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1 Introduction

In the high-energy limit, in which the squared centre-of-mass energy s is much larger than

the typical momentum transfer (−t), so that |s/t| → ∞ with t held fixed, a four-point tree-

level gauge theory scattering amplitude acquires a factorized structure, given by a t-channel

propagator, associated with the highest-spin particle in the theory (in the case of QCD,

a gluon), connecting two emission vertices, termed impact factors, which characterize the

particles undergoing the scattering. The impact factors depend on the specific scattering

process, while the t-channel propagator is process independent.
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When loop corrections are included, the t-channel propagator gets dressed according

to the schematic form [1],

1

t
→ 1

t

(
s

−t

)α(t)

, (1.1)

where α(t) is a function of the coupling constant and of the momentum transfer t, which can

be expanded perturbatively at weak coupling. The expansion of eq. (1.1) in powers of the

coupling then generates the leading logarithmic corrections to the amplitude in ln(s/|t|).
Because of the analytic structure of eq. (1.1), which is typical of Regge theory, α(t) is called

Regge trajectory.

For the real part of the amplitude, the t-channel picture, often termed high-energy fac-

torization, is in fact accurate at leading and at next-to-leading logarithmic (NLL) accuracy

in ln(s/|t|) [2]. Because the amplitude has a t-channel ladder-like structure, we can assume

it to be even under s ↔ u exchange. As a consequence, it must be composed of kinematic

and color parts which are either both even or both odd under s ↔ u exchange, a feature

commonly referred to as ‘signature’ of the amplitude in the literature on Regge theory. As

an example, let us consider the amplitude for gluon-gluon scattering. In this case, for the

process g(k1) + g(k2) → g(k3) + g(k4), one may write [3]

Mgg→gg
a1a2a3a4

(
s

µ2
,
t

µ2
, αs(µ

2)

)
= 4παs(µ

2)
s

t

[(
Tb
)
a1a3

Cλ1λ3
(k1, k3)

]

×
[(

s

−t

)α(t)

+

(−s

−t

)α(t)
] [

(Tb)a2a4 Cλ2λ4
(k2, k4)

]
, (1.2)

where aj and kj are the color index and momentum of gluon j, and Tb is a color generator

in the adjoint representation, so that (Ta)bc = −ifabc. The impact factors, Cλiλj
(ki, kj),

depend on the helicities of the gluons, but are independent of the squared centre-of-mass

energy s. In the weak coupling limit, both the impact factors and the Regge trajectory

can be expanded in powers of the renormalized coupling αs(µ
2): they are then affected

by infrared and collinear divergences, which are (implicitly) regularized by dimensional

regularization in eq. (1.2).

Beyond leading order, and for the real part of the amplitude beyond the NLL accu-

racy in ln(s/|t|), one should consider also the exchange of two or more reggeized gluons.

Accordingly, one should include the contribution to the amplitude in which the kinematic

and color parts are both even under s ↔ u exchange, and in particular the case in which

a color singlet is exchanged.

The process independence of t-channel gluon exchange implies that one can write

formulae similar to eq. (1.2) for quark-quark and quark-gluon scattering, differing only for

the presence of the quark impact factor instead of the gluon impact factor. Considering

them together with gluon-gluon scattering, as given by eq. (1.2), one obtains a system

of three equations, which can be used to determine the impact factors for quark and

gluon scattering. In fact, one gets an over-constrained system of three equations and two

unknowns. One can use two of the equations to determine the one-loop impact factors,

and the third to perform a consistency check on high-energy factorization. Because the
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Regge trajectory and the impact factors can be expanded as a series in the coupling, this

procedure can be repeated in principle at each loop order, although it is unwarranted

for terms beyond the NLL accuracy. Specifically, the expansion of the Regge trajectory

and of the impact factors at one loop shows, as expected, that each equation has a term

proportional to ln(s/|t|), which is the same for all three amplitudes. That term gives the

one-loop Regge trajectory, and the fact that it is the same for all three equations shows its

universality, i.e. its independence of the particular scattering process under consideration.

Conversely, the term independent of ln(s/|t|) is different for each equation. One can then

use two of the equations to determine the one-loop gluon and quark impact factors, and

use the third to check the consistency of high-energy factorization.

Repeating the procedure above at two loops, one can use the terms proportional to

ln(s/|t|) to determine the two-loop Regge trajectory and verify its universality, and the

terms independent of ln(s/|t|) to compute the two-loop impact factors and check that

high-energy factorization holds. Such a check, however, fails [4], due to the presence

of a term proportional to α2
sπ

2/ǫ2, which therefore invalidates high-energy factorization,

making the determination of the two-loop impact factors ambiguous. This is not totally

unexpected, since terms independent of ln(s/|t|) at two loops are beyond NLL accuracy. It

is however interesting to notice that the violation originates only in the term proportional

to π2/ǫ2, and not in the single pole nor in the finite part of the would-be impact factors.

Furthermore, it must be emphasized that, in the context of Regge theory, eq. (1.2) is only

an approximation, based on the assumption that only Regge poles appear in the angular

momentum plane. Regge theory arguments predating QCD (see, for example, ref. [5])

suggest that this approximation is likely to break down, for logarithmic terms, at the

three-loop level, at NNLL accuracy and for non-planar contributions to the amplitude. At

this accuracy, one may in fact envisage contributions to the amplitude due to Regge cuts

in the angular momentum plane, which are absent in expressions such as eq. (1.2). These

corrections to Regge-pole-based high-energy factorization were never previously pinned

down in any specific computation of a scattering amplitude in the high-energy limit. The

violation of universality observed at two loops in ref. [4], as we show in the present paper,

is a harbinger of precisely such phenomena at the three-loop level.

In recent years, a general approach to the high-energy limit of scattering amplitudes

based on the universal properties of their infrared singularities has been developed in [6, 7],

following the earlier results of [8–10]. This approach suggests, in particular, that the viola-

tion of high-energy factorization reported in [4] at order α2
s and at next-to-next-to-leading

logarithmic accuracy in ln(s/|t|) is due to the amplitude becoming non-diagonal in the t-

channel-exchange basis. Such a violation iterates then at three loops in the α3
s term propor-

tional to ln(s/|t|), invalidating the universality of the three-loop Regge trajectory. Thus, the

eventual definition of a universal three-loop Regge trajectory requires additional conditions.

In refs. [11, 12] we have further developed the approach above, identifying the origin of

the high-energy factorization violation discovered in [4] at two loops. In order to be able to

define unambiguously a universal Regge trajectory and the related impact factors beyond

the NLL accuracy, we have proposed a way to isolate factorization-breaking terms at three

loops and beyond. This goal can be achieved introducing a non-factorizing contribution

– 3 –



J
H
E
P
0
2
(
2
0
1
5
)
0
2
9

to the amplitude, whose infrared and collinear divergent parts can then be unambiguously

predicted using the tools described in [6, 7]. We believe that a framework for consistently

identifying factorizing and non-factorizing contributions to high-energy amplitudes can be

useful both in practical finite-order calculations, to assess the reliability of high-energy

resummations, and for theoretical developments. Indeed, a precise expression for the dis-

crepancy between pole-based Regge factorization and the actual perturbative results for

the amplitude may be useful at least as a boundary condition for future attempts to extend

high-energy factorization to include the contributions of Regge cuts. Furthermore, our re-

sults are a first step in the direction of systematically combining information on amplitudes

which arise from infrared factorization, which is exact to all orders in perturbation theory

for all singular contributions to the amplitudes, with those arising from Regge factoriza-

tion, which applies also to finite contributions to the amplitudes, but has limited validity

in terms of logarithmic accuracy.

In this paper, we extend the analysis of refs. [11, 12] beyond leading poles, beyond three

loops and beyond the leading color amplitude. Furthermore, we provide a more flexible

framework for combining infrared factorization with the high-energy limit, which is better

suited to disentangle the various color components of the amplitudes. We are then able

to provide detailed predictions for singular terms contributing to the high-energy limit of

quark and gluon amplitudes in QCD up to three loops, and furthermore we are able to

derive towers of constraints on real and imaginary parts of finite contributions to the am-

plitudes, valid to all orders in perturbation theory, up to NLL accuracy. These constraints

show that, to the stated accuracy, the hard (infrared-finite) parts of the amplitudes can be

chosen to vanish, so that all high energy logarithms (up to NLL included) are generated

by the infrared operators arising from infrared factorization. This result lends support to

the conjecture that all high-energy logarithms may be understood as originating from a

special class of infrared enhancements, as suggested in [8–10, 13–15], and also in agreement

with the recently proposed approach of ref. [16].

The paper is organized as follows. In section 2, we discuss the general features of

infrared factorization, and we review the results of ref. [6]. In section 3, we provide a

general parametrization of four-point scattering amplitudes in the high-energy limit, and

we introduce an improved organization of infrared operators, which better adapts to the

color structure and symmetry properties of scattering amplitude in the high-energy limit.

In section 4 we give a detailed comparison of infrared and high-energy factorizations up to

three-loop order. This allows us to recover the results of refs. [4, 11, 12], and to provide

definite and complete predictions for factorization-breaking terms at three loops. Further-

more, we examine the coefficients of the hard functions in the high-energy limit to all orders

in the coupling, up to NLL accuracy in ln(s/|t|). In section 5, we analyze the t-channel

exchange of color representations other than the octet, which do not admit a high-energy

factorization as in eq. (1.2), and we provide a comparison, based on the dipole formula

for the soft anomalous dimension matrix, to similar studies performed in terms of Wilson

lines in ref. [16]. In section 6, we briefly discuss our results and the prospects for future

developments. Finally, several technical details which, we believe, will be useful for fu-

ture high-order calculations of high-energy quark and gluon amplitudes, are given in the
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appendices. In appendix A, we provide the color bases we use for four-point scattering

amplitudes, in appendix B we give the expressions for all relevant anomalous dimensions

up to three loops, while in appendix C we write down the high-energy limit of the hard

functions of four-point QCD scattering amplitudes, up to two-loop accuracy, using the

exact four-point two-loop amplitudes provided in the literature [17–21]. In addition, as

an example, in appendix D we provide expressions for the singularities of singlet exchange

amplitudes up to two-loop accuracy.

2 Infrared factorization and the high-energy limit

Matrix elements for quark and gluon scattering have a non-trivial color structure, which

is best understood by assembling them into vectors in the space of color configurations

available for the process at hand. In general one writes, for n-parton scattering,

Mn

(
pi
µ
, αs(µ

2)

)
=
∑

j

M[j]
n

(
pi
µ
, αs(µ

2)

)
c
(n)
[j] , (2.1)

where the c
(n)
[j] ’s are color tensors of rank n, with indices (not shown here) in the color

representations of the external partons undergoing the scattering, while the index [j] =

1, . . . , r enumerates the color representations which can be exchanged in intermediate states

in a selected channel. For a detailed discussion of how such tensors can be enumerated

and constructed, when the external particles are in arbitrary color representations, we refer

the reader to [6, 22–24]: briefly, having selected for example an s-channel basis, one must

construct the tensor product of the initial state representations, and take its intersection

with the tensor product of final state representations. We note that, as in the rest of the

paper, in eq. (2.1) we left implicit the dependence on the infrared regulator ǫ = 2−d/2 < 0.

Infrared and collinear singularities in the vector Mn are known to factorize,1 so that

the matrix element can be written as

Mn

(
pi
µ
, αs(µ

2)

)
= Zn

(
pi
µ
, αs(µ

2)

)
Hn

(
pi
µ
, αs(µ

2)

)
. (2.2)

Here H is a color vector, which is finite as ǫ → 0, and represents a matching condition,

to be determined order by order in perturbation theory after the subtraction of divergent

contributions. The infrared operator Zn, on the other hand, is an r×r matrix in color space,

generating all infrared and collinear singularities of the amplitude; it satisfies a (matrix)

renormalization group equation, whose general solution can be written in the form

Zn

(
pi
µ
, αs(µ

2)

)
= P exp

[
1

2

∫ µ2

0

dλ2

λ2
Γn

(pi
λ
, αs(λ

2)
)]

, (2.3)

where P denotes path ordering in color space. Note that all poles in ǫ are generated [29]

through the integration of the d-dimensional running coupling down to vanishing scale,

1See [25–27] and references therein for discussions of matrix element factorization. An analysis in the

context of SCET was recently proposed in ref. [28].
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λ → 0. For massless particles, the results of refs. [30, 31] showed that, up to two loops, the

n-parton soft anomalous dimension matrix has a remarkably simple form, proportional to

the one-loop result, regardless of the number of partons involved. This stimulated further

investigations, and led to the proposal of the ‘dipole formula’ [32–35] as an all-order ansatz

for Γn. This takes the form

Γdip
n

(pi
λ
, αs(λ

2)
)

=
1

4
γ̂K
(
αs(λ

2)
) ∑

(i,j)

ln

(−sij
λ2

)
Ti ·Tj −

n∑

i=1

γi
(
αs(λ

2)
)
. (2.4)

The basic feature of eq. (2.4) is that the color structure, expressed in terms of the color-

insertion operator Ti for parton i, remains the same as at leading order, and therefore

it is expressed as a sum over color dipoles, with all higher-order multipoles vanishing

exactly. Color and kinematics are tightly correlated, since momentum dependence occurs

only through the ‘dipole’ invariants sij = (pi+pj)
2, where for the sake of simplicity we have

taken all momenta as outgoing. An important consequence of the simple color structure of

eq. (2.4) is that the path ordering symbol in eq. (2.3) can be dropped, since scale dependence

through the coupling is confined to colorless anomalous dimensions. These are defined as

follows. Denoting by γ
[i]
K the cusp anomalous dimension [36, 37] in representation [i], and

by C[i] the corresponding quadratic Casimir eigenvalue, we assume γ
[i]
K to be proportional

to C[i] through a universal function γ̂K , so that γ
[i]
K = C[i]γ̂K . This is known to be true

at least up to three loops. The functions γi, on the other hand, are collinear anomalous

dimensions which can be extracted from form factor data [27, 29, 34].

The dipole formula, eq. (2.4), arises as the simplest solution to a set of exact equations

satisfied by the soft anomalous dimension, which can be understood as anomaly equations.

Indeed, correlators of semi-infinite straight Wilson lines have a classical symmetry under

independent rescalings of all four-velocities βi, which is broken by quantum corrections for

light-like lines, as a consequence of collinear divergences. The kinematic dependence of the

soft anomalous dimension in this case is constrained by the cancellation of this anomaly

in physical matrix elements. Eq. (2.4) is exact up to two loops for massless partons, as

first shown in refs. [30, 31]. The advantage of having exact equations for Γn is that one

can study possible corrections to eq. (2.4) in a systematic way [34, 38, 39]. One finds

that possible corrections could come only from two sources. They can take the form of

conformal cross-ratios of kinematic invariants, starting at three loops and with at least

four hard partons, which however are very tightly constrained by symmetry requirements

and by known properties of scattering amplitudes, including their high-energy behavior.

Alternatively, they can arise as a consequence of violations of Casimir scaling for the cusp

anomalous dimension, which can happen in principle starting at four loops. The complete

calculation of the three-loop soft anomalous dimension matrix Γn is a very challenging

project, and recent progress to this end has been discussed in [40, 41]. Also recently,

evidence for the existence of corrections to eq. (2.4) at the four-loop level, and at NLL

accuracy in the high-energy limit, was uncovered in ref. [16]. Finally, the results of the

recent calculation of the three-loop non-light-like cusp anomalous dimension in ref. [42] led

to conjecture a possible violation of the Casimir scaling of γK(αs), at four loops and for

contributions proportional to nf .
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For the rest of this paper, we will simply assume that the dipole formula is correct.

Essentially all of the results given below are in any case not affected by possible correc-

tions. When this is not the case, for example for single pole terms at three loops, we will

explicitly note how the results could change. In the remainder of this section, we discuss

the implications of the dipole formula for the high-energy limit, specializing to four-point

amplitudes, which are the simplest and most studied case. Here we summarize the results

of refs. [6, 7, 11, 12], while in section 3 we propose an improved organization of infrared

factors, which yields a more transparent comparison with high-energy factorization.

