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Abstract: In a recent article, we have shown how quantum fluctuations of the background

geometry modify Hawking’s density matrix for black hole (BH) radiation. Hawking’s di-

agonal matrix picks up small off-diagonal elements whose influence becomes larger with

the number of emitted particles. We have calculated the “time-of-first-bit”, when the first

bit of information comes out of the BH, and the “transparency time”, when the rate of

information release becomes order unity. We have found that the transparency time is

equal to the “Page time”, when the BH has lost half of its initial entropy to the radiation,

in agreement with Page’s results. Here, we improve our previous calculation by keeping

track of the time of emission of the Hawking particles and their back-reaction on the BH.

Our analysis reveals a new time scale, the radiation “coherence time”, which is equal to

the geometric mean of the evaporation time and the light crossing time. We find, as for our

previous treatment, that the time-of-first-bit is equal to the coherence time, which is much

shorter than the Page time. But the transparency time is now much later than the Page

time, just one coherence time before the end of evaporation. Close to the end, when the

BH is parametrically of Planckian dimensions but still large, the coherence time becomes

parametrically equal to the evaporation time, thus allowing the radiation to purify. We also

determine the time dependence of the entanglement entropy of the early and late-emitted

radiation. This entropy is small during most of the lifetime of the BH, but our qualitative

analysis suggests that it becomes parametrically maximal near the end of evaporation.
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1 Introduction

That black holes (BHs) radiate thermally was a remarkable finding [1–5] but has also lead to

some infamous puzzles. For instance, an initially pure state of matter can collapse to form

a BH and eventually evaporate into a mixed state of thermal radiation. This is in direct

conflict with quantum mechanics, which postulates a unitary time evolution and so forbids

a pure state from evolving into a mixed one. This is, in essence, the BH information-loss

paradox [6]. (For reviews, see [7–11].)

Over the years, a myriad of explanations has been suggested on how this tenuous situ-

ation gets resolved. Initially, Hawking thought that the laws of quantum mechanics have to

be changed. Others have sometimes claimed that a theory more fundamental than general
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relativity, such as string theory, or some exotic new physics, such as highly entropic rem-

nants, is needed to resolve the matter. However, strong circumstantial evidence has been

gathered, indicating that general relativity and ordinary quantum mechanics are sufficient

for consistently describing the process of BH evaporation. In particular, the quantum-

information treatments of Page [12, 13] and then of Hayden and Preskill [14] demonstrate

that a slowly burning matter system — be it the complete works of Shakespeare or a

Schwarzschild BH — must emit all of its information by the end of evaporation. Conse-

quently, a thermal mixed state cannot be the final product. Once this logic is accepted,

the challenge then becomes to identify what is still missing from the standard treatments;

namely, the information-release mechanism that is responsible for restoring unitarity by

the end of the BH evaporation. The review articles [7–11] contain further discussion of the

issues concerning the BH information paradox.

In [15], it was proposed that the origin of the BH information paradox is the use of

a strictly classical geometry for the BH. (See [16–21] for overlapping ideas.) It was also

argued that the leading semiclassical corrections that account for the quantum fluctuations

of the background geometry should be taken into account by assigning a wavefunction

to the BH. The contention was that the parameter which controls the strength of the

semiclassical corrections is the ratio of the Compton wavelength of the BH λBH = ~/MBH

to its radial size RS . In [22], we have proposed a concrete scheme for evaluating the

semiclassical corrections using the wavefunction of [15, 23]. The parameter that controls

the strength of the semiclassical corrections was denoted by CBH and determined more

precisely, CBH = 1/SBH = λBH
2π /RS .

We have, in a recent article [24], gone on to apply this idea to the calculation of the

Hawking radiation. There, Hawking’s calculation was repeated but with one additional

input: the assignment of a Gaussian wavefunction to the collapsing shell of matter. The

main distinction between our treatment and Hawking’s is the introduction of a new scale,

the width of the wavefunction. On the basis of the Bohr correspondence principle [15, 23],

this width should be Planckian.

After computing the appropriate expectation values, we obtained a picture that is

different than that found by Hawking and consistent with Page’s. Most pertinently, Hawk-

ing’s density matrix for the BH radiation is strictly diagonal whereas our matrix contains

small off-diagonal elements of order
√
~ in the same basis. The effect of these elements on

the eigenvalues of the matrix is initially small but, as the number N of emitted particles

grows, so does the changes to the eigenvalues. The parameter that controls these changes

to the matrix was found to be NCBH.

We have calculated the time when the rate of information release becomes of order

unity. This “transparency time” ttrans was found to coincide with the time when NCBH =

1 , which is, in turn, the same as the “Page time” when the BH has lost half of its

initial entropy to the radiation. Hence, this result is in agreement with the analysis of

Page [12, 13].

We have also calculated the “time-of-first-bit” t1bit, when the first bit of information

comes out of the BH. This occurs when N2CBH = 1 , which is much earlier than the Page

time and apparently in disagreement with Page’s calculation. However, we have tracked the

information in the correlations between the shell and radiation as well as in the radiation
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subsystem. Page, on the other hand, tracked only the latter, which is an exponentially

suppressed quantity until after the transparency time.

