψ†a−1, and we can use this definition to

write the most general bilinear on S:

βk(ψ, ψ
′) = B(ψ, γα1...αk

ψ′) = ψ̄γα1...αk
ψ′ . (3.3)

On the spin bundle S, bilinear covariants are thus more generally defined as follows,

given ψ ∈ S:

Ω1 = ψ̄ψ (3.4a)

Jα1 = ψ̄γα1ψ (3.4b)

Sα1α2 = ψ̄γα1α2ψ (3.4c)

...

Sα1...αd+1
= ψ̄γα1...αd+1

ψ , d < k − 1 (3.4d)

...

Sα1...αk
= ψ̄γα1...αk

ψ (3.4e)

Kα1...αl−1
= ψ̄γα1...αl−1

γn+1ψ (3.4f)

...

Kα1...αm = ψ̄γα1...αmγn+1ψ , m < l − 1 (3.4g)

...

Kα1 = ψ̄γα1γn+1ψ (3.4h)

Ω2 = ψ̄γn+1ψ . (3.4i)

These bilinear covariants are used to defined the corresponding Fierz aggregate

Z = Ω1 + Jµγ
µ + Sµ1µ2γ

µ1µ2 + · · ·+ Sµ1...µpγ
µ1...µp

+Kα1...αq−1γ
α1...αq−1γn+1 + · · ·+Kµγ

µγn+1 +Ω2γn+1 , (3.5)

that reduces to the standard Fierz aggregate (2.3) when n = 4. Similarly to the case

on Minkowski spacetime, when γ0Zγ0 = Z† the above generalized Fierz aggregate will be

called a generalized boomerang.

In the next section we shall see that a graded Fierz aggregate can be evinced exclusively

from the completeness relation. In addition, most of such bilinear covariants that define it

will be shown to be null, as a consequence of constraints imposed by the geometric Fierz

identities [1]. It forces the number of spinor field classes to be reduced, being obstructed by

the geometric Fierz identities. We will see in the next section that the 4D Fierz identities

for regular spinor fields — given by (2.2) — and for any kind of spinor fields — provided

by (2.4) — can be generalized to the geometric Fierz identities in arbitrary dimensions [1],

and new classes of Fermi fields on 7-manifolds can be evinced.

– 7 –



J
H
E
P
0
2
(
2
0
1
5
)
0
6
9

4 Where are Majorana spinor fields in the generalized spinor field clas-

sification? New classes of spinor fields

When p− q ≡ 7 mod 8, the endomorphism D is a real structure that defines the complex

conjugate via D(ψ) = (Im)ψ, and can be identified to the spin endomorphism R discussed

in section 3 [1]. The projectors P± = 1
2(I ± D) are hence responsible to split a spinor

field in real and imaginary components given by respectively by P±(ψ) = ψ±. The real

vector bundles S± ≡ P±(S) are thus used to identify the spin bundle S = S+ ⊕ S− to the

complexification of the real bundle S+ of Majorana spinor fields [1]. In particular when

n = 7, other useful pairings can be defined from a basic admissible pairing, denoted hereon

for the sake of simplicity by B, as [1]

B′ := B ¯ (I ⊗ J), B′′ := −B ¯ [I ⊗ (J ¯ D)] , B′′′ := B ¯ (I ⊗D) . (4.1)

We can use some of them to define the bilinears (3.2) and (3.3). However, might the higher

dimensional analogues of Lounesto’s classes of spinor fields provide indeed a different spinor

fields classification? We shall answer in an affirmative way this question and discuss later

such new possibilities, showing that at least two choices in (4.1) are equivalent under

Hodge duality.

