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1 Introduction

The explicit breaking of supersymmetry (SUSY) by brane sources in warped throats could

be a natural mechanism to create meta-stable vacua in string theory with a tunable amount

of SUSY-breaking and hence perturbative control. This can be used for the construction

of de Sitter vacua [1], brane inflation [2], holographic studies of SUSY-breaking in gauge

theories [3–5] or the construction of non-extremal black hole micro-states [6].

The prime example for this mechanism is to insert an anti-D3-brane at the tip of the

Klebanov-Strassler (KS) geometry [3, 7]. As is well known by now, the first attempts to

construct the corresponding supergravity solution [8, 9] revealed that its infra-red region

has a diverging 3-form flux density1

e−φ|H3|2 →∞, (1.1)

1This is the result in Einstein frame, but also the string frame flux density is divergent.
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where H3 = dB2 is the field strength of the NSNS B-field. At the time of [8, 9], this

result was preliminary (although the singularity could have been anticipated from [10])

since the supergravity solutions were constructed using various approximations, i.e., a

partial smearing of the anti-branes and a linearisation of their perturbation of the BPS

background. In the last years, however, it became clear that flux singularities are both

ubiquitous and on a firm footing within the supergravity approximation. For anti-D3-

branes in the KS background, they were demonstrated to neither be an artifact of the

linearisation [11, 12] nor of the partial smearing [13]. Furthermore, several studies of other

setups with anti-branes in flux backgrounds led to similar results [14–22]. A review of

various anti-brane solutions and their physics with a complete list of references will appear

soon [23].

Although the construction of explicit supergravity solutions with SUSY broken by anti-

branes is very involved, it has been realised that this is not required to find out whether

the 3-form singularities will occur. Instead, it is often possible to formulate so-called ‘no-go

theorems’ for the existence of solutions with regular fluxes. The first such no-go theorem

was found for anti-D6-branes in massive type IIA [17]. This was later generalised to anti-

Dp-branes smeared over 6− p directions [24] including finite temperature T (see also [12]),

to smeared anti-M2-branes at finite T [21] and to localised anti-D3-branes in compact

geometries with a KS-like throat at T = 0 [13].

It should not be any surprising that such no-go theorems can be found without knowing

the solutions since there exists a very straightforward intuition that explains the nature

of the singular fluxes [17, 25–27]: since the fluxes carry charges opposite to that of the

anti-brane, they are gravitationally and electromagnetically attracted towards the anti-

brane resulting in an increased pile-up of flux. The only force that can counterbalance

this (otherwise fatal [3, 27]) attraction is due to the gradient energy in the flux. If it is

strong enough to generate a balance of forces, one would expect an increased but finite flux

density. This is not the case in all examples studied so far where SUSY is broken by the

anti-brane.

In the case of anti-D3-branes, the energy density is integrable [9] and does therefore

not immediately invalidate anti-branes as an uplifting mechanism [28]. Furthermore, the

solution is well-behaved in the UV and stands some very non-trivial tests [29, 30]. Never-

theless, in order for the solution to be physical, the singularities arising in the supergravity

approximation should be resolved by some mechanism in string theory. A natural proposal

for such a mechanism is brane polarisation via the Myers effect [31]. If an anti-Dp-brane

polarises into a spherical D(p+2)-brane with worldvolume flux carrying the anti-Dp charge,

then one expects a finite pile-up of the bulk fluxes since their attraction to the brane is

softened as the anti-brane charge is spread out over a sphere instead of a point [10]. Indeed,

brane polarisation has been shown to resolve flux singularities in both SUSY and non-SUSY

anti-D6-brane solutions with an AdS worldvolume [32] (see also [33, 34]). However, this

does not seem to happen in setups in which the curvature of the anti-brane worldvolume

is either zero (as in the non-compact holographic backgrounds of [3, 5]) or hierarchically

small and positive (as in the string cosmology context of [1]). In all such setups studied

so far, brane polarisation can explicitly be shown not to occur [22, 35, 36], although some
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polarisation channels are not fully understood yet. In [27], it was argued that the flux

singularities might then rather indicate that the anti-brane states are not meta-stable but

decay perturbatively to the SUSY vacuum through brane-flux annihilation.

Alternatively, one might wonder whether other stringy effects could lead to well-

behaved anti-brane solutions beyond the supergravity regime. In the absence of a full

string theory solution, however, it appears hopeless to identify the correct stringy mecha-

nism that resolves the singularities or, conversely, show explicitly that all possible mecha-

nisms fail. A more promising idea is to try to find a general argument for why or why not

the singularities are expected to be resolved in string theory. Such a general criterion for

distinguishing ‘good’ from ‘bad’ singularities was formulated by Gubser [37]. It states that

good singularities (i.e., those that are a mere artifact of using classical supergravity) can

be cloaked behind a horizon if sufficient temperature is turned on. If reliable, this criterion

is very powerful as it allows to bypass the difficult question which stringy effect could be

responsible for the resolution of a singularity. Instead, one can decide whether a singular-

ity is benign by simply looking for a finite temperature resolution of the singular solution.

However, for localised anti-D3-branes in the Klebanov-Tseytlin (KT) throat and partially

smeared anti-D3 branes in the Klebanov-Strassler (KS) throat, it was shown numerically

by Bena et al. [38] (see also [24, 39]) that such a resolution does not occur. This is a strong

indication that the IR singularity is genuinely ‘bad’.

Nevertheless, one could worry that 1) numerics are not sufficient as a proof, 2) for

localised anti-branes in KS the result can differ, or 3) for throats different than KS it might

work. In this paper, we therefore extend the above mentioned no-go theorems to include

these concerns. In particular, we present analytic arguments that, for fully localised anti-

branes, turning on a finite temperature does not resolve the singularities. Our arguments

apply to anti-D3-branes in the KT and KS geometries as well as to analogous setups in

other dimensions. We first discuss the case of anti-D3-branes in KT for which we extend

a simple argument presented in [17, 24]. This yields a no-go theorem excluding regular

anti-brane solutions in this background at both zero and finite temperature. In order to

treat the more complicated case of anti-D3-branes in KS, we then generalise the existing

no-go theorem of [13] in two ways. First, we derive a version of the no-go that is valid for

non-compact throat geometries. Our key observation is that the equations of motion then

relate the IR boundary conditions for the fields at the anti-D3 position to a boundary term

in the UV, which can be shown to equal the ADM mass at T = 0. This relation implies

that, whenever the number of anti-D3-branes (and, hence, the ADM mass) is non-zero, a

singular flux is generated in the IR. Second, we argue that this result can be extended to

finite temperature. Under certain conditions, the boundary term is then still related to

the ADM mass, which can be shown to lead to a singular flux at the horizon. This may

indicate that the Gubser criterion is violated for anti-D3-branes in KS.

The rest of this paper is organised as follows. In section 2, we show analytically that

the flux singularity is not cloaked by finite T in the case of anti-D3-branes in KT. In

sections 3 and 4, we discuss a formulation of the no-go theorem that extends to KS, both

at zero and at finite T . Finally, in section 5, we discuss our results.
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2 Anti-D3-branes in Klebanov-Tseytlin at finite T

In reference [17], a simple argument was given to prove the 3-form singularity for anti-

D6-branes inserted in a flux background for which the charge dissolved in the flux has the

opposite sign of the anti-D6-brane charge far away from the latter. This argument was

then extended in [24] to general anti-Dp-branes in flux backgrounds with opposite charge

including finite temperature, where the space transversal to the branes was taken to be

T6−p×R3 and the branes were smeared over T6−p. As a warm-up, we now demonstrate that

this technique can readily be applied to localised anti-D3-branes in the KT background [40].