To keep the calculations in [24] as simple as possible, we have ignored the fact that

the Hawking particles are emitted over a time scale spanning the lifetime of the BH. In

effect, we were assuming that all the Hawking particles are being emitted coherently. Here,

we will improve upon our previous calculation by keeping track of the time of emission

of the Hawking particles and their back-reaction on the BH. Our analysis reveals a new

time scale — the radiation coherence time tcoh = R2
S/lp — which is the geometric

mean of the evaporation time R3
S/l

2
p and the light crossing time RS . The number of

coherent Hawking particles Ncoh that is emitted during this time is typically given by

Ncoh = 1/
√
CBH =

√
SBH . This estimate for Ncoh is valid during most of the lifetime of

the BH but gets modified at the last stages of evaporation (see below).

What we find is that the Page time splits into two: the time-of-first-bit is the same as

found before: much earlier than the Page time. It can now be identified with the coherence

time, t1bit = tcoh . On the other hand, the transparency time turns out to be much later

than the Page time. This phase now transpires at one coherence time before the time of

final evaporation, tfinal − ttrans = tcoh , which happens when NcohCBH = 1 , so that

NcohCBH now replaces NCBH as the parameter controlling the corrections to Hawking’s

diagonal density matrix.

Let us explain the origin of the main difference between our picture of BH evaporation

and Hawking’s. The advanced time of particle emission and the frequency of the emitted

particle are conjugate variables. In our description, this translates (as in eq. (A.7) of the

appendix) into the following conjugate pair: the dimensionless frequency ω and CBH∆N ,

where ∆N is the number of particle emissions that have occurred since the time of emission

of some specific particle. The width in CBH∆N is therefore determined by the inverse of

the width in ω. In Hawking’s calculation, the canonical relation between ω and ∆N does

not exist because CBH vanishes. Consequently, the widths in both ω and ∆N vanish (i.e.,

they are controlled by delta functions). However, for our Gaussian wavefunction, the width

in ω is proportional to C
−1/2
BH (cf, eq. (2.10)). For ∆N , the width is determined by the

inverse of the width in ω, and so it is proportional to C
1/2
BH /CBH = C

−1/2
BH . The width in

∆N then determines the coherence scale, Ncoh ∼ C
−1/2
BH .

The situation changes at the late stages of evaporation, although this era can only be

discussed in a qualitative way because our methods become less accurate for this region of

parameters. Here, the BH is parametrically nearing Planckian dimensions, but still large

and semiclassical, so that CBH is becoming larger and approaching order unity. It is clear

that the width of ω is decreasing and approaching unity but, somewhat surprisingly, the

width of ∆N is growing. To understand this unexpected result, note that the factor CBH in

the product CBH∆N is determined by the time of emission of the Hawking particle and is

small for most emitted particles. Therefore, Ncoh goes at the end as 1/CBH ∼ SBH ; where

the SBH means the BH entropy at an earlier epoch, so that Ncoh ≫ 1 . Based on this

qualitative analysis, it will be argued that, by this point in the evaporation, the entirety

of the emitted Hawking particles become coherent, Ncoh ∼ total number of particles.

Consequently, the radiation purifies at a high rate.
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The sequence by which the correlations between the emitted particles evolves now

becomes clear: always a delta function for Hawking since Ncoh = 1. While in our case,

first, a smoothed delta function when Ncoh ∼ 1/
√
CBH , followed by a theta function when

Ncoh ∼ 1/CBH .

Taking into account the time-dependent emissions, we are able to determine the evo-

lution of the entanglement between the early and late radiation. We find that this entan-

glement is initially very small but becomes significant at ttrans and then grows quickly to

be (parametrically) maximal when the radiation purifies.

The rest of the paper proceeds as follows: first, in section 2, we summarize our preced-

ing work [24]. This is essential for understanding the remainder, as we adopt this initial

framework and build up the analysis from there. Next, in section 3, we determine what is

the effect of time-dependent emissions and use this to better understand how the evapo-

ration process evolves. In section 4, a calculation of the trace of the square of the density

matrix enables us to analyze the rate of information transfer, to quantify the various time

scales and to qualitatively demonstrate that the radiation does indeed become purified by

the end. Then, in section 5, we calculate the entanglement entropy for the early- and

late-emitted radiation and qualitatively show that it becomes parametrically maximal at

late times. The paper concludes with a summary (section 6) and an appendix.

Recently, a modern interpretation of the information-loss paradox, known as the “fire-

wall” problem [25] (also see [9–11, 26, 27] for earlier versions and [28–45] for a sample of the

related literature). We find the current analysis to be an essential step toward a resolution

of this puzzle, but defer this discussion to future publications [46, 47].

2 Review of previous results on semiclassical corrections to Hawking

radiation

2.1 Conventions

We will now review our preceding paper [24], which the reader can refer to for an in-depth

discussion. This review will also serve to introduce notations and conventions that we will

use in the following sections.

We choose units such that Planck’s constant ~ and Newton’s constant G are explicit,

and all other fundamental constants are set to unity. In some instances, the Planck length

lp =
√
~G is used instead.

