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1 Introduction

The thermodynamic nature of black holes was uncovered more than four decades ago.

It prompts the natural question whether there exists a connection between black hole

dynamics and hydrodynamics. An attempt to address this led to the development of the

black hole membrane paradigm, which displayed a suggestive analogy between dynamics of

black hole horizons and the hydrodynamic equations of Navier-Stokes [1–3]. This paradigm

has proven immensely useful in building intuition about black hole dynamics, for it reduces

the complex gravitational dynamics into an electromechanical system with viscosities [4, 5]

and conductivities [1, 6]. However, given the fact that asymptotically flat black holes have

a gapped spectrum of excitations implies that the analogy is at best approximate.

The situation changes dramatically if one considers instead (large) black holes in

asymptotically AdS spacetimes, or black branes in Minkowski spacetime, for now the black

hole excitations, characterized by the quasinormal modes is gapless. Indeed, this observa-

tion was the cornerstone for the development of the connections between linearized hydro-

dynamics of strongly coupled plasmas and black hole dynamics in AdS in [7, 8]. Building on

these works and many others, the fluid/gravity correspondence [9] (cf., [10, 11] for reviews)

demonstrates a precise relation between the dynamics of Einstein’s equations and those of

the (relativistic) non-linear hydrodynamical equations, using the standard logic of effective

field theory. Likewise an attempt to understand higher dimensional black holes led to the

construction of the blackfold effective field theory approach to gravity [12–14] (see [15]

for a review), wherein it was shown that the world-volume dynamics of extended black

objects is modeled at the leading order in a gradient expansion as hydrodynamics [14, 16].

Furthermore, in a related development [17] (see also [18–20]) argued that the near horizon

Rindler geometry of black holes endowed with a suitable cut-off surface admits an effective

description in terms of non-relativistic Navier-Stokes equations.1

While these connections between fluid dynamics and gravity a-priori appear to operate

in different environments, it was argued in [22], building on earlier work of [23, 24] that

these disparate realizations can be brought into a single universal framework. This was

achieved by implementing the blackfold construction for a stack of N D3-branes in Type IIB

supergravity; the world-volume dynamics of the branes at finite temperature in the precise

1The derivation of the non-relativistic Navier-Stokes equations from the fluid/gravity correspondence

was outlined in [21].
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of a fixed Dirichlet cut-off surface (at finite radial distance from the branes) was argued

to be a hydrodynamic theory, which interpolates between the three constructions alluded

to above. One finds that the blackfold hydrodynamics holds sway when the Dirichlet cut-

off surface is in the asymptotic flat region, while moving this to the AdS throat leads to

the standard hydrodynamics of N = 4 SYM plasma; further pushing the cut-off surface

towards the branes leads to the Rindler hydrodynamics.

At a technical level the analysis of [22] employed a Kaluza-Klein reduction of the

D3-brane down to five-dimensions and considered an effective black brane in an Einstein-

dilaton theory. The low-energy dynamics of this system was studied with the imposition of

a Dirichlet boundary condition for all fields at a cut-off surface located at a fixed radial po-

sition from the branes. Having solved the bulk equations of motion subject to regularity at

the black hole horizon, it was found that the quasi-local Brown-York tensor induced on the

cut-off surface (which is conserved courtesy the momentum constraints of gravity in radial

decomposition) captures the low-energy intrinsic dynamics of the original D3-branes. This

stress-tensor depends on the number N of D3-branes (held fixed), the temperature T (or

the energy above extremality) and the location r = R of the cut-off surface. By scanning

through the various regions in the spacetime, using the location of the cut-off surface R,

the stress tensor was found to interpolate between the different hydrodynamic forms ap-

propriate for blackfolds, fluid/gravity and the (Rindler) membrane paradigm, respectively.

Given the intrinsic connection between the different hydrodynamic regimes, in this

paper we would like to upgrade the discussion to include finite charge density. Apart

from the obvious motivation of examining how the dynamics of charge interplays with the

location of the cut-off, this provides an opportunity to understand geometrically certain

aspects of anomaly induced transport in hydrodynamics. It is by now well established that

quantum anomalies leave a definite and predictable imprint in hydrodynamics. This was

first discovered in the context of the fluid/gravity correspondence in [25, 26] by examining

the dynamics of R-charged N = 4 SYM plasma. Subsequently, it was understood that

the anomalous contributions are necessitated by the second law of thermodynamics [27].

In the AdS/CFT discussion the gravitational setup analyzed in [25, 26] was the bosonic

truncation of SO(6) gauged supergravity to an Einstein-Maxwell-Chern-Simons theory; the

gauge field in the bulk corresponds by the usual AdS/CFT rules to a boundary conserved

current and the bulk Chern-Simons term captures the boundary R-current anomaly.

The SO(6) R-symmetry of N = 4 SYM is geometrically captured by rotations in the

space transverse to the branes. One consequence of this is that imparting a spin to the

D3-branes in the transverse R6 induces an effective charge density on the branes [28, 29].2

Inspired by the rich physics of anomaly induced transport, we undertake the task of ex-

amining the effective hydrodynamics on the world-volume of spinning D3-branes. A nat-

ural outcome of our analysis is the introduction of anomalous currents into the blackfold

paradigm (charged blackfolds have been studied in [31]).

2This suggests a geometric origin for the R-current anomaly, which as far as we are aware has never

been made precise. The prime difficulty can be traced to the absence of a covariant action for Type

IIB supergravity including the self-dual five form (whose presence is responsible for the anomaly). The

analogous story for M5-brane dynamics is much cleaner [30].
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Specifically, we consider a stack of N spinning D3-branes in flat space, focussing on the

case when all the spins are equal for simplicity. The long-wavelength perturbations of an

effective five-dimensional description of these D3-branes is examined subject to Dirichlet

boundary conditions on a cut-off surface at constant r = R and regularity on the hori-

zon. The induced quasi-local stress-energy tensor and charge currents characterize the low

energy dynamics on the cut-off surface. We determine the constitutive relations and the

transport coefficients as a function of the cut-off radius R explicitly.3

The analysis of the effective dynamics is immensely facilitated as in [22, 25, 26] by

performing a Kaluza-Klein reduction of type IIB supergravity on the S5 transverse to the

branes. For the case of interest of equal spins in the three planes of R6, the rotation of the

D3-branes is in the diagonal U(1) subgroup of the U(1)3 ⊂ SO(6) Cartan. Regarding S5 as

a Hopf fibration of S1 over CP2, the rotation is along the circle fibre.4 One can then use the

consistent truncation discovered in [32] as our effective five dimensional theory. The five-

dimensional background solution obtained by reducing the spinning D3-brane metric [33]

has all the fields in the effective action of [32] non-vanishing. In particular, additional to

the gauge field which corresponds to the fibre isometry — the one used in [25, 26] — one

has three additional matter fields. The first is a massive vector field originating from the

vector modes of the five-form (obtaining such massive vectors was one of the motivations

of [32]). In addition, there are two scalars (dilatons); these correspond to the breathing

modes associated with the volume of the S1 fibre and CP2 base space, and lead to further

complications (somewhat fatally in the scalar sector).

Starting with this seed solution, we follow the logic of [9] making the physical black

hole parameters vary along the world-volume. The resulting perturbation equations for

long-wavelength fluctuations of the dynamic fields are decomposed into irreducible repre-

sentations (scalars, vectors and tensors) under the SO(3) ⊂ SO(3, 1), which decouple from

each other. The radial evolution of these away from the cut-off surface is embodied into

(i) constraint equations, which describe the conservation of the leading (zeroth) order cur-

rents, and (ii) dynamical equations which have to be solved along with suitable boundary

conditions (regularity at the horizon and Dirichlet conditions at r = R). We note in pass-

ing that the presence of additional non-vanishing matter fields leads to source terms in the

conservation equations beyond leading order. In particular, the system we consider should

be viewed as a charged generalization of the forced fluid set-up of [34].

We are able to solve the dynamical equations in the tensor and vector sector analyti-

cally; owing to the extra fields the scalar sector has proved intractable thus far. The upshot

of the analysis is a first order stress tensor and charge current which depends explicitly

on the cut-off radius R. From here we read off the transport coefficients in the various

regimes.5 In particular, working in the fluid/gravity regime, by placing the cut-off surface

3We unfortunately leave the bulk viscosity undetermined owing to the complexity of the bulk equations.
4An obvious generalization would be to extend the consideration to N = 1 superconformal field theory

plasmas obtained by placing D3-branes at the tip of a cone over a Sasaki-Einstein space. The rotation is

then aligned with the Reeb vector of the manifold.
5For reasons described in [21], in the non-relativistic limit forced upon us by the near-horizon Rindler

geometry, the charge dynamics freezes out.
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in the AdS throat region recovers the well-known results from the perturbations of the AdS

Reissner-Nordström solutions [25, 26].

The ratio of shear viscosity and entropy density takes the universal value 1/4π. This

was to be expected, as the arguments for the universality of this ratio in two derivative

gravity in [35, 36] continue to hold in the presence of the extra matter fields. In the

vector sector, we encounter the parity-even conductivity in addition to the parity odd

contributions proportional to the vorticity (and magnetic field). The parity-even vector

contributions which correspond to conductivity (or charge diffusion) ends up being more

intricate. The complications of the Kaluza-Klein reduction make their presence felt in

this analysis for not only does the physical (anomalously) conserved current have a source

(the chemical potential) and an expectation value, it appears that with the näıve choice of

counter-terms, so does the non-conserved vector operator. As a result we encounter (a) a

modification of the Smarr relation which is a statement about equilibrium thermodynamics,

involving contributions from the vector operator and (b) the physical charge diffusion con-

stant ends up being contaminated by the vector operator acquiring a vacuum expectation

value. Furthermore, in the canonical basis of fields we encounter, structures reminiscent of

Weyl invariant fluids (the näıve diffusion constant appears to multiply the Weyl covariant

derivative of the charge densities), despite conformal symmetry being explicitly broken by

the background (and by the cut-off surface).

The outline of the paper is as follows: in section 2, we start off with a quick summary

of the Kaluza-Klein reduction and consistent truncation of [32] which will be convenient

for our analysis. We also obtain the equilibrium seed solution from the spinning D3-branes

geometry [33] and explicitly map out the connections between our parameterization and

those in the earlier analysis of [22] and [25, 26] in appropriate limits for later comparisons.

In section 3 and section 4 we display this geometry in a useful coordinate chart which is

regular through the future horizon and thence proceed to allow fluctuations along the world-

volume. In section 5 and section 6 we find the leading order correction to the background

geometry with the prescribed boundary conditions, briefly commenting on the scalar sector

in section 7. Finally, section 8 is devoted to the physical results from our analysis and we

examine the features of the transport coefficients as a function of R. We conclude with

a brief discussion in section 9. The appendices contain some more technical details of

the computation: appendix A elaborates on the Kaluza-Klein truncation, while details of

the vector sector computations such as source terms and fixing integration constants are

described in appendices B and C respectively.

2 Effective description of spinning D3-branes

We aim for a minimal generalization of the interpolating blackfold fluid presented in [22]

to incorporate non-vanishing charge density. We therefore take a stack of D3-branes in flat

space and let them spin along their transverse directions. This naturally incorporates the

description of a charged fluid from the world-volume point of view [28, 29] with the angular

velocities playing the role of charge chemical potentials.
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For the sake of simplicity we will look at rotations along the diagonal U(1) of the U(1)3

Cartan of the five-sphere isometry group SO(6). This abelian isometry corresponds to the

fibre isometry when the S5 is taken to be the Hopf fibration S1 ↪→ S5 � CP2.

2.1 Consistent truncation

To describe the effective fluid degrees of freedom it turns out to be useful to perform a

Kaluza-Klein reduction of the bosonic subsector of type IIB supergravity (respecting the

fibration). Fortunately, this has already been worked out in detail in [32]. In addition to

the usual metric, scalars and the gauge field Aµ which arises from the fibre isometry, this

truncation also incorporates a Proca vector field Aµ. It arises from the first massive level

of the harmonic analysis of supergravity on S5 [37], but may consistently be incorporated

in the truncation.

We will apply this KK reduction and spectrum truncation to the metric and five-

form profile of a stack of rotating D3-branes [33], mildly adjusting the conventions of [32]

by taking ∼ Q units of five-form flux
∫
S5 F5 = 2Q instead of

∫
S5 F5 = 4. With this

normalization, our choice of Q corresponds to the one used in [22]. In the following, we

briefly review the effective action and equations of motion derived in [32].

Using the ten-dimensional Einstein’s equations and the closure of the five-form to-

gether with the reduction ansatz maintaining the fibration, one obtains the following five

dimensional effective action for the resulting dynamics (see appendix A for further details)6

S =
1

2κ2
5

∫
d5x
√
−g e4U+V

[
R+ 24 e−2U − 4 e−4U+2V − 2Q2 e−8U−2V

+ 12 ∂µU∂
µU + 8 ∂µU∂

µV − 1

4
e2V FµνFµν −

1

8
Q2 e−4U−2V FµνFµν

− 2Q2 e−8UAµA
µ
]

+
Q2

8κ2
5

(4κ)

∫
A ∧ F ∧ F .

(2.1)

Apart from gravity, we have two scalar fields U and V , the breathing modes of the CP2

base space and S1 fibre of the Hopf fibration. The vector fields with field strengths dA = F
and dA = F are assembled into the combination

F = F + F . (2.2)

We claim that (2.1) incorporates the necessary ingredients to subsume the fluid/gravity

discussions of [25, 26] and the blackfold analysis of [22] and does so in a minimal fashion.