For the latter case, it was numerically shown in [38] that no regular solution exists, and our

analytic proof below confirms this result. The key to our argument is that the symmetries

of the setup allow to reduce the equations of motion to ordinary differential equations

that only depend on one radial variable r. This then leads to a strong constraint on the

behaviour of one of the fields, which cannot be satisfied in the presence of anti-D3-branes at

the tip unless a singularity forms at the horizon. Since the KS throat has less symmetries,

it is not possible to extend this technique to that background, and so we will use the more

powerful and slightly more abstract formalism of [13] in the next section.

The Ansatz for the metric in Einstein frame describing anti-D3-branes in KT is [38]

ds210 = e2Ã(r)gµνdxµdxν + e2B(r)−2f(r)dr2 + e2B(r)g25 + e2C(r)
(
g21 + g22 + g23 + g24

)
, (2.1)

where gtt = −e2f(r) and gij = δij for i, j = 1, 2, 3.2 f(r) is a blackening factor, which

becomes non-zero if a finite temperature is turned on and diverges at the horizon at finite

r. The one-forms g1, . . . , g5 are the one-forms of T 1,1 used, for example, in [9], and some

basic identities for these forms appear in appendix C. The flux Ansatz is

F5 = −(1 + ?10)e
−4Ã(r)−f(r) ?6 dα(r) ,

H3 = λ(r) eφ(r) ?6 F3 ,

F3 = P (g1 ∧ g2 + g3 ∧ g4) ∧ g5 ,

(2.2)

where P is a constant. This Ansatz is a special case of the KS Ansatz used in appendix A.1

with a simple relabelling of the fields.

From the H3 equation of motion

d(?10e
−φH3) = −F5 ∧ F3 , (2.3)

we deduce

λe4Ã+f = α+ α0 , (2.4)

with α0 an integration constant that can be set to zero using a C4 gauge transformation.

Together with the F5 Bianchi identity away from the source position

dF5 = H3 ∧ F3 , (2.5)

2Here, we have put a tilde on the warp factor Ã in order to distinguish it from a different function A

that appears in the Ansatz of [9] and in appendix A.1. From section 3 on, we will denote the warp factor

by A as usual.
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we find the second-order differential equation(
e−4Ã+4Cα′

)′
= 2P 2eφ−4Ã−2fα , (2.6)

where a prime denotes a derivative w.r.t. r. One then observes that this equation implies

sgn(α) = sgn(α′′) when α′ = 0. (2.7)

This condition is sufficient to demonstrate that a regular solution cannot exist, following

the reasoning in [17, 24]. In fact, it implies that the 3-form singularity is not cloaked by

the horizon but instead replaced to live at the position of the latter. For convenience, we

briefly summarise the arguments of [17, 24]. One can demonstrate that the sign of the

anti-D3 charge is determined by the sign of α′ at the horizon,

sgnQ = sgn(α′)|horizon , (2.8)

where we take conventions in which anti-branes have negative charge. On the other hand,

if we demand that the anti-brane lives in a flux background that has positive charge at

large distance (i.e., the fluxes become ISD at infinity), we have

α > 0 at large radius . (2.9)

It is then easy to demonstrate that

α(horizon) 6= 0 . (2.10)

If α were instead zero at the horizon, the conditions (2.7) and (2.8) would imply a discrete

jump in α and, hence, a singularity between the horizon and infinity. However, (2.10)

implies that the 3-form flux density

e−φ|H3|2 = 2P 2α2eφ−8Ã−2f−2B−4C (2.11)

is singular at the horizon since the blackening factor ef approaches zero there, whereas all

other quantities remain finite. Note that this is not the case if one puts a D3-brane instead

of an anti-D3-brane at the tip since the conditions (2.7), (2.8) and (2.9) are then compatible

with α = 0 at the horizon. It is also well-known that the standard metric singularity is

then cloaked by the finite temperature horizon.

3 A review of the existing no-go

In this section, we review the no-go technique of [13], which applies to anti-D3-branes in

compact geometries with a KS throat and to a number of other setups for which the fields

satisfy a similar Ansatz. In the next section, we will extend the argument to non-compact

geometries and discuss its generalisation to finite temperature. Since the results of [13] are

more general than those of [17, 24], the formalism is more abstract. However, when applied

to known cases such as anti-D3-branes in KT or the anti-D6-brane models of [17, 18, 24],

both techniques yield exactly the same equations.

– 5 –
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In the following, we will consider flux compactifications of type II supergravity to

p+1 dimensions with spacetime-filling Dp-branes and Op-planes. A general Ansatz for the

metric is then

ds210 = e2Ag̃µνdxµdxν + ds29−p , (3.1)

where µ, ν = 0, . . . , p and A is a function of the internal coordinates. The essential ingre-

dient of the no-go theorem of [13] is the following relation (inspired by the work of [41])

between the cosmological constant Λ in p + 1 dimensions, the on-shell actions of the D-

branes and O-planes and a term due to topological fluxes:

8vV
p− 1

Λ =

(
1 +

p− 3

2
c

)[
S
(p)
DBI + S

(p)
WZ

]
+

∫
F(c). (3.2)

As detailed in [13], this relation follows directly from the equations of motion and is a

consequence of scaling symmetries of the supergravity action.

The notation used in (3.2) is as follows. The number c is a “gauge” which can be

chosen freely, and v and V are the volume factors

v =

∫
?̃p+11 , V =

∫
?9−p e(p−1)A , (3.3)

where v cancels out in (3.2) with implicit volume factors on the right-hand side. Here and in

the following, we denote the Hodge star constructed from g̃µν by ?̃p+1, the one constructed

from the warped metric e2Ag̃µν by ?p+1 and the one constructed from the internal part

of the metric by ?9−p. The form F(c) is a certain combination of bulk fluxes, which we

will make explicit below for a certain choice of c. The other terms on the right-hand side

of (3.2) are the on-shell DBI and WZ actions of the D-branes and O-planes,

S
(p)
DBI = ∓µp

∫
?p+1e

p−3
4 φ ∧ σ(δ9−p) ,

S
(p)
WZ = ±µp

∫
Cp+1 ∧ σ(δ9−p), (3.4)

where the upper sign is for Dp-branes, the lower one for Op-planes and µp is the absolute

value of the Dp/Op charge. The operator σ acts on p-forms by reverting all indices (see

appendix C). We have neglected couplings to other bulk fields and worldvolume fields since

they are not relevant in the context of this paper.

Let us now specialise to a compact space with a warped throat region that is locally

described by the KS solution as in [42]. In order to cancel the tadpole due to the D3-

brane charge of the 3-form fluxes, such a solution requires the presence of O-planes in the

bulk, where we will restrict to the simple case of a compactification with O3-planes in the

following (more generally, one could also have D7-branes and O7-planes in the bulk, which

can also carry D3-brane charge). Furthermore, we put an anti-D3-brane at the tip of the

KS throat in order to make contact with the KKLT scenario [1].