We assume a four-dimensional Schwarzschild BH (generalizations to higher dimensions

are straightforward) of large but finite mass MBH ≫
√
~/G , with the metric ds2 =

−(1− RS
r )dt2 + (1− RS

r )−1dr2 + dΩ2
2 . Here, RS = 2MBHG denotes the horizon radius.

We use a dimensionless advanced-time coordinate v = 1
RS

(t+ r∗) , where r∗ =∫ r
dr
√
−gttgrr = r+RS ln(r−RS) . Thus, our frequencies are also dimensionless in units

of inverse Schwarzschild radius.

For a Schwarzschild BH, the values of its Hawking temperature and Bekenstein-

Hawking entropy are TH = ~

4πRS
and SBH =

πR2
S

~G .

– 4 –



J
H
E
P
0
2
(
2
0
1
4
)
1
1
6

A BH is often meant as shorthand for “a collapsing shell of matter that goes on to

form a BH”. Technically, in our calculations, all particles are emitted before the horizon

actually forms, as in Hawking’s original calculation.

2.2 Semiclassical density matrix

The objective of [24] was to calculate the modifications due to a fluctuating geometry to

Hawking’s thermal density matrix for the radiation emitted by a collapsing shell of matter.

As the geometry is sourced by the collapsing shell, we have assigned it a wavefunction,

Ψshell(Rshell)|Rshell→RS
= N−1/2e

− (Rshell−RS)
2

2CBHR2
S , (2.1)

where RS is the Schwarzschild radius of the incipient BH, Rshell is the radius of the shell,

N ≃ 4πR2
S

√
π~G is a normalization constant and CBH = S−1

BH is the aforementioned

“classicality” parameter. This form of BH wavefunction was first justified in [23] and then

further motivated in [15, 22, 24].

The classicality parameter CBH can be viewed as a dimensionless (scaled) ~ that evolves

in time, CBH = ~(t) . It is initially very small for a large BH but steadily grows as the

BH evaporates. In this sense, semiclassical corrections to observables can be expressed as

powers of this dimensionless ~.

For a discussion of BH radiation, it is more convenient to use the advanced time of the

shell vshell. The conversion to Ψshell(vshell) is made by observing that, in the near-horizon

limit, Rshell−RS
RS

≃ (v0 − vshell) , where v0 is the advanced time at which the shell crosses its

horizon. One can then compute the expectation value of a generic operator O as follows:

〈Ô(Rshell)〉 =
4π

N

∫ ∞

0
dRshell R

2
shell e

− (Rshell−RS)2

2σ2 O(Rshell) (2.2)

≃ 4πRS

N

∫ ∞

−∞
dvshell

[
R2

S + 2R2
S(v0 − vshell)

+R2
S(v0 − vshell)

]
e
− (v0−vshell)

2

CBH O(vshell) ,

where σ2 = R2
SCBH/2 = l2p/2π . Equation (2.2) is a particular case of our more general

prescription [15, 22], which amounts to applying the standard rules of quantum mechanics.

Hawking’s calculation [4, 5] relates the in-going modes with the out-going modes (the

Hawking particles) by a Bogolubov transformation,

Fω =

∫ ∞

0
dω′

(
αω′ωfω′ + βω′ωf

∗
ω′

)
. (2.3)

Here, Fω is an out-mode that has been traced back to past null infinity, fω′ = 1√
2π
eiω

′v is

a basis function for an in-mode and the α’s (β’s) are the positive-energy (negative-energy)

Bogolubov coefficients. Recall that, unlike Hawking (and unlike in [24]), we are using

dimensionless frequencies.

The Hawking single-particle density matrix for the out-modes can then be expressed as

ρH(ω, ω̃) = 〈0in|F ∗
ωFω̃|0in〉

=

∫ v0

−∞
dv

∫ ∞

0
dω′

∫ ∞

0
dω′′ β∗

ω′ωβω′′ω̃
eiv(ω

′−ω′′)

2π
, (2.4)

with |0in〉 denoting the vacuum annihilated by positive-frequency in-modes.
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Hawking used a procedure of ray tracing that exploited the geometric optics of the

modes to determine that

βω′ω ∝ 1

2π

∫ v0

−∞
dv eiω

′v e−i2ω ln(v0−v)

= Γ (1− i2ω)
(
iω′)−1+i2ω 1

2π
eiv0ω

′

. (2.5)

The logarithm in the top line takes into account the discontinuity in the phase of the modes

as they pass across the shell at an advanced time v close to v0. This phase discontinuity

turns out to be central to our findings.