The main result of refs. [6, 7, 11, 12] is that, in the high energy limit, the infrared

factor Zn takes a simple factorized form, which is valid to leading power in |t|/s and to all

logarithmic accuracies. In the case of four-point amplitudes, one can write

Z
(

s

µ2
,
t

µ2
, αs

)
= exp

[
−i

π

2
K (αs) Ctot

]
Z1,R

(
t

µ2
, αs

)
Z̃
(s
t
, αs

)
+O

(
t

s

)
, (2.5)

where, for simplicity, we omit henceforth the label n = 4, and where Ctot ≡
∑4

i=1 C[i] is the
sum of the Casimir eigenvalues of the external particles. The main ingredient of eq. (2.5)

is the matrix Z̃, which encodes the dependence on high-energy logarithms, and carries

non-trivial color information, which will be crucial for our discussion. It is given by

Z̃
(s
t
, αs

)
= exp

{
K(αs)

[
log

(
s

−t

)
T2

t + iπT2
s

]}
. (2.6)

Z̃ is responsible for generating all high-energy logarithms of the amplitude which are ac-

companied by infrared poles. In eq. (2.6) we also introduced ‘Mandelstam’ combinations

of color-insertion operators Ts = T1 + T2 and Tt = T1 + T3. The coefficients of the

high-energy logarithms are determined by the function

K (αs) = −1

4

∫ µ2

0

dλ2

λ2
γ̂K
(
αs(λ

2)
)
, (2.7)

which is a scale integral over the cusp anomalous dimension. This integral is well known in

perturbative QCD: it enters the resummation of infrared poles in the quark form factor [29]

and in planar multi-parton scattering amplitudes [43]; it was recursively computed to all

orders, in terms of the perturbative coefficients of β(αs) and γK(αs), in [44]; in the context

of the high-energy limit, a slightly different form of eq. (2.7) was shown to give the all-

order infrared part of the Regge trajectory in [10]. In eq. (2.7) the singular ǫ dependence

is generated through the integration of the d-dimensional version of the running coupling,

so that the result is a pure counterterm. To three-loop order one finds2

K(αs) =
αs

π

γ̂
(1)
K

4ǫ
+
(αs

π

)2
(
γ̂
(2)
K

8ǫ
− b0 γ̂

(1)
K

32ǫ2

)

2We choose to expand all functions in powers of αs/π. The explicit expressions for the perturbative

coefficients of the various anomalous dimensions we use, up to three loops, are given in appendix B. Note

that normalizations must be changed appropriately when comparing with the literature, for example [4],

where perturbative expansions are often in powers of αs/(4π).
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+
(αs

π

)3
(
γ̂
(3)
K

12ǫ
− b0 γ̂

(2)
K + b1 γ̂

(1)
K

48ǫ2
+

b20 γ̂
(1)
K

192ǫ3

)
+O(α4

s) , (2.8)

The final ingredient of eq. (2.5) is the function Z1,R, which is a singlet in color space and

real in the physical region. Its explicit expression is

Z1,R

(
t

µ2
, αs

)
= exp

{
1

2

[
K (αs) log

(−t

µ2

)
+D (αs)

]
Ctot +

4∑

i=1

Bi (αs)

}
, (2.9)

where the functions D(αs) and B(αs), just like K(αs), are given by scale integrals of the

cusp and collinear anomalous dimensions, and they similarly yield a perturbative series of

pure counterterms, representing infrared and collinear divergences. Explicitly,

D (αs) = −1

4

∫ µ2

0

dλ2

λ2
γ̂K
(
αs(λ

2)
)
log

(
µ2

λ2

)
,

Bi (αs) = −1

2

∫ µ2

0

dλ2

λ2
γi
(
αs(λ

2)
)
. (2.10)

Because of the extra logarithm, the functionD(αs) is responsible for double poles combining

infrared and collinear singularities. An important property of the operator Z1,R, relevant

for high-energy factorization and manifest in eq. (2.9), is that it can be written to all orders

in perturbation theory as the product of four factors, each one associated with one of the

external hard partons. Labeling the partons involved in the 2 → 2 scattering process by

means of indices {r, s}, with {r, s} = {q, g} for quarks and gluons respectively, so that

Z1,R → Z rs
1,R, one may write

Z rs
1,R

(
t

µ2
, αs

)
=

(
Z r
1,R

(
t

µ2
, αs

))2(
Z s
1,R

(
t

µ2
, αs

))2

. (2.11)

Each factor Z i
1,R can be thought of as a ‘jet’ operator, and one may expect these jet

operators to combine naturally to yield the divergent parts of the impact factors. We will

see below that this is indeed the case.

3 High-energy color structure and the signature of the amplitude

One of the key features of high-energy factorization, as exemplified in eq. (1.2), is the ‘signa-

ture’ of reggeized gluon exchange, derived from the expected symmetry of ladder diagrams

contributing to high-energy logarithms. We now show that this feature of high-energy

amplitudes emerges naturally from infrared factorization, with a simple rearrangement of

eq. (2.5). To this end, we must first generalize eq. (1.2) to include the scattering of quarks

as well as gluons. In order to do so, we need to take into account the fact that the color

factor for quark-quark scattering does not have a definite symmetry property under s ↔ u.

In that case, therefore, the symmetric and the antisymmetric parts of the kinematic factor

must be weighted differently. Furthermore, we must write the result in a notation com-

patible with our discussion of infrared factorization, noting that high-energy factorization,

– 8 –
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as described in eq. (1.2), applies only to the exchange of the octet representation in the t

channel. Choosing therefore a t-channel exchange basis, we can generalize eq. (1.2) as

M[8]
rs

(
s

µ2
,
t

µ2
, αs

)
= 2παsH

(0),[8]
rs

×
{
Cr

(
t

µ2
, αs

)[
A+

(s
t
, αs

)
+ κ rsA−

(s
t
, αs

)]
Cs

(
t

µ2
, αs

)

+ R[8]
rs

(
s

µ2
,
t

µ2
, αs

)
+O

(
t

s

)}
, (3.1)

where, as before, the indices r, s label the parton species (quark or gluon), and the Regge

trajectory appears in the combinations

A±

(s
t
, αs

)
=

(−s

−t

)α(t)

±
(

s

−t

)α(t)

, (3.2)

with κgg = κqg = 0, while κqq = (4 − N2
c )/N

2
c . In eq. (3.1) we have also introduced a

non-factorizing remainder function R rs, which is expected to receive contributions starting

at NNLL and which will be discussed in detail in what follows. Finally, H
(0),[8]
rs represents

the tree-level amplitude, which depends on the process, and includes the factor s/t which

appeared explicitly in eq. (1.2).

In order to accurately match eq. (2.5) with eq. (3.1), the presence of the ‘Coulomb

phase’ factor proportional to Ctot in eq. (2.5) is crucial. Indeed, using the relation

T2
s +T2

t +T2
u = Ctot , (3.3)

it is possible to combine the Coulomb phase in eq. (2.5) with the matrix Z̃ to define a new

infrared matrix

Z̃S

(s
t
, αs

)
≡ exp

(
−i

π

2
K (αs) Ctot

)
Z̃
(s
t
, αs

)
(3.4)

= exp

{
K(αs)

[(
log

(
s

−t

)
− i

π

2
(1 + κ rs)

)
T2

t + i
π

2

(
T2

s −T2
u + κ rsT

2
t

) ]
}
.

Factorizing the matrix Z in terms of Z̃S and Z1,R provides the most natural description of

the dipole formula in the high-energy limit, because it makes more manifest the s ↔ u ∼ −s

symmetry property that can be exploited in this regime. Indeed, we can rewrite Z̃S as

Z̃S

(s
t
, αs

)
= exp

{
K(αs)

[
1

2

[
log

(
s+ iη

−t

)
+ log

(−s− iη

−t

)
(3.5)

+κ rs

(
log

(−s− iη

−t

)
− log

(
s+ iη

−t

))]
T2

t + i
π

2

(
T2

s −T2
u + κ rsT

2
t

)]}
.

Comparing with the structure of the scattering amplitude in the high-energy limit, as given

in eq. (3.1), it is easy to see that at the leading logarithmic level (and at NLL for the real
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part of the amplitude) the terms proportional toT2
t in the exponent of the infrared operator

Z̃S reproduce not only the energy logarithms, ln(s/(−t)), but also the correct symmetry

properties under s ↔ u exchange, that is to say the correct signature of the amplitude

(hence the label S attributed to the new infrared matrix Z̃S). The breaking of high-energy

factorization arises in the first instance from the last term in eq. (3.5), which is a color- and

process-dependent phase independent of kinematic invariants. This is in accordance with

the expectation that the failure of high-energy factorization should come from the mixing

of different color amplitudes: indeed, while the color operator T2
t is diagonal in a t-channel

color basis, the operator T2
s −T2

u + κ rsT
2
t is not, and will induce mixing between different

color components of the amplitude. Moreover, one can see that corrections to high-energy

factorization must be expected even from the t-channel term alone, because of the different

way the s ↔ u symmetry is realised in the Regge factorization formula and in the dipole

formula. Indeed, the former consists of a sum of symmetric and anti-symmetric terms, see

eq. (3.1), while, focusing on the color diagonal part of the latter, eq. (3.5), proportional to

T2
t , one can see that the separation between symmetric and anti-symmetric contribution

appears in the exponent, so that mixing will be generated upon expansion.

A more detailed analysis of eq. (3.5) readily leads to the expected conclusion that high-

energy factorization begins to break down at NNLL level. In order to expand eq. (3.4) in

order of increasing logarithmic accuracy, we need to make use of the Zassenhaus formula

ek (X+Y ) = ekX ekY e−
k2

2
[X,Y ] e

k3

3!

(
2 [Y,[X,Y ]] + [X,[X,Y ]]

)
eO(k4) , (3.6)

with the identifications

k = K(αs),

X =

(
log

(
s

−t

)
− i

π

2
(1 + κ rs)

)
T2

t , (3.7)

Y = i
π

2

(
T2

s −T2
u + κ rsT

2
t

)
. (3.8)

Clearly, since the function K(αs) begins at O(αs), all leading logarithms are generated by

the first exponential in eq. (3.6), ekX . Next-to-leading logarithms arise from the infinite

sequence of multiple commutators involving only one power of Y , and an arbitrary number

of powers of X, and so forth. In order to continue the analysis, it is convenient to introduce

a shorthand notation for color operators. We define

Ot = T2
t ,

Os−u = T2
s −T2

u + κ rsT
2
t = 2T2

s + (1 + κ rs)T
2
t − Ctot ,

Ot,s =
[
T2

t ,T
2
s

]
, (3.9)

Ot,t,s =
[
T2

t ,
[
T2

t ,T
2
s

]]
,

Os,t,s =
[
T2

s,
[
T2

t ,T
2
s

]]
,

with the natural generalizations to higher order commutators. In terms of these color

operators, the exponents of the various factors on the right-hand side of eq. (3.6) read

kX = K(αs)

[
log

(
s

−t

)
− i

π

2
(1 + κ rs)

]
Ot ,
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kY = i
π

2
K(αs)Os−u , (3.10)

−k2

2

[
X,Y

]
= K2(αs)

[
− i

π

2
log

(
s

−t

)
− π2

4
(1 + κ rs)

]
Ot,s ,

k3

3!

(
2
[
Y,
[
X,Y

]]
+
[
X,
[
X,Y

]])
=

K3(αs)

3!

{[
− 2π2 log

(
s

−t

)
+ iπ3 (1 + κ rs)

]
Os,t,s

+

[
iπ log2

(
s

−t

)
+ i

π3

4
(1 + κ rs)

2

]
Ot,t,s

}
.

Starting with eq. (3.10), one can verify that all color operators appearing at NLL, namely

Os−u, Ot,s, Ot,t,s, and more generally Ot,...,t,s give vectors with a vanishing octet compo-

nent, when acting on pure octet matrix elements, and thus in particular on the tree-level

quark and gluon amplitudes at leading power in |t|/s. Indeed, one finds that

[
Os−u

][8],[8]
=
[
2T2

s + (1 + κ rs)T
2
t − Ctot

][8],[8]

= 2
[
T2

s

][8],[8]
+ (1 + κ rs)CA − Ctot = 0 , (3.11)

[
Ot,...,t,s

][8],[8]
=
[
T2

t ,
[
T2

t , . . . ,
[
T2

t ,T
2
s

]
. . .
]][8],[8]

= 0 .

It is important to notice that, while the second identity in eq. (3.11) is a simple consequence

of the fact that T2
t can be replaced by its eigenvalues in a t-channel basis, the first identity

is non-trivial and to some extent surprising: it is a necessary condition for the reggeization

of next-to-leading logarithms, and, as such, it is a consequence of known properties of the

high-energy limit; it embodies symmetry properties of the amplitudes, related to crossing

symmetry, and indeed it could be used as a definition of the symmetry factor κ rs; finally, we

have explicitly checked that it is verified for quark and gluon amplitudes with the choice of

color basis described in appendix A. On the other hand, operators like Os,t,s in eq. (3.10),

which induce non-trivial mixing between different color amplitudes, appear only starting

at NNLL, so that only at this level one expects a breakdown of high-energy factorization.

4 Comparing infrared and high-energy factorizations for octet exchange

We now get to the central goal of this paper, which is the comparison of the two different

factorizations that we have described, given respectively by eq. (2.2), together with the

information on the high-energy limit collected in section 2, and eq. (3.1). The two factor-

izations differ substantially in scope and accuracy: infrared factorization for amplitudes

organizes only infrared divergent contributions, but it is exact to all orders in perturbation

theory; furthermore, the high-energy limit of the infrared operator Z discussed in section 3

is accurate to leading power in t/s. On the other hand, high-energy factorization targets

finite contributions to the amplitude, but it is only expected to work to a limited logarith-

mic accuracy. Comparing the two approaches, we are going to extract constraints on the

amplitude, which will eventually enable us to make predictions based on one of the two

factorizations, when the second one is not applicable.
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Our first task is to systematically expand our factorized expressions in powers of the

coupling and, where present, of the high-energy logarithm, ln(s/|t|). For example, to

leading power in t/s, each color component of the amplitude can be organized as a double

expansion, writing

M[j]

(
s

µ2
,
t

µ2
, αs

)
= 4παs

∞∑

n=0

n∑

i=0

(αs

π

)n
lni
(

s

−t

)
M (n),i,[j]

(
t

µ2

)
, (4.1)

with corrections suppressed by powers of t/s. The color components of the finite hard

vector H can be similarly expanded as

H[j]

(
s

µ2
,
t

µ2
, αs

)
= 4παs

∞∑

n=0

n∑

i=0

(αs

π

)n
lni
(

s

−t

)
H(n),i,[j]

(
t

µ2

)
. (4.2)

In this notation, since the tree-level matrix element has no logarithms, as well as obviously

no divergences, one has H(0),[8] = H(0),0,[8]. The octet remainder R[8]
rs defined in eq. (3.1)

is also expanded as

R[8]
rs

(
s

µ2
,
t

µ2
, αs

)
=

∞∑

n=2

n−2∑

k=0

(αs

π

)n
lnk
(

s

−t

)
R (n),k,[8]

rs

(
t

µ2

)
. (4.3)

Notice that we have included the information that the remainder function must start at

NNLL and at the two-loop level. In principle, there is a finite, logarithmically subleading

ambiguity in the definition of the remainder function R[8]
rs : we will see, however, that

the knowledge of the structure of the amplitude which comes from infrared factorization

suggests a natural choice of ‘high-energy factorization scheme’, and therefore a natural

choice for the non-factorizing remainder.

Quantities that do not depend on the center-of-mass energy s are just expanded in per-

turbation theory. For example for the Regge trajectory and for the impact factors we write

α(t) =

∞∑

n=1

(αs

π

)n
α(n)(t) , C r

(
t

µ2
, αs

)
=

∞∑

n=0

(αs

π

)n
C(n)

r

(
t

µ2

)
, (4.4)

and we choose the normalization so that C
(0)
r = 1. In practice, in all subsequent calcula-

tions we will set the renormalization scale µ2 = −t, so that the perturbative coefficients of

these functions will be just numbers. Notice also that in the literature on high-energy am-

plitudes [4, 16, 45] certain universal ǫ-dependent factors are reabsorbed in the coupling, and

the perturbative expansion is effectively in powers of a shifted coupling α̃s = cΓαs, where

cΓ = eε γE
Γ(1− ε)2Γ(1 + ε)

Γ(1− 2ε)
. (4.5)

We will not follow this practice in our calculations below, since we want our results to

be expressed in terms of the standard MS coupling, to be readily comparable with finite-

order calculations. Since the two definitions begin to differ at O(ε2), some of our results

for subleading poles at high-orders would change if the other scheme was adopted. That
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being said, we find that, in several instances, reabsorbing the one-loop factor cΓ proves

remarkably efficient in simplifying the resulting expressions, even beyond NLL accuracy,

where one might expect such a substitution to be helpful. Whenever such a simplification

occurs, we will note it explicitly.