First, our action reduces to the simpler action of [22] once the gauge fields vanish and

the dilatons are set equal, U = V = ϕ. This corresponds to the limit of vanishing charge

density (q → 0). Second, we can reduce (2.1) to the Einstein-Maxwell theory with negative

cosmological constant discussed in [28]. For this, the Proca field A needs to be set to

zero and the dilatons fixed to equal constant value. With the massive vector vanishing, we

6In the following, we are going to take the liberty to multiply the Chern-Simons term with 4κ to keep

track of it in the analysis and leave more space for generality. Compared to the previous literature we have

κ = −
√

3
2
κ(B) where the latter κ(B) is the one used in the fluid/gravity analysis of [25].
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recover the gauge Chern-Simons term as desired. This reproduces then the effective action

used in the analysis of [25, 26]. We will shortly also see how to compare the solutions used

in these analyses in our language.

Let us record for completeness the equations of motion resulting from (2.1). The

Einstein equation is given by

Rµν = 4 (∂µU∂νU +∇µ∂νU) + (∂µV ∂νV +∇µ∂νV )−Q2 e−8U−2V gµν

+
1

2
e2V FµρF ρ

ν + Q2 e−8U (2AµAν − gµνAρA
ρ)

+
1

16
Q2 e−4U−2V (4FµρF ρ

ν − gµνFρσFρσ) .

(2.3)

The (coupled) scalar equations of motion for the dilatons U and V are

�U + 4∂µU∂
µU + ∂µU∂

µV = 6 e−2U − 2 e−4U+2V

−Q2 e−8U−2V −Q2 e−8UAµA
µ ,

(2.4)

�V + 4∂µU∂
µV + ∂µV ∂

µV = 4 e−4U+2V −Q2 e−8U−2V +
1

4
e2V FµνFµν

+Q2 e−8UAµA
µ − 1

16
Q2 e−4U−2V FµνFµν .

(2.5)

The last equation which arises from the ten-dimensional Einstein’s equations is the equation

of motion for the gauge field A, which also involves a parity odd term

d
(
e4U+3V ? F

)
= 4Q2 e−4U+V ?A +Q2 κF ∧ F . (2.6)

Additionally, we have some more equations from the closure of the self-dual five-form,

dF5 = 0, which are given by

d
(
e−4U+V ?A

)
= 0 (2.7)

d
(
e−V ? F

)
= −8e−4U+V ?A + 4κF ∧ F (2.8)

dF = 0 (2.9)

The first is similar to a Lorentz gauge choice for A. Furthermore, there is also a Maxwell

equation for F and a simple Bianchi equation.

There is a remark in order. We see that both Maxwell’s equations, (2.6) and (2.8),

are sourced by the Proca field A (the contribution from the Chern-Simons terms is not

relevant for the following discussion). To later obtain a conserved current from these fields

we have to rotate to a basis, in which the kinetic terms for the Proca field A and a physical

gauge field Aphys are diagonal such that we end up with an equation of motion without

source terms. It turns out that the linear combination

Aphys =

(
Q2

2
e−V + e4U+3V

)−1(
Q2

2
e−V A + e4U+3VA

)
= A+

(
Q2

2
e−V + e4U+3V

)−1
Q2

2
e−V A

(2.10)
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leads to such an equation of motion. Consequently the corresponding current Jphys will

be conserved. The relevant part of the action (2.1) which we may rewrite in terms of the

Proca field A and the physical gauge field Aphys is given by

− 1

4
e2V FµνFµν −

1

8
Q2 e−4U−2V FµνFµν − 2Q2 e−8UAµA

µ

= −1

4

(
e−4U−V

Q2

2 e
−V + e4U+3V

)(
Q2

2
e−V Fµν + e4U+3V Fµν

)2

− Q2

8

(
eV

Q2

2 e
−V + e4U+3V

)
FµνF

µν − 2Q2e−8UAµA
µ .

(2.11)

However, we found it rather inconvenient to work in this rotated basis, due to the contri-

butions from the dilatons. Thus in the following we will stick to the former choice A and A

or depending on the context A = A+ A.

2.2 Black brane background

Starting from the stack of rotating D3-branes in [33] with all three angular momenta

equal (cf., appendix A), we may use the Kaluza-Klein reduction of [32] to arrive at a

five-dimensional black hole space-time, which solves the equations of motion of (2.1).

By construction, our lower-dimensional black hole solution is very much reminiscent

of the Reissner-Nordström-AdS5 solution [25, 26, 28] and, in fact, is related to it via the

near-horizon limit soon to be discussed. The metric reads

ds2 = H(r)−1/2
[
−f(r)g(r) dt2 + dx2

1 + dx2
2 + dx2

3

]
+H(r)1/2f(r)−1dr2 , (2.12)

where

f(r) = 1− r4
0

r4
+
q2

r6
, H(r) = 1 +

L4

r4
, g(r) =

H(r)

H(r) + q2

r6

. (2.13)

Clearly f(r) is the emblackening factor incorporating the mass (∼ r4
0) and charge (∼ q) of

the Reissner-Nordström solution. H(r) is the warp factor, which in the near-horizon limit

behaves like H(r)→ L4

r4
changing the asymptotics of the near-horizon geometry to AdS.

The scalars U and V profiles are given by

e2U = H(r)1/2r2 , e2V = H(r)1/2r2g(r)−1 , (2.14)

and we can see that g(r) basically describes the relative squashing of base and fibre in the

compact space we reduced on. The vector fields are given by

A = −q
(
Q

2L2

)(
g(r)

r6H(r)

)
dt , A = −q

(
2L2

Q

)(
f(r)g(r)

r2H(r)

)
dt , (2.15)

where we have reintroduced Q which relates to L and r0 via

Q

2
= L2

√
r4

0 + L4 = 4πgsα
′2N (2.16)

and thus represents the number of D3-branes N in string units [38].

– 7 –
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2.3 The decoupling limit

Of course, it is well known that for extremal non-rotating D3-branes the near-horizon

geometry is AdS5 ×S5 [39]. For non-extremal spinning D3-branes a similar decoupling

limit relates the solution given in eqs. (2.12)–(2.15) to that analyzed in [25, 26]. It is

simply given by [33]

r0 → ε r0 , L→ L , r → ε r , xµ → ε−1xµ , q → ε3 q , (2.17)

taking ε→ 0, which then implies that

f(r)→ f(r) , H(r)→ L4

ε4r4
, g(r)→ 1 . (2.18)

In this limit, the metric (2.12) does indeed reduce to the Reissner-Nordström-AdS5

black hole. Furthermore, the relative squashing between base and fibre is suppressed, as

can be seen directly from (2.14) using (2.18). Also the dilatons are frozen to constant

values e2U = e2V = L2 accounting for the negative cosmological constant in (2.1), where

we retained the AdS radius L explicitly.

The background profile of the Proca field A is suppressed by ε4 (2.15), but the gauge

field A in the limit (2.17) precisely agrees with the one in [25, 26] (modulo a trivial nor-

malization factor). In particular, accounting for the differing normalization of the kinetic

terms gives the relation
√

3
2 Aµ = A

(B)
µ , with A

(B)
µ being the gauge field of [25].

Armed with these observations we are now prepared to make direct comparisons in

the sequel with the fluid/gravity analysis of [25, 26].

2.4 Comments on the chargeless limit

Taking the charge q to zero of course, by construction, recovers the background solution

of [22]. However, [22] uses a somewhat different choice of coordinates. Whilst it is simple

to translate between the two at the level of the zeroth order solution (2.12), it notably

introduces an important subtlety when we proceed to analyze fluctuations.

Consider the coordinate change:

ρ4 = r4 + L4 , r4
+ = r4

0 + L4 , r− = L (2.19)

under which the warp and emblackening factors H(r) and f(r) reduce to

∆±(ρ) = 1−
r4
±
ρ4
. (2.20)

This makes it clear that r0 is related to the temperature or the deviation away from

extremality of the D3-brane. The analysis of [22] employs the coordinate ρ (where it is

called r). To be clear below we will use ρ = r [22] to avoid further loss in translation.

We however find it convenient for our purposes to stick to the coordinate chart displayed

in (2.12).

The main subtlety, which we want to emphasize, is that the coordinate change (2.19)

for the radial coordinates involves the parameter L. In the fluid/gravity and blackfold

– 8 –
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approaches, when we analyze fluctuations about equilibrium configurations, we have to

take this parameter to depend on the world-volume coordinates, i.e., L→ L(σa). We wish

to do this however keeping the number N of D3-branes or equivalently the parameter Q

as in (2.16) fixed; this correlates the dependence of L(σa) with that of r0(σa).

However, the intrinsic dependence L(σa) implies that constant r and constant ρ = r [22]

surfaces are not isomorphic. The choice of cut-off surface in [22] was made to be an

isodilatonic surface at constant ρ = r [22] = P , e2U = ρ2, which would correspond to a

fluctuating surface in our radial coordinate r. We wish to impose boundary conditions at

r = R and owing to e2U = H1/2r2, our iso(U)dilatonic surface is not the same surface as

used in the previous analysis. As a result comparison of results in the q → 0 limit requires

some care which we will highlight when necessary.

3 Black brane background and currents

We now have the necessary ingredients to study the long-wavelength fluctuations on the

world-volume of the rotating D3-branes. Before we analyze the perturbative solutions we

first ensure that we convert our seed solution into a regular coordinate chart and extract

the equilibrium thermodynamic data below.

3.1 The seed metric

To set up the Dirichlet problem at finite R in the spirit of the fluid/gravity correspondence

and blackfold paradigm, we first transform our background (2.12) and (2.15) in ingoing

Eddington-Finkelstein coordinates to make the non-singular nature of the outer horizon

apparent. To do so we introduce the ingoing coordinate v = t + r?(r), with r? being the

tortoise coordinate for (2.12). In addition we make the choice of inertial frame at the

zeroth order explicit, by introducing a boost velocity ua (normalized to u2 = −1). Using

the projection tensor Pab = ηab + uaub, which projects perpendicular to the velocity ua,

the Kaluza-Klein-reduced metric (2.12) derived in the previous section, reduces to7

ds2 = −f(r) g(r)√
H(r)

uaub dσ
adσb − 2

√
g(r)ua dσ

adr +
1√
H(r)

Pab dσ
adσb . (3.1)

In addition we have to transform the gauge fields (2.15) accordingly. This leads to

A = q

(
Q

2L2

)(
g(r)

r6H(r)

)
uadσ

a , (3.2)

A = q

(
2L2

Q

)(
f(r)g(r)

r2H(r)

)(
uadσ

a − H(r)1/2

f(r)g(r)1/2
dr

)
. (3.3)

Note that we used the gauge freedom of the gauge field A to set the component Ar
to zero. This is not possible for A owing to the absence of gauge invariance due to the

7Henceforth lowercase Latin indices refer to the world-volume; the early part of the alphabet {a, b, · · · }
are world-volume covariant, while {i, j, · · · } refer to the spatial directions. Greek indices always refer to the

bulk spacetime.
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mass term. If we view the Proca field as a gauge field together with a Stueckelberg scalar

θ, then we have already gauge fixed θ = 0, so no further choice is possible.

On the fluctuations of the various background fields we impose Dirichlet boundary

conditions at a cut-off surface at a finite radial slice r = R [23]. The resulting quasi-local

stress-energy tensor and charge currents at r = R for long-wavelength fluctuations along

σa are expected to be hydrodynamic. However, the induced metric on the r = R surface

whilst flat to leading order in these fluctuations is not manifest in the Minkowski form.

We will therefore perform a further coordinate rescaling to achieve this.8 Therefore, as

in [22, 24], we redefine our space-time coordinates to make this manifest,9

ds2
0 = − f(r) g(r)

fR gR

√
HR

H(r)
uaub dσ

adσb − 2

√
g(r)H

1/2
R

fR gR
ua dσ

adr +

√
HR

H(r)
Pab dσ

adσb ,

(3.4)

where we have defined fR = f(R), gR = g(R) and HR = H(R). This automatically ensures

that the theory on the cut-off surface r = R is defined on a manifold with the Minkowski

metric.

The scalars being (bulk) diffeomorphism invariant are unchanged, viz.,

e2U0 = H(r)1/2r2 , e2V0 = H(r)1/2r2g(r)−1 , (3.5)

but the vector fields also undergo rescaling. To wit,

A0 = q

(
Q

2L2

)(
g(r)

r6H(r)

)√
H

1/2
R

fR gR
uadσ

a , (3.6)

A0 = q

(
2L2

Q

)(
f(r)g(r)

r2H(r)

)√
H

1/2
R

fR gR

(
uadσ

a − H(r)1/2

f(r)g(r)1/2
dr

)
. (3.7)

Note that the dr terms of the metric and the gauge fields have not been rescaled. In (3.7) the

rescaling of uadσ
a factors out, because the definition of Eddington-Finkelstein coordinates

has to be modified accordingly.

3.2 Equilibrium thermodynamics

Given the seed metric (3.4), we can compute entropy density and temperature of our

stationary setup. Accounting for the non-vanishing scalar fields in (2.14) or equivalently

transforming to an Einstein frame Lagrangian, we get

S =
A

4G
=

2π

κ2
5

∫
d3x
√
−h e4U+V

∣∣∣∣
r+

(3.8)

8Note that as explained in [24], the rescaling is not a necessity, but is practically convenient. We could

directly compute in the background (3.1) at fixed r = R without rescaling the coordinates, and subsequently

translate to a manifestly flat space analysis (cf., appendices of [23, 24] for further elaboration on this issue).
9We also supplement our various fields with an index 0 since these are now the fields which are the seeds

for our fluctuation analysis.
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Figure 1. We show the temperature versus the parameter r0. To generate this plots we set r+ = 1

and L = 1. The different colours correspond to different values of R. The purple line corresponds

to the smallest plotted value of R, while the red one to the biggest value.

which translates into an entropy density

s =
2π

κ2
5

H
3/4
R r5

+

√
H(r+)

g(r+)
. (3.9)

The black brane’s temperature is easily calculated by computing the period of the

Euclidean thermal circle in (3.4). It is given by

4πT =
H

1/4
R

(fRgR)1/2
f ′(r+)

g(r+)1/2

H(r+)1/2
. (3.10)

If we use units, in which we measure length dimensions relative to r+, i.e., if we effectively

set r+ = 1, we have q2 = r4
0 − 1. The physical condition T ≥ 0 then translates into an

interval for r0 relative to r+

r0 ∈ [0, 31/4] , (3.11)

which we will use in various plots later on. The behaviour of T (r0) is illustrated in figure 1.