As discussed in [24], only the Bogolubov coefficients are sensitive to the effects of the

fluctuating background geometry. Hence, applying our prescription (2.2), we obtain the

“semiclassical” density matrix,

ρSC(ω, ω̃) =

∫ v0

−∞
dv

∫ ∞

0
dω′

∫ ∞

0
dω′′〈Ψshell| β∗

ω′ω, SC βω′′ω̃, SC |Ψshell〉
eiv(ω

′−ω′′)

2π
. (2.6)

The “semiclassical” coefficients βω′′ω̃, SC are derived in the same way as Hawking does but

now take into account that the discontinuity in the phase depends on vshell rather than

on v0,

βω′ω, SC ∝ 1

2π

∫ vshell

−∞
dv eiω

′v e−i2ω ln(vshell−v)

= Γ (1− i2ω)
(
iω′)−1+i2ω 1

2π
eivshellω

′

. (2.7)

The v integral in eq. (2.6) can be expressed as a sum of a classical term and the leading

semiclassical correction. Denoting this integral as ISC = 1
2π

∫ v0
−∞ dv ei(v−vshell)(ω

′−ω′′) and

changing the variable to v′ = v − vshell , we have

ISC =
1

2π

∫ 0

−∞
dv′ eiv

′(ω′−ω′′) +
1

2π

∫ v0−vshell

0
dv′ eiv

′(ω′−ω′′)

≡ IC +∆ISC(CBH) . (2.8)

The integral on the left IC is a delta function δ(ω − ω′) and yields Hawking’s classical

result of a diagonal density matrix. The expectation value of the integral on the right

〈∆̂ISC(CBH)〉 leads to the off-diagonal elements.

The expectation value of interest then goes as

〈∆̂ISC(CBH)〉 =
4πR3

S

N

∫ ∞

−∞
dṽ

[
1 + 2ṽ + ṽ2

]
e
− ṽ2

CBH
1

2π

∫ ṽ

0
dv′ eiv

′(ω′−ω′′) , (2.9)

which was evaluated in [24] to leading order in CBH,

〈∆̂ISC(CBH)〉 =
1

2π
CBH e−

(ω′
−ω′′)2

4
CBH . (2.10)
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Substituting the full expressions for the Bogolubov coefficients [4, 5] into eq. (2.4), we

can write the semiclassical correction to Hawking’s matrix as

∆ρSC(ω, ω̃) =
t∗ωtω̃
(2π)3

CBH

(ωω̃)1/2
Γ (1 + i2ω) Γ(1− i2ω̃)e−π(ω+ω̃)

×
∫ ∞

0
dω′′

∫ ∞

0
dω′ e−

(ω′
−ω′′)2

4
CBH (ω′)−1/2−i2ω(ω′′)−1/2+i2ω̃ , (2.11)

where tω is the transmission coefficient through the gravitational barrier. These remaining

integrals can be computed analytically with some amount of effort. One caveat is a loga-

rithmic divergence on the line ω = ω′ . We have handled this by isolating the divergent

piece and then recognizing that this is just a small (order C
1/2
BH ) correction to the diagonal

matrix of Hawking.

The final result is an off-diagonal correction of magnitude C
1/2
BH to Hawking’s classi-

cal matrix,

∆ρSC(ω, ω̃ ;CBH) =
t∗ωtω̃
(2π)3

C
1/2
BH

2

(ωω̃)1/2

(
CBH

4

)+i2(ω−ω̃)

×Γ (1 + i2ω) Γ(1− i2ω̃) e−π(ω+ω̃) Γ

(
1

2
− i(ω − ω̃)

)
(2.12)

×
{
Γ (i2(ω − ω̃))

[
Γ
(
1
2 + i2ω̃

)

Γ
(
1
2 + i2ω

) +
Γ
(
1
2 − i2ω

)

Γ
(
1
2 − i2ω̃

)
]
+

i

ω − ω̃

}
,

which we will subsequently denote as C
1/2
BH∆ρOD (for off-diagonal).

Recall that Hawking’s classical matrix with dimensionless frequencies is given by

ρH(ω, ω̃) =
t∗ωtω̃

e4πω − 1
δ(ω − ω̃) . (2.13)

We will assume that the semiclassical matrix has been renormalized to give Tr ρH =∫
dω ρH(ω, ω) = 1 .

The next step in [24] was constructing a multi-particle density matrix for N identical,

independent particles. This, in effect, amounts to the assumption that all the particles are

coherent, so that the timing of their emissions does not affect the correlations among them.

This will be corrected later.

To keep the formulas as simple as possible, we chose one specific permutation for the

order of the N emitted particles. Hence, our multi-particle matrix consists of N × N

blocks: ρ
(N)
IJ (ω, ω̃) with I, J = 1, . . . , N and any of the N2 blocks is a matrix of the same

dimensionality as the single-particle density matrix. Each diagonal entry is the single-

particle Hawking matrix ρ
(N)
II = ρH(ω, ω̃) (plus subdominant semiclassical corrections)

and each off-diagonal element contains the semiclassical part ρ
(N)
I 6=J = C

1/2
BH∆ρOD(ω, ω̃) .

Each block is multiplied by a phase eΘIJ ( ΘIJ = −ΘJI ), but these are of no consequence

to our discussion.

Had we considered all the permutations of the N emitted particles, the matrix would

indeed contain (N !)2 ∼ e2N lnN blocks in agreement with the size of the Hilbert space

– 7 –
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which scales exponentially with N . The key point is that, although we retain only one

of the permutations, the ratio of the number of off-diagonal to diagonal elements is the

same as it is for the case when all the permutations are considered. We then correct for

the overall factor of N ! by multiplying the entropy and other quantities by lnN ! ∼ N .