Following [13], we can then make the following Ansatz for the fields:

Ĉ4 = ?̃4α ,

F5 = −(1 + ?10)e
−4A ?6 dα ,

H3 = eφ−4A ?6 (αF3 +X3) , (3.5)

– 6 –
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where Ĉ4 denotes the spacetime-filling part of the RR potential C4. The dilaton φ and

the gauge potential profile α are functions on the internal space. Furthermore, the 3-form

fluxes H3 and F3 are both closed, and X3 is a closed 3-form that is not proportional to F3.

One can then show that (3.2) implies [13]

Λ = − 1

4V
N̄µ3(e

4A0 + α0) +
1

16V
NO3µ3(e

4A∗ − α∗)−
1

4V

∫
6
H3 ∧X3 + Λnp , (3.6)

where e4A0 , α0 (e4A∗ , α∗) denote the values of the warp factor and the gauge potential

profile at the position of the anti-D3-branes (O3-planes) and N̄ ,NO3 are the anti-D3-brane

and O3-plane numbers, respectively. By adding the term Λnp on the right-hand side, we

have also incorporated the effect of non-perturbative corrections to the 4D effective scalar

potential, which is necessary to find a de Sitter vacuum in the KKLT scenario [1].

Assuming that the fields approach the BPS background of [42] far away from the

anti-D3-brane, one can set e4A∗ = α∗ since the O3-planes are outside the warped conifold

region. Thus, the O3-plane contribution in (3.6) vanishes. One can show [13] that the same

assumption implies that X3 is exact,3 and, as a consequence,
∫
6H3∧X3 = 0. Furthermore,

the DBI term e4A0 vanishes since e4A → 0 near the anti-brane. Hence, (3.6) reduces to

Λ = − 1

4V
N̄µ3α0 + Λnp . (3.7)

In the absence of an uplifting term due to anti-D3-branes (i.e., for α0 = 0), Λnp can be

shown to be negative [1]. A dS solution with Λ > 0 as in [1] therefore requires α0 to be

non-zero.4

Similar to the KT example treated above, this is sufficient to show the presence of

divergent 3-form flux near the source. This can be seen as follows. From our Ansatz (3.5),

we deduce the H3 energy density close to the anti-D3-brane,

e−φ|H3|2 = eφ−8A|αF3 +X3|2 = eφ−8Aα2|F3|2 + . . . = eφ−2Aα2m2 + . . . , (3.8)

where m is the F3 flux quantum at the tip and the dots denote possible additional terms

due to X3 and exact terms in F3. Note that m is non-zero in the KS solution in order

to prevent the 3-sphere inside of the deformed conifold from shrinking to zero size at the

tip [7]. For the last equality, we have assumed that the metric of the space transverse to

the anti-D3-brane is locally of the form gmn = e−2Ag̃mn near the anti-brane, where g̃mn
denotes a regular metric that we need not specify further. Since α0 is finite but e−2A grows

to infinity towards the anti-D3 position, we find that the H3 flux density diverges at least

as bad as5

e−φ|H3|2 ∼ e−2A . (3.9)

3For the partially smeared solution of [9], this is explicitly shown in appendix A.
4The term Λnp as defined in [13] contains an implicit dependence on α0 such that α0 must be positive in

order to obtain a dS solution (see [28] for a discussion of this subtlety). This is consistent with our explicit

result for α0 in section 4.
5For a regular dilaton, the dilaton equation then implies that also the F3 energy density is divergent [13].

This is in agreement with the explicit results of [8, 9].
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Under the above assumptions, this conclusion is independent of whether the near-brane

behaviour of e2A is the same as in the standard D3-brane solution in flat space or whether,

as recently proposed in [22], it diverges more strongly in the KS throat.

One might wonder whether other terms in the H3 energy density could somehow com-

bine to cancel the singular term ∝ e−2A on the right-hand side of (3.8). Since the internal

metric is positive definite, different components of H3 cannot cancel out against each other

in the energy density. Hence, in order that no singular term appears in (3.8), X3 would

have to cancel αF3 at the anti-brane for every component individually. In all explicitly

known cases, however, such a cancellation does not happen. In particular, one can verify

this in the non-linear solution for partially smeared anti-D3-branes described in [12, 36].

The component of X3 along the 3-sphere then vanishes at the tip while the one of F3 is

non-zero and proportional to m. Hence, the terms represented by the dots in (3.8) are

manifestly positive and cannot cancel the singular term.

4 The generalised no-go theorem

In what follows, we generalise the master equation (3.2) found in [13], which is valid if

the solution is maximally symmetric in the (p + 1)-dimensional spacetime parallel to the

anti-branes and the transversal space is compact. In order to analyse anti-branes in non-

compact geometries at both zero and finite T , we will have to drop these two assumptions.

Our derivation follows the strategy of the appendix of [13], where (3.2) was obtained

by integrating a certain combination of the equations of motion over the compact space.

Unlike [13], however, we now include a blackening factor in the spacetime metric, which

becomes non-trivial at finite temperature and breaks maximal symmetry. Furthermore, we

keep track of all total derivative terms in the equations of motion, which could be neglected

in [13] since they integrate to zero on a compact space. In the non-compact geometries we

consider, the total derivatives instead integrate to a boundary term, which is non-zero in

general and plays a central role in our discussion. As we will explain below, it is expected to

equal the ADM mass at zero temperature if the brane worldvolume is flat (i.e., for Λ = 0).

Our generalised master equation then relates this to a non-vanishing gauge potential at

the anti-brane horizon, which in turn implies a singularity in the H3 energy density. At

finite temperature, we find that the boundary term is the sum of a term related to the

zero-temperature ADM mass and a term proportional to TS, where S denotes the entropy

associated to the black hole horizon. Under certain conditions, we then again find a no-go

theorem against the existence of solutions with regular flux at the horizon.

4.1 The master equation

Let us consider type II supergravity with a metric of the form

ds210 = e2Agµνdxµdxν + ds29−p , (4.1)

where gtt contains the blackening factor e2f . The metric with the blackening factor taken off

is denoted by g̃µν from here on, and we assume that g̃µν is a maximally symmetric space

– 8 –
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with cosmological constant Λ.6 We furthermore assume that the p-brane worldvolume

extends along the first p+1 directions and that there are no fields with a non-trivial profile

along those directions, apart from possible form fields filling all the worldvolume directions.

The non-zero form field strengths in the backgrounds we consider are H3, Fp+2, F6−p, where

Fp+2 is the standard electric field strength for a p-brane source. We will also often use the

magnetic formulation in which we have a non-zero F8−p. The duality relation is

?10 σ (F8−p) = e(3−p)φ/2Fp+2 . (4.2)

The combination of H3 and F6−p also induces p-brane charges dissolved in fluxes. We take

these fluxes to be closed, i.e., dH3 = 0 = dF6−p. As usual, there is a subtlety with the

self-dual 5-form field strength F5. For p = 3, the equations below have to be interpreted

such that F8−p denotes the magnetic piece of F5 and Fp+2 the electric part.