From the gauge fields, we may read off the chemical potentials µJ and µJ which

are conjugate to the respective charge densities.10 They are given as electric potential

10The notation with index J and J respectively will become clear in section 3.4, where we define these

charge currents and their corresponding charge densities.

– 11 –



J
H
E
P
0
2
(
2
0
1
5
)
0
2
6

differences between the boundaries of our setup, i.e., the cutoff surface at r = R and the

black brane’s outer horizon at r = r+. The chemical potential µJ is given by

µJ = At(R)−At(r+)

= q
√
L4 + r4

0

√
H

1/2
R

fRgR

(
g (r+)

r6
+H (r+)

− gR
R6HR

) (3.12)

The second chemical potential µJ may be computed from the gauge field A = A+ A,

for which it is useful to note that At(r+) = 0:

µJ = At(R)− At(r+)

= µJ −
q√

L4 + r4
0

√
fRgR

R4H
3/2
R

(3.13)

3.3 The world-volume energy-momentum tensor

The general complication in determining the world-volume energy-momentum tensor lies in

the fact there is no clean prescription to obtain the counter-terms on a finite cut-off surface

(see however [40]). While the boundary terms are fixed by a variational principle, the

counter-terms are necessitated for finiteness which is not an issue with a rigid UV-cutoff.

In what follows we will basically restrict to the Brown-York procedure [41], which was also

implemented in [22] as our basic guiding principle.

We claim that the quasi-local stress-energy tensor takes the form:11

κ2
5 Tµν = e4U+V (Kµν −K hµν) +

(
nρ∂

ρe4U+V − 4 e3U+V − e4U +Q
)
hµν . (3.14)

Here Kµν = −h ρ
µ h σ

ν ∇ρnσ is the extrinsic curvature of the surface in the direction of the

outward pointing space-like normal nσ. hµν = gµν − nµnν is the projection tensor which

projects parallel to the surface and K = gµνKµν is the trace of the extrinsic curvature.

The first terms which involve the extrinsic curvature tensor Kµν and its trace K are

easy to understand: they constitute the usual terms which arise from the variation of the

Gibbons-Hawking boundary term (present to ensure a consistent variational principle),

1

κ2
5

∫
d4x
√
−h e4U+VK , (3.15)

with respect to the induced metric hµν . The origin of the third term involving the deriva-

tives of the scalars U, V owes to our choice of conformal frame for the action (2.1) (this was

referred to as the naked frame in [22]). Its origins can also be traced back to the Gibbons-

Hawking term in ten dimensions, or by simply realizing that 4U + V = 5ϕ [22]. The last

three terms are local counter-terms introduced to subtract off the curvature contributions

from the internal space (the squashed S5) and the D3-brane tension.

11We will frequently identify this tensor with its pullback Tab = ∂xµ

∂σa
∂xν

∂σb
Tµν onto the world-volume with

coordinates σa, given that we take xµ = (σa, r) = (v, xi, r) and a constant r = R surface. Analogous

statements apply for hab and Kab and the connection ∇̂a.
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We quickly review the derivation of terms. Differentiating the Einstein frame quan-

tities by a bar in the following, consider evaluating the trace of the extrinsic curvature

K̄ = −∇̄µnµ. One finds

K̄ = −
(
e4U+V

√
−h
)−1

nµ∂µ

(
e4U+V

√
−h
)

= K −
(
e4U+V

)−1
nµ∂µe

4U+V .

(3.16)

Including the rescaling of the world-volume volume element and using K̄µν = Kµν we see

that the frame translation precisely gives us the term of interest. The operative point is

simply that in computing the trace, we have to account for the bending of the brane in the

transverse directions, hence this is a genuine contribution from the curved internal space.

The variational principle having been dealt with, we now have to worry about the

counter-terms. The procedure of [41] asks to embed the surface of interest into a reference

space-time, which we take to be flat Minkowski space, compute the Brown-York tensor in

that reference space-time and subtract it from the Brown-York tensor of interest. Thus,

we would like to put the fibre bundle into flat space, including its breathing and squashing

modes, and compute its extrinsic curvature tensor and the corresponding trace. A similar

reasoning as in [22] who accounted for the extrinsic curvature of a round S5, now general-

ized to allow for the squashing, leads to an contribution −e4U+V
(
4 e−U + e−V

)
, with the

numerical coefficients being set by the dimensions of the base spaces and fibre respectively.

It would be interesting to derive this from first principles, but we have not done so, be-

ing stymied in finding a proper embedding. One consistency check we can offer is that

the term does reduce, in the near-horizon decoupling limit, to the standard holographic

renormalization counter-terms encountered in asymptotically AdS spacetimes.12

The last term in (3.14) proportional to Q subtracts the energy-density of a stack of

extremal D3-branes as in [22]. Since we work with a fixed brane charge we remove this

Lorentz invariant ground state contribution.

3.3.1 Energy density and pressure

From the expression of the quasi-local energy-momentum tensor (3.14), we may easily

extract energy density ε and pressure P . As clear by construction, the zeroth order energy-

momentum tensor is of ideal fluid form

T
(0)
ab = ε uaub + PPab . (3.17)

with energy density given by

κ2
5 ε = R4HR

(
1 +

4
√
gR

)
−Q

+

√
fR
gR

(
−3L4 − 5R4HR −

5

4
R5H ′(R) +

R5HR

2gR
g′(R)

)
.

(3.18)

12A more direct argument would also reveal whether we get higher order gradient contributions from the

scalars and massive vectors for the stress tensor. Analogy with the forced fluid analysis of [34] suggests

potential second order contributions of the form ∇̂aφ∇̂bφ or hab ∇̂2φ, with φ ∈ {U, V }.

– 13 –



J
H
E
P
0
2
(
2
0
1
5
)
0
2
6

Figure 2. We show the energy density (3.18) and pressure (3.19) versus the parameter r0. To

generate these plots we set r+ = 1 and choose L = 1 in (a) and (c) and L = 1000 in (b) and (d).

In addition, the different colours correspond to different values of R. The purple line corresponds

to the smallest plotted value of R, while the red one to the biggest value. Note that L = 1000

approximates the decoupling limit and we obtain the fluid/gravity results for L ≈ R� r+, r0, i.e.,

the red line on the figures (b) and (d).

The pressure is

P = − ε+

√
gR

κ2
5R

12
√
fRHR

(
L8
(
2r4

0R
4 − 3q2R2

)
+ r4

0R
6
(
2R6 − q2

)
+L4

(
−2q4 + q2

(
r4

0R
2 − 5R6

)
+ 4r4

0R
8
))
.

(3.19)

Both expressions as expected agree with [22] if we take q → 0 and perform the appropriate

coordinate change (cf., section 2.4). In the near-horizon limit, we obtain (setting L = 1)

ε =
3r4

0

2κ2
5

, P =
r4

0

2κ2
5

, (3.20)

These are the expressions for energy density and pressure of the charged fluid plasma in the

fluid/gravity decoupling limit [25]. The behaviour of these in different regimes is displayed

in figure 2.

Note that the trace of the world volume energy-momentum tensor (3.14) is non-

vanishing:

T aa = −ε+ 3P 6= 0 . (3.21)
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This is not surprising since by taking our cut-off surface at finite R we introduce a length-

scale into the theory such that it should not be conformal. However we record this explicitly

since at first order in the perturbative analysis of the charge currents we will soon observe

structures which are apparently constrained by Weyl covariance nevertheless.

3.4 The world-volume charge currents

We now turn to the computation of the Dirichlet surface currents following [41]. They

may be read off from the boundary terms after an integration by parts of the action (2.1),

possibly using (2.11). Due to the interaction of the gauge field and Proca field different

bases for the two currents may be used (see also the discussion at the end of section 2.1).

We may work in the basis in which one current,

J µphys =

(√
−h

2κ2
5

) (
e4U+3V Fµν +

Q2

2
e−V Fµν

)
nν −

Q2

2κ2
5

κ εµνρσλnν Aρ Fσλ , (3.22)

is dual to the massless gauge field Aµphys defined in (2.10) and up to an anomaly term

conserved by means of the equations of motion. The other (non-conserved) current ought

to be understood as the expectation value of a vector operator Jµ dual to the Proca field

Aµ. It is defined via

Jµ =

(
e4(U+V )

Q2

2 + e4(U+V )

)[(√
−h

2κ2
5

)
Q2

2
e−V Fµνnν −

Q2

2κ2
5

κ εµνρσλnν Aρ Fσλ
]
. (3.23)

Clearly this different interpretation originates from the non-existing gauge redundancy for

the Proca field Aµ (we fixed the gauge by choosing the Stueckelberg scalar θ = 0), which

will be reflected in the non-conservation of Jµ.

We however find it convenient to treat both vectors simultaneously and work with the

following basis instead:

J µ =

(√
−h

2κ2
5

)
e4U+3V Fµνnν , (3.24)

Jµ =

(√
−h

2κ2
5

)
Q2

2
e−V Fµνnν −

Q2

2κ2
5

κ εµνρσλnν Aρ Fσλ . (3.25)

This basis is in fact closer to the fields used in the original Lagrangian (2.1) which results

in slightly simplified expressions, e.g., only one of the currents receives contributions from

the Chern-Simons term. Neither of the currents J µ and Jµ is actually conserved as we will

show later, but we may simply get the physical i.e., (anomalous) conserved current from

these via J µ + Jµ = J µphys.

Evaluating the expressions for the currents on the solution of interest we find:13

2κ2
5 Ja = 2q

√
L4 + r4

0

(
L4 + 3R4

H
1/4
R R4

)
ua (3.26)

2κ2
5 Ja =

4q L4
√
L4 + r4

0

H
1/4
R R4

ua (3.27)

13Again, we use Jµ and the expression Ja = ∂xµ

∂σa
Jµ, i.e., the pullback to the world-volume, interchange-

ably — likewise for Ja.
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which defines the charge densities via Ja = nJ ua and Ja = nJ ua. In the near-horizon

limit with the cut-off surface located on the AdS boundary (R→∞) we recover the result

of [25] (after taking into account the different normalizations).

Furthermore, we may use the obtained values for the entropy density (3.9), temper-

ature (3.10), energy density (3.18), pressure (3.19), chemical potentials (3.12), (3.13) and

charge densities (3.26), (3.27) to verify the following Smarr relation

ε+ P = Ts+ µJ nJ + µJ nJ . (3.28)

It is noteworthy that the Smarr relation does also include a non-vanishing contribution

from the massive gauge field; we may also write it as

ε+ P = Ts+ µJphys nJphys + µJ nJ , (3.29)

with charge densities and chemical potentials defined in the analogous way as before.

It is worth remarking that the spinning black D3-brane satisfies a simple Smarr relation

in ten dimensions with angular chemical potentials. In the process of dimensional reduction

coupled with the imposition of the Dirichlet boundary condition at r = R, we have made

a certain choice for the sources and expectation values of the various operators. While

our choice for the metric and physical gauge field degrees of freedom was motivated by

the physical necessity of agreement with the familiar results on the AdS boundary in the

decoupling limit, the choice for the Proca field and the scalars was based on pragmatism.

As a result we find a non-trivial source and expectation value for the operator dual to

the Proca field Jµ. This can and does enter the Ward identity determining the equation

of state on the Dirichlet surface, and hence we see it explicitly contributing to the Smarr

relation. It would be interesting to derive the corresponding Ward identity directly by

examining the counter-term Lagrangian, a task we leave for future analysis.

4 Long wavelength perturbations

Now, the usual logic of the fluid/gravity correspondence and blackfold paradigm asks to

promote the a priori constant velocity ua, parameters L, r0 and charge q to fields depending

on the world-volume coordinates σa.

ua, L, r0, q ⇒ ua(σb), L(σa), r0(σa), q(σa) . (4.1)

In general, the equations of motion for the gravitational setup are not satisfied anymore.

However, if we expand our parameters ua, L, r0, q in a hydrodynamic-like derivative expan-

sion with respect to its world-volume dependence, we may order by order in this derivative

expansion impose the gravitational equations of motion onto the setup. This then con-

strains the perturbations of ua, L, r0, q in a particular way which can be interpreted as the

constitutive relations and current conservation equations of the familiar hydrodynamics of

specific fluids. Our setup was designed to describe the single U(1) charge generalization of

the setup described in [22] and in a particular limit reduce to [25, 26].
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We compute the first order variations from (3.4) by working in the vicinity of σa = 0

with the choice of local rest frame set by ua = {1, 0, 0, 0}. Thus, the variation of the

velocity to first order in the derivative expansion is given by

uadσ
a = −dv + σa ∂aβi dx

i , or δu0 = 0 and δui = σa ∂aβ
i . (4.2)

The parameters r0, L, q are varied as

δr0 = σa ∂ar0 , δL = σa ∂aL , δq = σa ∂aq . (4.3)

Note that we would like to describe the intrinsic dynamics of a fixed number of D3-branes,

i.e.,δQ = 0. Thus, from (2.16) we learn of the following relation between δL and δr0:

δL = − Lr3
0

2L4 + r4
0

δr0 . (4.4)

In the following we will always trade δL by δr0 using this relation.