Here and above, we use the Stirling approximation of N ! for large N . So, eventually, our

treatment is consistent with the standard treatments of the density matrix.

The normalized N -particle density matrix can then be expressed as

ρ
(N)
IJ (ω, ω̃) =

1

N
ρH(ω, ω̃)IN×N +

1

N
C

1/2
BH∆ρOD(ω, ω̃)/IN×N , (2.14)

where the symbol /IN×N denotes an N × N matrix of ones off the diagonal (up to the

implied phases) and zeros on it. This matrix can be used to track the information flowing

out of the BH.

2.3 Entropy and information

The von Neumann entropy per particle S
N = −Tr

[
ρ(N) ln ρ(N)

]
of the radiation1 can be

calculated perturbatively in the small parameter CBH. This calculation yields, to lead-

ing order,

S = SH

(
1− 1

2
K NCBH

)
. (2.15)

Here SH is the thermal entropy or, equivalently, the von Neumann entropy for the Hawking

diagonal matrix. The coefficient K =
Tr[(∆ρOD)2ρ−1

H ]
−Tr[ρH ln ρH ] is a positive numerical factor of

order one.

From eq. (2.15), it is possible to deduce that the parameter controlling the semiclassical

corrections is NCBH rather than CBH. This outcome is a consequence of having roughly

N times more off-diagonal elements than diagonal ones. So that, when NCBH = 1 , the

semiclassical corrections becomes large and one expects a significant change.

In [24], the back-reaction of the Hawking particles on the geometry was incorporated in

the following (incomplete) way: it was assumed that the BH radiates thermally as a black

body, which is clearly a good approximation during most of the lifetime of the BH. We

further assumed that the radiated particles carry an energy equal to TH , with the Hawking

temperature TH also taken to be time dependent. Then dN = dM dN
dM = − dM

TH(t) , which

can be integrated to give

N(t) = SBH(0)− SBH(t) (2.16)

and therefore, because CBH(t) = (SBH(t))
−1 ,

CBH(t) = [SBH(0)−N(t)]−1 . (2.17)

Also, since

SH(t) ≃ N(t) , (2.18)

it follows that SH(t) ≃ SBH(0)− SBH(t) .

1Alternatively, one can symmetrize the particles and use the normalization 1/N ! . In which case,

S = −Tr
[

ρ(N) ln ρ(N)
]

. The difference for large N is insignificant.
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As N(t) and CBH(t) are both monotonically increasing functions of time, their product

is growing and will eventually reach and then surpass unity. Indeed, the transition out of

the perturbative regime takes place at the Page time [12, 13], when the BH has lost half

of its initial entropy to radiation. This finding appears to substantiate Page’s claim that

this moment represents a tipping point in the evaporation process.

We have also looked in [24] at the rate of information flow. The information contained

in the radiation is defined in the standard way,

I(t) = SH(t)− S(t) =
K

2
SH(t)N(t)CBH(t)

≃ K

2

N(t)2

SBH(0)− SH(t)
, (2.19)

where eq. (2.18) has been applied (both here and below).

It follows that
dI

dSH
≃ K

2
[2 + CBHN ]CBHN , (2.20)

and so dI
dSH

is small (order CBH) before the Page time and of order unity at it. But, at

later times, the previous calculation formally breaks down.

We can use eqs. (2.19) and (2.20) to calculate t1bit and ttrans. Recall that t1bit is

defined to be the time when the first bit of information comes out of the BH. And so,

using eq. (2.19), we see that this happens when N ≃
√
SBH(0) , which is the same as the

coherence time. On the other hand, the transparency time ttrans occurs when dI/dSH = 1 .

From eq. (2.20), this transpires when NCBH ≃ 1 , which is indeed the Page time.

Another clue is found by looking at the purity of the density matrix,

P (ρ(N)) ≡
Tr

[(
ρ(N)

)2]

(
Tr ρ(N)

)2 ≃ 1

N
Tr ρ2H

(
1 +NCBH

Tr [∆ρOD]
2

Tr ρ2H

)
. (2.21)

The smallness of this ratio implies that the density matrix is still close to thermal, even at

the Page time. However, the Page time appears to be the moment when deviations from

thermality are starting to become significant, just as Page had asserted.

Inspecting the purity, one can see that the radiation is already close to pure when

CBH . 1 . Unlike the previous calculation of the information rate, which entailed expanding

out a logarithm, eq. (2.21) is reliable also for values of NCBH ≫ 1 provided that CBH < 1 .

Hence, we can conclude that the radiation does parametrically purify.

3 Time-dependent radiation density matrix

3.1 A model of time-dependent emission

We will now provide a more accurate account of the back-reaction of the emitted particles.

Let us begin by assigning a time-dependent wavefunction to the shell. Then both the mean

position of the shell and its width could, in principle, become time dependent. Specifically,

RS and CBH are now both functions of time,

Ψshell(Rshell)|Rshell→RS(t)
= N (t)−1/2e

− (Rshell−RS(t))2

2CBH(t)(RS(t))2 . (3.1)
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However, in this particular case, the width CBH(t) (RS(t))
2 = l2p/π is actually a constant.