When one chooses ψ to be a Majorana spinor, the non null bilinear pairings can be

reduced through the fact that B(ψ, γα1...αkψ) = 0 except if k is even [1]. Given any

admissible bilinear pairing B on S, the endomorphisms Aψ|ψ′ of the spin bundle S have

been defined in [1]:

Aψ1|ψ2
(ψ) := B(ψ, ψ2)ψ1 , for all ψ, ψ1, ψ2 ∈ Γ(S) , (4.2)

and play an important role to determine the geometric Fierz identities, encrypted in the

expressions

Aψ1|ψ2
¯ Aψ3|ψ4

= B(ψ3, ψ2)Aψ1|ψ4
, (4.3)

as shall be briefly reviewed in the sequel [1].

Consider now the completeness relation

Aψ|ψ′ =
ℓ

2n

∑

k

1

k!
(−1)kB(ψ, γα1...αk

ψ′)eα1...αk ,

where either ℓ = 2Vn
2

W, if p − q = 0, 1, 2, or ℓ = 2Vn
2

W+1 otherwise, where Vn2W ≡ n(n−1)
2

mod 2. This expression mimics the Fierz aggregate (2.3). Moreover, every element in the

space Γ(End(S)), in particular the Aψ|ψ′ , can be split uniquely as Aψ|ψ′ = D ¯ A1
ψ|ψ′ +

A0
ψ|ψ′ [1], where

A0
ψ|ψ′ =

ℓ

2n

∑

k

(−1)k

k!
B(ψ, γα1...αk

ψ′)eα1...αk , (4.4a)

A1
ψ|ψ′ =

ℓ

2n

∑

k

1

k!
(−1)(k+

1+p−q
4 )B(ψ,D ¯ γα1...αk

ψ′)eα1...αk . (4.4b)

– 8 –
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The Fierz identities (2.2) — for regular spinor fields in Minkowski spacetime — or

more generally (2.4) — for any kind of spinor fields in Minkowski spacetime — can be

generalized for arbitrary dimensions, being hence provided by [1]:

Â0
ψ1|ψ2

◦A1
ψ3|ψ4

+A1
ψ1|ψ2

◦A0
ψ3|ψ4

= B(ψ3, ψ2)A
1
ψ1|ψ4

, (4.5a)

A0
ψ1|ψ2

◦A0
ψ3|ψ4

+ (−1)
1+p−q

4 Â1
ψ1|ψ2

◦A1
ψ3|ψ4

= B(ψ3, ψ2)A
0
ψ1|ψ4

. (4.5b)

The notation for both elements in sec
∧k(TM)

A0,k
ψ|ψ′

=
1

k!
(−1)kB(ψ, γα1...αk

ψ′)eα1...αk , (4.6a)

A1,k
ψ|ψ′

=
1

k!
(−1)

1+p−q
4

+kB(ψ,D ¯ γα1...αk
ψ′)eα1...αk , (4.6b)

will be employed accordingly, in order to make it possible to write Aλψ|ψ′ =
ℓ
2n

∑

k A
λ,k
ψ|ψ′

,

for λ = 0, 1.

As we are interested in determining the nature of Majorana spinor fields according to

bilinear covariants in 7-manifolds, we focus in the particular, however important case [37]

of n = p + q = 7 + 0. The case of a Majorana spinor on a Riemannian 7-manifold

arises, for example, in the of N = 1 compactifications of M -theory on 7-manifolds [50–52],

permitting a geometric characterization by means of the reduction of the structure group

of sec
∧1(TM) from the orthogonal group O(7) to the exceptional one G2 [1].

Moreover, the expression

ϕk := |A0,k
ψ|ψ| =

1

k!
B(ψ, γα1...αk

ψ)eα1...αk (4.7)

equals zero except if k is even. Together with the symmetry of B, this shows that the

element A0,k ≡ A0,k
ψ|ψ vanishes except if k = 0, 3, 4, 7. Combining this with (4.7), it implies

that, for ψ a Majorana spinor, the forms ϕk equal zero except when k = 0 or k = 4. By

regarding ψ normalized such that B(ψ, ψ) = 1, it follows that A0,0 = 1 and the following

bilinear can be defined [1]:

ϕ4 =
1

4!
B(ψ, γα1α2α3α4ψ)e

α1α2α3α4 , (4.8)

which are the components of the first generator A0 = 1
16(1+ϕ4) of the so called Fierz algebra

represented in (4.4a), (4.4b) [1], where Aλ ≡ Aλψ|ψ. Moreover, since A1 = A0, then the Fierz

identities (4.5a), (4.5b) are concomitantly equivalent and imply that (ϕ4 + 1) ◦ (ϕ4 + 1) =

8(ϕ4 + 1) [1].