The total metric which is inserted into the equations of motion is computed from the

background seed metric (3.4) as

ds2 = ds2
0 +

(
δ

δua
ds2

0

)
δua +

(
δ

δr0
ds2

0

)
δr0 +

(
δ

δL
ds2

0

)
δL+

(
δ

δq
ds2

0

)
δq . (4.5)

We proceed likewise with the gauge fields

A = A0 +

(
δ

δr0
A0

)
δr0 +

(
δ

δL
A0

)
δL+

(
δ

δq
A0

)
δq ,

A = A0 +

(
δ

δr0
A0

)
δr0 +

(
δ

δL
A0

)
δL+

(
δ

δq
A0

)
δq ,

(4.6)

and dilatons

U = U0 +

(
δ

δL
U0

)
δL , V = V0 +

(
δ

δL
V0

)
δL+

(
δ

δq
V0

)
δq , (4.7)

where we have made apparent that the background profiles of the dilatons depend only on

certain parameters.

The fluctuations of the seed metric have to be compensated by explicit correction terms

to ensure that we have a solution to the equations of motion at first order in the gradient

expansion. These fluctuations are nicely categorized by their transformation under the

spatial SO(3) symmetry which leaves fixed our inertial frame choice: ua = {1, 0, 0, 0}.
By symmetry, the different irreducible representations decouple. We will display explicit

results for the tensor and vector fluctuations in what follows. The scalar sector has proven

quite intransigent for explicit analysis, thus despite the presence of a non-trivial transport

coefficient in that sector, we will ignore it in the sequel.
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5 Perturbations in the tensor sector of SO(3)

The tensor sector is as usual the easiest one to deal with, since there is only a contribution

from the metric. Moreover, this tensor perturbation obeys a minimally coupled scalar

equation of motion (in non-Einstein frame) and is therefore relatively simple to integrate.

We start off with a tensor fluctuation in the background (4.5) with the following

normalization

ds2
T =

√
HR

H(r)
αij(r) dx

idxj , (5.1)

in which αij is a symmetric traceless tensor of the spatial SO(3) symmetry group. The

equation of motion for this fluctuation reads

d

dr

(
r5f(r)

d

dr
αij

)
= −2

√
fRgR

H
1/2
R

d

dr

(
Cij + r5

√
H(r)

g(r)
σij

)
, (5.2)

with σij = ∂(iβj) − 1
3δij∂

kβk being the tensorial part of the fluid/gravity perturbations

described in (4.5). Evidently, it only comes from the spatial dependence of the boost pa-

rameters ua. The equation is a minimally coupled scalar equation of motion with shear

source; the left hand side may be written as ∂µ
(
gµνe4U+V√−g ∂ν αij

)
. Note that the ap-

pearance of the dilatons is due to the non-Einstein frame. It is easy to see that this directly

generalizes the equivalent equation of motion of the fluid/gravity correspondence [25, 26].

In the near-horizon limit (2.17), (2.18), we get perfect agreement with the known results.

We may easily integrate this expression and fix the integration constant by imposing

regularity at the future horizon:

∂rαij = −2

√
fRgR

H
1/2
R

r5
√

H(r)
g(r) − r

5
+

√
H(r+)
g(r+)

r5f(r)

 σij . (5.3)

This analysis is greatly facilitated by working in manifestly regular coordinates in the

vicinity of the horizon.

The second integration is also straightforward and can be expressed in terms of the

tortoise coordinate r?. The corresponding integration constant is fixed by requiring that at

the cut-off r = R the tensor perturbation vanish. This ensures that the induced metic on the

cut-off surface at r = R remains the Minkowski metric to first order in the perturbations.

Implementing this we arrive at the solution for the metric fluctuation

αij(r) = −2

√
fRgR

H
1/2
R

(
r? −R? + r5

+

√
H(r+)

g(r+)

∫ R

r

dr′

r′5f(r′)

)
σij . (5.4)

Compared to [22] not much has changed. Our solution just accounts for the appropriate

generalization of the metric functions (2.13), to account for the charge density due to the

spin of the branes. This is responsible for the presence of g(r) 6= 1 in the result above,

since there is a relative squashing of the U(1) fibre. We may thus also expect the shear

viscosity η of our setup to trivially generalize the chargeless result of [22].
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Also the comparison with [25, 26] (or the AdS cut-off setup [42]) matches perfectly.

The combination of integrals and boundary conditions in (5.4) exactly reproduces their

results, when we take the near-horizon limit of section 2.3 and put the Dirichlet surface

from finite R to R → ∞, i.e., the AdS boundary. Altogether we expect then the shear

viscosity to be proportional to the entropy density and satisfy the KSS bound [36].

6 Perturbations in the vector sector of SO(3)

The relative simplicity of the tensor sector belies the complications inherent in the problem.

These become immediately manifest when we turn to the vector sector. Now we are to

deal with the contributions from the vector fields in addition to the metric. Decoupling the

resulting equations requires some significant amount of work as we shall now demonstrate.

6.1 Perturbation ansatz

As already outlined, there are several perturbations of importance which transform as

vectors under the spatial SO(3) symmetry. First of all, there are the two kinds of vector

perturbations of the metric:

ds2
V = 2

√
HR

H(r)

(
1− f(r) g(r)

fR gR

)
wi(r) dx

idv + zi(r) dx
idr , (6.1)

where the way we have written the first perturbations wi(r) is analogous to the way ua
appears in (3.4). This will be of importance later on, when we identify the physical infor-

mation encoded in the integration constants which we are going to get. A shift in wi(r)

can then be absorbed into a redefinition of the fluid velocity, whose overall constant value

is of course a free parameter, cf., appendix C.

The perturbation zi(r) on the other hand does not contribute to the equations of

motion. Therefore it is pure gauge and may be set to zero which we henceforth do.

Apart from the metric perturbations both gauge fields contribute further vector per-

turbations. In the same way we constructed the perturbation wi(r) above to appear as ua
in (3.4), equations (3.6), (3.7) tell us how we have to incorporate wi(r) in the gauge fields.

In addition we parametrize the independent perturbations vi and vi as follows

AV = − qQ
2L2

g(r)

r6H(r)

√
H

1/2
R

fR gR
wi(r) dx

i + vi(r) dx
i , (6.2)

AV = −2L2q

Q

f(r)g(r)

r2H(r)

√
H

1/2
R

fR gR
wi(r) dx

i + vi(r) dx
i . (6.3)

Next, we plug all perturbations just introduced into the Einstein (2.3) and Maxwell

equations (2.6), (2.8) of motion. The set of three coupled second order non-homogeneous

ODE’s is rather complicated but may be solved exactly in a step by step procedure. Let

us denote the Einstein equations by Eµν = 0, the first Maxwell equation (from (2.6)) by

Mµ = 0 and the equation of motion derived by variation of the action with respect to δAµ

(from (2.8)) by Mµ = 0.
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6.2 Constraint equation

The constraint equation in the vector sector may be computed directly from the Einstein

equations by the linear combination

grrEri + grvEvi = 0 . (6.4)

Explicitly we obtain

βi,v +
q

R6

(
gR
HR
− 1

fR

)
q,i +

[
2L4r4

0

R4fR
− 2

fR

(
2L4 + r4

0

)
+
L4q2

R6

(
gR
HR
− 3

fR

)
+R4HR −

2L4R4

r4
0

]
r3

0

R4(2L4 + r4
0)
r0,i = 0 .

(6.5)

which in the near-horizon limit (2.17) reduces to r0,i + r0βi,v = 0 as in [25].

The equation (6.5) is the vectorial component of the energy-momentum conserva-

tion equation ∇̂µTµν = Sν , where the Sν encodes the external work done on the sys-

tem by external sources for other operators. For instance, if we had a spatially varying

chemical potential then we would expect to see a Joule heating term FµνJ
ν ; typically

Sµ = (source× vev)µ.

Ideally, our holographic renormalization procedure would have indicated how to treat

the sources and vevs for various fields. Since we have not done a thorough analysis we are

mostly going to aim for a consistency check with the conservation Ward identity (which

should be derivable from the counter-term action). Taking the divergence of the stress

tensor (3.14) with respect to the world-volume metric hµν we find an expression for Sµ in

terms of the other fields

κ2
5∇̂µTµi =

(
∇̂µe4U+V

)
(Kµi − hµiK) + ∇̂i

(
nµ∇µe4U+V

)
− ∇̂i

(
4e3U+V + e4U

)
− 4e4U+V (∇̂iU)nρ∇ρU − 4e4U+V nµh ρ

i ∇µ∇ρU (6.6)

− e4U+V (∇̂iV )nρ∇ρV − e4U+V nµh ρ
i ∇µ∇ρV

− e4U+V

(
1

2
e2V nµFµρF ρ

i +
Q2

4
e−4U−2V nµFµρF ρ

i + 2Q2e−8UnµAµAi

)
.

In this expression, ∇̂µ is the connection on that surface compatible with hµν , i.e., for any

tensor T ν···ρ··· , we have ∇̂µT ν···ρ··· = h σ
µ hνλh

τ
ρ · · · ∇σT λ···τ ··· (cf., Lemma 10.2.1 of [43]). Apart

from the definition of the quasi-local energy-momentum tensor we used the Gauss-Codazzi

equation

∇̂µ (Kµν − hµνK) = −h ρ
ν Rρσ n

σ (6.7)

along with the equation of motion (2.3) to arrive at (6.6).

It is clear that on the cut-off surface the operators dual to the scalars {U, V } and the

Proca field A acquire non-vanishing vevs. Should we in addition know the source terms,

we would be able to isolate the contributions and infer the external work done.

In the absence of this knowledge we mainly focus on checking that the content of (6.5)

can be assembled into the form required. This is relatively simple; for the quasi-local
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stress-energy tensor Tab of the fluid living on the cut-off surface at r = R obtained, one

can compute the divergence at leading order in the gradient expansion, i.e., for the ideal

fluid stress tensor (3.17). This gives a contribution (up to a factor of κ2
5)

(ε+ P )βi,v + ∂iP , (6.8)

where we have to account for the world-volume dependence arising from r0(σa), L(σa)

and q(σa) respectively. This part is to be identified from (6.5) as the energy-momentum

gradient and the reminder associated with the work done on the system.

It is important when comparing (6.5) to the corresponding equation in [22] that we

account for the coordinate changes described in section 2.4. As the two choices of cut-off

surfaces are unequal we have again the problem of dealing with the dilaton source terms.

In [22] this obstacle was circumvented by fixing the cut-off to be an isodilatonic surface, to

ensure absence of scalar fluctuations, but we do not have the luxury of ensuring this owing

to the increased complexity of the system.

6.3 Dynamical equations

We are now in the position to state the dynamical equations and then solve them step by

step. There are three independent dynamical equations coming from the Einstein equations

(either Eri = 0 or Evi = 0) and the two Maxwell equations Mi = 0 and Mi = 0. The

overall normalization of these dynamical equations was chosen to make the check that in

the near-horizon limit of the geometry (3.4) they reduce to the ones stated in [25] as simple

as possible.

The one coming from the Einstein equations is

0 =
r11H(r)

g(r)

(
fRgR − f(r)g(r)

)
w′′i (r)

+ 2q r2
√
L4 + r4

0

√
fRgR

H
1/2
R

(
3 r4H(r) v′i(r) + 2L4 v′i(r)−

8L4

rH(r)
vi(r)

)
+
fRgR
H(r)

(
5L8r2 + L4

(
3q2 + 10r6

)
+ r4

(
5r6 − q2

))
w′i(r)

+ r4H(r)
(
q2 − 5r6 − 3r4

0r
2
)
w′i(r)− 2

(
fRgR√
HR

)(
r11H(r)2

f(r)g(r)

)
Si,1(r) ,

(6.9)

where Si,1(r) is a source term completely fixed by the background.14 One can show that

at the horizon, this source term vanishes: Si,1(r+) = 0; the differential equation is regular

at r = r+. In addition we observe that the perturbation vi only appears through its first

derivative.

Next, we look at the Maxwell equation Mi = 0:

0 = −
√

3q
√
L4 + r4

0 r
7f(r)w′′i (r) +

√
3

√
fRgR

H
1/2
R

(
r13f(r)H(r)

g(r)

)
v′′i (r)

+
√

3q
√
L4 + r4

0

(
2 fRgR

r2
(
L4 + 3r4

)
H(r)

− r6 − 3r4
0r

2 + 5q2

)
w′i(r)

14The explicit expressions for the source terns Si,1(r), Si,2(r) and Si,3(r) are relegated to appendix B.
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+
√

3

√
fRgR

H
1/2
R

(
r4H(r)(3r8 + r4

0r
4 − 3q2r2) (6.10)

+ 4r12f(r) + q2(r6 + 3r4
0r

2 − 5q2)
)
v′i(r)

+ 16
√

3L4
(
L4 + r4

0

) √fRgR

H
1/2
R

r3

H(r)
vi(r)−

√
3

(
fRgR

H
3/4
R

)
r6Si,2(r) ,

where Si,2(r) is the source. In this equation it is noteworthy that the perturbation vi
appears with no derivative. Thus, in principle we could use this equation to eliminate vi
in the other two.