What is required is the wavefunction in terms of v. For this, we use

v0 − vshell(t) ≃
1

RS(t)
(Rshell −RS(t)) . (3.2)

Here, the time dependence of vshell(t) is classical and due only to the classical time depen-

dence of RS(t).

The resulting wavefunction is

Ψshell(vshell(t))|vshell(t)→v0
= N (t)−1/2e

− (v0−vshell(t))
2

CBH(t) . (3.3)

For this parametrization, the width is time dependent.

It is more convenient to use the number of emitted particles N as our time coordinate

rather than t or v. The Stefan-Boltzmann law for black-body emission leads to N(t) =

SBH(0)
t2/3

τ2/3
, where τ = 640SBH(0)RS(0) is the BH lifetime. We will use NT to denote

the total number of particles emitted by a certain time, so that the multi-particle matrix

is now an NT ×NT block matrix. The time of emission of specific particles will be denoted

by N , N ′, etc. . Of course, N ≤ NT .

3.2 The time-dependent density matrix

We can further improve on the previous results by taking into consideration that the time of

emission differs for the different Hawking particles. In particular, the phase discontinuities

associated with the logarithm in eq. (2.5) depend on these emission times. This effect is

not relevant to the classical Hawking calculation but could be relevant to the phases of the

semiclassical β coefficients; cf, eq. (2.7). This is because the shell-crossing time vshell(t) is

different for different modes due to the shell continually depleting its mass; cf, eq. (3.2).

Now suppose that a given particle is emitted at “time” N ′ and another at N ′′. Then

the density matrix of eq. (2.6) should be replaced with

ρSC(ω, ω̃;NT ;N
′, N ′′) =

∫ v0

−∞
dv

∫ ∞

0
dω′

∫ ∞

0
dω′′ 1

2π
eiv(ω

′−ω′′)

×〈Ψshell(vshell(NT ))|β∗
ω′ω, SC(N

′)βω′′ω̃, SC(N
′′)|Ψshell(vshell(NT ))〉 . (3.4)

The density matrix depends on the three times N ′, N ′′ and NT . The width of the wave-

function at NT controls the fluctuations in vshell and is a property of the BH, while N ′

and N ′′ are the emission times of the specific particles and are intrinsic to the quantum

matter fields.

The N ′, N ′′ dependence enters only through the β’s,

βω,ω′, SC(N
′) ∼ eiω

′vshell(N
′) . (3.5)

The wavefunction, on the other hand, depends on NT , and so the density matrix depends

on additional phases that are missed when it is evaluated at a common time as in [24].
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In particular,

ρSC(ω, ω̃;NT ;N
′, N ′′) =

∫ v0

−∞
dv

∫ ∞

0
dω′

∫ ∞

0
dω′′ 1

2π
eiv(ω

′−ω′′)

×eiω
′(vshell(NT )−vshell(N

′))e−iω′′(vshell(NT )−vshell(N
′′))

×〈Ψshell(vshell(NT ))|β∗
ω′ω, SC(NT )βω′′ω̃, SC(NT )|Ψshell(vshell(NT ))〉 . (3.6)

The expectation value in the last line of eq. (3.6) is the same as that of time-independent

situation, so that the difference between the treatments is in the additional phase factors

in the second line. These phases can be re-expressed as

e−iω′
CBH(N′)

2
(NT−N ′) e−iω′′

CBH(N′′)

2
(NT−N ′′) . (3.7)

The details of the calculation leading to the phase factor (3.7) and the rest of the

evaluation of ρSC are relegated to the appendix. The final time-dependent result is rather

simple: an additional “suppression” factor multiplying the time-independent matrix of

eq. (2.12),

∆ρSC(ω, ω̃;NT ;N
′, N ′′) = D(NT ;N

′, N ′′)∆ρSC(ω, ω̃;CBH(NT )) . (3.8)

The suppression factor is given by

D(NT ;N
′, N ′′) =

1

2

(
e
− 1

4

[CBH(N′)(NT−N′)]2

CBH(NT ) + e
− 1

4

[CBH(N′′)(NT−N′′)]2

CBH(NT )

)
. (3.9)

The suppression factor tells us that the off-diagonal parts of the multi-particle matrix

are filled with many zeroes (actually, exponentially suppressed elements). This is different

from the Hawking matrix, for which all the off-diagonal elements are identically vanishing,

and it is also different from Page’s radiation matrix [12, 13], for which the elements are dis-

tributed randomly according to Levy’s principle. The physical reason for these differences

will be made clear in an upcoming article [47].

The expression in eq. (3.8) for the semiclassical correction to the Hawking density

matrix is limited in its validity to the region of parameter space when CBH(N
′)(NT −N ′),

CBH(N
′′)(NT −N ′′) are small. These factors are indeed small for most emitted particles.

They become order unity only when NT becomes of order SBH(0) and, additionally, the

differences NT −N ′, NT −N ′′ become of order SBH(0).