Now, recall that the product ∆k : sec
∧

(TM) × sec
∧

(TM) → sec
∧

(TM) is defined

iteratively by

χ∆k+1 ϑ =
1

k + 1
gab(eayχ)∆k (ebyϑ) , χ, ϑ ∈ sec

∧

(TM) , (4.9)

where gab denotes the metric tensor coefficients. By fixing ∆0 = ∧ as being the exterior

product, the next terms are for instance provided by

χ∆1 ϑ = gab(eayχ) ∧ (ebyϑ) ,

χ∆2 ϑ =
1

2
gabgcd[eay(ecyχ)] ∧ [eby(edyϑ)] .

– 9 –
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When the Clifford product is written as ϕ4 ◦ ϕ4 = ||ϕ4||
2 − ϕ4∆2 ϕ4, the Fierz identities

correspond to the following conditions [1]:

ϕ4∆2 ϕ4 = −6ϕ4 , ||ϕ4||
2 = 7 . (4.10)

They are the root to establish the spinor fields classification according to the bilinear

covariants.

In the case here to be analyzed n = p + q = 7, we already know that ϕk = 0 except

for the values k ∈ {0, 3, 4, 7}. In addition, due to the restriction

B(ψ, J ¯ γα1...αk
ψ) = −B(ψ, J ¯ D ¯ γα1...αk

ψ) = 0 except it k = 2j + 1, k ∈ Z , (4.11)

we obtain that unless k = 3 or k = 7 the formB′(ψ, γα1...αk
ψ) vanishes. Hence, alternatively

we could have chosen any other of the bilinear pairings in (4.1) in order to define the bilinear

covariants. For instance, choosing B′ yields the following definition:

ϕ̌k =
1

k!
B(ψ, J ¯ γα1...αk

ψ)eα1...αk ∈ sec

k
∧

(TM) . (4.12)

However, the Hodge duality ⋆ξ = ξ̃J , where J = γn+1, for our case n = 7 implies that the

alternative homogeneous forms

ϕ̌3 =
1

3!
B(ψ, J ¯ γα1α2α3ψ)e

α1α2α3 (4.13)

ϕ̌7 =
1

7!
B(ψ, J ¯ γα1...α7ψ)e

α1...α7 (4.14)

do not vanish likewise. A similar reasoning [1] implies that the other bilinear pairings

in (4.1) contain no information besides the ones provided by (4.7). The Fierz identities

take now the form

ϕ̌3∆iϕ4 = 0 (i = 1, 3) , ϕ̌3 ∧ ϕ4 = ||ϕ̌3||
2γ8 . (4.15)

Since ϕ̌3 = ⋆ϕ4 implies that ‖ϕ̌3‖ = ‖ϕ4‖, eq. (4.10) asserts that the 3-form ϕ̌3 is non null

likewise, and a similar reasoning implies that also ϕ̌7 6= 0, as ⋆1 = ϕ̌7.