The last dynamical equation is the Maxwell equation Mi = 0:

0 = −
√

3 q√
L4 + r4

0

r7f(r)w′′i (r) +
√

3

√
fRgR

H
1/2
R

r9f(r)
(
v′′i (r) + v′′i (r)

)
+

√
3 q√

L4 + r4
0

(
2r6fRgR
g(r)2

− r6 − 3r4
0r

2 + 5q2

+
4r12f(r)− q2

(
3r6 + r4

0r
2 − 3q2

)
r6H(r)

)
g(r)w′i(r) (6.11)

+
√

3

√
fRgR

H
1/2
R

(
3r8 + r4

0r
4 − 3q2r2

−
4r12f(r) + q2

(
−5r6 + r4

0r
2 + q2

)
r4H(r)

)
g(r)

(
v′i(r) + v′i(r)

)
− 8
√

3

√
fRgR

H
1/2
R

r7

g(r)
vi −

√
3

(
fRgR

H
3/4
R

)(
r10H(r)

g(r)

)
Si,3(r) ,

with Si,3(r) being the source. Here, the appearance of vi(r) and vi(r) reflects the fact

that the combination F = F + F is the natural object to consider. However, we also see

a contribution proportional to vi(r), i.e., without derivatives, which comes from the mass

term of the Proca field.

In the following we combine (6.9), (6.10) and (6.11) in a way that the three perturba-

tions decouple and we integrate the resulting equations.

6.4 Solution of the dynamical equations

Our strategy for integrating the dynamical equations just derived is as follows. Firstly,

we integrate (6.9)–(6.11) or combinations thereof as many times as possible, without elim-

inating any of the three functions wi(r), vi(r),vi(r). Subsequently, we derive a second

order differential equation for wi(r) from the integrals obtained which we integrate explic-

itly. This procedure leads to a total of six integration constants which we fix by imposing

several conditions, which include regularity at the horizon and at the Dirichlet cut-off sur-

face, as well as a redefinition of the fluid velocity and choosing the Landau frame for the

energy-momentum tensor.
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The homogeneous part of the Einstein equation (6.9) may be integrated once,

0 =
r5

g(r)

(
fRgR − f(r)g(r)

)
w′i(r)− 4 r4

0 wi(r)

+ 6 q
√
L4 + r4

0

√
fRgR

H
1/2
R

(
vi(r) + C̃i,1 +

2L4

3r4H(r)
vi(r)

)
− 2

(
fRgR√
HR

)∫
r5H(r)

f(r)g(r)
Si,1(r) dr ,

(6.12)

where we introduced the integration constant C̃i,1.

The structure of the two Maxwell equations, (2.8) and (2.6), already suggests that

a particular sum of them may be directly integrated, given that the Chern-Simons con-

tributions are total derivatives. We thus add (6.10) and (6.11) in such a way that the

contributions proportional to Ai, the mass term, cancel. Then we integrate to obtain

0 =
q

2L4
√
L4 + r4

0

(
r6 + 3L4r2 + q2

r4

)
w′i(r)−

√
fRgR

H
1/2
R

v′i(r)

− 1

2L4
(
L4 + r4

0

) √fRgR

H
1/2
R

(
2q2r2H(r) + 3L8 + 2L4

(
r4 + r4

0

)
+ r8 +

q4

r4

)
v′i(r)

−

(
3 q fRgR

L4
√
L4 + r4

0

)(
rH(r)

f(r)g(r)

)(
wi(r) + C̃i,2

)
(6.13)

+

(
fRgR

H
3/4
R

)(
rH(r)

f(r)g(r)

)∫ (
Si,2(r)

2L4
(
L4 + r4

0

) + Si,3(r)

)
dr .

The new integration constant appearing above is C̃i,2. In appendix B, we also show that

Si,2(r) and Si,3(r) are total derivatives which allows us to integrate the relevant term

in (6.13) in a closed form.

To derive the third independent equation we combine the Einstein equation (6.9) and

the first Maxwell equation (6.10) in such a way that the terms proportional to vi(r) cancel.

In addition we use (6.13) to eliminate v′i(r). Note that the homogeneous part of this

equation can be integrated twice. Integrated once this combination leads to

0 =

√L4 + r4
0

q

√
H

1/2
R

fRgR

 d

dr

[(
fRgR − f(r)

f(r)

)
wi(r)

]
+ v′i(r)

+ 6q

(
H

1/4
R

√
fRgR

√
L4 + r4

0

)
C̃i,2

(
1

r7f(r)2

)
+

Si,4(r)

r5f(r)2
− 4r4

0

q

(
H

1/4
R

√
fRgR

√
L4 + r4

0

)
Ci,3

(
1

r5f(r)2

)
,

(6.14)

in which the new integration constant Ci,3 appears.

Up to this point we have obtained three independent integration constants C̃i,1, C̃i,2
and Ci,3. We would like one of them, or rather a particular linear combination, to describe
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the freedom to shift wi(r) by a constant. This shift would correspond to a redefinition of

the fluid velocity ui and can thus be absorbed (see discussion in appendix C). Defining

C̃i,2 = Ci,2 + Ci,3 ,

C̃i,1 = Ci,1 − 4r4
0

(
6 q
√
L4 + r4

0

√
fRgR

H
1/2
R

)−1

Ci,3
(6.15)

we explicitly find that Ci,3 corresponds to this shift freedom: subject to these redefinitions,

the integration constant always appears in the combination wi(r) + Ci,3 in (6.12)–(6.14).

Integrating (6.14) again, we obtain

0 =

√
L4 + r4

0

q

√
H

1/2
R

fRgR

(
fRgR − f(r)

f(r)

)(
wi(r) + Ci,3

)
+ vi(r)− Ci,4

+ 6qH
1/4
R

√
fRgR

√
L4 + r4

0 Ci,2

∫
1

r7f(r)2
+

∫
Si,4(r)

r5f(r)2
dr .

(6.16)

The source term Si,4(r) is defined in appendix B.

Note that in (6.12)–(6.16), vi(r) appears as vi(r) + Ci,1 or vi(r) − Ci,4, i.e., also with

shifts by a constant. Since vi(r) describes the vector fluctuation of the gauge field Ai(r),
we recognize that a combination of Ci,1 and Ci,4 will not have any effect on the physical

observables given that only the gauge-invariant quantity Fµν is relevant. The other, linearly

independent combination of Ci,1 and Ci,4 will however be important influencing the solution

wi(r), as we will see shortly.

This concludes the first step described at the beginning of this section. Next we

solve the equation (6.12) for vi(r) and use it to eliminate it from (6.13). In the resulting

expression we use (6.16) to replace vi(r) arriving at a second order ODE fo wi(r). Solving

this equations allows for a full determination of vi(r) and vi(r) via (6.16) and (6.12) as well.

The homogeneous part of the final ODE may be written as the following differential

operator

0 =
d

dr

[
−C̃i,5 + r3

(
3r4 − r4

0

)2
f(r)

d

dr

(
−C̃i,6 +

r4H(r) [fRgR − f(r)g(r)](
3r4 − r4

0

)
f(r)g(r)

w
(hom)
i (r)

)]
.

(6.17)

It is clear that we have to worry about regularity of

wi(r) ∼
1

fRgR − f(r)g(r)
(6.18)

at r = R and the regularity of the entire inner derivative term d
dr

(
. . . wi(r)

)
∼ f(r)−1 at

the horizon, where f(r+) = 0. Imposing regularity in both cases fixes C̃i,5 and C̃i,6, as we

show below.
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The solution to this ODE is

wi(r) = −Ci,3 −
4

3
L4q

√
L4 + r4

0

(√
fRgR

H
1/4
R

)( (
3r4 − r4

0

)
f(r)g(r)

r4H(r) [fRgR − f(r)g(r)]

)

×

[
−Ci,6 +

∫
Si,5(r)− Ci,5

r3
(
3r4 − r4

0

)2
f(r)

dr

− 3
√
fRgR

L4qH
1/4
R

√
L4 + r4

0

∫ (
r3

(3r4 − r4
0)2

∫
r5H(r)

f(r)g(r)
Si,1(r) dr

)
dr (6.19)

+
3

4L4
(
3r4 − r4

0

) (Ci,1 − Ci,4 +

∫
Si,4(r)

r5f(r)2
dr

+6q
√
fRgRH

1/4
R

√
L4 + r4

0 Ci,2

∫
1

r7f(r)2
dr

)]
,

with the two solutions to the homogeneous part of the ODE parametrized by Ci,5 ∼
C̃i,5 and Ci,6 ∼ C̃i,6. In this expression, we recognize some of the structures of (6.12)

and (6.16), which leads to a specific combination of source terms, integration constants

and integrals. By performing an integration by parts we could easily transform the double

integral into two single integrals. However, the following analysis is not simplified by this

procedure, therefore we refrain from doing so. We can use this expression to compute

explicit expressions for vi(r) via (6.16) and vi(r) via (6.12).

The next step we have to deal with is to restrict our most general solution to one

which allows for the description of a sensible hydrodynamic system. This we obtain by

imposing physical conditions on the perturbations which fix the integration constants in

the following way:

Of the integration constants we obtained in (6.19), Ci,3 may directly be set to zero

since it corresponds to a shift in the fluid velocity as already remarked earlier. We may

just absorb it into a redefinition of the fluid velocity ui − Ci,3 → ui. The integration

constants Ci,2 and Ci,5 are fixed by imposing regularity at the horizon r = r+ on particular

combinations of the vector fluctuations and their derivatives. Ci,6 is fixed by demanding

regularity for wi(r) at r = R. Using this, we preserve a Minkowski metric at r = R given

that the off-diagonal metric component gvi behaves like gvi ∝ (r −R)wi(r) for r ≈ R, cf.,

equation (6.1). Since we are dealing with a charged fluid, we also have the fluid frame

ambiguity choosing Landau or Eckart frame. It is convenient to choose the Landau frame

which will effectively determine the combination Ci,1 − Ci,4 in (6.19). The combination

Ci,1 + Ci,4 need not be fixed. It corresponds to a residual gauge freedom of the gauge

field A. For the explicit computations and values of the corresponding integration constant

see appendix C.

To summarize, we integrated the equations of motion in the vector sector of our setup.

The metric perturbation wi(r) is read off from (6.19), from which we may deduce vi(r) and

vi(r) using (6.16) and (6.12). In total, we had six integration constants Ci,1, . . . , Ci,6. Out

of these only five linearly independent combinations appeared in (6.19). One integration

constant is irrelevant since it corresponds to a shift of the gauge field A by a constant or

in other words to the Dirichlet condition vi(R) given the perturbation ansatz (6.2). The
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corresponding Dirichlet condition vi(R) for the other gauge field A however is not arbitrary

because of the appearance of explicit mass terms AµA
µ in (2.1). Effectively it is fixed by

the Landau frame choice. The other constants are fixed by imposing regularity for the

fluctuations at the horizon and Dirichlet cut-off surface at r = R and a redefinition of the

fluid velocity.

7 Comments on the perturbations in the scalar sector of SO(3)

The scalar sector is by far the most challenging sector, even surpassing the vector sector’s

complexity. Since we have so far not been able to integrate its dynamical equations, which

we would need for determining the system’s bulk viscosity, we restrict to a short outline of

the relevant perturbations and an overview of the (current) constraint equations.

7.1 Perturbation ansatz

A priori, the sector consists of eight coupled scalar perturbations. Three perturbations,

k(r), j(r) and h(r), stem from the metric. We parametrize them, similarly to [22], as

follows

ds2
S = k(r) dv2 + 2 j(r) dvdr + h(r) dxidxi . (7.1)

Of these, only two perturbations will be truely dynamical and it will be possible to pick

a gauge, in which one particular linear combination is gauge fixed to zero (in addition to

grr = 0, which has already been used above).

Additionally, there are the gauge field perturbations. For presenting these, we recall

that for A, we have chosen an axial gauge, in which the radial component vanishes Ar = 0.

Thus, we only get one further perturbation from A

AS = a(r) dv . (7.2)

The second gauge field A, the Proca field, does not have any gauge freedom left

anymore, which we could use to gauge fix Ar = 0. We rather have to account for this degree

of freedom also, which can basically be thought of as the Stückelberg scalar. Therefore,

we have

AS = a(r) dv + s(r) dr (7.3)

Furthermore, there are two scalar perturbations originating from the dilatons

US = u(r) , VS = v(r) . (7.4)

In [22], it was possible to define the cut-off surface as being isodilatonic such that no dilaton

perturbation would arise in the scalar sector. As alluded to already several times, this is

not possible for our system.

So, as we have seen, we have to deal with effectively eight coupled scalar perturbations,

which surpasses the complexity of [22, 25, 26] significantly.
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7.2 Constraint equations

Of the eight equations, which originate from the Einstein equations

Evv = Evr = Err = Eii = 0 , (7.5)

the two Maxwell equations

Mv = Mv =Mr = Mr = 0 (7.6)

and the two dilaton equations of motion, we expect four constraint equations.

The first constraint equation may be computed by taking a particular linear combina-

tion of Mr = 0 and Mr = 0. From this we obtain

0 = q,v + q βi,i −
(

q r3
0

2L4 + r4
0

)(
3L4 − 2R4HR

R4HR

)
r0,v . (7.7)

The second linearly independent constraint equation which originates from Mr = 0

and Mr = 0 may be computed by using (7.7) in Mr = 0. This implies

0 = a(r) +
fRgR√
HR

( √
H(r)

f(r)g(r)

)
k(r) + j(r)− s(r)

−
(

r3
0

2L4 + r4
0

)√
fRgR

H
1/2
R

(
r
√
H(r)

f(r)
√
g(r)

)
r0,v ,

(7.8)

which basically shows that we had not fixed the gauge completely.

If we furthermore use Evv = 0 along with Evr = 0, we may use our two previous

constraint equations (7.7) and (7.8) to arrive at

0 = r0,v + r0

(
2L4 + r4

0

)( R4HR

R4HR

(
6L4 + 5r4

0

)
− 3L4r4

0

)
βi,i . (7.9)

Moreover, we may combine Err = 0, the dilaton equations of motion and Eii = 0

in a particular way. This leads to a constraint equation, which only involves up to first

derivatives of various perturbations along with terms proportional to q,v, r0,v and βi,i. We

will however not state this rather complicated constraint equation here for space reasons

since we do not use it anyway.