We now proceed with our comparison, order by order, beginning at one loop, where

everything is well known, in order to set up our convention and illustrate our procedure in

a simple setting.

4.1 One-loop matrix elements

We begin by expanding eqs. (2.2) and (3.1), to first order in αs. For simplicity, we will

omit the parton indices r, s whenever they are not specifically needed. Infrared factorization

yields the expressions

M (1),0 =
{
Z

(1)
1,R + i

π

2
K(1)

[
Os−u − (1 + κ rs)Ot

]}
H(0) +H(1),0 ,

M (1),1 = K(1)OtH
(0) +H(1),1 , (4.6)

which are still vectors in color space. For the octet component of these vectors, high-energy

factorization provides the expressions

M (1),0,[8] =
[
C(1)
a + C

(1)
b − i

π

2
(1 + κ rs)α

(1)
]
H(0),[8] ,

M (1),1,[8] = α(1)H(0),[8] . (4.7)

One of the constraints of Regge factorization is the fact that the Regge trajectory and the

impact factors are required to be real: in other words, the imaginary part of the amplitude

is completely determined by the signature properties under the exchange s ↔ u, as given

in eq. (3.1) and in eq. (3.2). There is therefore interesting information to be extracted

about the imaginary parts of the amplitude when comparing results such as eq. (4.6) and

eq. (4.7). Comparing first one-loop terms proportional to ln(s/(−t)), and noting that the

second of eqs. (4.7) is real, we immediately see that

Im
[
H(1),1,[8]

rs

]
= 0 . (4.8)

In addition, it is known [45] that

Re
[
H(1),1,[8]

rs

]
= O(ε) . (4.9)

This simple one-loop result, as we will see, bootstraps to higher orders and has important

consequences on finite parts of higher-order amplitudes. To begin with, we can now write

the one-loop Regge trajectory as

α(1) =
K(1)T2

tH
(0)

H(0),[8]
+O(ε) . (4.10)

In the high-energy limit, for all parton species, the tree-level amplitude at leading power

in |t|/s is a pure color octet in the t-channel, and therefore it is an eigenvector of the T2
t

operator with eigenvalue CA. As expected, the Regge trajectory then becomes

α(1) = CAK
(1) +O(ε) =

CA

2ε
+O(ε) , (4.11)
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which confirms the universality of the one-loop Regge trajectory [46–52] to O(ε). Notice

that in the context of one-loop calculations these O(ε) terms can be safely neglected. Here

however we allow for the possibility that O(ε) contributions might interfere with higher-

order poles coming from the expansion of the infrared operators beyond one loop. In the

present case, O(ε) contributions come exclusively from the factor cΓ in eq. (4.5).

Turning to non-logarithmic contributions to the matrix elements in eqs. (4.6) and (4.7),

and comparing their imaginary parts, we obtain

Im
[
H(1),0,[8]

rs

]
= −π

2
(1 + κ rs) α

(1)H(0),[8]
rs

− π

2
K(1)

{[
Os−u − (1 + κ rs)Ot

]
H(0)

}[8]
. (4.12)

Using the form of the Regge trajectory, eq. (4.10), and the identity in eq. (3.11), it is easy

to see that

Im
[
H(1),0,[8]

rs

]
= −π

2
(1 + κ rs)Re

[
H(1),1,[8]

rs

]
= O(ε) . (4.13)

Notice that the vanishing of the octet-octet component of the operator Os−u, noted in

eq. (3.11), is crucial for the compatibility of eq. (4.12) with infrared factorization: if that

matrix element were to be non-vanishing, the right-hand side of eq. (4.12) would have a

leftover uncancelled IR divergence, which would be incompatible with the definition of H as

the finite remainder of the matrix element. A combined consequence of Reggeization and

infrared factorization is thus that imaginary parts of one-loop amplitudes are completely

fixed in terms of the real parts. The key element which guarantees that this can happen

is precisely the fact that the operator Os−u, appearing in eq. (4.12), gives a vector with a

vanishing octet component, when applied to an octet amplitude, as shown in eq. (3.11).

Finally, comparing the real parts of the non-logarithmic contributions to eqs. (4.6)

and (4.7), and considering separately the quark-quark and the gluon-gluon scattering am-

plitudes, we can determine the respective impact factors. One finds that

C(1)
r =

1

2
Z

(1)
1,R,rr +

1

2
Ĥ(1),0,[8]

rr , (4.14)

where we defined Ĥ
(m),n,[J ]
rs = H

(m),n,[J ]
rs /H

(0),[8]
rs . The coefficients Z

(1)
1,R,r can be expressed

in terms of known anomalous dimensions, given in eq. (B.3) and eq. (B.4), while hard parts

can be read off eqs. (C.1), (C.4), (C.7), and (C.9). This gives the one loop impact factors

C(1)
q = −1

2
CF

(
1

ε2
+

3

2ε

)
+Nc

(
13

72
+

7

8
ζ(2)

)
+

1

Nc

(
1− 1

8
ζ(2)

)
− 5

36
nf +O(ε) ,

C(1)
g = − 1

2ε2
Nc −

b0
4ε

−Nc

(
67

72
− ζ(2)

)
+

5

36
nf +O(ε) . (4.15)

Having determined both impact factors, one can finally verify the consistency of Regge

factorization, by constructing the high-energy quark-gluon scattering amplitude. One can

use the fact that, by virtue of eq. (2.11), the color-singlet infrared operators Z1,R,rs satisfy

Z
(1)
1,R,qg =

1

2

[
Z

(1)
1,R,qq + Z

(1)
1,R,gg

]
. (4.16)
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With this result, borrowed from infrared factorization, requiring Regge factorization leaves

a constraint on the hard parts of the amplitudes, which must satisfy

Re
(
Ĥ(1),0,[8]

qg

)
=

1

2

[
Re
(
Ĥ(1),0,[8]

gg

)
+Re

(
Ĥ(1),0,[8]

qq

)]
. (4.17)

Our explicit results for hard parts, extracted from ref. [53], are given in appendix C, and

they are easily verified to satisfy eq. (4.17).

4.2 Two-loop matrix elements

Repeating the procedure at two loops, one finds more interesting results and, as we describe

below, at the level of non-logarithmic terms one begins to see the breakdown of the high-

energy factorization, as given in eq. (3.1).

As above, we begin by expanding eq. (2.2), this time to second order in αs. We find

M (2),0 =

[
i
π

2

(
K(2) +K(1)Z

(1)
1,R

)(
Os−u − (1 + κ rs)Ot

)
+ Z

(2)
1,R

− π2

8

(
K(1)

)2 (
O2

s−u + 2Ot,s (1 + κ rs)− 2OtOs−u (1 + κ rs) +O2
t (1 + κ rs)

2
)]

H(0)

+

[
i
π

2
K(1)

(
Os−u − (1 + κ rs)Ot

)
+ Z

(1)
1,R

]
H(1),0 +H(2),0 ,

M (2),1 =

[
i
π

2

(
K(1)

)2 (
−Ot,s +OtOs−u − (1 + κ rs)O

2
t

)
+K(1)Z

(1)
1,ROt +K(2)O2

t

]
H(0)

+K(1)OtH
(1),0 +

[
i
π

2
K(1)

(
Os−u − (1 + κ rs)Ot

)
+ Z

(1)
1,R

]
H(1),1 +H(2),1 ,

M (2),2 =
(K(1))2

2
O2

tH
(0) +K(1)OtH

(1),1 +H(2),2 , (4.18)

where each expression is a vector in color space. For the octet component, we can also

expand eq. (3.1) to second order in αs, yielding

M (2),0,[8]
rs =

{
C(1)
r C(1)

s + C(2)
r + C(2)

s − i
π

2
(1 + κ rs)

[(
C(1)
r + C(1)

s

)
α(1) + α(2)

]

− π2

4
(1 + κ rs)

(
α(1)

)2
+

1

2
R(2),0,[8]

rs

}
H(0),[8]

rs , (4.19)

M (2),1,[8]
rs =

[(
C(1)
r + C(1)

s

)
α(1) − i

π

2
(1 + κ rs)

(
α(1)

)2
+ α(2)

]
H(0),[8]

rs ,

M (2),2,[8]
rs =

1

2

(
α(1)

)2
H(0),[8]

rs ,

where in the first equation, which contains the non-logarithmic NNLL contribution at two

loops, we allow for a non-factorizing remainder, as in eq. (4.3).

Comparing the coefficients of the leading logarithms, that is the expressions at the

bottom of eqs. (4.18) and (4.19), one readily verifies that the coefficient of the highest

power of the energy logarithm is determined by the one-loop result, and in particular that
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the imaginary part of the hard matrix element vanishes, while the real part is of higher

order in ε,

Im
[
H(2),2,[8]

rs

]
= 0 ,

Re
[
H(2),2,[8]

rs

]
=

Re
[
H

(1),1,[8]
rs

]2

2H
(0),[8]
rs

= O(ε2) , (4.20)

as expected from high-energy factorization.

At the level of single logarithms at two loops, that is the middle expressions in

eqs. (4.18) and (4.19), we expect to recover the two-loop Regge trajectory, and we ex-

pect high-energy factorization to continue holding. Indeed, one finds that the imaginary

part yields,

Im
[
H(2),1,[8]

rs

]
= −π

2

(
K(1)

)2 [(
−Ot,s +OtOs−u − (1 + κ rs)O

2
t

)
H(0)

rs

][8]

− π

2
K(1)

[(
Os−u − (1 + κ rs)Ot

)
Re
[
H(1),1

rs

]][8]
− Z

(1)
1,R Im

[
H(1),1,[8]

rs

]

− π

2
(1 + κ rs)

(
α(1)

)2
H(0),[8]

rs . (4.21)

Substituting the one-loop Regge trajectory, eq. (4.10), it is easy to see that eq. (4.21)

reduces to

Im
[
H(2),1,[8]

rs

]
= −π

2
(1 + κ rs)

(
Ĥ(1),1,[8]

rs

)2
H(0),[8]

rs = O(ε2) , (4.22)

which is easy to understand, using again eq. (3.11), and remembering that Im
[
H

(1),1
rs

]
= 0.

Once again, eq. (3.11) is crucial for consistency with infrared factorization.

The two loop Regge trajectory [4, 54–57] is determined from the real part of the single

logarithms. By replacing Im
[
H(1),1

]
= 0 in the expansion of the amplitude and introducing

the explicit results for the one loop coefficients in the Regge formula we have

α(2) = CAK
(2) +Re

[
Ĥ(2),1,[8]

rs

]
+O(ε) . (4.23)

As expected, the divergent part of the two loop Regge traiectory is entirely given by the

integral of the two loop cusp anomalous dimension and is independent of the specific scat-

tering process considered. This is again in perfect agreement with high-energy factorization.

The requirement that the finite part of the two-loop Regge trajectory found in the qq and

gg process be independent of the scattering process implies an identity for the real part of

the amplitude. The requirement is that

Re
[
Ĥ(2),1,[8]

gg

]
= Re

[
Ĥ(2),1,[8]

qg

]
= Re

[
Ĥ(2),1,[8]

qq

]
, (4.24)

which is indeed satisfied. We directly check this condition by normalizing eqs. (C.5), (C.11)

and (C.17) with the corresponding tree level amplitudes, given respectively in (C.1), (C.7)

and (C.13). This gives the universal result

Re
[
Ĥ(2),1,[8]

rs

]
=

(
101

108
− ζ(3)

8

)
N2

c − 7

54
Ncnf , (4.25)

which, when inserted in eq. (4.23), reproduces the well-known result of refs. [4, 54–57].
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Turning finally to non-logarithmic terms, given in the top expressions of eqs. (4.18)

and (4.19), we see that their imaginary part yields

Im
[
H(2),0,[8]

rs

]
= −π

2

(
K(2) +K(1)Z

(1)
1,R

) [(
Os−u − (1 + κ rs)Ot

)
H(0)

][8]

− π

2
K(1)

[(
Os−u − (1 + κ rs)Ot

)
Re
[
H(1),0

]][8]
+ Z

(1)
1,R Im

[
H(1),0,[8]

]

− π

2
(1 + κ rs)

[(
C(1)
r + C(1)

s

)
α(1) + α(2)

]
H(0),[8]

rs . (4.26)

A remarkable consequence of eq. (4.26) is that high-energy factorization still works at

NNLL for the imaginary part of the octet amplitude. This is a consequence of the fact that

the effects of the color mixing operators on the imaginary part of the octet amplitude are

delayed by one order as compared to the real part of the amplitude. Specifically, we see

that the only color mixing operator appearing in eq. (4.26) is again Os−u, which, as noted

above, gives a vanishing octet component when acting on a color octet state. The remaining

terms in the first two lines of eq. (4.26) combine to cancel exactly the contribution given

in the third line, leaving the finite remainder

Im
[
H(2),0,[8]

rs

]
= −π

2
(1 + κ rs)Re

[
H(2),1,[8]

rs

]
, (4.27)

which is in agreement with the corresponding coefficients of the two-loop amplitudes [4],

given in eqs. (C.6), (C.12) and (C.18).

When we consider the real part of NNLL contributions at two loops, given by the

top expressions of eqs. (4.18) and (4.19), we finally begin to see the non-universal effects

that bring about the breaking of high-energy factorization. Basically, the breaking of

universality can be traced back to three factors.

• The appearance of the operator (Os−u)
2, which, acting on H(0), gives a non-vanishing

octet component, in contrast to Os−u, Ot,s, and in general Ot,...,t,s: these operators,

when applied to a pure color octet amplitude, give a vector with a vanishing octet

component. To be more explicit, one has

[
(Os−u)

2H(0)
][8]

=
∑

[i]

[Os−u]
[8],[i] [Os−u]

[i],[8]H(0),[8] 6= 0 . (4.28)

• A mismatch between the Regge factorization formula and the high-energy limit of

the infrared factorization formula in the octet channel itself: this can be easily seen

by noting that

− π2

8

(
K(1)

)2 [
O2

t (1 + κ rs)
2H(0)

][8]
6= − π2

4
(1 + κ rs)

(
α(1)

)2
H(0),[8]

rs . (4.29)

• The contributions of the other color components of the amplitude. Starting at two

loops, one needs to take into account the effect of the operators Os−u, Ot,s, and in

general Ot,...,t,s on the non-octet components of the amplitude, which are zero at tree

level, but have contributions starting at one loop. For instance, in eq. (4.26) one sees
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that the color octet amplitude receives a contribution proportional to the one-loop

imaginary part of the sub-leading color amplitudes, through
[
Os−u Im

[
H(1),0

rs

]][8]
6= 0 . (4.30)

As we will see below, this last effect is subtle, because it involves terms which are

at least O(ε) from Im
[
H

(1),0
rs

]
, and it can be made to disappear by expanding the

amplitude in powers of α̃s = cΓαs.

In general, Os−u, Ot,s and the factor κrs depend on the scattering process through color

correlations and through the species of the incoming partons, so we expect that such terms

will break the universality of high-energy factorization. Our proposal is to identify all

universality-breaking terms and include them in the definition of the remainder function

R(2),0,[8]. The analysis of infrared singularities is crucial to pinpoint the non-universal con-

tribution. Indeed, if we replace the one loop impact factor and Regge trajectory eqs. (4.14)

and (4.10) in eq. (4.19), and we compare it with the real part of M
(2),0,[8]
rr obtained from

eq. (4.18), after using the identities in eq. (3.11) and eq. (4.13), we get an equation for the

sum of impact factors and remainder functions, of the form
(
2C(2)

rr +
R

(2),0,[8]
rr

2

)
H(0),[8]

rr =

[
Z

(2)
1,R,rr −

1

4

(
Z

(1)
1,R,rr

)2
+

1

2
Z

(1)
1,R,rrRe

[
Ĥ(1),0,[8]

rr

]

+Re
[
Ĥ(2),0,[8]

rr

]
− 1

4

(
Re
[
Ĥ(1),0,[8]

rr

])2 ]
H(0),[8]

rr

− π

2
K(1)

{
πK(1)

4

[(
O2

s−u −O2
t (1− κ2rr)

)
H(0)

rr

][8]
(4.31)

+

[
Os−uIm

[
H(1),0

rr

]][8]
− πNc

2
(1− κ2rr)Re

[
H(1),1,[8]

rr

]}
.