3.3 The coherence time

The semiclassical correction to the density matrix in eq. (3.8) now contains an extra sup-

pression factor. The contribution from a particle emitted at time N is

D(NT ;N) = e
− 1

4

[CBH(N)(NT−N)]2

CBH(NT ) , (3.10)

and so a new time scale appears,

Ncoh(NT ;N) =

√
CBH(NT )

CBH(N)
=

SBH(N)√
SBH(NT )

. (3.11)
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We have identified Ncoh(NT ;N) as the coherence scale for particle emissions. For

emissions that occurred near the time NT when the density matrix is being evaluated,

NT − N . Ncoh , the particles posses some degree of entanglement. On the contrary, for

earlier emissions, NT −N ≫ Ncoh , the emitted particles are disentangled.

In Schwarzschild time, this new scale is parametrically equal to the coherence time

tcoh =
R2

S

lp
. (3.12)

For instance, at the Page time, tcoh(tPage; tPage) = 640
√

π
2
R2

S(0)
lp

(
1 +O

[
C

1/2
BH (0)

])
.

The coherence scale is also the time that it takes the BH to emit order of
√
SBH

particles. Consider that

Ncoh(NT ;N) =
SBH(0)−N√
SBH(0)−NT

=
√
SBH(0)

[
1− N − 1

2NT

SBH(0)
+ · · ·

]
, (3.13)

where the dots stand for terms that are higher order in NT
SBH(0) . The point being that, as long

as N is close to NT , the corrections are subleading and Ncoh(NT ;N) ≃
√
SBH(0) follows.

This new timescale Ncoh (or tcoh) is the central result of our paper. We use it in an

extensive way in the following analysis and the rest of our results depend crucially on its

existence. The appearance of tcoh in our formalism is quite natural for the following reason.

Let us consider the time over which the wavefunction Ψshell changes significantly. An

inspection of eq. (2.1) indicates that this happens when the Schwarzschild radius shrinks

by an amount ∆RS ∼ −√
CBHRS ∼ −lp . Then, since ∆RS = ∂RS

∂t ∆t ∼ − l2p
R2

S
∆t , it

follows that ∆t ∼ R2
S
lp

= tcoh . Hence, the coherence time means the interval over which the

overlap of the wavefunction at different times becomes small. The fact that Ncoh ≪ SBH

(tcoh ≪ τBH) can be attributed to the width of the wavefunction being much smaller than

the Schwarzschild radius or, equivalently, to the BH being semiclassical, CBH ≪ 1 .

3.4 A simplified qualitative description of BH evaporation

Let us start at time NT = 0 and follow the evaporation for one interval of the coherence

time, N (0) ≡ Ncoh(0; 0) =
√
SBH(0) . This will define a block of size

√
SBH(0)×

√
SBH(0)

in the multi-particle matrix. We then start the clock over at time NT = N (0) and pretend

that this is a newly born BH of smaller size (the original BH minus the first block). We again

follow the evaporation for a time set by the coherence scale, but with the scale now deter-

mined by this smaller-sized BH. That is, N (1) ≡ Ncoh(N
(0);N (0)) =

√
SBH(N (0)) . Then,

by continually repeating this process, we can parse the matrix into about NT /
√

SBH(0)

blocks (strips) that are roughly of size
√
SBH(0) (although each additional block is slightly

smaller than the previous one).

The difference between Hawking’s original description of BH evaporation and ours

is that, for Hawking’s picture, there are NT blocks of size 1, as each emitted particle

is independent of all the other particles. Conversely, for our previous time-independent

treatment, there is a single block of size NT ×NT .
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To a good approximation, each block can be viewed as the evolution of a newly born

BH for its coherent time scale, as the regions of the density matrix external to any block

are highly suppressed. Then, as long as we proceed one block at a time, the suppression

factor can be ignored. All particles in the same block are approximately coherent and

indistinguishable. Hence, the results of our time-independent treatment can be applied.

Let us now consider the effective expansion parameter for a block that is “born” at

a time NT which is not too late in the evaporation process. By construction, the total

particle number of the block is about the same as the number of correlated particles at

this time, Ncoh(NT ;N) ≃
√
SBH(NT ) (here, N means a time close to NT ). The classi-

cality parameter is approximately CBH(NT ) = S−1
BH(NT ) because CBH evolves very slowly

— ∂NT
CBH(NT ) = C2

BH(NT ) — except near the end of the evaporation. The effective

expansion parameter is then the product Ncoh(NT ;N)CBH(NT ) ≃
√
CBH(NT ) , which is

obviously less than one until the BH reaches the Planck scale. To compare, the effective

expansion parameter for the time-independent treatment is NTCBH(NT ), which is much

larger than that of the block picture.

Let us next determine the “time of last block emission” N∗. This is the time when the

number of particles remaining to be emitted SBH(0)−N∗ is equal to the coherence time,

SBH(0)−N∗ = Ncoh(N
∗;N) , (3.14)

where N is again a time close to N∗. For future reference, since CBH(N
∗) = (SBH(0) −

N∗)−1 , eq. (3.14) is equivalent to the condition

Ncoh(N
∗;N) CBH(N

∗) = 1 . (3.15)

Now, approximating Ncoh(N
∗;N) by Ncoh(N

∗;N∗) =
√
SBH(N∗) =

√
SBH(0)−N∗ ,

we find that the condition in eq. (3.14) becomes SBH(0) − N∗ =
√
SBH(0)−N∗ . This

implies that the last block consists of a single particle, which does not make sense. As shown

below, this is an indication that the block picture has broken down and the approximation

Ncoh(N
∗;N) ≃

√
SBH(0)−N∗ has become invalid by this time.