These four constraint equations reduce to the appropriate ones in [25] in the scaling

limit (2.17).

We may confront these constraint equations with our expressions for the quasi-local

stress-energy tensor (3.14), charge currents (3.24) and (3.25) and their conservation equa-

tions in the scalar sector. Similiarly to (6.6) the corresponding (non-)conservation equation

of the quasi-local stress-energy tensor in the scalar sector reads

κ2
5∇̂µTµv =

(
∇̂µe4U+V

)
(Kµv − hµvK) + ∇̂v

(
nµ∇µe4U+V

)
− ∇̂v

(
4e3U+V + e4U

)
− 4e4U+V (∇̂vU)nρ∇ρU − 4e4U+V nµh ρ

v ∇µ∇ρU (7.10)

− e4U+V (∇̂vV )nρ∇ρV − e4U+V nµh ρ
v ∇µ∇ρV

− e4U+V

(
1

2
e2V nµFµρF ρ

v +
Q2

4
e−4U−2V nµFµρF ρ

v + 2Q2e−8UnµAµAv

)
.
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The conservation equations for the charge currents defined in (3.24) and (3.25) may

be simplified using the Maxwell equations (2.6) and (2.8). They are given by the following

relations

2κ2
5∇̂µJµ = −4Q2e−4U+V nµA

µ − Q2

4
κnµε

µνρσλFνρFσλ , (7.11)

2κ2
5∇̂µJµ = 4Q2e−4U+V nµA

µ . (7.12)

We observe that Jµ is not conserved due to the additional degree of freedom of the Proca

field A. Also the current J µ is not conserved, however it contains the whole contribution

from the Chern-Simons term. Since these terms vanish for our background configuration,

we find that the conserved current is given by J µ + Jµ = Jµphys.

Indeed, it is assuring to observe that the constraint equations (7.7), (7.8) and (7.9)

are identical to the current conservation equations (7.10), (7.11) and (7.12) to first order

in the derivative expansion where the left-hand side of the former involves the derivatives

of the first order results (3.17), (3.26) and (3.27). These are given by

− ε,v − (ε+ P )βi,i (7.13)

for the stress-energy tensor and

nJ ,v + nJ βi,i

nJ,v + nJβi,i
(7.14)

for the charge currents given the world-volume dependence of r0(σa), L(σa) and q(σa).

7.3 Dynamical equations

The dynamical equations in the scalar sector will be very tedious to solve. In contrast

to the earlier analysis of [22], we have three more perturbations which couple. But, in

total, it might still be possible to reach results here. As was convincingly shown in [44], it

might suffice to perform an educated guess of the solution in the scalar sector, motivated by

previous analysis, and argue in favour of its uniqueness up to coordinate reparametrizations.

This does not sound unreasonable also for our case. But the simplification in the setup

of [44] allowed for (correctly) guessing that most of the perturbations vanish as in [25, 26],

which, given the analysis of [22], seems unlikely in our case.

In solving the scalar equations of motion, previous works have repeatedly used quite

nice simplification arguments. The appearing integration constants may often be reab-

sorbed into a redefinition of the charge q and the parameter r0 [25]. This also seems

possible in our case. Furthermore, integration constants might be fixed by requiring reg-

ularity at the horizon and at the Dirichlet cut-off r = R additional to a further Landau

frame constraint.

8 Physical results

In this section we derive the hydrodynamical transport coefficients and diffusion constants

of the theory on the cut-off surface, i.e., we derive the energy-momentum tensor and the

charge currents up to first order in the derivative expansion of q, r0 and ua.
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To set the stage for our discussion let us recall that for a simple charged fluid in an

external electric field, for which

∇̂aTab = FbaJ aphys , and ∇̂aJ aphys = −C
8
εabcdFabFcd , (8.1)

at first order in the gradient expansion, we have the energy-momentum and charge currents

given by

Tab = ε ua ub + P Pab − η σab − ζ ΘPab

J aphys = nJphys u
a + σ

(
F abub − T P ab ∇̂b

(µJphys
T

))
+ ξJphys ε

abcdub ∇̂cud (8.2)

where η, ζ are the shear and bulk viscosities, σ the electric conductivity, while ξJphys is the

chiral vortical coefficient.

However, our setup is more complicated. The conservation equations of the quasi-local

stress-energy tensor (6.6) and (7.10) involve various forcing terms from the dilatons and

the Proca field A which are expected to modify (8.2). Given our limited understanding

of how the expression for J aphys in (8.2) is generalized in our case — we would require

a proper understanding of sources and vacuum expectation values of our cutoff surface

operators along with their proper renormalization — we only derive Tab and J aphys from

our gravitational setup and leave a proper interpretation in terms of various first order

transport coefficients within J aphys for future work.

Nevertheless, we may deduce the shear viscosity which arises from the tensorial pertur-

bations of the metric. From the vector sector we find the contributions which involve the

sum of charge diffusion constants and forcing terms and in the parity breaking sector we

compute the chiral anomaly terms at the cut-off surface. The scalar sector which contains

the bulk viscosity has been ignored in our analysis owing to its complexity. In addition we

also have an expectation value for the vector operator that couples to A or equivalently

A, which we called Ja defined in (3.25). All the results are consistent with [25, 26] in the

near-horizon limit (when we additionally put the Dirichlet surface at the AdS boundary).

8.1 Shear viscosity

In section 5, we have computed the tensor perturbation by solving the corresponding

equations of motion, imposing regularity at the future horizon for ∂rαij and the Dirichlet

condition αij(R) = 0 to retain Minkowski space of the perturbed metric at r = R. This

is enough information to compute the shear viscosity of the system. Although we know

on general grounds that it will correspond to the usual universal value, it is an important

non-trivial check if the chosen boundary conditions, the energy-momentum tensor with its

regularization and the units are consistent.

From the expression (3.14) with the solution (5.4) inserted we may compute the sym-

metric traceless part of the energy-momentum tensor at first order:

T
(1)
ij = − 1

κ2
5

H
3/4
R r5

+

√
H (r+)

g (r+)
σij . (8.3)
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This allows us to read off the shear viscosity

η =
1

2κ2
5

H
3/4
R r5

+

√
H (r+)

g (r+)
. (8.4)

It perfectly matches the results of [25] in the near-horizon limit, in which we put the cut-

off surface to the AdS boundary via R → ∞.15 From (8.4) and the earlier result for the

entropy density (3.9) we get the usual universal ratio

η

s
=

1

4π
. (8.5)

8.2 Diffusion constant and chiral vortical conductivity

We now analyze the contributions from the vector sector to the physical transport. Since

we choose the Landau frame, this information is encoded in the charge currents Ji and Ji
only, for which we may use (3.24) and (3.25). We insert our ansatz (6.2) and (6.3) into

these expressions at an arbitrary radial position r and obtain

2κ2
5 Ji = 2κ2

5 J̃i −
HR√
fRgR

(
r7f(r)H(r)1/2

g(r)

)
v′i(r)

+ q
√
L4 + r4

0

(
H

5/4
R

fRgR

)(
rf(r)

H(r)1/2

)
w′i(r) + q

√
L4 + r4

0

(
H

5/4
R

fRgR

)

×
(

f(r)

g(r)H(r)3/2

)(
rH(r)g′(r)− g(r)

(
rH ′(r) + 6H(r)

))
wi(r) ,

2κ2
5 Ji = 2κ2

5 J̃i + 2L4
(
L4 + r4

0

)( HR√
fRgR

)(
f(r)g(r)

rH(r)3/2

)(
v′i(r) + v′i(r)

)
− 2q L4

√
L4 + r4

0

(
H

5/4
R

fRgR

)(
f(r)g(r)

r4H(r)3/2

)(
−2wi(r) + rw′i(r)

)
.

(8.6)

The terms J̃i and J̃i contain the terms which explicitly depend on r0,i, q,i and εijkβj,k. These

arise from the long wavelength perturbations of the background gauge fields, eq. (4.6).

We now first focus on the computation of Ji. We may use the relation (6.16) to

eliminate v′i(r) and evaluate the resulting expression at r = R. The term proportional to

w′i(R) drops out, where we implicitly use the fact that w′i(r) is regular at r = R after we

fix the integration constants as detailed in appendix C. The remaining terms are then

2κ2
5 Ji = 2κ2

5 J̃i + 6q
√
L4 + r4

0

(
H

7/4
R

fRgR

)
Ci,2 +R2

(
HR

fRgR

)3/2

Si,4(R) (8.7)

−
√
L4 + r4

0

q

(
H

3/4
R

gR

)(
R7HR

f ′(R)

fR
+ q2

(
R
H ′(R)

HR
−Rg

′(R)

gR
+ 6

))
wi(R) .

15Note that we use unconventional units: κ−2
5 = κ−2

10 Vol(S5) with a sphere of radius 1. The length scale

of the internal space is absorbed into the scalars.
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In order to evaluate this expression in terms of r0,i, q,i and εijkβj,k we use the Landau

frame choice, eq. (C.10), for wi(R) and the values for Ci,2 and Si,4(R) from appendices C

and B, respectively. In addition, the explicit terms in J̃i are used. The final result is

Ji =−
(
HR

fRgR

)3/2
(
3L4 + r4

0

) (
r4

+ + r4
0

)
4κ2

5 r+r4
0

(
q,i − 3

q

r0
r0,i

)
−

H
3/2
R

R4 (fRgR)2

(
3R4 − r4

0

) 2κL4q2

κ2
5r

4
0

εijkβj,k

=−D
(
q,i − 3

q

r0
r0,i

)
+ ξJ εijkβj,k .

(8.8)

It would be desirable to translate this expression into electrical conductivity and exter-

nal forcing contributions (see discussion around eq. (8.2)) using e.g., our earlier expressions

for chemical potential (3.12) and temperature (3.10). We will however leave it in the present

form since currently it is unclear how the various external forcing terms modify the general

structure of eq. (8.2). This has the obvious advantage of retaining the manifest simplicity

visible in eq. (8.8). Likewise this form makes it clear how to take the decoupling limit and

recover the familiar AdS values. We thus use the expression D, which is rather similar to

the charge diffusion constant, as the physical measure of charge transport in the system.

In the near-horizon limit (2.17) together with the cut-off surface taken to the AdS

boundary R → ∞, we recover the results of [25, 26] (modulo the issue about differing

conventions mentioned earlier). For a quick check note in the scaling regime (2.17) the

constraint equation (6.5) reduces to r0,i + r0βi,v = 0 as required.

A similar approach allows a computation of the one-point function of the vector oper-

ator dual to the Proca field Ji. In this case, additionally to the equations mentioned above,

we need to use eq. (6.13) for eliminating v′i(r). We obtain

2κ2
5 Ji = 2κ2

5 J̃i + 6q
(
L4 + r4

0

)3/2(H3/4
R

R4fR

)
Ci,2 +R2

(
HR

fRgR

)3/2

Si,4(R)

+

∫ (
Si,2(r)

2L4
(
L4 + r4

0

) + Si,3(r)

)
dr

∣∣∣∣∣
R

− 2
√
L4 + r4

0

q R10fRH
1/4
R

(
L8
(
2r4

0R
4 − 3q2R2

)
+ L4

(
−2q4 + q2

(
r4

0R
2 − 5R6

)
+ 4r4

0R
8
)

+ r4
0R

6
(
2R6 − q2

) )
wi(R) .

(8.9)

Again we insert all the constants and integrals into this equation and use the Landau frame

choice. We then arrive at the final result

Ji =−

(
H

1/2
R

R4f
3/2
R g

1/2
R

) (
L4 + r4

0

) (
3L4 + r4

0

) (
r4

0 + r4
+

)
4κ2

5 r
4
0 r+

(
q,i − 3

q

r0
r0,i

)

−
H

1/2
R

R8f2
RgR

(
3R4 − r4

0

) (
L4 + r4

0

) 2κL4q2

κ2
5 r

4
0

εijkβj,k

=− D
(
q,i − 3

q

r0
r0,i

)
+ ξJ εijkβj,k ,

(8.10)
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Figure 3. We show the diffusion constants D (cf., (8.8)) and D (cf., (8.10)) versus the parameter

r0. To generate these plots we set r+ = 1 and choose L = 1 in (a) and (c) and L = 1000 in (b).

In addition, the different colours correspond to different values of R. The purple line corresponds

to the smallest plotted value of R, while the red one to the biggest value. Note that L = 1000

approximates the decoupling limit and we obtain the fluid/gravity results for L ≈ R � r+, r0,

i.e., the red line on the figures (b). D is suppressed in this limit therefore we show no plot for this

component.

which curiously takes the form of a conserved current similar to Ji (despite the absence

of any boundary global symmetry). In the near-horizon limit with the Dirichlet surface at

the AdS boundary R→∞ the current Ji vanishes.

We show the behaviour of the diffusion coefficients and chiral conductivities in figure 3

and figure 4 for the conserved current J a and the vector operator Ja respectively.

The astute reader will be curious that the combination q,i − 3 q
r0
r0,i is reminiscent of

scale invariance. Indeed as can be noted from [25] this combination is the Weyl covariant

derivative acting on the charge. Since scale invariance in our system is broken by the explicit

cut-off surface, e.g., we verified in (3.21) that Tµµ 6= 0, this is curious. This particular

structure is also encountered in the charged fluid computation of [42] in a cut-off AdS

spacetime. So a-priori, this combination is not the result of an approximate scale symmetry

emerging.16 Nor does it seem plausible to demand that the combination is enforced by the

16While we have not computed the bulk viscosity the similarities with [22] suggest that this will be non-

vanishing for generic cut-off (it most likely will vanish in the AdS throat as in [42] and to leading order

away from extremality).
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Figure 4. We show the diffusion constants ξJ (cf., (8.8)) and ξJ (cf., (8.10)) versus the parameter

r0. To generate these plots we set r+ = 1 and choose L = 1 in (a) and (c) and L = 1000 in (b).