According to the considerations above, we assign all terms containing the operator Os−u

and the factor κrs to the remainder function, while all the other contributions will define

the impact factors. We write then

R(2),0,[8]
rs = −π2

4

(
K(1)

)2 1

H
(0),[8]
rs

[(
O2

s−u −O2
t

(
1− κ2rs

) )
H(0)

rs

][8]
(4.32)

− πK(1)

H
(0),[8]
rs

[
Os−u Im

[
H(1),0

rs

]][8]
+

π2

2
K(1)Nc

(
1− κ2rs

)
Re
[
Ĥ(1),1,[8]

rs

]
,

and

C(2)
r = −1

8

(
Z

(1)
1,R,rr

)2
+

1

2
Z

(2)
1,R,rr +

1

4
Z

(1)
1,R,rrRe

[
Ĥ(1),0,[8]

rr

]

− 1

8

(
Re
[
Ĥ(1),0,[8]

rr

])2
+

1

2
Re
[
Ĥ(2),0,[8]

rr

]
, (4.33)

with r = q, g. We use this definition to compute quark and gluon impact factors at two

loops and report their singularities

C(2)
q =

1

8ε4
C2
F +

1

ε3

(
17

64
N2

c − 23

64
− 1

16
nfCF +

3

32

1

N2
c

)
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+
1

ε2

[
N2

c

(
31

384
− 3

16
ζ(2)

)
+

7

32
ζ(2)− 77

192
+

1

24
nfCF +

1

N2
c

(
41

128
− 1

32
ζ(2)

)]

+
1

ε

[
N2

c

(
−1037

2304
− 19

48
ζ(2) +

1

96
ζ(3)

)
− 119

288
+

19

48
ζ(2) +

31

96
ζ(3)

+

(
1

24
ζ(2) +

89

288

)
nfCF +

1

N2
c

(
221

256
− 1

3
ζ(3)

)]
+ O

(
ε0
)
, (4.34)

C(2)
g =

1

8ε4
N2

c +
7

32ε3
b0Nc +

1

ε2

[
N2

c

(
103

96
− 7

16
ζ(2)

)
− 49

144
nfNc +

1

36
n2
f

]

+
1

ε

[
N2

c

(
853

864
− 11

12
ζ(2)− 31

48
ζ(3)

)
+ nfNc

(
− 67

288
+

1

6
ζ(2)

)

+
5

216
n2
f − 1

32

nf

Nc

]
+ O

(
ε0
)
,

where we have adopted for simplicity a mixed notation, writing explicitly CF instead of

(N2
c − 1)/(2Nc) and b0 instead of (11Nc − 2nf )/3 whenever such factors appear explicitly

in the calculation.

Similarly, the remainder functions R
(2),0,[8]
rs are written somewhat formally in eq. (4.32),

but they can be easily made explicit, for each parton species, upon picking specific color

bases for the various amplitudes. Working in the orthonormal bases described in detail

in appendix A and in refs. [22, 23], we get, for the octet components of quark and gluon

amplitudes,

R(2),0,[8]
qq =

π2

4ǫ2

(
1− 3

N2
c

)(
1− ǫ2ζ(2)

)
,

R(2),0,[8]
gg = − 3π2

2ǫ2

(
1− ǫ2ζ(2)

)
, (4.35)

R(2),0,[8]
qg = − π2

4ǫ2

(
1− ǫ2ζ(2)

)
.

Notice that our remainder at this order has no contributions of order ε−1, as a consequence

of the structure of infrared factorization. Furthermore, the factors
(
1− ǫ2ζ(2)

)
can all be

absorbed in the constant c2Γ, by performing the expansion in terms of α̃s = αscΓ, instead

of using αs: in this scheme, the octet remainder is a pure double pole. This explains,

as we will see shortly, the result of ref. [4], where a violation of universality with only a

double-pole contribution was discovered at the two-loop level.

We finally consider our proposed expression for the impact factors, eq. (4.33). It con-

tains terms which are manifestly universal and consistent with the interpretation of Cr: for

example, the first line of eq. (4.33) naturally arises from the action of the exponential jet fac-

tors Z1,R,rr, as defined in eq. (2.11), on the hard factors, and can be unambiguously assigned

to the external legs of the amplitude. Armed with these results and definitions, we can now

check that our corrected high-energy factorization formula, eq. (3.1), works, by comparing

the exact qg → qg amplitude at two loops, taken from ref. [18], with the one constructed

using eq. (3.1), with the impact factors, the Regge trajectory, and the remainder functions

defined above. We find, as expected, that R
(2),0,[8]
qg , together with the impact factors de-

fined in eq. (4.33), accounts for the complete two-loop quark-gluon scattering amplitude
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in the high-energy limit, including finite parts. Note that the same consistency check was

performed in section 4.1 on the qg amplitude at one loop: in that case, universality was

recovered by means of both eq. (4.16), derived from the definition of Z1,R,rr, and eq. (4.17),

which is of the same form but is required by high-energy factorization. Similarly, an impor-

tant ingredient for universality of eq. (3.1) at two loops is the two-loop jet factor identity

Z
(2)
1,R,qg =

1

8

[
4Z

(2)
1,R,qq + 4Z

(2)
1,R,gg + 2Z

(1)
1,R,qqZ

(1)
1,R,gg −

(
Z

(1)
1,R,qq

)2
−
(
Z

(1)
1,R,gg

)2 ]
, (4.36)

which is a simple consequence of eq. (2.11) and of the exponential form of the color singlet

functions Z1,R. On the other hand, the consistency check on the qg → qg scattering am-

plitude implies that an identity of the same form must hold for the finite parts too. This

can be verified directly using the results of ref. [18]. One finds that

Re
[
Ĥ(2),0,[8]

qg

]
=

1

8

[
4Re

[
Ĥ(2),0,[8]

qq

]
+ 4Re

[
Ĥ(2),0,[8]

gg

]
+ 2Re

[
Ĥ(1),0,[8]

qq

]
Re
[
Ĥ(1),0,[8]

gg

]

−
(
Re
[
Ĥ(1),0,[8]

qq

])2
−
(
Re
[
Ĥ(1),0,[8]

gg

])2 ]
. (4.37)

The structure of eq. (4.37), as well as that of eq. (4.17), suggest a simple exponential ansatz

for the impact factors, involving the jet factors of eq. (2.11) and the non-logarithmic terms

of the hard functions. To see it, we define the functions

Ĥ
0,[8]
R,rs =

∞∑

n=0

(αs

π

)n
Re
[
Ĥ(n),0,[8]

rs

]
, (4.38)

and we simply assume that they exponentiate just like the jet factors Z1,R,rs in eq. (2.11).

We can then write

Z1,R,rs = exp
[
ζr

]
× exp

[
ζs

]
, Ĥ

0,[8]
R,rs = exp

[
hr

]
× exp

[
hs

]
, (4.39)

where the functions h and ζ have perturbative expansions

hr(αs) =
αs

π
h(1)r +

(αs

π

)2
h(2)r + . . . , ζr(αs) =

αs

π
ζ(1)r +

(αs

π

)2
ζ(2)r + . . . . (4.40)

By using this notation, we can express the coefficients of the perturbative expansions of

Z1,R,rs and Ĥ
(n),0,[8]
rs simply as

Z
(1)
1,R,rs =

1

2

(
ζ(1)r + ζ(1)s

)
,

Z
(2)
1,R,rs =

1

2

(
ζ(2)r + ζ(2)s

)
+

1

2

(
ζ
(1)
r + ζ

(1)
s

2

)2

,

Re
[
Ĥ(1),0,[8]

rs

]
=

1

2

(
h(1)r + h(1)s

)
, (4.41)

Re
[
Ĥ(2),0,[8]

rs

]
=

1

2

(
h(2)r + h(2)s

)
+

1

2

(
h
(1)
r + h

(1)
s

2

)2

.
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We are now in a position to rewrite the definitions of the impact factors at one and two

loops, eq. (4.14) and eq. (4.33), using eq. (4.41). We obtain simply

C(1)
r =

ζ
(1)
r + h

(1)
r

2
,

C(2)
r =

ζ
(2)
r + h

(2)
r

2
+

1

2

(
ζ
(1)
r + h

(1)
r

2

)2

. (4.42)

This suggests a formal definition of impact factors to all orders, based on the information

we get from infrared factorization, and on the properties of the hard functions up to two

loops. We write

Cr = exp

[
ζr + hr

2

]
, (4.43)

which is exact at two loops with our definition of impact factor, and can be conjectured to

provide a consistent definition to all orders. Intriguingly, eq. (4.43) involves the exponen-

tiation of non-logarithmic, finite contributions to the amplitude: similar effects have been

known for a long time [29, 58–61] for form factors and cross sections that are electroweak

at tree level: eq. (4.43) provides a hint that this kind of exponentiation might extend to

multi-particle amplitudes, at least in the high-energy limit.

We conclude the discussion at the two-loop level by noting that we are now in a position

to recover the violation of universality first diagnosed in ref. [4], where the authors were

assuming that high-energy factorization would work without a remainder function. Under

that assumption, one finds a discrepancy between the exact two-loop quark-gluon scattering

amplitude and the one predicted by the high-energy factorization formula, eq. (3.1), in the

absence of the remainder R. That mismatch may be quantified by the function [11]

∆(2),0,[8] =
M

(2),0
qg

H
(0),[8]
qg

−
[
C(2)
q + C(2)

g + C(1)
q C(1)

g − π2

4
(1 + κ)

(
α(1)

)2 ]

=
1

2

[
R(2),0,[8]

qg − 1

2

(
R(2),0,[8]

qq +R(2),0,[8]
gg

)]
. (4.44)

Using eq. (4.32) and eq. (4.35), we may evaluate explicitly eq. (4.44), finding

∆(2),0,[8] =
3

2
π2
(
K(1)

)2(N2
c + 1

N2
c

)(
1− ǫ2ζ(2)

)

=
π2

ε2
3

16

(
N2

c + 1

N2
c

)(
1− ǫ2ζ(2)

)
. (4.45)

Up to our different normalization, already discussed above eq. (2.8), and noting again that

our expansion parameter is αs and not α̃s, one easily sees that eq. (4.45) is in complete

agreement with ref. [4], and explains the origin of the problem, as arising from the mixing

of color representations induced by infrared factorization.

4.3 Three-loop matrix elements

Proceeding to three-loop order, we expect that matching the single-logarithmic terms in

eqs. (3.1) and (2.2) will lead to a breaking of universality similar to that observed for non-

logarithmic terms at two loops. Indeed, as predicted in refs. [6, 7], a direct comparison
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yields a non-universal result. As before, we begin by expanding eq. (2.2) to third order in

αs. We obtain

M (3),0 =

[
i
π3

48

(
K(1)

)3 (
−O3

s−u + 8Os,t,s(1 + κ rs)− 6Os−uOt,s(1 + κ rs)

+ 2Ot,t,s(1 + κ rs)
2 − 3O2

t Os−u(1 + κ rs)
2

+O3
t (1 + κ rs)

3 + 3OtO
2
s−u(1 + κ rs) + 6OtOt,s(1 + κ rs)

2
)

+
π2

8
K(1)

(
K(1)Z

(1)
1,R + 2K(2)

)(
−O2

s−u − 2Ot,s(1 + κ rs)

+ 2OtOs−u(1 + κ rs)−O2
t (1 + κ rs)

2
)

+ i
π

2

(
K(1)Z

(2)
1,R +K(2)Z

(1)
1,R +K(3)

)(
Os−u −Ot(1 + κ rs)

)
+ Z

(3)
1,R

]
H(0)

+

[
π2

8

(
K(1)

)2 (
−O2

s−u − 2Ot,s(1 + κ rs)

+ 2OtOs−u(1 + κ rs)−O2
t (1 + κ rs)

2
)

+ i
π

2

(
K(1)Z

(1)
1,R +K(2)

)(
Os−u −Ot(1 + κ rs)

)
+ Z

(2)
1,R

]
H(1),0

+

[
i
π

2
K(1)

(
Os−u −Ot(1 + κ rs)

)
+ Z

(1)
1,R

]
H(2),0 +H(3),0 , (4.46)

M (3),1 =

[
π2

24

(
K(1)

)3 (
− 8Os,t,s + 6Os−uOt,s + 6O2

t Os−u(1 + κ rs)

− 3O3
t (1 + κ rs)

2 − 3OtO
2
s−u − 12OtOt,s(1 + κ rs)

)

+ i
π

2
K(1)

(
K(1)Z

(1)
1,R + 2K(2)

)(
− Ot,s +OtOs−u −O2

t (1 + κ rs)
)

+
(
K(3) +K(2)Z

(1)
1,R +K(1)Z

(2)
1,R

)
Ot

]
H(0)

+

[
i
π

2

(
K(1)

)2 (
−Ot,s +OtOs−u −O2

t (1 + κ rs)
)
+
(
K(1)Z

(1)
1,R +K(2)

)
Ot

]
H(1),0

+

[
π2

8

(
K(1)

)2 (
−O2

s−u − 2Ot,s(1 + κ rs)

+ 2OtOs−u(1 + κ rs)−O2
t (1 + κ rs)

2
)

+ i
π

2

(
K(1)Z

(1)
1,R +K(2)

)(
Os−u −Ot(1 + κ rs)

)
+ Z

(2)
1,R

]
H(1),1

+K(1)OtH
(2),0 +

[
i
π

2
K(1)

(
Os−u −Ot(1 + κ rs)

)
+ Z

(1)
1,R

]
H(2),1 +H(3),1 , (4.47)

M (3),2 =

[
i
π

12

(
K(1)

)3 (
2Ot,t,s − 6OtOt,s + 3O2

tOs−u − 3O3
t (1 + κ rs)

)

+
1

2
K(1)

(
K(1)Z

(1)
1,R + 2K(2)

)
O2

t

]
H(0) +

1

2

(
K(1)

)2
O2

t H
(1),0
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+

[
i
π

2

(
K(1)

)2 (
−Ot,s +OtOs−u −O2

t (1 + κ rs)
)

+
(
K(2) +K(1)Z

(1)
1,R

)
Ot

]
H(1),1 +K(1)OtH

(2),1

+

[
i
π

2
K(1)

(
Os−u −Ot(1 + κ rs)

)
+ Z

(1)
1,R

]
H(2),2 +H(3),2 , (4.48)

M (3),3 =

(
K(1)

)3

6
O2

t H
(0) +

(
K(1)

)2

2
O2

t H
(1),1 +K(1)OtH

(2),2 +H(3),3 , (4.49)

where each of eqs. (4.46)–(4.49) is a vector in color space. For the octet component,

expanding eq. (3.1) to third order in αs we find

M (3),0,[8]
rs =

{
C(3)
r + C(3)

s + C(1)
r C(2)

s + C(2)
r C(1)

s

− π2

4

(
α(1)

)2 (
C(1)
r + C(1)

s

)
(1 + κ rs)−

π2

2
α(1)α(2)(1 + κ rs)

+ iπ

[(
π2

12

(
α(1)

)3
− α(2)

2

(
C(1)
r + C(1)

s

)
− α(3)

2

)
(1 + κ rs)

−α(1)

2
(1 + κ rs)

(
C(2)
r + C(2)

s + C(1)
r C(1)

s

)]}
H(0),[8]

rs +
R(3),0,[8]

2
H(0)

rs ,

M (3),1,[8]
rs =

[
α(3) + α(2)

(
C(1)
r + C(1)

s

)
+ α(1)

(
C(1)
r C(1)

s + C(2)
r + C(2)

s

)

−π2

4

(
α(1)

)3
(1 + κ rs)

− iπ (1 + κ rs)

((
α(1)

)2

2

(
C(1)
r + C(1)

s

)
+ α(1)α(2)

)]
H(0),[8]

rs +
R(3),1,[8]

2
H(0)

rs ,

M (3),2,[8]
rs =

[(
α(1)

)2

2

(
C(1)
r + C(1)

s

)
+ α(1)α(2) − iπ

(
α(1)

)3

4
(1 + κ rs)

]
H(0),[8]

rs ,

M (3),3,[8]
rs =

(
α(1)

)3

6
H(0),[8]

rs . (4.50)

where in the first two equations we allow for a non-factorizing remainder, as in eq. (4.3).