Our Ansatz for the form fields is

H3 = dB2 , (4.3)

Cp+1 = ?̃p+1α, (4.4)

e−φ ?10 H3 = σ(F6−p) ∧ Cp+1 − ?̃p+11 ∧X6−p , (4.5)

where X6−p is a closed (6 − p)-form not proportional to F6−p.
7 The operator ?̃p+1 is the

Hodge star on the brane worldvolume metric with the warp factor e2A and blackening factor

e2f excluded (i.e., the Hodge star associated to g̃µν). Due to the absence of transgression

terms, we have Fp+2 = dCp+1, which implies that the H3 equation of motion

d(e−φ ?10 H3) = Fp+2 ∧ σ (F6−p) (4.6)

is satisfied for (4.5) as long as F6−p and X6−p are closed. The above Ansatz is general

enough to describe anti-branes in a number of different backgrounds. For p = 3, this

includes anti-D3-branes in KT, which we already discussed in section 2, and anti-D3-branes

in KS, which we will analyse in more detail below. For p 6= 3, the Ansatz also covers setups

such as the anti-D6-brane model discussed in [17, 18, 24, 35].

We will now consider the remaining equations of motion for the above Ansatz and

combine them in a such way that we obtain an equation analogous to (3.2), but this

time for non-compact spacetimes. The trace-reversed Einstein equation along the brane

worldvolume and the dilaton equation of motion are

4

p+ 1
Rp+1 = − 1

2
e−φ|H3|2 +

p− 7

4
e

p−3
2
φ|F8−p|2

+
p− 5

4
e

p−1
2
φ|F6−p|2 +

p− 7

4
µpe

p−3
4
φδ (Σ) , (4.7)

0 = −∇2φ− 1

2
e−φ|H3|2 +

p− 3

4
e

p−3
2
φ|F8−p|2

+
p− 1

4
e

p−1
2
φ|F6−p|2 +

p− 3

4
µpe

p−3
4
φδ (Σ) , (4.8)

6It is unclear to us whether this finite-T Ansatz is sensible when Λ 6= 0, but this will not play any

important role in this paper, where the finite-T case is studied for Λ = 0.
7Any part of X6−p that is proportional to F6−p can be absorbed by a gauge transformation of Cp+1.

This also implies that X6−p vanishes when p = 6.
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where δ (Σ) is a delta distribution with support on the anti-brane worldvolume. The

combination (4.7) −p−5
p−1 (4.8) gives

4

p+ 1
Rp+1 =

p− 5

p− 1
∇2φ− 2

p− 1

[
e−φ|H3|2 + e

p−3
2
φ|F8−p|2

]
− 2

p− 1
µpe

p−3
4
φδ (Σ) . (4.9)

The left-hand side of this equation can be rewritten as

4

p+ 1
Rp+1 =

4

p+ 1
e−2AR̃p+1 −

4

p+ 1
e−(p+1)A−f∇m∂me(p+1)A+f , (4.10)

where m runs over the transversal indices only.

We now aim at rewriting the right-hand side of (4.9) in such a way that more terms

combine into a total derivative. To this end, we use the Bianchi identity

dF8−p = H3 ∧ F6−p − µpδ9−p . (4.11)

After wedging from the left with σ(Cp+1), we can derive

0 = −(−1)p+1
[
e−φ|H3|2 + e(p−3)φ/2|F8−p|2

]
?10 1

+ (−1)p+1d [σ(Cp+1) ∧ F8−p + ?̃p+11 ∧B2 ∧X6−p]

− (−1)p+1µpCp+1 ∧ σ(δ9−p) .

(4.12)

With this, (4.9) takes the form

4

p+ 1
Rp+1 ?10 1 =

p− 5

p− 1
∇2φ ?10 +

2

p− 1
µp

[
−e(p−3)φ/2 + αe−(p+1)A−f

]
?p+1 1 ∧ σ(δ9−p)

− 2

p− 1
d [σ(Cp+1) ∧ F8−p + ?̃p+11 ∧B2 ∧X6−p] . (4.13)

This result is consistent with [13] for the choice c = − 2
p−1 . Together with equation (4.10),

this expression can be regrouped as follows:

4

p+ 1
?10 e−2AR̃p+1 =

2

p− 1
µp

[
−e(p−3)φ/2 + αe−(p+1)A−f

]
?p+1 1 ∧ σ(δ9−p)

+ d

[
− 2

p− 1
[σ(Cp+1) ∧ F8−p + ?̃p+11 ∧B2 ∧X6−p]

−p− 5

p− 1
?10 dφ− 4

p+ 1
?10 d [(p+ 1)A+ f ]

]
. (4.14)

Except for the source terms and the cosmological constant term, all terms combine into a

total derivative. As we will see below, it is necessary for our no-go theorem that this is

the case.

On a compact space and at zero T , the integrated version of (4.14) simply reproduces

the existing no-go theorem in [13] that we reviewed in section 3 (see also [41]). However,

we now want to consider setups where the space transverse to the anti-Dp-branes is non-

compact. This can be done by integrating (4.14) up to a boundary ∂M. Together with

R̃p+1 = 2p+1
p−1Λ, this yields the following extension of the master equation (3.2):

8vV∂M

p− 1
Λ =

2

p− 1

[
S
(p)
DBI + S

(p)
WZ

]
+

∮
∂M
B , (4.15)
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where V∂M =
∫
?9−p e(p−1)A+f is the warped volume of the transverse space inside the

boundary ∂M.
∮
∂M B is a boundary term from integrating the total derivative in (4.14)

whose integrand is given by

B =− 2

p− 1
[σ(Cp+1) ∧ F8−p + ?̃p+11 ∧B2 ∧X6−p]−

p− 5

p− 1
?10 dφ

− 4

p+ 1
?10 d [(p+ 1)A+ f ] . (4.16)

All other objects in (4.15) are defined as in section 3.

At T = 0, we will choose the boundary ∂M to be located far away from the anti-

brane position such that the integral over the transverse space runs from the anti-brane

position up to a cutoff in the UV. At finite temperature, however, we encounter a small

subtlety. In that case, we will argue below that the H3 energy density blows up at the

horizon, analogous to what we have already shown in section 2 for the special case of anti-

D3-branes in KT. The easiest way to analyse this situation in our framework is then to

choose an integration range with two boundaries, where we put the first one far away from

the anti-branes and the second one very close to (but before) the horizon. The boundary

term in (4.15) then consists of two disconnected pieces with ∂M = ∂Mhorizon ∪ ∂MUV.

4.2 The no-go theorem at T = 0

Similar to the argument reviewed in section 3, we will now use the master equation (4.15) to

show that anti-branes generate a singularity in the H3 energy density in the non-compact

backgrounds we consider. In the following, we will restrict to Λ = 0. This is sufficient

to discuss anti-D3-branes in KS, which is the setup we are mainly interested in. We

furthermore specialise to the case T = 0 for the moment, i.e., we set e2f = 1. The

extension of our arguments to finite temperature and non-zero cosmological constant will

be discussed in sections 4.3 and 4.4.

For Λ = 0 and T = 0, it is now easy to follow the logic of section 3. (4.15) then relates

the boundary conditions of the fields at the anti-brane position to a boundary term that

only depends on the field values far away from the anti-branes,

2

1− p

[
S
(p)
DBI + S

(p)
WZ

]
=

∮
∂M
B . (4.17)

Using (3.4) and (4.4) and assuming the standard behaviour e(p+1)A+ p−3
4
φ → 0 near the

anti-branes, it then follows

α0 =
p− 1

2vN̄µp

∮
∂M
B, (4.18)

where N̄ is the anti-brane number and α0 denotes the value of the gauge potential profile

α at the position of the anti-branes.