In addition, the different colours correspond to different values of R. The purple line corresponds

to the smallest plotted value of R, while the red one to the biggest value. Note that L = 1000

approximates the decoupling limit and we obtain the fluid/gravity results for L ≈ R� r+, r0, i.e.,

the red line on the figures (b). ξJ is suppressed in this limit therefore we show no plot for this

component.

form of the charge current in (8.2) owing to our limited understanding of the source terms.

It would be useful to study the dynamics of a charged fluid forced by (non-conserved)

vector and scalar operators to understand the origins of this scale invariant form.

9 Discussion

In this paper, we have developed the intrinsic sector of the long-wavelength effective the-

ory of rotating D3-branes in flat space. To technically aid the computation, we used a

particular Kaluza-Klein reduction of ten-dimensional type IIB supergravity to an effective

five-dimensional gravitational theory. We then determined how the dynamics of the gravi-

tational system imprints itself onto an effective theory on a radial cut-off surface, which we

describe via its stress-energy tensor, a conserved (anomalously) charge current and vector

operator that couples to the Proca field up to first order in a derivative expansion. For

the fluctuations of the stationary black brane background we imposed Dirichlet boundary

conditions on that cut-off surface and investigated the equations of motion in the tensor

and vector sector of the setup.
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The physical situation we considered, which is analyzed within the blackfold paradigm,

allows for an interpolation between different areas of gravitational physics which may be in-

terpreted as effective hydrodynamical theories — the membrane paradigm, the fluid/gravity

correspondence and more simple AdS cut-off systems. The main result is the determination

of the transport coefficient which is related to chiral anomalies in (8.8) and (8.10), which

perfectly interpolates between all the previously known scenarios. Furthermore, in these

equations we derived a term which is the sum of electrical conductivity term and force

contributions. In this term an interesting derivative structure was found which is related

to the Weyl-covariant derivative of the charge in [25], although our setup is in fact not

conformal; a similar phenomenon occurs in the related setup of [42]. Observations of this

kind were already found in [23] though in a much simpler setup, which does not include

the asymptotically flat region.

The stress-energy tensor which we obtained by a Brown-York procedure is not con-

served due to the space-time dependence of the scalar fields and a (non-conserved) vector

operator which do work on the cut-off surface fluid. As a consequence we deal with a forced

fluid analogous to the fluid/gravity discussion of [34]. It is rather curious that extending

away from the AdS throat results in a more complex dynamics involving two scalars and

a vector operator.

We argued that the desired Ward identities can be derived from the counter-term effec-

tive action we considered, though, we presented only a minimal such construction consistent

with various limiting cases. It would be an interesting exercise to derive this explicitly and

set-up the dictionary for the sources for the different fields, perhaps employing the gen-

eral construction of the works of [40]. We note in passing that the analysis of [45, 46],

which was able to embed the construction of blackfold conserved currents into an effective

AdS spacetime, doesn’t seem to a-priori provide any clues; in fact even the non-spinning

D3-brane analysis of [22] as far as we are aware does not admit an embedding into this

framework.

A major lacuna in our analysis is the absence of an explicit solution in the scalar

sector. To see the full dynamics we would need to obtain these as well. It fortunately is

reasonably simple to extract the constraint equations in this sector; we have the temporal

equation for the stress tensor (non-)conservation and charge conservation which serve to

check the consistency of our set-up. However, the intricate dynamical equations of mo-

tion in the scalar sector have to be disentangled and integrated with appropriate physical

boundary conditions that determine the corresponding integration constants. While we

have attempted this exercise, the equations have not availed themselves to simplifications;

we therefore have refrained from reporting them.
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A KK reduction of rotating D3-branes

In this appendix we would like to present some more details of the consistent truncation [32]

as applied to spinning D3-branes.

Since D3-branes in flat space are codimension six objects, we may rotate them in three

different planes, giving them up to three different angular momenta l1, l2, l3.

The metric for the l2 = l3 = 0 case was obtained in [47] and extended to all angular

momenta non-vanishing in [38] (see also [48]) using previous results of [49]. We are going

to take the results of [33] as a starting point here since it corrected some typos in the

aforementioned literature. Additionally, in that work, the decoupling limit of such configu-

rations was stated, which will be useful for us. In particular, it was shown in [33] that this

near-horizon geometry can be reduced to the STU black holes [50] under a Kaluza-Klein

ansatz, which in general describes the consistent truncation of ten dimensional type IIB

supergravity [51] on the five-sphere [37, 52] to N = 8, SO(6) gauged supergravity [53, 54],

further truncated to five dimensional N = 2, U(1)3 gauged supergravity.

The metric for the full rotating D3-brane (with all li 6= 0) is [33]

ds2
10 = H̃−1/2

[
−
(

1− 2m

r̃4∆

)
dt2 + dx2

1 + dx2
2 + dx2

3

]
+ H̃1/2

[
∆dr̃2

H1H2H3 − 2m
r̃4

+ r̃2
3∑
i=1

Hi

(
dµ2

i + µ2
i dφ

2
i

)
−4m coshα

r̃4H̃∆
dt

(
3∑
i=1

liµ
2
i dφi

)
+

2m

r̃4H̃∆

(
3∑
i=1

liµ
2
i dφi

)2
 ,

(A.1)

where we have used

∆(r̃) = H1H2H3

3∑
i=1

µ2
i

Hi
, H̃(r̃) = 1 +

2m sinh2 α

r̃4∆
, Hi(r̃) = 1 +

l2i
r̃2
. (A.2)

In the notation of [55], the five-sphere metric is given by dΩ2
5 =

∑3
i=1

(
dµ2

i + µ2
i dφ

2
i

)
, in

which the µi parametrize a two-sphere

µ1 = sin θ, µ2 = cos θ sinψ, µ3 = cos θ cosψ . (A.3)

The self-dual five-form F5 = ?10F5 stems from G5 = dB4 via F5 = (1 + ?10)G5 and

the four-form

B4 =
1− H̃−1

sinhα

(
− coshαdt+

3∑
i=1

liµ
2
i dφi

)
∧ d3x . (A.4)

We now slightly adjust the conventions of [33] via

2m = r4
0 , 2m sinh2 α = L4 ⇒ 2m coshα = r2

0

√
r4

0 + L4 (A.5)
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and take all angular momenta equal li = l. Then metric and five-form exactly fit into the

Kaluza-Klein ansatz of [32], which is given by17

ds2
10 = ds2(M) + e2Uds2(BKE) + e2V (η +A)2 , (A.6)

F5 =
Q

2

(
4e−4U−V vol(M) + 4e−4U−V (η +A) ∧ ?A + e−V ω ∧ ?F

+2ω2 ∧ (η +A) + 2ω2 ∧A− ω ∧ (η +A) ∧ F
)
.

(A.7)

To give some more details, note that we may write the five-sphere as a Hopf fibra-

tion S1 ↪→ S2n+1 � CPn with n = 2. It is straightforward to show (Hi = H1 for all i

since li = l)

r̃2
3∑
i=1

Hi

(
dµ2

i + µ2
i dφ

2
i

)
= r̃2H1

(
η2 + 2gij̄dz

idz̄j̄
)
, (A.8)

where η = dφ + P and gij̄ = 1
2∂i∂̄j̄K is the Fubini-Study metric on CP2 with Kähler

potential K and Kähler form ω = dη/2 given by

K = log
(
1 + |z1|2 + |z2|2

)
, ω = 2igij̄dz

i ∧ dz̄j̄ , P =
i

2

zidz̄i − z̄idzi

1 + |~z|2
. (A.9)

As before, the µi parametrize a two-sphere (with
∑

i µ
2
i = 1). All angular coordinates of

the five-sphere are then related to the complex coordinates z1, z2 of CP2 and the fibre

angle φ by

|z1|2 =
µ2

1

µ2
3

, |z2|2 =
µ2

2

µ2
3

, φ1 = φ+ arg z1 , φ2 = φ+ arg z2 , φ3 = φ . (A.10)

Another easy to derive relation from this coordinate change is
∑

i µ
2
i dφi = η.

From these relations it is clear, that the last term in (A.1) together with the ones

rewritten as in (A.8) yield a relative squashing of fibre and base metrics whose respective

volumes were parametrized in (A.6) by the scalars U and V . They thus receive profiles18

e2U = H̃1/2r̃2H1 , e2V = H̃1/2

(
r̃2H1 +

r4
0l

2

r̃4H̃∆

)
=
H̃1/2r̃2

∆g̃
. (A.11)

where we have introduced g̃(r̃) = H̃
(
H3

1 H̃ +
r40l

2

r̃6

)−1
. The (electric) gauge field profile can

be read off from the off-diagonal term proportional to dt
(∑

i liµ
2
i dφi

)
. It is given by

A = −l r2
0

√
r4

0 + L4

(
g̃

r̃6H̃

)
dt . (A.12)

Now, the only term which needs to be read off from (A.6) is the background metric. It is

given by

ds2(M) = H̃−1/2
[
−f̃ g̃ dt2 + dx2

1 + dx2
2 + dx2

3

]
+ H̃1/2∆f̃−1dr̃2 (A.13)

17? denotes the five-dimensional Hodge star operator.
18Note that these acquire somewhat unusual length dimensions as in [22]. We could introduce a length

scale for the radius of the Sasaki-Einstein space, but do not necessarily need to.
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where we have defined f̃(r̃) = H3
1−

r40
r̃4

. Now, we only need to check the various components

of the five-form (A.7) and read off the profile of the gauge field A. It is given by

A = −l r2
0 L

2

(
2

Q

)(
f̃ g̃

r̃2H1H̃

)
dt . (A.14)

The coordinates, in which we have worked so far, are the ones which directly descend from

the ones in (A.1), but are not the most convenient ones e.g., for comparisons with [25, 26].

The coordinate change is however very easy to implement, namely r2 = r̃2 + l2. The charge

is then related to the angular momentum via q ≡ l r2
0. Like this, we recover the results in

section 2.2.

B Source terms in the vector sector

Here we collect some of the quite non-trivial source terms which appear in section 6.

The first source term Si,1(r) is the one which appears in the Einstein equation (6.9).

It is given by

Si,1(r) = −

(
H

1/4
R√
fRgR

)(
f(r)g(r)3/2

2r7H(r)3/2

)(
3L4r2 + 2q2 + 5r6

)
βi,v

−

(
H

1/4
R√
fRgR

)(
f(r)g(r)5/2

2r13H(r)5/2

)
q
(
2q2 − r2

(
3L4 + r4

))
q,i

−

(
fRgR −HR

R6H
3/4
R fR

√
fRgR

)(
f(r)g(r)5/2

2r13H(r)5/2

)
× q

(
q2
(
5L4r2 + 7r6

)
+ r4

(
3L8 + 8L4r4 + 5r8

)
+ 2q4

)
q,i

+

(
H

1/4
R√
fRgR

)
L4r3

0f(r)g(r)5/2(
2L4 + r4

0

)
r11H(r)5/2

(
5L4r2 + 10q2 + 7r6

)
r0,i

−

(
fRL

4
(
2gRq

2 −HRR
6
)

+ 2H2
RR

6
(
2L4 + r4

0

)
R10f

3/2
R g

1/2
R H

7/4
R

(
2L4 + r4

0

) )(
r3

0f(r)g(r)5/2

2r13H(r)5/2

)
×
(
q2
(
5L4r2 + 7r6

)
+ r4

(
3L8 + 8L4r4 + 5r8

)
+ 2q4

)
r0,i

In the near-horizon limit (with R→∞) the given expression hugely simplifies to

−
(

3r

2L2

)
f(r)βi,v . (B.1)

With the additional prefactors in (6.9), this then exactly reproduces the source term in the

Einstein equation of [25].
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The first Maxwell equation Mi = 0 (6.10) includes the source term Si,2(r) which may

actually be written as a total derivative

Si,2(r) =
d

dr

[
−
(√

HR

fRgR

)
4κL4q2

r4
εijkβj,k −

√
HR

fRgR

√
r2H(r)

g(r)

√
L4 + r4

0 qβi,v

+

( √
HR

R6f
3/2
R

√
gR

)√
r2H(r)

g(r)

√
L4 + r4

0 q
2q,i

+

√
gRHR

fR

√
r2H(r)

g(r)

√
L4 + r4

0 q,i

− 2

√
HR

fRgR

√
r2g(r)H(r)

√
L4 + r4

0q,i

− 2

( √
gR

R10
√
fRH

3/2
R

)√
r2H(r)

g(r)

√
L4 + r4

0(
2L4 + r4

0

) L4q3r3
0 r0,i

− 2

√
HR

fRgR

√
g(r)

r10H(r)

(
3L4r2 + q2 + r6

) √L4 + r4
0(

2L4 + r4
0

) qr3
0 r0,i

+

(
1

R4
√
fRgRHR

)√
r2H(r)

g(r)

√
L4 + r4

0(
2L4 + r4

0

) L4qr3
0 r0,i

−2

( √
HR

R4f
3/2
R

√
gR

)√
r2H(r)

g(r)

√
L4 + r4

0 qr
3
0r0,i

]
In this expression, one may notice the anomaly related term ∼ εijkβj,k. Its near-horizon,

R→∞ limit is also quite simple:

16κL4

r5
q2εijkβj,k +

L4

r2
(qβi,v + q,i) (B.2)

and reproduces the terms in [25].