Notice that the Reggeization of next-to-leading logarithms was proven in ref. [2] only for

the real part of the scattering amplitude, therefore in principle we should allow for a non-

vanishing purely imaginary remainder R(3),2,[8]. We have seen at two loops, however, that

eq. (3.1) yields the correct result for the imaginary part of the octet amplitude not only

at NLL level, but in fact even at NNLL. Furthermore we note that IR factorization, as

seen for example in eq. (3.5), does not generate any contribution at NLL for the octet

component of the amplitude, thanks to the identity in eq. (3.11). We conjecture therefore

that eq. (3.1) yields the exact result for the octet component of the amplitude at NLL level,

both for the real and for the imaginary part, and we set R(n),n−1,[8] = 0.
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With this premise, we can proceed as we did at two loops. We start by comparing

the coefficients of the leading logarithms, that is eq. (4.49) and the bottom expression of

eq. (4.50), and we verify that the coefficient of the highest power of the energy logarithm

is determined by the one-loop result. In particular, the imaginary part of the hard matrix

element vanishes, while the real part is of higher order in ε,

Im
[
H(3),3,[8]

rs

]
= 0 ,

Re
[
H(3),3,[8]

rs

]
=

1

6

Re
[
H

(1),1,[8]
rs

]3

(
H

(0),[8]
rs

)2 = O(ε3) . (4.51)

In order to inspect the NLL terms, we compare eq. (4.48) with the next-to-last expression

in eq. (4.50). Considering first the imaginary part, and using our assumption that eq. (3.1)

works up to NLL for the octet amplitude, we expect to find relations allowing us to express

the NLL finite parts H
(3),2,[8]
rs in terms of lower-loop amplitudes. A direct comparison yields

a somewhat unwieldy expression

Im
[
H(3),2,[8]

rs

]
= − π

12

(
K(1)

)3 [(
2Ot,t,s − 6OtOt,s + 3O2

tOs−u − 3O3
t (1 + κ rs)

)
H(0)

rs

][8]

− π

2

(
K(1)

)2 [(
−Ot,s +OtOs−u −O2

t (1 + κ rs)
)
Re
(
H(1),1

rs

)][8]

−
(
K(2) +K(1)Z

(1)
1,R

) [
Ot Im

(
H(1),1

rs

)][8]
−K(1)

[
Ot Im

(
H(2),1

rs

)][8]

− π

2
K(1)

[(
Os−u −Ot(1 + κ rs)

)
Re
(
H(2),2

rs

)][8]
− Z

(1)
1,R Im

[
H(2),2,[8]

rs

]

− 1

2

(
K(1)

)2 [
O2

t Im
(
H(1),0

rs

)][8]
− π

4

(
α(1)

)3
(1 + κ rs)H

(0),[8]
rs . (4.52)

The right-hand side of eq. (4.52) can however be simplified considerably, by making use of

the fact that all color-mixing operators appearing in eq. (4.52) give zero when applied either

on the tree level amplitude H(0),[8], or on the leading-logarithmic finite parts Re
[
H(1),1

]
,

Re
[
H(2),2

]
, whose only non-vanishing component is the octet amplitude. Furthermore, one

can use the identities in eqs. (4.20), (4.13), (4.8) and (4.9) to express the corresponding

finite parts of the amplitude in terms of lower order quantities, or set them to zero. In this

way, we find that

Im
[
H(3),2,[8]

rs

]
= − π

4
(1 + κ rs)

[
Ĥ(1),1,[8]

rs

]3
H(0),[8]

rs = O
(
ε3
)
. (4.53)

Performing the same procedure on the real part, we find

Re
[
H(3),2,[8]

rs

]
= Re

[
H(2),1,[8]

rs

]
Ĥ(1),1,[8]

rs − 1

2
Re
[
H(1),0,[8]

rs

] (
Ĥ(1),1,[8]

rs

)2
= O (ǫ) . (4.54)

As was the case at two loops, we predict that octet hard parts actually vanish in d = 4 up

to NLL.

Proceeding to the NNLL terms, it is interesting to inspect first the imaginary part of

M
(3),1,[8]
rs , and briefly explore the possibility that also at three loops the imaginary part of
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the NNLL octet remainder function might vanish, as it does at two loops. In that case,

equating the second expressions in eqs. (4.49) and (4.50), we obtain a lengthy expression

which can be drastically simplified using the same techniques that led to eq. (4.53). The

result is

Im
[
H(3),1,[8]

rs

]
=

π

2

(
K(1)

)2 (
Ot,s −OtOs−u

)
Re
[
H(1),0

rs

]
− π

2
K(1)Os−uRe

[
H(2),1

rs

]

−π(1 + κ rs)Re
[
H(3),2,[8]

rs

]
. (4.55)

The first line involves color-mixing operators acting on Re
[
H(1),0

]
, Re

[
H(2),1

]
. The effect of

these operators is to generate contributions to the non-octet components of the amplitude.

The information available about those terms can be extracted from the calculation of the

two-loop amplitudes for parton-parton scattering of refs. [17–19], whose high-energy limit

can be found in appendix C. Both terms vanish to the highest available order in ǫ, i.e.,

Re
[
H(1),0,[k]

]
= 0 through O(ǫ2), and Re

[
H

(2),1,[k]
rs

]
= 0 through O(ǫ0) for k 6= 8. As a

consequence, we can conclude that the first term in the first line of eq. (4.55) is at least

O(ε), while the second is O(ε0). It is interesting to note that, if the uncalculated O(ǫ)

terms in Re
[
H

(2),1,[k]
rs

]
= 0 turn out to vanish, then, at least in the ǫ → 0 limit, one would

find the simplified expression

Im
[
H(3),1,[8]

rs

]
= −π (1 + κ rs)Re

[
H(3),2,[8]

rs

]
, (4.56)

which is strongly reminiscent of the NNLL imaginary part at two loops, eq. (4.27).

We finally proceed to the real part of M
(3),1,[8]
rs at NNLL accuracy, which is the level at

which the three-loop Regge trajectory shows up. Inspecting eq. (4.47), we can easily single

out potential contributions to the remainder function R(3),1,[8], by looking for the color

mixing operators which give a non-zero result when acting on the color octet amplitude.

It is however clear that at three loops we will not be able to give a complete expression

for R(3),1[8], since single-logarithmic finite contributions can arise directly in H(3), which

is unknown. Singular single-logarithmic terms at three loops are however completely pre-

dicted, under our assumption that the dipole formula applies at this order, since all relevant

anomalous dimensions are known, and finite contributions to the amplitude are known up

to two loops.

With this in mind, we start our inspection of M (3),1 in eq. (4.47) by identifying the

terms involving the operators Os,t,s, Os−uOt,s and OtO
2
s−u in the first two lines as contri-

butions to the octet remainder. These terms multiply (K(1))3H(0), and thus are O(ε−3),

which is consistent with the fact that the NNLL octet remainder at two loops is O(ε−2).

Additional contributions arise from the operator O2
s−u applied to H(1),1: H(1),1 is O(ε),

but it is multiplied by (K(1))2, so this term is O(ε−1). Proceeding further, we see that

terms which involve H(0) or H(1),1 and are linear in operators like Os−u and Ot,s do not

contribute to the octet remainder: in fact, H(0) and H(1),1 are pure octets, and therefore

they give vectors with a vanishing octet component when acted upon by these color-mixing

operators. This reasoning however does not work when we consider terms involving H(1),0:

in fact, in this case Im
[
H(1),0,[k]

]
with k 6= 8 is different from zero; thus, the operators Ot,s
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and OtOs−u, acting on H(1),0, will contribute to the remainder. Likewise, contributions

could arise from the operator Os−u acting on Im
[
H(2),1,[k]

]
, with k 6= 8, in the last line of

eq. (4.47). These contributions however will not give any poles, since Im(H(2),1,[k]) = 0,

for any k 6= 8, as can be seen by using the explicit results given in appendix C.

Further contributions to the octet remainder arise from terms involving the color diago-

nal operator Ot = T2
t , because of a mismatch between the structure predicted by eq. (3.1)

and the terms originating from Ot in eq. (3.5), similarly to what we observed at two

loops. In the case of M (3),1, these are the terms involving the operators O3
t (1 + κ rs)

2 and

O2
t (1+κ rs)

2. The mismatch occurs because the factor (1+κ rs) appears only linearly in the

corresponding terms of M (3),1 in eq. (4.50), after the explicit values of the Regge trajectory

and the impact factors are inserted. The two terms above are O(ε−3) and O(ε−1) respec-

tively. Proceeding further, one could pin down further contributions to the octet remainder

at O(ε0), but those are beyond the reach of the present analysis, as explained previously.

We are now in a position to give an expression for the octet remainder at three loops,

R(3),1,[8], where we collect all terms through O(ε−1). We find

R(3),1,[8]
rs =

π2

4

(
K(1)

)3 [(
−8

3
Os,t,s + 2Os−uOt,s −OtO

2
s−u +O3

t (1− κ2rs)

)
Ĥ(0)

rs

][8]

+
(
K(1)

)2 [
π
(
Ot,s −OtOs−u

)
Im
[
Ĥ(1),0

rs

]
− π2

4
O2

s−uRe
[
Ĥ(1),1

rs

]

+
3

4
π2O2

t (1− κ2rs)Re
[
Ĥ(1),1

rs

]][8]
+O(ǫ0) . (4.57)

With this definition, it is easy to verify that the divergent part of the three-loop Regge

trajectory retains a universal form. One finds, as expected

α(3) = K(3)Nc +O
(
ǫ0
)
. (4.58)

Introducing in eq. (4.57) the appropriate color factors and hard functions, and working in

the color bases discussed in the appendix A, we obtain the explicit results

R(3),1,[8]
qq =

(αs

π

)3 π2

ǫ3
2N2

c − 5

12Nc

(
1− 3

2
ε2ζ(2)

)
+ O

(
ε0
)
,

R(3),1,[8]
gg = −

(αs

π

)3 π2

ǫ3
2

3
Nc

(
1− 3

2
ε2ζ(2)

)
+ O

(
ε0
)
, (4.59)

R(3),1,[8]
qg = −

(αs

π

)3 π2

ǫ3
Nc

24

(
1− 3

2
ε2ζ(2)

)
+ O

(
ε0
)
,

which can be consistently used in eq. (3.1), provided one substitutes the impact factors and

the Regge trajectory as defined in eqs. (4.33) and (4.58). Once again, remarkably, we find

that the singular parts of the remainders originate from a high-order pole (here ǫ−3), with

lower order poles arising exclusively from the expansion of the constant c3Γ: expanding in

powers of α̃s, the singular parts of the three-loop octet remainders are pure triple poles.

Comparing M (3),0 in eqs. (4.49) and (4.50), one could single out contributions to the

octet remainder R(3),0,[8], which would be necessary to obtain a consistent definition of the
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impact factors C
(3)
rs to N3LL accuracy, through O(ε−1). That analysis is straightforward

but lengthy, and since it does not provide additional insight in the mechanism of breaking

of eq. (3.1), we will not perform it in this work. We conclude by noting that, if a non-

vanishing quadrupole contribution to the soft anomalous dimension were to be discovered,

it would affect eq. (4.57) and eq. (4.59) at the level of single poles.

4.4 Beyond three loops

As we have seen, by using the information provided by infrared factorization, we are able

to pin down the origin of the breakdown of eq. (3.1) at NNLL accuracy, and define a re-

mainder function which collects non-universal terms. Since infrared factorization correctly

reproduces the infrared poles of an amplitude, but gives no prediction for its finite parts,

we are able to extend this procedure only up to terms which involve finite parts which

are known through explicit calculations. On the other hand, the high-energy factorization

embodied in eq. (3.1) is exact up to NLL accuracy for real parts of amplitudes,3 and,

we assume, for octet imaginary parts as well. This enables us to give NLL predictions

concerning finite parts of amplitudes as well, to all orders in perturbation theory.

Let us start by inspecting leading logarithmic terms. First we note that, at LL accu-

racy, the infrared factorization formula, eq. (2.2), can be written as

M[8]
LL

(
s

µ2
,
t

µ2
, αs

)
=

[(
s

−t

)K(αs)Ot

HLL

][8]
(4.60)

= 4παsH
(0),[8]

∞∑

n=0

(αs

π

)n
logn

(
s

−t

)( n∑

k=0

Nk
c

k!

(
K(1)

)k
Re
[
Ĥ(n−k),n−k,[8]

])
,

while in case of the Regge factorization formula we can write

M[8]
rs,LL

(
s

µ2
,
t

µ2
, αs

)
= 2παsH

(0),[8]
rs

[(
s

−t

)α(t) [
1 + e−iπα(t) + κ rs

(
1− e−iπα(t)

)]]

LL

= 4παsH
(0),[8]
rs

∞∑

n=0

(αs

π

)n (α(1)(t))n

n!
logn

(
s

−t

)
. (4.61)

Using the explicit result for α(1)(t), and comparing term by term eq. (4.60) with eq. (4.61),

it is easy to find that

Im
[
H(n),n

]
= 0 ,

Re
[
H(n),n,[8]

]
=

1

n!

(
Re
[
H(1),1,[8]

])n
= O(ǫn) . (4.62)

Interestingly, and extending to all orders the results obtained up to three loops, LL hard

parts vanish in d = 4, as a consequence of the fact that the one-loop Regge trajectory is

essentially a pure pole in dimensional regularization. A finite contribution to α(1) would

in fact spoil eq. (4.62).

3Specifically, we note that we are assuming here that high-energy factorization holds at NLL also for

O(ε) terms, which are not known at two loops.
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With a little more work, this result generalizes to NLL. At this accuracy, the infrared

factorization formula in eq. (2.2) yields

M[8]
NLL

(
s

µ2
,
t

µ2
, αs

)
=

[
ZNLL

(
s

µ2
,
t

µ2
, αs

)
HLL

(
s

µ2
,
t

µ2
, αs

)

+ZR,LL

(s
t
, αs

)
HNLL

(
s

µ2
,
t

µ2
, αs

)][8]
. (4.63)

The second term can easily be written down explicitly. It is given by

[
ZR,LL

(s
t
, αs

)
HNLL

(
s

µ2
,
t

µ2
, αs

)][8]
= 4παsH

(0),[8]
rs

∞∑

n=1

(αs

π

)n
logn−1

(
s

−t

)

n−1∑

σ=0

(
K(1)Nc

)n−σ−1

(n− σ − 1)!
Ĥ(σ+1),σ,[8]

rs . (4.64)

The first term in eq. (4.63), on the other hand, can be significantly simplified by noting

that the only non-vanishing component of the vector HLL is the color octet, and therefore

the color octet component of the result is annihilated by the operators Os−u and Ot,...,t,s

appearing in ZNLL. One obtains then

[
ZNLL

(
s

µ2
,
t

µ2
, αs

)
HLL

(
s

µ2
,
t

µ2
, αs

)][8]
=

∞∑

n=1

(αs

π

)n
logn−1

(
s

−t

)

×
{

n−1∑

σ=0

(
K(1)Nc

)n−σ−1

(n− σ − 1)!

[
Z(1)
R

− iπK(1) (1 + κrs)

2
Nc

]
Ĥ(σ),σ,[8]

rs

+
n−2∑

σ=0

(
K(1)Nc

)n−σ−2

(n− σ − 2)!
K(2)Nc Ĥ

(σ),σ,[8]
rs

}
. (4.65)

The NLL prediction from the Regge factorization formula, eq. (3.1), gives instead

M[8]
rs,NLL = 4παsH

(0),[8]
rs

∞∑

n=1

(αs

π

)n
[(

C(1)
r + C(1)

s

) (α(1)
)n−1

(n− 1)!
+ α(2)

(
α(1)

)n−2

(n− 2)!

−i
π

2
(1 + κ rs)

(
α(1)

)n

n!