Hence, only the bilinears

ϕ0 = B(ψ, ψ) (4.16)

ϕ4 =
1

4!
B(ψ, γα1α2α3α4ψ)e

α1α2α3α4 (4.17)

are non null. Eq. (4.16) is the higher dimensional analogue of its Minkowski spacetime

version provided by eq. (2.1a). Thus the Fierz identities (4.10) imply, in particular, that

ϕ4 6= 0 and only one type of Majorana spinor results according to a generalized spinor field

classification:

ϕ0 6= 0 ∈ sec

0
∧

(TM), ϕ4 6= 0 ∈ sec

4
∧

(TM). (4.18)

– 10 –
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In fact, such class of Majorana spinor fields according to the bilinears in the Clifford bundle

Cℓ7,0 is provided by:

ϕ0 6= 0, ϕ1 = 0, ϕ2 = 0, ϕ3 = 0, ϕ4 6= 0, ϕ5 = 0, ϕ6 = 0, ϕ7 = 0 , (4.19)

or equivalently, if eq. (4.12) is taken into account,

ϕ̌7 6= 0, ϕ̌6 = 0, ϕ̌5 = 0, ϕ̌4 = 0, ϕ̌3 6= 0, ϕ̌2 = 0, ϕ̌1 = 0, ϕ̌0 = 0 , (4.20)

where the Hodge duality ϕ̌k = ⋆ϕ7−k is utilized.

If we use the results from [1] and given ι ∈ Z,

B(ψ, γα1...αk
ψ) =



















B
(

(Re)ψ, γα1...αk
(Im)ψ

)

+B
(

(Im)ψ, γα1...αk
(Re)ψ

)

, if k = 2ι

B
(

(Re)ψ, (J ¯ γα1...αk
)(Re)ψ

)

−B
(

(Im)ψ, (J ¯ γα1...αk

)

(Im)ψ) ,

if k = 2ι+ 1 ,

and

B(ψ, J ¯ γα1...αk
ψ) =



























−B
(

(Re)ψ, γα1...αk
(Im)ψ

)

+B
(

(Im)ψ, γα1...αk
(Re)ψ

)

,

if k = 2ι

B
(

(Re)ψ, (J ¯ γα1...αk
)(Re)ψ

)

+B
(

(Im)ψ, (J ¯ γα1...αk
)(Im)ψ

)

,

if k = 2ι+ 1 ,

eq. (3.3) that describes the bilinear covariant coefficient of degree k can be thus generalized,

in order to encompass the complex case, providing the higher degree generalization of (3.2):

βk(ψ, γα1...αk
ψ′) = B

(

(Re)ψ, γα1...αk

(Re)ψ′
)

−B
(

(Im)ψ, γα1...αk

(Im)ψ′
)

(4.21)

+i
[

B
(

(Re)ψ, γα1...αk

(Im)ψ′
)

+B
(

(Im)ψ, γα1...αk

(Re)ψ′
)]

.

By using the above results, the bilinear covariants can be now extended from the standard

Majorana spinor fields in ψ ∈ Γ(S+) to sections of Γ(S), by identifying now

ϕk :=
1

k!
βk(ψ, γα1...αk

ψ)eα1...αk . (4.22)

As both terms in the real part and also both terms in the imaginary part in (4.21) as well

can cancel each other, in the complex version it is possible that the bilinears ϕ0 and ϕ4

can now be different from zero. Hence, four classes of spinor fields ψ ∈ Γ(S) are found,

concerning the classification in Riemannian 7-manifolds using the constraints above, as it

is showed below:

ϕ0 = 0, ϕ4 = 0, (4.23a)

ϕ0 = 0, ϕ4 6= 0, (4.23b)

ϕ0 6= 0, ϕ4 = 0, (4.23c)

ϕ0 6= 0, ϕ4 6= 0 . (4.23d)

– 11 –
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It is implicit in (4.23a)–(4.23d) that all other ϕk = 0 for k = 1, 2, 3, 5, 6, 7. Moreover, the

spinor field classification according to the bilinears ϕ̌k, defined by substituting eq. (4.12)

in (4.21), is identical to the one provided by the ϕk. The above class (4.23d) encompasses

the sole spinor field class (4.19), and reduces to it when we restrict the field ψ to be an

element of the bundle Γ(S+), namely, a Majorana spinor field.