The second Maxwell equation (6.11) includes a source term Si,3(r), which may also be

written as a total derivative

Si,3(r) =
d

dr

[
−4

(√
HR

fRgR

)
g(r)

r8H(r)
κq2εijkβj,k −

√
HR

fRgR

√
g(r)

r6H(r)

q√
L4 + r4

0

βi,v

+

(
HR − fRgR

R6f
3/2
R

√
gRHR

)√
g(r)

r6H(r)

q2√
L4 + r4

0

q,i

−

√
HR

fRgR

g(r)3/2

r9H(r)3/2

(
r2g(r)

(
L4 + r4

0

)
+ q2

) 1√
L4 + r4

0

q,i

− 2

( √
gR

R10
√
fRH

3/2
R

)√
g(r)

r6H(r)

L4q3r3
0√

L4 + r4
0

(
2L4 + r4

0

) r0,i

+

(
1

R4
√
fRgRHR

)√
g(r)

r6H(r)

L4qr3
0√

L4 + r4
0

(
2L4 + r4

0

) r0,i
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− 2

( √
HR

R4f
3/2
R

√
gR

)√
g(r)

r6H(r)

qr3
0√

L4 + r4
0

r0,i

+ 2

√
HR

fRgR

g(r)3/2

r7H(r)3/2

qr3
0√

L4 + r4
0

r0,i

−2

√
HR

fRgR

g(r)5/2

r11H(r)5/2

L4qr3
0

√
L4 + r4

0(
2L4 + r4

0

) r0,i

]
.

In the near-horizon limit, we reproduce the source term in near-horizon limit of the first

Maxwell equation, however with an additional factor of 1/L8.

From these source terms, we define two more source terms, which capture specific

combinations and integrals of the above ones. We have already made clear, that Si,2 and

Si,3 may be integrated. The expression one obtains like that also appears together with

Si,1 and Si,2 in a way, which one may integrate even a further time,

Si,4(r) =

√
fRgR
HR

∫ [
−2

(
H

1/4
R

√
L4 + r4

0

q

)
r5H(r)Si,1 −

(
f(r)g(r)

r2H(r)

)
Si,2(r)

+
4L4

(
L4 + r4

0

)
r3

∫ (
Si,2(r)

2L4
(
L4 + r4

0

) + Si,3(r)

)
dr

]
dr

or explicitly

=
4κL4

r6
√
fRgR

q2 εijkβj,k +

(
g(r)3/2

r13H(r)3/2

)(
2L8r4 + 2L4q2r2 + 4L4r8

−q4 + q2r6 + q2r4
0r

2 + 2r12
) √

L4 + r4
0 q,i

−

(
g(r)3/2

r13H(r)3/2

)(
2L12q2r4 + 2L12r10 + 6L12r4

0r
6 + 4L8q4r2 + 8L8q2r8

+L8q2r4
0r

4 + 4L8r14 + 9L8r4
0r

10 + 7L8r8
0r

6 + 2L4q6 + 6L4q4r6

−10L4q4r4
0r

2 + 6L4q2r12 − 8L4q2r4
0r

8 + 12L4q2r8
0r

4 + 2L4r18

+2L4r4
0r

14 + 12L4r8
0r

10 − 3q6r4
0 − 7q4r4

0r
6 + 3q4r8

0r
2

−5q2r4
0r

12 + 8q2r8
0r

8 − r4
0r

18 + 5r8
0r

14
) √

L4 + r4
0

qr0

(
2L4 + r4

0

) r0,i .

For actually performing the integral, one should eliminate βi,v in the integrand first us-

ing (6.5).

Its near-horizon limit is given by

4κL4

r6
q2 εijkβj,k +

L4
(
q2 + r6 + 3r4

0r
2
)

qr3
βi,v +

2L4

r3
q,i .

In a slightly different combination, it also comes up in the following integral, which

one may perform analytically. For actually performing the integration it is advisable to
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use the constraint equation (6.5) to eliminate βi,v from the integrand.

Si,5(r) =

∫ [
3

( √
fRgR

H
1/4
R qL4

√
L4 + r4

0

)
r11H(r)

g(r)
Si,1

+3

√
fRgR
HR

(
3r4 − r4

0

4L4
(
L4 + r4

0

)) Si,2(r) +
3
(
3r4 − r4

0

)
4L4

(
L4 + r4

0

) d

dr

(
r2Si,4(r)

)]
dr ,

explicitly,

= − 3g(r)3/2

4L4r9H(r)3/2
√
L4 + r4

0

(
r6H(r)

(
L4
(
r4 + r4

0

)
− r8 + 3r4

0r
4
)

+q2
(
2L4r4

0 + 2q2r2 + r8 + r8
0

))
q,i

3
(
g(r)
H(r)

)3/2

4L4qr9r0

√
L4 + r4

0

(
2L4 + r4

0

) (L12
(
4q2r6 − 2r4

(
r8 + 2r4

0r
4 − 3r8

0

))
+L8r2

(
8q4r2 + q2

(
4r8 − 2r4

0r
4 + 8r8

0

)
− 4r14 − 5r4

0r
10 + 2r8

0r
6 + 7r12

0 r
2
)

+2L4r2
(
2q6 + 3q4r2

(
r4 + r4

0

)
+ q2r4

0

(
3r8 − 5r4

0r
4 + 6r8

0

))
−2L4r8

(
r12 + 5r8

0r
4 − 6r12

0

)
+ r4

0

(
−2q6r2 − 3q4

(
r8 − r8

0

))
+r4

0

(
q2
(
8r6r8

0 − 6r10r4
0

)
+
(
r8 − 6r4

0r
4 + 5r8

0

)
r12
))
r0,i

This expression reduces to

−
3r
(
2q2r2 − r8 − 2r4

0r
4 + 3r8

0

)
4L4q

βi,v −
3
(
r4 + r4

0

)
4L4r

q,i

in the near-horizon limit.

C Fixing the integration constants

C.1 Fixing Ci,2 by regularity at the horizon

We may derive a relation which determines Ci,2 in terms of source terms evaluated at

the horizon. The physical requirement we get this from is regularity at the horizon for a

particular combination of the first derivatives of our perturbations v′i(r), v′i(r), w
′
i(r).

For doing so, we take equation (6.13) and add the first derivative of (6.16) with a

prefactor such that in the resulting equation the coefficient of wi(r) vanishes. From this

we get an expression which only contains the first derivative terms v′i(r), v′i(r), w
′
i(r) and

further source and integration constant terms. We now require regularity at the horizon

for this particular combination19 of v′i(r), v′i(r), w
′
i(r); since the other terms do contain a

pole ∼ 1/f(r) at the horizon, we require its residue to vanish. This gives us the following

relation

0 = 2L4
(
L4 + r4

0

) (
2r2r4

0 − 3q2
)√

fRgR

∫ (
Si,2(r)

2L4
(
L4 + r4

0

) + Si,3(r)

)
dr

− 3qr2
√
HR

(
q Si,4(r) + 4r4

0H
1/4
R

√
fRgR

√
L4 + r4

0 Ci,2

)
,

(C.1)

19We require it for all these functions individually, therefore it must also hold for the combination.
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which has to be evaluated at the horizon. To get a more compact expression, we invoke the

definition of Si,4
′(r) given in appendix B to eliminate the integral term. In this definition

the prefactor of Si,2 vanishes at the horizon while Si,2 itself is regular; additionally, we have

Si,1(r+) = 0. In this way, we arrive at the relation

Ci,2 =

(
2r3

+r
4
0 − 3q2r+

)
Si,4
′ (r+)− 6q2 Si,4(r+)

24qr4
0

√
fRgRH

1/4
R

√
L4 + r4

0

, (C.2)

in which(
2r3

+r
4
0 − 3q2r+

)
Si,4
′ (r+)− 6q2Si,4(r+)

= −48κL4q2

√
fRgR

εijkβj,k −
2
(
r4

+ + r4
0

) (
3L4 + r4

0

)
r+r0

(r0 q,i − 3q r0,i) . (C.3)

We see that these are terms of the structure expected from the near-horizon limit [25].

We have a term which stems from the Chern-Simons term; additionally the combination

r4
+ + r4

0 ∝ (1 +M), in the notation of [25], appears as a prefactor of (r0 q,i − 3q r0,i)

which in the near-horizon limit reduces to the unique first order Weyl-covariant derivative

Diq = q,i + 3q βi,v used in [25], given that in this limit the vector constraint (6.5) simplifies

to r0,i + r0βi,v = 0. However in our full setup we get more naturally the structure in terms

of q,i and r0,i with only the prefactor depending on R.

C.2 Fixing Ci,5 by regularity at the horizon

We may also fix the integration constant Ci,5 by imposing regularity at the horizon on a

particular combination of wi(r), w
′
i(r) and v′i(r): note that in (6.19) one may eliminate the

particular combination of expressions involving

∼
∫

Si,4(r)

r5f(r)2
dr and ∼ Ci,2

∫
1

r7f(r)2
dr , (C.4)

which could potentially complicate considerations at the horizon, where f(r+) = 0, in

favour of vi(r) using (6.16). Going back to the second order ODE we obtained for wi(r)

alone, i.e., (6.17) along with its inhomogeneous pieces, we may use the same relation (6.16)

to express part of the inhomogeneous terms in that ODE in favour of vi(r). Thus the ODE

may be written as a differential equation for a combination of wi(r) and vi(r). The only

potentially diverging term at r = r+ in that expression then is

d

dr

(
r4 (fRgR − f(r)g(r))H(r)(
−3r4 + r4

0

)
f(r)g(r)

wi(r) + (. . .) vi(r)

)
∼ Si,5(r)− Ci,5
r3
(
3r4 − r4

0

)2
f(r)

. (C.5)

This would be a pole while the other terms are regular at r = r+. Note in particular that

the expression Si,1(r)/f(r) is finite as r → r+. Again, we may use this to fix an integration

constant by setting the would-be residue to zero, making it a removable singularity. This

time, we get
Ci,5 = Si,5(r+)

= −
3
(
r4

+ + r4
0

)
4L4r0r+

(r0 q,i − 3q r0,i) ,
(C.6)
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where as in the expression for Ci,2 we see that the familiar combination r4
+ + r4

0 ∝ (1 +M)

appears as a prefactor of (r0 q,i − 3q r0,i).

C.3 Fixing Ci,6 by regularity at the cut-off

For fixing Ci,6 we first trade Ci,1 and Ci,4 with wi(R) and vi(R). This is of course not a

physical condition imposed on them. It is only a slightly more convenient parametrization

of these integration constants. We therefore evaluate (6.12) and (6.16) at r = R and

reinsert the expressions we get for Ci,1 and Ci,4 into (6.19). The Dirichlet condition vi(R)

drops out and some of the integrals will essentially turn into definite integrals like∫
1

r7f(r)2
dr →

∫ r

R

1

r′7f(r′)2
dr′ . (C.7)

Now we fix Ci,6 by imposing that wi(r) should have no pole at r = R. This is clearly a

sensible physical condition which preserves Minkowski space at the cut-off surface as can be

seen from the perturbation ansatz (6.1). We therefore impose that the numerator in (6.19)

after we replaced Ci,1 and Ci,4 should vanish at r = R. From this we get

Ci,6 =

H1/4
R

(
−2r4

0R
6HR + 3L4q2 + q2r4

0

)
4L4q

(
3R4 − r4

0

)√
fRgR

(
L4 + r4

0

)
wi(R)

+

(
1

2R4HR

(
3R4 − r4

0

))vi(R) +

∫ R

(. . .) .

(C.8)

If we reinsert this into (6.19) the last term in (C.8) sets the remaining integrals to
∫ r
R(. . .)dr′.

So, in summary, fixing Ci,6 sets every single integral of (6.19) to
∫ r
R(. . .)dr′ and additionally

contributes the terms explicitly spelled out in (C.8), which are proportional to wi(R)

and vi(R).

C.4 Fluid frame choice and vi(R)

How do we fix the remaining integration constant, i.e., the linear combination of wi(R) and

vi(R) in (C.8) which is basically equivalent to Ci,1 − Ci,4? For doing so we may carefully

extract the limit of the solution (6.19) for r → R using e.g.,

lim
r→R

( ∫ r
RA(r′)dr′

fRgR − f(r)g(r)

)
= − A(R)

gR f ′(R) + fR g′(R)
, (C.9)

and therefore see that the linear combination of wi(R) and vi(R) given in (C.8) can es-

sentially be expressed in terms of wi(R) alone. But as we will see next wi(R) is uniquely

determined by fixing the fluid’s frame ambiguity. So, in total, the Landau frame choice

determines wi(R) and from using the explicit solution (6.19), we may read off vi(R) or

equivalently the linear combination Ci,1 −Ci,4. This fixes the last integration constant we

need for evaluating physical quantities.
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C.5 Landau frame choice

The energy-momentum tensor which we have constructed is generically not in Landau

frame. While the zeroth order is, generically the first order terms are such that they make

it deviate from Landau frame unless we impose a specific condition on wi(R) to ensure it.

Using (3.14), the important component in the vector sector is

T
(1)
vi = −

(
R5H

5/4
R√
gR

)(
1

2κ2
5

)
βi,v −

(
H

5/4
R

RfR
√
gR

)(
q

2κ2
5

)
q,i

+

(
H

1/4
R

R5fR
√
gR

)(
4L8R2 + L4

(
3R2

(
r4

0 +R4
)
− q2

)
+ 2r4

0R
6
)

(C.10)

×

(
r3

0

2κ2
5

(
2L4 + r4

0

)) r0,i

+

( √
gR

κ2
5R

12
√
fRHR

)(
L8
(
2r4

0R
4 − 3q2R2

)
+ r4

0R
6
(
2R6 − q2

)
+L4

(
−2q4 + q2

(
r4

0R
2 − 5R6

)
+ 4r4

0R
8
))
wi(R)

!
= 0 .

We see that by choosing wi(R) such that this component vanishes, we take the fluid to be

in the Landau frame. This fixes our last integration constant needed in section 6.
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