Hence, if the boundary term
∮
∂M B is non-zero in a given solution with p 6= 1, also

α is non-zero at the anti-brane position. The H3 energy density then contains terms that

diverge at least as bad as

e−φ|H3|2 ∼ e−2(p+1)A+φα2|F6−p|2 ∼ e−2A (4.19)
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in the vicinity of the anti-branes. Here, we assumed that the dilaton and the internal

metric diverge such that they locally take the form eφ = e
4 p−3
7−p

A
eφ̃, gmn = e

2 p+1
p−7

A
g̃mn close

to the anti-branes (with eφ̃ and g̃mn regular), as it is the case for the standard D-brane

solutions in flat space. Hence,∮
∂M
B 6= 0 → singularity . (4.20)

This leaves us to establish that the boundary term is indeed non-zero. First of all,

since the source terms are independent of the position of the boundary ∂M in (4.17), it

follows that also the value of the boundary term itself must be independent of its position.

Hence,
∮
∂M B is a conserved charge.

In appendices A and B, we have computed the value of the boundary term for anti-D3-

branes in the KS throat. This setup is captured by the above equations for the choice p = 3.

In order to evaluate the integrand (4.16), we have used the explicit solution found in [9],

which is valid at linear order in the number of anti-branes N̄ and in the approximation

where the branes are partially smeared over the tip of the deformed conifold. However, if

we consider a boundary in the UV that is far enough away from the tip, corrections due

to the localisation of the anti-branes should be negligible in (4.16). Furthermore, if we

choose the number of anti-branes N̄ to be small compared to the units of D3-brane charge

induced by the fluxes, non-linear corrections in N̄ are expected to be suppressed in the

UV as well. Substituting the solution of [9] into our boundary term, we find that, up to a

volume factor, it equals the ADM mass of the solution, which was computed in [29]. Hence,

1

v

∮
∂M
B = M = 2e4ABPSN̄µ3 (4.21)

at first order in the number of anti-branes, where e4ABPS denotes the (finite) value of the

warp factor at the tip of the unperturbed KS background (i.e., the BPS solution without

any anti-D3-branes).8 Using this in (4.18), we observe that the ADM mass fixes the IR

boundary condition of α to

α0 = 2e4ABPS . (4.22)

Note that this confirms a conjecture made previously in [28] from the point of view of a

4D warped effective field theory analysis.

Under the assumptions discussed above, this then implies a singularity in the H3 energy

density. We should stress here that this conclusion does not only hold for the linearised,

partially smeared solution of [9]. Instead, the master equation (4.17), which relates the

boundary term to α0 and thus leads to the singularity, is valid for fully localised and

non-linearly backreacting anti-branes. We have only used the explicit solution of [9] to

verify that the boundary term is indeed non-zero in the solution with anti-branes. Since

we can put the boundary arbitrarily far away from the anti-branes, corrections due to the

linearisation or the partial smearing are expected to be small in
∮
∂M B, as we have argued

above. We therefore expect that the boundary term is non-zero also in the non-linear and

fully localised anti-brane solution.

8Here, M refers to the ADM mass normalised w.r.t. the BPS background.
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Moreover, we expect that this correspondence between the boundary term and the

ADM mass is not a coincidence but also holds for the other solutions in the class described

by our Ansatz. First, as discussed above, the fact that
∮
∂M B is constant for Λ = 0 suggests

that it equals a charge. Since that charge is the ADM mass for a specific example (i.e.,

KS), it is most likely related to the ADM mass for all examples. We have checked that this

is indeed the case for the (non-compact) anti-D6-brane models discussed in [17, 18, 24, 35].

Second, to compute the mass (energy) of a spacetime, one should use the ADM formalism,

which uses the bulk action and leaves out the explicit source actions. The energy of that

source can also be measured using the source action alone. This is a well-known result in

case backreaction can be ignored, because then one also finds

M = 2e4ABPSN̄µ3 (4.23)

by simply summing the DBI and WZ action of the probe. What our above re-

sult (4.15), (4.21) shows is that the on-shell source action equals the ADM mass even

when it is evaluated using the backreacted solution. In that case, the DBI term vanishes

since the warp factor vanishes at the anti-brane but the WZ term gives a finite contribution

since the gauge potential α is non-zero (in the gauge we fixed). Its non-zero value α0 is

then exactly such as to give the ADM mass.

4.3 The no-go theorem at T 6= 0

Let us now discuss the extension of the above arguments to the case of finite temperature.

Analogous to the T = 0 case, (4.15) then implies that the 3-form energy density has

singular terms at the horizon if the boundary term
∮
∂M B and the fields at the horizon

satisfy certain conditions. Let us at first list these conditions in detail:

1. Locally near the horizon, the metric coordinates can be split into coordinates along

the horizon and a normal coordinate r.9 The horizon r = r0 is characterised by a

coordinate singularity in the time and normal components of the metric with gtt =

−e2f , grr = e−2f g̃rr and e2f ∼ r − r0 (at leading order) whereas all other fields

remain finite.

2. The variation of the fields A, f and φ along the horizon is negligible, i.e., A = A(r),

f = f(r), φ = φ(r) near the horizon.

3. The form fields and the metric satisfy the Ansatz described in section 4.1.

4. The component of F6−p with all legs along the horizon is non-vanishing.

5. The boundary term satisfies

1

v

∮
∂MUV

B = c(M0, T )− 2

p+ 1
TS, (4.24)

9The normal coordinate r is not necessarily the radial coordinate in the transverse space. For partially

smeared anti-D3-branes in KS, for example, the horizon is expected to be a surface of constant τ [38].
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where M0 is the value of the ADM mass at T = 0, S is the entropy associated to

the black hole horizon and c(M0, T ) is an analytic function of T , which is identically

zero for M0 = 0 but non-trivial otherwise.

The first two assumptions are motivated by the usual behaviour of black holes and black

branes, while assumptions three and four are due to the specific setups we are interested

in, i.e., anti-D3-branes in KT and KS as well as their (p+ 1)-dimensional generalisations.

The last assumption will be discussed below in more detail, where we will argue that it is

the natural generalisation of our previous result that the boundary term is proportional to

the ADM mass at T = 0.

Under the above conditions, we can derive a no-go theorem from (4.15) as follows.

As discussed above, we now choose the integration space in (4.15) such that it has two

boundaries, one far away from the anti-branes and the second one near the horizon. Since

there are no source terms in the enclosed region, (4.15) then simply equates the boundary

term at the horizon to the one in the UV,∮
∂Mhorizon

B =

∮
∂MUV

B. (4.25)

With ef → 0 and A = A(r), φ = φ(r), the integrand (4.16) of the boundary term at the

horizon reduces to

B|horizon = − 2

p− 1
?̃p+11 ∧ [ασ(F8−p) +B2 ∧X6−p]−

4

p+ 1
?10 df, (4.26)

where we also used that Cp+1 = ?̃p+1α.