Since B(ψ, γα1...αk
ψ) vanishes except when k ∈ {0, 3, 4, 7}, the graded Fierz aggregate,

that is defined by

Z =
ℓ

2n

∑

k

(−1)kB(ψ, γα1...αk
ψ)eα1...αk , (4.24)

where the sum is ordered in k, has clearly the terms B(ψ, γα1...αk
ψ) = 0 for such values of

k. The above expression coincides with its Minkowski spacetime version (2.3) provided by

Lounesto [18].

After classifying the spinor fields in Riemannian 7-manifolds, they can be used for

defining a Lagrangian on S7 for matter fields. According to [16], terms in a Lagrangian

defined in this way depend on which realization is taken for the matter spinor fields.

The classification of spinor fields in 7-manifolds can be very useful in order to study the

behaviour of fields in AdS4 × S7 or, more generally, in AdS4 ×M7, where M7 denotes a

7-manifold.

5 Conclusion

Spinor fields on a manifold (M, g), with arbitrary dimension and arbitrary metric signature

have been classified according to the bilinear covariants. It encompasses the celebrated

Lounesto’s spinor field classification for Minkowski spacetime, generalizing it to arbitrary

dimensions and metric signatures. The geometric Fierz identities [1] limit the amount of

classes of spinor fields in such a generalized classification, which is explicitly analyzed for

the important case of Majorana spinor fields on Riemannian 7-manifolds. A generalized

graded Fierz aggregate is also obtained in such a context simply from the completeness

relation, and we analyze the particular and prominent case of 7D. In this case, the higher

the spacetime dimension, the lesser the number of classes of spinor fields.

Despite the generalizations regarding Fierz identities were known, analysis of the spinor

fields themselves had been lacking up to the middle of the last decade. Since then new

models had been proposed, as for instance a candidate for the field theory of some mass

dimension one fermions. A complete characterization and identification of these new spinor

fields as elements of the Lounesto’s classes [24] have introduced in the literature new pos-

sibilities, further investigated in e. g. [20, 21, 23–28, 30]. In fact, spinor fields in the

same class can present completely different dynamics. For instance, Elko spinor fields per-

tain to the class 5 in Lounesto’s classification, and satisfy a coupled system of Dirac-like

equations, whereas Majorana spinor fields are also spinor fields in the class 5, but satisfy

the well-known Majorana equations. Recently the first physical example of a flag-dipole

particle, which is a type-4 spinor field in the Lounesto’s classification, has been found as

the solution of the Dirac equation with torsion in a f(R) background [25]. Type-6 spinor

– 12 –
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fields encompass for instance Weyl spinor fields, but the complete dynamics of all classes

is nevertheless undetermined. The first important step toward a complete characterization

of all possible dynamics of spinor fields in Minkowski spacetime has been accomplished

by explicitly obtaining the most general type of spinor fields in each class of Lounesto’s

classification [26].

Thus, the study of the Lounesto’s spinor fields classification has opened a huge path to

discover unexpected new physical features and to propose candidates for new particles in

Minkowski spacetime [20–27, 30, 32]. With this motivation we have proposed a much more

general classification as well, encompassing pseudo-Riemannian spacetimes of arbitrary

dimensions and metric signatures. In particular, as the subject of S7 spinor fields is very

rich [34, 37], we investigated where are the Majorana spinor fields in such a classification

according to the bilinear covariants, and we concluded that the geometric Fierz identities

obstruct the existence of more than one precise class, determined by (4.19), asserting that

for instance that spinor fields studied in [34, 35, 37] reside in such class. In these papers, the

3-form bilinear is the torsion tensor that works as a gauge potential. In the most general

case that we analyzed, by taking spinor fields in the spin bundle over M , more three types

of spinor fields with potential new properties are achieved. As the singular spinor fields

in Lounesto’s classification were studied in exotic structures [20, 23], it is natural to relate

the new classes of spinor fields in 7-manifolds derived in (4.23a)–(4.23d) to their exotic

version [53]; however this is beyond of the scope of the present paper.
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