]
logn−1

(
s

−t

)
. (4.66)

Under our assumption that eq. (3.1) is correct up to NLL also for the imaginary part

of the octet component of the amplitude, we can use the fact that the Regge trajectory

and the impact factors are real. We can then substitute their explicit values, as obtained

in eqs. (4.11) and (4.14), and proceed to compare eq. (4.66) with the sum of eqs. (4.64)

and (4.65). We get

Im
[
Ĥ(n),n−1,[8]

rs

]
= −π

1 + κrs
2

n Ĥ(n),n,[8] = O(ǫn) ,

Re
[
Ĥ(n),n−1,[8]

]
= Re

[
Ĥ(2),1,[8]

]
Ĥ(n−2),n−2,[8] + (2− n)Re

[
Ĥ(1),0,[8]

]
Ĥ(n−1),n−1,[8]

= O(ǫn−2), for n > 2. (4.67)
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Also at NLL, we find that hard coefficients at each loop order are determined in terms of

the coefficients at lower orders. Furthermore we find that both real and imaginary parts of

the hard function vanish in d = 4, except Re
[
Ĥ(1),0,[8]

]
and Re

[
Ĥ(2),1,[8]

]
which cannot be

determined by eq. (4.67). In essence, eq. (4.67) reinforces the idea that high-energy loga-

rithms are infrared in nature: indeed, leading and next-to-leading logarithmic contributions

to hard scattering coefficients are forced to vanish with increasing powers of the regulator

ε. This means that infrared-finite high-energy logarithms must come exclusively from the

interference of soft and collinear functions with lower-order contributions subleading in ε.

5 On subleading color amplitudes

The central idea at the basis of our analysis in section 4 is that the interplay of high-energy

and infrared factorization allows one to obtain more information about the leading color-

octet amplitude than would be allowed by inspection of the two factorization formulae

separately. Taken individually, the two factorizations have different limitations: infrared

factorization predicts all infrared poles of the amplitude, but does not control finite parts.

High-energy factorization, on the other hand, predicts both poles and finite parts of the

color octet amplitude, once the Regge trajectory and impact factors are known, but the

predictions have a limited logarithmic accuracy. Combining the two factorizations, on the

one hand one can use infrared information to determine the poles of the remainder function

at NNLL and beyond: this results in consistent definitions of the two-loop impact factors,

eq. (4.33), and of the three-loop Regge trajectory, eq. (4.58). On the other hand, high-

energy factorization allows one to derive, to all orders, the NLL part of the color-octet hard

functions appearing in the infrared factorization formula. The knowledge of these terms, in

turn, gives access to a set of higher-order contributions to the amplitude, not only for color

octet exchange, but also for other representations contributing to the scattering process.

In this section we briefly explore the predictions that can be obtained in this way.

In order to be more explicit, let us start with an example. The state of the art

QCD computations provide us with one-loop amplitudes to all order in ε, and two-loop

amplitudes up to O(ε0), for 2 → 2 processes in all partonic channels, qq → qq, gg → gg

and qg → qg. Organising this knowledge in terms of the dipole formula allows us to extract

the one-loop and two-loop hard functions, whose high-energy limit is given in appendix C,

respectively up to O(ε2) and O(ε0). With this knowledge at hand, one can generically

predict the corresponding amplitudes at three loops up to O(ε−2), at four loops up to

O(ε−4), and so on. If, however, one inputs information from high-energy factorization,

such as eq. (4.67), we can extend the prediction to lower-order poles in ε, for the coefficients

of leading and next-to-leading logarithms. The pole structure of the leading logarithms is

simple: for gluon-gluon scattering we have

M (3),3,[1]
gg = M (3),3,[8s]

gg = M (3),3,[10+10]
gg = M (3),3,[27]

gg = M (3),3,[0]
gg = 0 ,

M (3),3,[8a]
gg = −N4

c

√
N2

c − 1

24ǫ3
s

t

(
1− 3

2
ε2ζ(2)

)
+O

(
ǫ0
)
, (5.1)
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where, once again, the terms in bracket simply recover the expansion of cΓ. The quark-

quark amplitude gives

M (3),3,[1]
qq = 0 ,

M (3),3,[8]
qq =

N3
c

√
N2

c − 1

24ǫ3
s

t

(
1− 3

2
ε2ζ(2)

)
+O

(
ǫ0
)
. (5.2)

Finally, for quark-gluon scattering,

M (3),3,[1]
qg = M (3),3,[8s]

qg = 0 ,

M (3),3,[8a]
qg =

N3
c

√
Nc(N2

c − 1)

24
√
2ǫ3

s

t

(
1− 3

2
ε2ζ(2)

)
+O

(
ǫ0
)
. (5.3)

We can similarly obtain the poles of NLL amplitudes. For instance, using eq. (4.48), we

realize that, since H(2),2 = O(ε2) and H(3),3 = O(ε3), M (3),3,[8] can be predicted up to

O(ε0), and M (3),2,[8] can be predicted up to O(ε−1). We find

M (3),2,[8]
gg = N3

c

√
N2

c − 1
s

t

{
1

4ǫ4
+

11Nc − 2nf + iπNc

16ǫ3
− 5

8
Nc ζ(2)

1

ǫ2

+
1

ǫ

[
− 3

16
b0 ζ(2)−

7

4
Nc ζ(3)− iπ

3

32
Nc ζ(2)

]}
+O

(
ǫ0
)
. (5.4)

As regards the quark-quark and quark-gluon scattering processes, we find respectively

M (3),2,[8]
qq = Nc

√
N2

c − 1
s

t

{
1

ǫ4

(
−N2

c − 1

16

)
+

1

ǫ3

(
− 5

24
N2

c +
1

48
nfNc +

3

32
− iπ

8

)

+
1

ǫ2

[
N2

c

(
7

32
ζ(2) +

5

18

)
− 5

72
nfNc +

1

4
− 3

32
ζ(2)

]

+
1

ǫ

[
N2

c

(
121

216
+

9

64
ζ(2) +

7

16
ζ(3)

)

− 7

54
nfNc +

1

2
− 9

64
ζ(2)− 7

16
ζ(3) + iπ

3

16
ζ(2)

)]}
+O

(
ǫ0
)
, (5.5)

and

M (3),2,[8]
qg =

√
N3

c (N
2
c − 1)√
2

s

t

{
1

ǫ4

(
1− 3N2

c

16

)
+

1

ǫ3

(
−53

96
N2

c +
nfNc

12
+

3

32
− iπ

N2
c

16

)

+
1

ǫ2

[
N2

c

(
5

18
+

17

32
ζ(2)

)
− 5

72
nfNc +

1

4
− 3

32
ζ(2)

]

+
1

ǫ

[
N2

c

(
121

216
+

31

64
ζ(2) +

21

16
ζ(3) + iπ

3

32
ζ(2)

)

−nfNc

(
7

54
+

1

16
ζ(2)

)
+

1

2
− 9

64
ζ(2)− 7

16
ζ(3)

)]}
+O

(
ǫ0
)
. (5.6)

We next ask to what extent we can predict other color components of the amplitudes, which

are subleading in the high-energy limit. The dipole formula applies to the vector ampli-

tude in color space, therefore of course we are able to obtain predictions for the infrared
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poles of subleading color amplitudes as well. These amplitudes however do not admit a

high-energy factorization formula of the form of eq. (3.1). This can be easily understood

inspecting eq. (3.4): non-octet amplitudes vanish at tree level in the high-energy limit, and

are generated at one loop because of the effect of the operator Os−u, acting on the octet

component. In the language of Regge theory, these contributions are associated with cuts

in the complex angular momentum plane, as opposed to the leading color-octet amplitude,

which can be described at least up to NLL in terms of angular momentum poles only.

Contributions arising from Regge cuts are expected to obey their own form of Regge fac-

torization, different from eq. (3.1): a proposal in this direction was put forward in ref. [16],

where a formula for the even-even color-subleading amplitudes at NLL was provided, lead-

ing in particular to the prediction that the dipole formula must receive corrections at NLL

and at the four-loop order. For comparison and future reference, we provide here a set of

predictions at three and four loops for the poles of color-subleading amplitudes associated

with leading and next-to-leading logarithms, which we derive from the dipole formula in

the absence of corrections. The starting point is the vanishing of the one- and two-loop

LL and NLL hard parts for the non-octet amplitudes, which can be seen from the explicit

result in appedix C, and is in agreement with ref. [16]. Specifically, we find that

H(n),n,[i 6=8]
rs = 0 (n = 1, 2) ,

Re
[
H(1),0,[i 6=8]

rs

]
= 0 , Im

[
H(1),0,[i 6=8]

rs

]
= O(ε), H(2),1,[i 6=8]

rs = O(ε) . (5.7)

Using this information, and inspecting eq. (4.48), we see that all components of four-parton

amplitudes in the high-energy limit can be fully predicted at NLL, up to O(ε−1). The re-

sults are, for the three-loop gluon-gluon amplitude,

M (3),2,[1]
gg = iπ

N4
c

12ǫ3
s

t

(
1− 3

2
ǫ2 ζ(2)

)
+O

(
ǫ0
)
,

M (3),2,[8s]
gg = iπ

N4
c

√
N2

c − 1

16ǫ3
s

t

(
1− 3

2
ǫ2 ζ(2)

)
+O

(
ǫ0
)
,

M (3),2,[10+10]
gg = O

(
ǫ0
)
, (5.8)

M (3),2,[27]
gg = iπ

Nc

√
(Nc + 3)(Nc − 1)

24ǫ3
s

t

(
7N2

c + 10Nc + 4
) (

1− 3

2
ǫ2 ζ(2)

)
+O

(
ǫ0
)
,

M (3),2,[0]
gg = iπ

Nc

√
(Nc − 3)(Nc + 1)

24ǫ3
s

t

(
7N2

c − 10Nc + 4
) (

1− 3

2
ǫ2 ζ(2)

)
+O

(
ǫ0
)
.

For the three-loop quark-quark amplitude we find

M (3),2,[1]
qq = iπ

Nc(N
2
c − 1)

48ǫ3
s

t

(
1− 3

2
ǫ2 ζ(2)

)
+O

(
ǫ0
)
. (5.9)

Finally, for the quark gluon amplitude we find

M (3),2,[1]
qg = − iπ

N2
c

√
Nc(N2

c − 1)

24ǫ3
s

t

(
1− 3

2
ǫ2 ζ(2)

)
+O

(
ǫ0
)
, (5.10)

M (3),2,[8s]
qg = − iπ

N2
c

√
Nc(N2

c − 1)(N2
c − 4)

16
√
2ǫ3

s

t

(
1− 3

2
ǫ2 ζ(2)

)
+O

(
ǫ0
)
.
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Also in the case of eqs. (5.8), (5.9), and (5.10), singular terms are given by just triple poles

if one expands in powers of α̃s.

To complete this section, we go one order higher and consider the four-loop expression

for the amplitude, as predicted by the dipole formula. We provide the amplitude up to

NLL in log(−s/t), because we know that constraints from Regge factorization arise only

up to this order. We find

M (4),4 =

(
K(1)

)4

24
O4

t H
(0) +

(
K(1)

)3

6
O3

t H
(1),1 +

(
K(1)

)2

2
O2

t H
(2),2

+OtK
(1)H(3),3 +H(4),4 , (5.11)

M (4),3 =

{
i
π

24

(
K(1)

)4 [
−Ot,t,t,s + 4OtOt,t,s − 6O2

t Ot,s + 2O3
t Os−u − 2O4

t (1 + κrs)

]

+

(
K(1)

)3

6
Z

(1)
1,RO3

t +

(
K(1)

)2
K(2)

2
O3

t

}
H(0) +

(
K(1)

)3

6
O3

t H
(1),0

+

{
i
π

12

(
K(1)

)3 [
2Ot,t,s − 6OtOt,s + 3O2

t Os−u − 3O3
t (1 + κrs)

]

+K(1)K(2)O2
t +

(
K(1)

)2

2
Z

(1)
1,RO2

t

}
H(1),1 +

(
K(1)

)2

2
O2

t H
(2),1

+

{
i
π

2

(
K(1)

)2[
−Ot,s+OtOs−u−O2

t (1+κrs)

]
+K(2)Ot+K(1)Z

(1)
1,ROt

}
H(2),2

+K(1)OtH
(3),2 + i

π

2
K(1)

[
Os−u −Ot (1 + κrs)

]
H(3),3 + Z

(1)
1,RH(3),3 +H(4),3 .

Taking into account eqs. (4.67) and (5.7), as well as the results in appendix B and ap-

pendix C, one can compute the LL amplitudes M (4),4 up to O(ε−1), and the NLL am-

plitudes M (4),3 up to O(ε−2). Indeed, inspecting eq. (5.11), we see that one would need

the knowledge of H(2),1,[i 6=8] up to O(ε) in order to obtain M (4),3 up to O(ε−1). We will

not display here the corresponding lengthy expressions, but they can readily be obtained

combining eq. (5.11) with the results given in the appendices.

Here we will focus instead on the color singlet amplitude, which is a bit special, because

O2
tH

(2),1,[1] = 0. This enables us to compute M (4),3,[1] up to O(ε−1). The result is particu-

larly interesting in light of the recent claim [16] that this term receives a contribution not

predicted by the dipole formula. Within our setup we can provide a partial check, in the

form an independent prediction of the ε−1 poles arising within the infrared factorization

by using the dipole formula only.

We start by noting that the terms proportional toOtOt,s, O
2
tOs−u andOt in eq. (5.11)

have a vanishing color-singlet component. The only source of ε−1 poles in M (4),3,[1] is then

the term proportional to
(
K(1)

)3
Ot,t,s. One finds

M (4),3,[1]
gg

∣∣∣
ε−1

=
N5

c

12

7

6ǫ
iπ ζ3

s

t
. (5.12)
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As expected from ref. [16], it can be verified that eq. (5.12) comes entirely from the expan-

sion of the common loop factor cΓ in eq. (4.5), and it can therefore be reabsorbed in the

corresponding redefinition of the coupling. We confirm then that, when expanded in terms

of the high-energy coupling α̃s, the dipole formula does not generate simple poles at NLL

for color-singlet t-channel exchange, and the non-vanishing result found in ref. [16] must

be considered as a violation of the dipole formula at the four-loop level.

6 Conclusion

The high-energy limit, s/|t| → ∞, of gauge theory amplitudes is of great theoretical and

phenomenological interest, and has been a major focus of investigation for several decades.

The range of applications is vast: on the one hand, the high-energy limit can be used to

study formal properties of scattering amplitudes in highly symmetric gauge theories, such

as N = 4 Super Yang-Mills theory (see, for example, refs. [63, 64] for recent applications in

this direction); on the other hand, it is very relevant for phenomenological applications to

cross sections of interest at colliders such as LHC (see, as recent examples, refs. [65, 66]).

The main reason beyond this wide range of applications is the simplicity of high-energy

amplitudes. As s/|t| → ∞, amplitudes come to be dominated by logarithmic enhancements,

which can be studied to all orders in perturbation theory with the tool of Gribov-Regge

theory, as well as with the more typical tools of perturbative QCD. In the case of four parton

amplitudes, at leading and next-to-leading logarithmic accuracy, an all-order factorization

holds, which resums energy logarithms based on the fact that, to this accuracy, the only

relevant singularities in the complex J plane are simple poles.

It is generally understood [3], however, and in fact it has been proven [2], that this

simple Reggeization picture of QCD scattering amplitudes cannot be generally applicable

beyond NLL accuracy. It is also understood that a complete Reggeization picture should

include the contributions of Regge cuts at sufficiently high orders in perturbation theory,

possibly beginning with non-planar contributions to scattering amplitudes at the three-

loop level [5]. The details of how those cuts arise, and thus of how the simple Reggeization

picture breaks down, are however not known.

Building upon the earlier analyses of refs. [6–10], which examined the interplay of

high-energy factorization and infrared factorization, in ref. [11] we outlined a roadmap to

explore the violations of the simple Reggeization picture, and thus the rise of the Regge

cuts, by comparing the two factorizations, when applied to QCD scattering amplitudes

order by order in perturbation theory. The immediate outcome was to explain the origin

of a non-factorizing term, independent of ln(s/|t|), first uncovered in ref. [4] in ampli-

tudes for parton-parton scattering at the two-loop level. In addition, since it was already

clear [6, 7] that the presence of non-factorizing terms in ln(s/|t|) at three-loops would in-

validate the notion of a universal Regge trajectory, in ref. [11] we proposed a scheme to

gather non-universal contributions into a non-factorizing remainder function, and we used

infrared factorization to re-define the impact factors and the Regge trajectory as functions

of universal terms only. Those definitions allow one in principle to compute the complete

three-loop Regge trajectory unambiguously.
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In this paper, we have provided the details of the roadmap sketched in ref. [11], and we

have presented a complete analysis of four-parton QCD scattering amplitudes in the high-

energy limit, including all available results up to three loops, and deriving some all-order re-

lations. In particular, we have performed a detailed comparison of infrared and high-energy

factorizations up to three-loop order, for both real and imaginary parts of the amplitudes.

The cross-fertilization between the two approaches yields a number of interesting results.