The last term on the right-hand side of the above equation is determined by the

behaviour of the blackening factor at the horizon and is expected to be proportional to the

temperature and the entropy of the black hole. This can be verified for a general black

hole using the standard Euclidean path integral formalism, with the result

− 1

v

∮
∂Mhorizon

?10df = −1

2
TS. (4.27)

Note that this follows only from the local form of f(r) near the horizon and is independent

of whether the black hole carries anti-Dp-brane charge or not. Together with (4.24)–(4.26),

one then finds

− 1

v

2

p− 1

∮
∂Mhorizon

?̃p+11 ∧ [ασ(F8−p) +B2 ∧X6−p] = c(M0, T ). (4.28)

Hence, whenever c(M0, T ) is non-zero, α and X6−p cannot vanish simultaneously at the

horizon. This then implies that singular terms appear in the H3 energy density, which

diverge at least as bad as

e−φ|H3|2 ∼ e−2(p+1)A−2f+φ|αF6−p +X6−p|2 ∼ e−2f , (4.29)

where we used the assumption that F6−p has a non-vanishing component with all legs

along the horizon and that the metric diverges as stated above. For p = 3, this reproduces
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the singular density (2.11) we derived for anti-D3-branes in the KT background using a

different technique. The advantage of the present formulation is that it is valid for a more

general class of setups, including anti-D3-branes in KS.

A crucial step in the above argument is assumption (4.24) for the general form of the

boundary term at finite T . Let us therefore motivate this assumption by comparing our

general equations with explicit solutions in the literature. For concreteness, we will again

focus on the special case p = 3 as in the previous section, i.e., anti-D3-branes in the KT

or KS background. In [43], the authors constructed black hole solutions with positive D3-

brane charge in the KT background. In the limit T → 0, these solutions reduce to BPS

solutions with extremal D3-branes (and no anti-D3-branes) and therefore have M0 = 0.

Substituting the ansatz of [43] into (4.16), we find10

1

v

∮
∂Mhorizon

B =
1

v

∮
∂MUV

B = −1

2
TS. (4.30)

One can furthermore verify that (4.27) is satisfied in these solutions. Together with our

earlier result (4.21) for anti-D3-branes in KS at T = 0, this is sufficient to infer some

general statements about the boundary term for arbitrary M0 and T .

First, one might have guessed that a natural generalisation of the results of section 4.2

is that, at finite T , the boundary term is related to a thermodynamical observable such

as the internal energy or the free energy. The above expression shows that this is not the

case: neither the internal energy nor the free energy are proportional to TS in the solutions

of [43]. Second, comparing (4.30), which is valid for M0 = 0, T 6= 0, with (4.21), which

is valid for M0 6= 0, T = 0, it is straightforward to write down a general ansatz for the

boundary term for arbitrary M0 and T . Assuming that the form of the boundary term is

universal, we can write
1

v

∮
∂MUV

B = c(M0, T )− 1

2
TS (4.31)

with c(0, T ) = 0 and c(M0, 0) = M0. This indeed agrees with condition (4.24) for the

special case p = 3.

An important question is whether, for general M0 and T , the function c(M0, T ) could

be such that the above no-go theorem is evaded when enough temperature is turned on.

This would require that c(M0, T ) is zero above some critical temperature Tcrit for all tem-

peratures T > Tcrit. However, if c(M0, T ) is analytic in T , this can only happen if it is

identically zero. Since c(M0, 0) = M0, this is not the case for all solutions with M0 6= 0, i.e.,

those that carry anti-D3-brane charge at the horizon. Accordingly, the flux singularities of

these solutions are not cloaked at any temperature. This conclusion is independent of the

explicit form of c(M0, T ) in terms of M0 and T .11 For black hole solutions with positive

10It was observed in [43] that TS is a renormalisation group flow invariant in their class of solutions, i.e.,

it is independent of the radial coordinate. This fits nicely together with our earlier remark that the value

of the boundary term for Λ = 0 is independent of the position of the boundary.
11As an illustration, consider the simple example c(M0, T ) = M0 (1− T/Tcrit). This is zero at T = Tcrit

such that the no-go theorem would be evaded at that temperature. However, the singularity would reappear

for any temperature T > Tcrit and is therefore not cloaked by the black hole horizon.
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D3-brane charge, on the other hand, we have M0 = 0. Since c(0, T ) is identically zero, we

do then not expect any flux singularities to appear. Indeed, one can explicitly check that

the H3 energy density is regular at the horizon in the solutions of [43].

A possible way to evade our no-go theorem would be to relax the assumption that

c(M0, T ) is analytic in T . One can then easily find examples of piecewise-defined functions

that are non-zero below Tcrit but zero for all higher temperatures such that the flux sin-

gularity would be cloaked for T > Tcrit. It is not clear to us whether such a behaviour

is physically reasonable since c(M0, T ) can be obtained by integrating fields over a UV

boundary far away from the horizon. On the other hand, we cannot exclude that, e.g., a

phase transition could yield a non-analytic c(M0, T ). We leave a detailed analysis of this

question for future work. Let us note, however, that our alternative no-go in section 2 for

anti-D3-branes in KT and the numerical results of [38] for anti-D3-branes in KS and KT

suggest that flux singularities are not resolved this way.

As we pointed out in section 3, another caveat is that several singular terms in (4.29)

might conspire to cancel each other out at the horizon. In contrast to the T = 0 case, there

are not many explicit results available for anti-brane solutions at finite T such that it is

difficult to judge whether such a cancellation should be expected or not. In the numerical

studies of [38], this was not the case for partially smeared anti-D3-branes in KS, and the

H3 energy density was indeed found to be singular at the horizon. While our analytic

arguments are in agreement with this result, we cannot exclude that configurations could

exist in which a resolution of the singularity happens at finite T via such a mechanism.

4.4 The no-go theorem for Λ 6= 0

Finally, we consider what happens if Λ 6= 0, where we specialise to the case T = 0 for

simplicity. The reasoning here is slightly different from what was done for compact models

at T = 0 in section 3. In a non-compact model, the (p + 1)-dimensional cosmological

constant is not constrained by the integrated Einstein equations. Contrary to a compact

setting, it is therefore not necessarily related to the energy density of uplifting terms such

as anti-branes but simply a parameter that can be chosen freely.

Adding a cosmological constant term to the equations of motion yields an extra amount

of energy density, which is distributed over the whole transverse space (weighted with a

warp factor). The master equation (4.15) then receives an extra contribution from the total

energy due to Λ, which depends on the integration volume. Thus, the value of the boundary

term is not independent of the position of the boundary anymore. It follows from (4.15),

however, that the boundary term and the Λ term taken together are still a conserved

quantity, which suggests that they now measure the contribution of the anti-brane to the

total energy. We leave an explicit derivation of the boundary term for setups with non-zero

Λ for future work. We can however conclude that the absence of the singularity requires

a precise cancellation between the boundary term and the cosmological constant in (4.15).

Our above interpretation suggests that such a cancellation does not happen in the presence

of anti-branes at the tip. This is in line with numerical results of [39].
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5 Discussion

The main result of our paper can be summarised by equations (4.15), (4.21) and (4.31).

These equations demonstrate that, under certain assumptions, anti-branes in warped

throats necessarily have a singular 3-form energy density at both zero and finite tem-

perature. This result did not rely on numerics, on smearing branes or on using a specific

geometry. It is therefore important to highlight the assumptions we did use.