First of all, infrared factorization allowed us to identify non-universal terms affecting

Regge behavior, and therefore to predict the infrared poles of the factorization-breaking

terms up to three loops. To that accuracy, it is now possible to define unambiguously impact

factors, the Regge trajectory, and the remainder functions. In addition, we analysed the t-

channel exchange of color representations other than the octet in scattering amplitudes up

to three-loops, at leading and next-to-leading logarithmic accuracy, and, as an example,

we computed the infrared pole of a single-logarithmic term at four loops, in the singlet

component of gluon-gluon scattering, at next-to-leading logarithmic accuracy. The four-

loop NLL single-pole contribution to singlet exchange arising from the dipole formula can

be reabsorbed in the definition of the coupling: any contribution without this property must

thus be considered as a violation of the dipole formula at four loops. Therefore we agree that

the findings of ref. [16] imply a violation of the dipole formula at this perturbative order.

On the other hand, high-energy factorization at LL and NLL level provides all-order

constraints on the hard functions defined by infrared factorization. Under mild and well-

motivated assumptions, that high-energy factorization should extend to the NLL imaginary

part of t-channel octet exchange, and to O(ε) contributions to the amplitude, we have

derived a set of all-order identities showing that all hard functions for four-parton scattering

amplitudes in QCD vanish in d = 4 in the high-energy limit, up to NLL accuracy. This

result considerably reinforces the idea that all high-energy logarithms in QCD originate

from infrared enhancements: this idea underlies many of the existing approaches to the

high-energy limit, and it is likely that it will bring further insights in the future.

It is easy to see that the detailed analysis provided here can be extended to scattering

processes with the production of more than two partons in the final state, as well as

to quark-gluon scattering with a quark Regge trajectory exchanged in the u channel, as

outlined in refs. [6, 7]. This will hopefully shed further light on the interplay of high-

energy and infrared factorizations, and will possibly yield high-order results relevant for

high-energy precision phenomenology at colliders.
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A A color basis for four-parton amplitudes in QCD

In this section we provide orthonormal colour bases for each process we considered in the

text. Most of the considerations we discussed in the paper are independent of the choice

of basis in colour space, but it is useful to pick explicitly a set of tensors when dealing

with the actual computation of the amplitudes in the high energy limit. In this kinematic

regime, scattering amplitudes are organised conveniently by means of orthonormal bases

diagonalising the operator T2
t . To construct them, we followed the approach of [22, 23],

and we used the package ColorMath of ref. [24] to deal with the colour algebra.

A.1 Quark-quark scattering

The quark-quark scattering amplitude has only two color components. For Nc = 3, they

correspond to the exchange of a singlet or an octet in the t channel, so we label the

corresponding color tensors as c
(1)
qq and c

(8)
qq ; the expressions we use are however valid for

generic Nc. We choose

c(1)qq =
1

Nc
δα4

α1
δα3

α2
,

c(8)qq =
2√

N2
c − 1

(Ta)α4

α1
(Ta)

α3

α2
, (A.1)

where αi = 1, . . . , Nc are indices in the fundamental representation of SU(Nc), while a =

1, . . . , N2
c −1 is in the adjoint representation, and we omit color indices on the left-hand side

for simplicity. Both tensors are normalized to unity with the convention Tr
(
TaTb

)
= 1

2δ
ab.

For completeness, we report also the explicit expressions in this basis of the operators

T2
t and T2

s. The matrix T2
t is diagonal by construction, while T2

s mixes the different

components of the amplitude in colour space. We find

T2
t,qq =



0 0

0 Nc


 , T2

s,qq =

√
N2

c − 1

Nc




√
N2

c − 1 1

1 N2
c−3√
N2

c−1


 . (A.2)

A.2 Gluon-gluon scattering

The colour structure for gluon-gluon scattering is more intricate. In this case, the basis is

composed of six colour tensors, which again we label with their SU(3) quantum numbers,

while the expressions we give are for generic Nc. We choose

c(1)gg =
1

N2
c − 1

δa4a1 δ
a3

a2 ,

c(8s)gg =
Nc

N2
c − 4

1√
N2

c − 1
d a1a4b d a2a3

b ,
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c(8a)gg =
1

Nc

1√
N2

c − 1
f a1a4b f a2a3

b ,

c(10+10)
gg =

√
2

(N2
c − 4)(N2

c − 1)

[
1

2
(δa1a2 δ

a3
a4 − δa3a1 δ

a4
a2)−

1

Nc
f a1a4b f a2a3

b

]
,

c(27)gg =
2

Nc

√
(Nc + 3)(Nc − 1)

[
− Nc + 2

2Nc(Nc + 1)
δa4a1 δ

a3
a2

+
Nc + 2

4Nc

(
δa1a2 δ

a3
a4 + δa3a1 δ

a4
a2

)
− Nc + 4

4(Nc + 2)
d a1a4b d a2a3

b

+
1

4

(
d a1a2b d a3a4

b + d a1a3b d a2a4
b

)]
, (A.3)

c(0)gg =
2

Nc

√
(Nc − 3)(Nc + 1)

[
Nc − 2

2Nc(Nc − 1)
δa4a1 δ

a3
a2

+
Nc − 2

4Nc

(
δa1a2 δ

a3
a4 + δa3a1 δ

a4
a2

)
+

Nc − 4

4(Nc − 2)
d a1a4b d a2a3

b

− 1

4

(
d a1a2b d a3a4

b + d a1a3b d a2a4
b

)]
.

We note that it is not necessary to treat separately the two decuplet representations since

they always contribute to the amplitude with the same coefficients. The tensors c(8a) and

c(10+10) are odd under the exchanges a1 ↔ a4 and a2 ↔ a3, while c
(1)
gg , c

(8s)
gg , c

(27)
gg and c

(0)
gg

are even. The last representation, as suggested by its label, does not contribute for Nc = 3,

since its dimensionality is given by

dim [0 ] =
N2

c (Nc − 3)(Nc + 1)

4
, (A.4)

and it vanishes for SU(3). In the orthormal basis defined by eq. (A.3), the diagonal matrix

T2
t evaluates to

T2
t,gg = diag

(
0, Nc, Nc, 2Nc, 2(Nc + 1), 2(Nc − 1)

)
, (A.5)

while Ts,gg is symmetric and reads

T2
s,gg =




2Nc 0 T1,8a 0 0 0

0 3Nc/2 T8s,8a T8s,10 0 0

T1,8a T8s,8a 3Nc/2 0 T8s,27 T8s,0

0 T8s,10 0 Nc T10,27 T10,0

0 0 T8s,27 T10,27 Nc − 1 0

0 0 T8s,0 T10,0 0 Nc + 1




, (A.6)

where

T1,8a = − 2Nc√
N2

c − 1
, T8s,8a = −Nc

2
, T8s,10 = −Nc

√
2

N2
c − 4

,
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T8s,27 = −
√

Nc + 3

Nc + 1
, T8s,0 = −

√
Nc − 3

Nc − 1
,

T8s,27 = −
√

Nc + 3

Nc + 1
, (A.7)

T10,27 = −
√

(Nc + 3)(Nc + 1)(Nc − 2)

2(Nc + 2)
,

T10,0 = −
√

(Nc − 3)(Nc − 1)(Nc + 2)

2(Nc − 2)
.

A.3 Quark-gluon scattering

We conclude by discussing quark-gluon scattering. In this case the t-channel exchange

takes place between a quark line and a gluon line, so in order to enumerate the relevant

representations one must consider the intersection of the tensor product 3⊗3 = 1⊕8 with

8⊗ 8 = 1⊕ 8⊕ 8⊕ 10⊕ 10⊕ 27⊕ 0, including copies of equivalent representations. This

leaves the singlet and the two copies of the adjoint representation. An orthonormal basis

of color tensors in this space is given by

c(1)qg =
1√

Nc(N2
c − 1)

δα4
α1

δa3a2 ,

c(8s)qg =

√
2Nc

(N2
c − 4)(N2

c − 1)
(T b)α4

α1
d a3a2
b , (A.8)

c(8a)qg = i

√
2

Nc(N2
c − 1)

(T b)α4

α1
f a3a2
b . (A.9)

The operators T2
t and T2

s in this basis take the form

T2
t,qg =




0 0 0

0 Nc 0

0 0 Nc



, T2

s,qg =




3N2
c−1

2Nc
0 −

√
2

0 2N2
c−1

2Nc
−
√

N2
c−4

2

−
√
2 −

√
N2

c−4

2
2N2

c−1
2Nc



. (A.10)

B Anomalous dimensions

The discussion of Regge factorization in section 4 led us to the prediction of the divergent

part of the Regge trajectory and of the impact factors, in terms of the operators appearing

in the infrared factorization formula eq. (2.5). In the text we focused mostly on the formal

relations connecting the two factorizations, as for example in eq. (4.10) and eq. (4.14),

however one is ultimately interested in explicit results. For completeness, we give here the

values of all the relevant anomalous dimensions, up to three loops.

In order to construct the infrared operators relevant to the Regge limit, defined in

eq. (2.6) and eq. (2.9), we need the functions K(αs), D(αs) and Bi(αs), defined in eq. (2.7)
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and eq. (2.10) respectively. Performing the relevant integrals, we find

K(αs) =
αs

π

γ̂
(1)
K

4ǫ
+
(αs

π

)2
(
γ̂
(2)
K

8ǫ
− b0 γ̂

(1)
K

32ǫ2

)

+
(αs

π

)3
(
γ̂
(3)
K

12ǫ
− b0 γ̂

(2)
K + b1 γ̂

(1)
K

48ǫ2
+

b20 γ̂
(1)
K

192ǫ3

)
+O(α4

s) ,

D(αs) = −αs

π

γ̂
(1)
K

4ε2
+
(αs

π

)2 [3b0γ̂(1)K

64ǫ3
− γ̂

(2)
K

16ǫ2

]
(B.1)

+
(αs

π

)3 [
− 11b20γ̂

(1)
K

1152ǫ4
+

1

ǫ3

(
b1γ̂

(1)
K

36
+

5b0γ̂
(2)
K

288

)
− γ̂

(3)
K

36ǫ2

]
+O(α4

s) ,

where bi are the coefficients of the perturbative expansion of the beta function which, in

our normalizations, read

b0 =
11CA − 4TRnf

3
, b1 =

17C2
A − (10CA + 6CF )TRnf

6
, (B.2)

while γ̂
(i)
K are the perturbative coefficients of the light-like cusp anomalous dimension,

divided by the quadratic Casimir eigenvalue of the relevant representation. This is a

universal (representation-independent) function at least up to three loops [67], given by

γ̂K(αs) = 2
αs

π
+
(αs

π

)2 [(67

18
− ζ(2)

)
CA − 10

9
TRnf

]
+

+
(αs

π

)3 [C2
A

96

(
490− 1072

3
ζ(2) + 88ζ(3) + 264ζ(4)

)

+
CATRnf

96

(
−1672

9
+

320

3
ζ(2)− 224ζ(3)

)
(B.3)

+
CFTRnf

32

(
−220

3
+ 64ζ(3)

)
−

2T 2
Rn

2
f

27

]
+ O(α4

s) .

Finally we note that, up to a factor of 2, Bi(αs) is defined by the same integral, and

therefore by the same perturbative expansion, given in eq. (B.1), as K(αs), but with the

cusp anomalous dimension replaced by the collinear anomalous dimension of the relevant

field, γi with i = q, g. The perturbative coefficients of collinear anomalous dimensions were

extracted from form factors data in [34] and they are

γq(αs) = −3

4
CF

αs

π
+
(αs

π

)2
[
C2
F

16

(
−3

2
+ 12ζ(2)− 24ζ(3)

)

+
CACF

16

(
−961

54
− 11ζ(2) + 26ζ(3)

)
+

CFTRnf

16

(
130

27
+ 4ζ(2)

)]

+
(αs

π

)3 1

64

[
C3
F

(
−29

2
− 18ζ(2)− 68ζ(3)− 144ζ(4) + 32ζ(2)ζ(3) + 240ζ(5)

)

+C2
FCA

(
−151

4
+

410

3
ζ(2)− 844

3
ζ(3) +

494

3
ζ(4)− 16ζ(2)ζ(3)− 120ζ(5)

)
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+CFC
2
A

(
−139345

2916
− 7163

81
ζ(2) +

3526

9
ζ(3)− 83ζ(4)− 88

3
ζ(2)ζ(3)− 136ζ(5)

)

+C2
FTRnf

(
2953

27
− 52

3
ζ(2) +

512

9
ζ(3)− 280

3
ζ(4)

)

+CACFTRnf

(
−17318

729
+

5188

81
ζ(2)− 1928

27
ζ(3) + 44ζ(4)

)

+CFT
2
Rn

2
f

(
9668

729
− 80

9
ζ(2)− 32

27
ζ(3)

)]
+ O(α4

s) , (B.4)

γg(αs) = −b0
4

αs

π
+
(αs

π

)2
[
C2
A

16

(
−692

27
+

11

3
ζ(2) + 2ζ(3)

)

+
CATRnf

16

(
256

27
− 4

3
ζ(2)

)
+

CFTRnf

4

]

+
(αs

π

)3 1

64

[
C3
A

(
− 97186

729
+

6109

81
ζ(2) +

122

3
ζ(3)− 319

3
ζ(4)

− 40

3
ζ(2)ζ(3)− 16ζ(5)

)

+C2
ATRnf

(
30715

729
− 2396

81
ζ(2) +

712

27
ζ(3) +

164

3
ζ(4)

)

+CACFTRnf

(
2434

27
− 4ζ(2)− 304

9
ζ(3)− 16ζ(4)

)
− 2C2

FTRnf

+CAT
2
Rn

2
f

(
−538

729
+

80

27
ζ(2)− 224

27
ζ(3)

)
− 44

9
CFT

2
Rn

2
f

]
+ O(α4

s) ,

which completes the list of required anomalous dimensions up to three loops.

C Hard functions for four-parton amplitudes in the high-energy limit

We have now given explicitly almost all the ingredients needed to construct the high-energy

limit of four-parton QCD amplitudes up to two loops, and up to three loops for infrared

singular contributions. Using existing calculations, this construction can be achieved at the

one-loop level up toO(ε2), using eq. (4.6), at the two-loop level up toO(ε0), using eq. (4.18),

and at the three-loop level up to O(ε−2), and in some cases up to O(ε−1) using eqs. (4.46)–

(4.49). Specifically, all ingredients arising from infrared factorization have been given ex-

plicitly to the necessary accuracy in appendices A and B. The only missing contributions

are those arising from the hard functions H(n), with n = 0, 1, 2, which can only be extracted

from explicit finite-order calculations. The necessary helicity amplitudes for the processes

qq → qq, gg → gg and qg → qg with massless quarks have been calculated up to two loops in

recent years by different groups [17–21]. In this appendix we consider the high-energy limit

of these amplitudes and we provide explicit expressions for the hard functions H(n),l,[c], for

n = 0, 1, 2, for all logarithmic orders and color components, and for each process.4 Inserting

4After the completion of this work, the hard functions corresponding to two-loop four-parton QCD

amplitudes were extracted, without taking the high-energy limit, in ref. [62].
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these results in eq. (4.6) at one loop, and in eq. (4.18) at two loops, one recovers the high-

energy limit of the results discussed in [17–21], while inserting them in eqs. (4.46)–(4.49) one

gets a complete prediction for the poles of three-loop four-parton amplitudes in the high-

energy limit, valid to leading power in t/s and for poles down to ε−2, with further predic-

tions at single-pole level, as discussed in section 5. Note that, as described below, to leading

power in t/s essentially only one helicity amplitude survives for each partonic process.

C.1 Quark-quark scattering

Quark-quark scattering is the simplest process we consider, as it contains only two colour

structures, the singlet and the octet. We write the hard coefficients of the amplitude

M(q+Q+ → q+Q+), which has leading power in the high-energy limit, by using the basis

of eq. (A.1). At tree level only the octet contributes to the amplitude, and we find

H(0),[1]
qq = 0 ,

H(0),[8]
qq =

√
N2

c − 1

x
, (C.1)

where here and below x = t
s
. Next we consider the one-loop amplitude, expanded up to

O(ǫ2). Leading logarithmic terms at this perturbative order are given only by the Regge

trajectory: indeed, we find vanishing LL colour-singlet and octet components in d = 4, as

explained in the text. More precisely,

H(1),1,[1]
qq = 0 ,

H(1),1,[8]
qq = − Nc

√
N2

c − 1

24x
ǫ
(
6ζ(2) + 28ǫζ(3)

)
. (C.2)

Turning to non-logarithmic terms at one loop, we find5

H(1),0,[1]
qq = − iπ

N2
c − 1

24Nc x
ǫ
(
6ζ(2) + 28ǫζ(3)

)
,

H(1),0,[8]
qq =

√
N2

c − 1

x

{(
13

36
+

7

4
ζ(2)

)
Nc +

(
2− 1

4
ζ(2)

)
1

Nc
− 5

18
nf (C.3)

+ ǫ

[(
20

27
− 1

12
ζ(2) +

5

3
ζ(3)

)
Nc +

(
4− 3

8
ζ(2)− 7

6
ζ(3)

)
1

Nc

+

(
−14

27
+

1

12
ζ(2)

)
nf

]

+ ǫ2
[(

121

81
− 13

72
ζ(2)− 7

18
ζ(3) +

35

32
ζ(4)

)
Nc

+

(
8− ζ(2)− 7

4
ζ(3)− 47

32
ζ(4)

)
1

Nc
+

(
−82

81
+

5

36
ζ(2) +

7

18
ζ(3)

)
nf

]

+ iπ
1

12Nc
ǫ
(
6ζ(2) + 28ǫζ(3)

)}
.

5Throughout appendix C we have explicitly set TR = 1/2.
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Now we consider the two-loop quark-quark scattering amplitude, where only terms up to

O(ε0) are available. The leading-logarithmic hard functions vanish again in the high-energy

limit, as discussed in the text. Indeed we find

H(2),2,[1]
qq = 0 ,

H(2),2,[8]
qq = 0 . (C.4)

At two loops, next-to-leading logarithms in the octet component are related to the gluon

Regge trajectory, while the singlet component vanishes, so that

H(2),1,[1]
qq = 0 ,

H(2),1,[8]
qq = −Nc

√
N2

c − 1

x

(
27ζ(3)− 202

)
Nc + 28nf

216
. (C.5)

Finally, the non-logarithmic hard functions H(2),0,[c] are given by

H(2),0,[1]
qq = iπ

N2
c − 1

Nc x

(
202 + 324ζ(2) + 135ζ(3)

)
Nc − 28nf

216
,

H(2),0,[8]
qq =

√
N2

c − 1

x

{(
23213

20736
+

437

144
ζ(2) +

41

72
ζ(3) +

105

64
ζ(4)

)
N2

c (C.6)

+
30659

5184
+

833

288
ζ(2)− 205

144
ζ(3)− 41

32
ζ(4)

+

(
511

256
+

13

32
ζ(2)− 15

16
ζ(3)− 39

64
ζ(4)

)
1

N2
c

−
(
455

432
+

107

144
ζ(2) +

23

72
ζ(3)

)
Nc nf

−
(
685

648
+

13

144
ζ(2) +

19

72
ζ(3)

)
nf

Nc
+

25

324
n2
f

+ iπ

(
−101

54
+

1

4
ζ(3) +

7

27

nf

Nc

)}
.

C.2 Gluon-gluon scattering

The gluon-gluon scattering amplitude has more structures: by using the colour basis de-

scribed in appendix A, we identify two odd components (the antisymmetric octet, and the

direct sum of the decuplet and its complex conjugate), and four even components (the

singlet, the symmetric octet, and the representations we label with 27 and 0). Here we

consider the scattering processes M(g+g− → g+g−) = M(g+g+ → g−g−), which are lead-

ing in the high-energy limit. We begin with the tree-level amplitude: at this order only

the antisymmetric octet contributes to the high energy limit, and we find

H(0),[1]
gg = H(0),[8s]

gg = H(0),[10+10]
gg = H(0),[27]

gg = H(0),[0]
gg = 0 ,

H(0),[8]
gg = − 2

Nc

√
N2

c − 1

x
. (C.7)

Leading-logarithmic one-loop hard parts, as expected, also vanish in d = 4. More precisely

H(1),1,[1]
gg = H(1),1,[8s]

gg = H(1),1,[10+10]
gg = H(1),1,[27]

gg = H(1),1,[0]
gg = 0 ,
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H(1),1,[8a]
gg =

N2
c

√
N2

c − 1

12x
ǫ
(
6ζ(2) + 28ǫζ(3)

)
, (C.8)

The one-loop amplitude is completed by the vector H(1),0, whose components, expanded

up to O(ǫ2), are given by

H(1),0,[1]
gg = − iπ

N2
c

6x
ǫ
(
6ζ(2) + 28ǫζ(3)

)
,

H(1),0,[8s]
gg = − iπ

N2
c

√
N2

c − 1

24x
ǫ
(
6ζ(2) + 28ǫζ(3)

)
,

H(1),0,[8a]
gg =

Nc

√
N2

c − 1

x

{(
67

18
− 4ζ(2)

)
Nc −

5

9
nf + ǫ

[(
202

27
− 17

3
ζ(3)

)
Nc

− 28

27
nf − b0

4
ζ(2)

]
+ ǫ2

[(
1214

81
− 67

36
ζ(2)− 77

18
ζ(3)− 41

8
ζ(4)

)
Nc

+

(
−164

81
+

5

18
ζ(2) +

7

9
ζ(3)

)
nf

]
− iπ

Nc

24
ǫ
(
6ζ(2) + 28ǫζ(3)

)}
,

H(1),0,[10+10]
gg = 0 , (C.9)

H(1),0,[27]
gg = − iπ

Nc

√
(Nc + 3)(Nc − 1)

12x
ǫ
(
6ζ(2) + 28ǫζ(3)

)
,

H(1),0,[0]
gg = − iπ

Nc

√
(Nc − 3)(Nc + 1)

12x
ǫ
(
6ζ(2) + 28ǫζ(3)

)
.

At two loops, leading-logarithmic hard functions vanish to O(ε0),

H(2),2,[k]
gg = 0 , (C.10)

while at NLL accuracy we find

H(2),1,[1]
gg = H(2),1,[8s]

gg = H(2),1,[10+10]
gg = H(1),2,[27]

gg = H(2),2,[0]
gg = 0 ,

H(2),1,[8a]
gg = − N2

c

√
N2

c − 1

x

[(
101

54
− 1

4
ζ(3)

)
Nc −

7

27
nf

]
. (C.11)

Finally, the components of non-logarithmic hard function H(2),0 are

H(2),0,[1]
gg = iπ

1

x

{[(
265

54
+
5

2
ζ(3)

)
N3

c −
139

216
N2

c nf+
7

6
nf+

1

8

nf

N2
c

]
+2ζ(2)

11N3
c +2nf

3

}
,

H(2),0,[8s]
gg = iπ

√
N2

c − 1

x

[(
101

108
− 1

8
ζ(3)

)
N3

c − 7

54
N2

c nf

+

(
29

12
+

4

3
ζ(2)

)
nf +

1

4

nf

N2
c

]
,

H(2),0,[8a]
gg =

√
N2

c − 1

x

[(
11093

1296
− 67

72
ζ(2)− 22

9
ζ(3)− 37

8
ζ(4)

)
N3

c

+

(
−4849

2592
+

5

36
ζ(2)− 1

18
ζ(3)

)
N2

c nf +

(
55

96
− 1

2
ζ(3)

)
nf
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+ iπ
N2

c

216

((
202− 27ζ(3)

)
Nc − 28nf

)]
,

H(2),0,[10+10]
gg = 0 , (C.12)

H(2),0,[27]
gg = iπ

√
(Nc + 3)(Nc − 1)Nc

x

[
5

8
N2

c +

(
683

216
− 11

3
ζ(2)− 7

4
ζ(3)

)
Nc

− 11

16
Nc nf +

1

12
− 22

3
ζ(2)− 3ζ(3) +

(
−23

54
+

2

3
ζ(2)

)
nf − 1

16

nf

Nc

]
,

H(2),0,[0]
gg = iπ

√
(Nc − 3)(Nc + 1)Nc

x

[
− 5

8
N2

c +

(
683

216
− 11

3
ζ(2)− 7

4
ζ(3)

)
Nc

+
11

16
Nc nf − 1

12
+

22

3
ζ(2) + 3ζ(3) +

(
−23

54
+

2

3
ζ(2)

)
nf +

1

16

nf

Nc

]
.

C.3 Quark-gluon scattering

To conclude, we provide the hard functions up to two loops for quark-gluon scattering

amplitudes. In this case there are three color components, corresponding to a singlet

and two octets, since one has to take the intersection of the vector spaces defined by the

tensor products 3⊗ 3 and 8⊗ 8, including separately all equivalent representations. The

helicity amplitudes which are leading in the high-energy limit are M(q+g− → q+g−) =

−M(q+g+ → q+g+), and in the following we give the hard functions for the process

M(q+g− → q+g−). The tree-level amplitude is given by

H(0),[1]
qg = H(0),[8s]

qg = 0 ,

H(0),[8a]
qg =

√
2Nc(N2

c − 1)

x
. (C.13)

At one loop we have the leading logarithmic functions

H(1),1,[1]
qg = H(1),1,[8s]

qg = 0 ,

H(1),1,[8a]
qg = − Nc

√
2Nc(N2

c − 1)

24x
ǫ
(
6ζ(2) + 28ǫζ(3)

)
, (C.14)

while the NLL result, up to O(ε2), is given by

H(1),0,[1]
qg = iπ

√
Nc(N2

c − 1)

12x
ǫ
(
6ζ(2) + 28ǫζ(3)

)
,

H(1),0,[8s]
qg = iπ

√
2Nc(N2

c − 1)(N2
c − 4)

48x
ǫ
(
6ζ(2) + 28ǫζ(3)

)
, (C.15)

H(1),0,[8a]
qg =

√
2Nc(N2

c − 1)

x

{(
−3

4
+

15

8
ζ(2)

)
Nc +

(
1− 1

8
ζ(2)

)
1

Nc

+ ǫ

[(
−3

2
+

3

16
ζ(2) +

9

4
ζ(3)

)
Nc +

(
2− 3

16
ζ(2)− 7

12
ζ(3)

)
1

Nc

]

+ ǫ2
[(

−3 +
3

8
ζ(2) +

7

8
ζ(3) +

117

64
ζ(4)

)
Nc
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+

(
4− 1

2
ζ(2)− 7

8
ζ(3)− 47

64
ζ(4)

)
1

Nc

]

+ iπ
Nc

48
ǫ
(
6ζ(2) + 28ǫζ(3)

)}
.

At two loops, leading-logarithmic contributions to the hard functions vanish to O(ε0),

H(2),2,[k]
qg = 0 . (C.16)

At NLL accuracy, on the other hand, the singlet and symmetric octet components vanish,

but the antisymmetric octet component H(2),1,[8a] is related to the finite part of the two-

loop Regge trajectory, and one finds

H(2),1,[1]
qg = H(2),1,[8s]

qg = 0 ,

H(2),1,[8a]
qg = − Nc

√
2Nc(N2

c − 1)

216x

[(
− 202 + 27ζ(3)

)
Nc + 28nf

]
. (C.17)

Finally, all colour components of H(2),0 are non vanishing, and are given by

H(2),0,[1]
qg = iπ

√
Nc(N2

c − 1)

Nc x

[(
−55

27
− 10

3
ζ(2)− 5

4
ζ(3)

)
N2

c − 3

16

1

N2
c

+
83

216
Nc nf

−
(
1

6
+

1

3
ζ(2)

)
nf

Nc
− 1

16

]
,

H(2),0,[8s]
qg = iπ

√
2Nc(N2

c − 1)(N2
c − 4)

Nc x

[(
−101

216
+

ζ(3)

16

)
N2

c − 3

32

1

N2
c

+
7

108
Nc nf

−
(
1

6
+

1

3
ζ(2)

)
nf

Nc
− 3

32

]
, (C.18)

H(2),0,[8a]
qg =

√
2Nc(N2

c − 1)

x

{(
−30377

13824
+

17

9
ζ(2) +

43

48
ζ(3) +

501

256
ζ(4)

)
N2

c

+

(
255

512
+

21

64
ζ(2)− 15

32
ζ(3)− 83

256
ζ(4)

)
1

N2
c

+

(
863

3456
− 127

288
ζ(2)− 7

48
ζ(3)

)
Nc nf

−
(

4085

10368
+

23

288
ζ(2) +

1

144
ζ(3)

)
nf

Nc

+
19139

10368
+

985

576
ζ(2)− 205

288
ζ(3)− 87

128
ζ(4)

+ iπ
Nc

432

[(
− 202 + 27ζ(3)

)
Nc + 28nf

]}
.

D Infrared singularities for singlet exchange

In section 5 we used the dipole formula to investigate the structure of infrared singularities

for the t-channel exchange of colour representations other than the octet, providing exam-

ples at three and four loops. In this appendix, as a further example of the dipole formula
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at work, and for future reference, we give explicit expressions for the infrared singularities

in the case of singlet exchange. We begin with the poles of one-loop amplitudes. Leading

logarithms are given by (4.6),

M (1),1 = K(1)OtH
(0) +O(ǫ0) , (D.1)

where the operators Ot and hard parts H(0) for the three processes are given respectively

in eqs. (A.2) and (C.1), (A.5) and (C.7), (A.10) and (C.13). The coefficient K(1) = 1
2ǫ can

be extracted by replacing eq. (B.3) in eq. (B.1). For example, in quark-quark scattering

one finds the simple expressions

M (1),1
qq =

1

2ǫ



0 0

0 Nc







0
√

N2
c−1

x


 =




0

Nc

√
N2

c−1

2ǫ x


+O

(
ǫ0
)
. (D.2)

The first component of the vector corresponds to the exchange of a color singlet in the

t channel and, as expected, it vanishes at leading logarithmic accuracy. The same result

holds for gluon-gluon and quark-gluon scattering. We then use the same procedure for

next-to-leading logarithms, by replacing the operators Os−u in the proper representation

and the anomalous dimensions we find in appendix B in the first expression of eq. (4.6).

Singlet components in this case are

M (1),0,[1]
qq = iπ

s

t

N2
c − 1

2Nc

1

ǫ
+O

(
ǫ0
)
,

M (1),0,[1]
gg = iπ

s

t
2N2

c

1

ǫ
+O

(
ǫ0
)
, (D.3)

M (1),0,[1]
qg = −iπ

s

t

√
Nc(N2

c − 1)
1

ǫ
+O

(
ǫ0
)
.

We next consider two-loop amplitudes, isolating leading and subleading logarithms. The

singularities are constructed according to eq. (4.18). We find again that leading logarithms

have just the (antisymmetric) octet component, while the next-to-leading terms are

M (2),1,[1]
qq = iπ

s

t

N2
c − 1

8ǫ2
+O

(
ǫ0
)
,

M (2),1,[1]
gg = iπ

s

t

N3
c

2ǫ2
+O

(
ǫ0
)
, (D.4)

M (2),1,[1]
qg = −iπ

s

t

Nc

√
Nc(N2

c − 1)

4ǫ2
+O

(
ǫ0
)
.

Finally, at next-to-next-to-leading logarithmic accuracy we find

M (2),0,[1]
qq =

s

t

N2
c − 1

Nc

{
− iπ

N2
c − 1

4Nc ǫ3
+

1

ǫ2

[
3

2

1

Nc
ζ(2) + iπ

(
− 29

48
Nc +

1

24
nf +

3

8

1

Nc

)]

+ iπ
1

ǫ

[
Nc

(
31

48
+

7

8
ζ(2)

)
− 5

24
nf +

1

Nc

(
1− 1

4
ζ(2)

)]}
,

– 45 –



J
H
E
P
0
2
(
2
0
1
5
)
0
2
9

M (2),0,[1]
gg =

s

t
N2

c

{
− 2iπ

Nc

ǫ3
+

1

ǫ2

[
3

2
Nc ζ(2) + iπ

(
−55

12
Nc +

5

6
nf

)]
(D.5)

+ iπ
1

ǫ

[
Nc

(
−67

36
+

9

2
ζ(2)

)
+

5

18
nf

]}
,

M (2),0,[1]
qg =

s

t

√
N2

c − 1

Nc

{
iπ

3N2
c − 1

4ǫ3
+

1

ǫ2

[
− 3

4
N2

c ζ(2) + iπ

(
7

4
N2

c − 1

4
nfNc −

3

8

)]

− iπ
1

ǫ

[
N2

c

(
13

72
+ 2ζ(2)

)
− 5

36
nfNc + 1− 1

4
ζ(2)

]}
.
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