First, we have assumed an Ansatz (4.1), (4.3), (4.4), (4.5) for the metric and the form

fields that captures a large class of setups including anti-D3-branes in KS but might be

evaded by more complicated flux backgrounds that do not fall into this class (e.g., due

to the presence of additional topological fluxes). We also made assumptions on the near-

brane behaviour of some of the fields that are well-motivated by known brane and black

hole solutions but might in principle be evaded.

Second, our no-go theorem requires that the boundary term
∮
∂M B is non-zero. One

of the key results of this paper is that the boundary term equals the ADM mass at T = 0

for the case of anti-branes in the KS geometry. This leads us to conjecture that, at finite

T , the boundary term is given by the general expression (4.31), where we leave an explicit

derivation of the function c(M0, T ) for future work.

Apart from the above caveats, our arguments rule out the existence of regular solutions

for anti-D3-branes in KT and anti-D3-branes smeared over the tip in KS. Hence, our

analytic results confirm the numerical results in [38]. As explained above, it is furthermore

reasonable to assume that our Ansatz captures localised anti-branes in KS as well (see

also [13]). Our Ansatz and the assumptions we made are however not limited to only these

cases with specific IR regions, that is anti-D3-branes in KT or KS, smeared or localised.

Any IR region compatible with our assumptions are affected by our no-go. Our results

thus have three possible interpretations: either 1) the Gubser criterium [37] fails, or 2) the

anti-brane backgrounds are pathological and one does not expect a resolution to occur, or

3) the resolved solutions evade one of our assumptions.
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A Boundary term and ADM mass in KS

In what follows, we look in more detail at the solution of [9] describing partially smeared

anti-D3-branes at T = 0 at the tip of the KS throat. This example serves to illustrate

some of the general statements we make in the main text regarding the boundary term

when Λ = 0.
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A.1 The boundary term

The Ansatz is

ds210 = e2A+2p−xds21,3 + e−6p−xdτ2 + ex+y
(
g21 + g22

)
+ ex−y

(
g23 + g24

)
+ e−6p−xg25 ,

H3 =
1

2
(k − f) g5 ∧ (g1 ∧ g3 + g2 ∧ g4) + dτ ∧

(
f ′g1 ∧ g2 + k′g3 ∧ g4

)
,

F3 = Fg1 ∧ g2 ∧ g5 + (2P − F ) g3 ∧ g4 ∧ g5 + F ′dτ ∧ (g1 ∧ g3 + g2 ∧ g4) ,

φ = φ (τ) ,

C0 = 0 , (A.1)

where A, p, x, y, k, f, F are functions of τ and P is a constant. This Ansatz reduces to the

KT Ansatz for the choice y = 0, F = P and k = f [44]. We have borrowed the notation

from [9], which implies that the symbol p does not denote the dimension of the brane

anymore and f does not relate to the blackening factor of equation (4.1). In addition, let

us write (as in [13])

C4 = ?̃4α ,

F5 = − (1 + ?10) e−4Ã ?6 dα , (A.2)

where we use Ã to distinguish it from the function A. Ã is precisely the function associated

to the warp factor of the external coordinates: e4Ã?̃41 = ?41, or

Ã = A+ p− 1

2
x. (A.3)

We now follow (4.5) and write

H3 = eφ−4Ã ?6 (αF3 +X3) . (A.4)

The form X3 can be found explicitly:

X3 =

[
e−φ+4A+4p−2x

(
k − f

2

)
− αF ′

]
dτ ∧ (g1 ∧ g3 + g2 ∧ g4) (A.5)

+
[
e−φ+4A+4p−2x+2yk′ − αF

]
g1 ∧ g2 ∧ g5

+
[
e−φ+4A+4p−2x−2yf ′ − α (2P − F )

]
g3 ∧ g4 ∧ g5 .

From the closure of X3, we can derive that

α = λe4A+4p−2x + a0 , where λ =
1

2P

(
f ′e−2y + k′e2y

)
e−φ (A.6)

and a0 is a constant, which we take zero from now on as a gauge choice. This can then be

used to rewrite X3 as

X3 = dω2 (A.7)
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with

ω2 =

[
1

2

(
k′e2y − f ′e−2y

)
e−φ+4A+4p−2x − αF + Pα

]
(g1 ∧ g3 + g2 ∧ g4) . (A.8)

We also have

H3 = d [fg1 ∧ g2 + kg3 ∧ g4] (A.9)

and, as a consequence, H3 ∧ X3 = −d [(dB2) ∧ ω2]. This means that the contribution in

the master equation −?̃41 ∧ H3 ∧ X3 = d [?̃41 ∧ (dB2) ∧ ω2] adds as a boundary term as

in (4.14). The complete integrand in the boundary term is then

dB = e−4A−4p+2x
(
∇m∂me4A+4p−2x)?10 1−∇2φ?10 1−d [C4 ∧ F5]− ?̃41∧H3∧X3. (A.10)

Writing the boundary term explicitly in our Ansatz, we find

1

2κ210

∮
B =

1

2κ210

∫
b ?̃41 ∧ g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5, (A.11)

where we restored the constant 2κ210 and

b = e4A+4p (4A+ 4p− 2x− φ)′ − e−4A−4p+4xα′α (A.12)

− (k − f)

[
1

2

(
k′e2y − f ′e−2y

)
e−φ+4A+4p−2x − αF + Pα

]
.

A.2 The ADM mass

The ADM mass M of the solution of [9] was computed in [29]. The general expression in

terms of the fields defined in (A.1) is

M = − 48

(2π)4α′4
m, m = e4A+4pA′ − W

3
, (A.13)

where the superpotential

W = e4A−2p−2x +
1

2
e4A+4p+y +

1

2
e4A+4p−y +

1

2
e4A+4p−2x [f0 (2P − F0) + k0F0] (A.14)

acts as a normalisation of M to provide a finite result.

B Evaluation of boundary term and ADM mass

B.1 The boundary term

Let us consider a first order perturbation around the KS solution as in [9] and compare the

boundary term and the ADM mass. All the following expressions should be understood to
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be valid up to O
(
N̄2
)
, where N̄ is the number of anti-branes. We then write

A = A0 + N̄A1, (B.1)

p = p0 + N̄p1, (B.2)

x = x0 + N̄x1, (B.3)

y = y0 + N̄y1, (B.4)

k = k0 + N̄k1, (B.5)

f = f0 + N̄f1, (B.6)

F = F0 + N̄F1, (B.7)

φ = φ0 + N̄φ1. (B.8)

Note that our notation is such that N̄ appears explicitly in all the expressions. Similarly,

we may write

λ = λ0 + N̄λ1 = −1 + N̄λ1 , (B.9)

α = α0 + N̄α1 , (B.10)

e4A+4p−2x = −α0 + N̄v41 , (B.11)

1

2

[
k′e2y − f ′e−2y

]
= P − F0 + N̄

[
1

2

(
k′1e

2y0 − f ′1e−2y0
)
− 2y1P

]
, (B.12)

where

λ1 = φ1 +
1

2P

[
f ′1e
−2y0 + k′1e

2y0
]

+ 2y1 −
2

P
y1F0 , (B.13)

α1 = −α0λ1 + α0 (4A1 + 4p1 − 2x1) , (B.14)

v41 = −α0 (4A1 + 4p1 − 2x1) = −α1 − α0λ1. (B.15)

To proceed, we make use of some zeroth-order relations that are given in appendix C. Up

to this order, one finds

b = N̄b1, (B.16)

m = N̄m1, (B.17)

with

b1
α0

= 2λ1 [f0 (2P − F0) + k0F0] + e2x0
(
φ′1 − λ′1

)
− (k0 − f0)

[
F0 (λ1 − φ1 + 2y1)− F1 − k′1e2y0

]
, (B.18)

m1

α0
= −2x1e

2x0A′0 − e2x0A′1 − 2p1e
−6p0 +

1

6
(2x1 + y1) e2x0+y0

+
1

6
(2x1 − y1) e2x0−y0 +

1

6
[f1 (2P − F0)− f0F1 + k0F1 + k1F0] . (B.19)
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Both of these expressions can be further simplified. The relations in the appendices A and

B of [44] provide us with explicit expressions for the derivatives of first order corrections to

the functions. Again, one important remark about conventions is that in [44] (as in most

of the previous work) the first order variations of the functions are defined by including

the factor of N̄ . For instance, the functions φ̃′i in equations (113), (117) and (118) of [44]

correspond to

φ̃′8 = N̄φ′1 , (B.20)

φ̃′5 = N̄f ′1 , (B.21)

φ̃′6 = N̄k′1 (B.22)

in terms of our definition for the first order perturbations. With these equations, we find

N̄λ1 =
2

Pα0
ξ̃5 , (B.23)

N̄k′1e
2y0 = 2y1F0 − F0φ1 − F1 +

2

α0

(
ξ̃5 − ξ̃6

)
, (B.24)

N̄φ′1 = 4
e−2x0

α0
ξ̃8. (B.25)

In addition, we make use of equations (107) and (121) in [44] to write

ξ̃′5 = −1

3
Pe−2x0h(τ)X1, (B.26)

where h(τ) = e−4A0−4p0+2x0 . Putting all this together, we find for the boundary term

N̄b1 =
2

P
[f0 (2P − F0) + k0F0] ξ̃5 + 4ξ̃8 +

2

3
X1h(τ) + 2 (k0 − f0)

[
ξ̃5

(
1− F0

P

)
− ξ̃6

]
= 4ξ̃8 + 2 (k0 + f0) ξ̃5 + 2 (f0 − k0) ξ̃6 +

2

3
X1h(τ). (B.27)

With equation (31) in [45] for ξ̃8, we find

N̄b1 = 4X8 = X4 =
π

2h(0)
N̄ . (B.28)

Using 2κ210 = (2π)7α′4 (the constant α′ should not be confused with ∂τα) and∫
g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5 = 64π3 , (B.29)∫

?̃41 ≡ v, (B.30)

we finally find
1

2κ210

∮
B =

8

(2π)4α′4
vX4 +O

(
N̄2
)
. (B.31)
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B.2 The ADM mass

We can use the same treatment for the ADM mass at first order in N̄ . Equations (116)

and (120) in [44] give

N̄e2x0A′1 =
e2x0

3

(
φ̃′4 − φ̃′1

)
=

X4

6α0
− 2e−6p0p1 +

1

6

(
e2x0+y0 − e2x0−y0

)
y1

+
1

6
[f1 (2P − F0)− f0F1 + k0F1 + k1F0] (B.32)

+2x1

{
−1

6
[f0 (2P − F0) + k0F0]−

1

3
e−6p0

}
.

With this, we find for the ADM mass

N̄m1 = −1

6
X4−2α0x1

{
e2x0A′0 −

1

3
e−6p0− 1

6
e2x0+y0− 1

6
e2x0−y0− 1

6
[f0 (2P − F0)+ k0F0]

}
,

(B.33)

which, using the zeroth-order information, becomes

N̄m1 = −1

6
X4. (B.34)

We find, in agreement with [29], that the ADM mass is given by

M = − 48

(2π)4α′4

[
e4A+4pA′ − W

3

]
=

8

(2π)4α′4
X4 +O

(
N̄2
)
. (B.35)

Implementing the UV expansions in [44] with Q = 0 leads to the same results with τ →∞.

Hence, we see that the boundary term (B.31) and the ADM mass (B.35) coincide (up to a

volume factor v).

C Conventions and useful equations

For the equations of motion of IIA/IIB SUGRA, we follow the conventions of [26]. The

duality relations between the field strengths are

e
5−n
2
φFn = ?10 σ (F10−n) , (C.1)

and we take

δ9−p = σ (?9−p1) δ (Σ) , (C.2)

where the operator σ interchanges the indices or, equivalently, acts as

σ (A) = (−1)
n(n−1)

2 A , (C.3)

with A an n-form.

We use the following conventions for the Hodge operator:

(?10A) ∧A = |A|2 ?10 1 =
1

n!
Aµ1...µnA

µ1...µn ?10 1 . (C.4)
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We also make repetitive use of

?10 (An ∧Bm) = (−1)n(9−p−m) ?p+1 An ∧ ?9−pBm (C.5)

and

?10 ?10An = (−1)n(10−n)+1An , (C.6)

where An and Bm are n- and m-forms in the (p+ 1)-dimensional worldvolume and (9− p)-
dimensional transversal spaces, respectively.

The 1-forms used in the KS ansatz (A.1) satisfy

?6 (g1 ∧ g2 ∧ g5) = e−2ydτ ∧ g3 ∧ g4 ,
?6 (g3 ∧ g4 ∧ g5) = e2ydτ ∧ g1 ∧ g2 ,

?6 [(g1 ∧ g3 + g2 ∧ g4) ∧ g5] = −dτ ∧ (g1 ∧ g3 + g2 ∧ g4) (C.7)

and

dτ ∧ (g1 ∧ g3 + g2 ∧ g4) ∧ (g1 ∧ g3 + g2 ∧ g4) ∧ g5 = −2?̃6 . (C.8)

Useful differentiation rules are

d (g1 ∧ g3 + g2 ∧ g4) = (g1 ∧ g2 − g3 ∧ g4) ∧ g5 ,

d (g1 ∧ g2 ∧ g5) = d (g3 ∧ g4 ∧ g5) = 0 ,

d (g1 ∧ g2) = −1

2
(g1 ∧ g3 + g2 ∧ g4) ∧ g5 ,

d (g3 ∧ g4) =
1

2
(g1 ∧ g3 + g2 ∧ g4) ∧ g5 . (C.9)

Some useful formulas at zeroth order in N̄ are

φ0 = 0 ,

λ0 =
1

2P

[
k′0e

2y0 + f ′0e
−2y0] = −1 ,

α0 = −e4A0+4p0−2x0 = − 1

h(τ)
,

α′0 = e4A0+4p0−4x0 [f0 (2P − F0) + k0F0]

= −e−2x0α0 [f0 (2P − F0) + k0F0] ,

α′0 = α0

(
4A′0 + 4p′0 − 2x′0

)
,

1

2P

[
k′0e

2y0 − f ′0e−2y0
]

= 1− F0

P
, (C.10)

0 = e2x0A′0−
1

3
e−6p0− 1

6
e2x0+y0− 1

6
e2x0−y0− 1

6
[f0 (2P−F0)+k0F0] .
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