To see this, let us use eq. (3.11) to rewrite eq. (3.14) as

SBH(0)−N∗ =
SBH(N)√

SBH(0)−N∗
, (3.16)

from which it follows that

SBH(0)−N∗ = S
2/3
BH (N) = (SBH(0)−N)2/3 . (3.17)

We now use another approximation which will turn out to be the correct way to estimate

the emission time of the last block. Expanding the right-hand side of eq. (3.17), we have

SBH(0)−N∗ = S
2/3
BH (0)

(
1− 2

3

N

SBH(0)
+ · · ·

)
. (3.18)

Then, since N
SBH(0) . 1 ,

SBH(0)−N∗ ≃ S
2/3
BH (0) , (3.19)
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which is satisfied at the transparency ttrans (as will be made explicit in subsection 4.2). An

equivalent form of eq. (3.19) is CBH(N
∗) ≃ S

−2/3
BH (0) .

The interpretation of the contradiction between the two approximations is clear; the

block picture breaks down at time ttrans, which happens to be one interval of the coherence

time before the end of evaporation (as also made explicit in subsection 4.2). At this

point in time, the BH is still large and semiclassical, although its Schwarzschild radius is

parametrically smaller than the initial radius RS(0) and the size of the remaining block is

parametrically larger than
√
SBH(0).

Since the formalism of section 2 can be applied to the block picture before it breaks

down, we can estimate some associated quantities. For instance, the von Neumann entropy

of a block that is born at NT is (cf, eq. (2.15))

Sblock(NT ) ≃
√
SBH(NT )

(
1− 1

2
K

1√
SBH(NT )

)
, (3.20)

where we have also used that the thermal entropy of a block is approximately the same as

its particle number.

More interesting is the information output per block. According to eq. (2.20) and the

above observations, the rate is

dIblock
dN

≃ K√
SBH(NT )

; (3.21)

meaning that, over the “lifetime” of the block,

∆Iblock ≃ K . (3.22)

That is, each block emits about one bit of information. This can also be seen directly from

eq. (3.20).

As there are roughly
√
SBH(0) blocks in total, the implication of the above simplified

picture is that only ∆IBH ≃
√

SBH(0) ever gets released. However, this is incorrect be-

cause, even besides the break down at ttrans, the independent block picture is not perfectly

accurate. The blocks overlap, correlations get built and accumulate. To pick up the infor-

mation that comes out, one has to monitor the BH continuously, otherwise the information

gets lost after each coherence time.

4 Time dependence of information release

This section will focus on how the suppression factor and coherence scale impact upon the

purification of the density matrix and the transfer of information.

4.1 Time-dependence of the purity

The purity of the density matrix ρ(NT ) ≡ ρSC(ω, ω̃;NT ;N
′, N ′′) is determined by the ratio

P (ρ(NT )) =
Tr

[
(ρ(NT ))

2
]

(Tr ρ(NT ))
2 , which will be calculated next. This result will be the initial step

towards distinguishing the different phases of information release.
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We first re-express the multi-particle density matrix of eq. (2.14) but with the sup-

pression factor now included. In terms of the variables N ′, N ′′, each ranging from 0 to NT

and with frequency labels suppressed, this is

ρSC(NT ;N
′, N ′′) =

1

NT
ρHδN ′,N ′′ +

C
1/2
BH (NT )

NT
∆ρOD D(NT , N

′, N ′′)
(
1− δN ′,N ′′

)
. (4.1)

As the matrix has already been normalized to yield unit trace, we need only calculate

Tr
[
(ρ(NT ))2

]
. Moreover, we do not have to consider the diagonal contributions because

these will contribute at order N−1
T and do not “mix” with off-diagonal terms as far as this

trace is concerned (see [24]). Hence, for current purposes, we can consider a simplified

matrix for the off-diagonal correction,

ρOD(NT ;N
′, N ′′) =

C
1/2
BH (NT )

2NT
∆ρOD

(
e
− 1

4

(NT−N′)2

N2
coh

(NT ;N′) + e
− 1

4

(NT−N′′)2

N2
coh

(NT ;N′′)

)
, (4.2)

where the exponents in eq. (3.9) for D are now expressed in terms of Ncoh.

Since NT is large, we can treat the discrete arguments of the density matrix as con-

tinuous. Now consider that

Tr
[ (

ρOD(NT ;N
′, N ′′)

)2 ]

=

∫ NT

0
dN ′

∫ NT

0
dN ′′

∫ NT

0
dN ′′′ ρOD(NT ;N

′, N
′′′

)ρOD(NT ;N
′′′, N ′′)δ(N ′ −N ′′)

=

∫ NT

0
dN ′

∫ NT

0
dN ′′ [ρOD(NT ;N

′, N ′′)
]2

=
CBH(NT )

4N 2
T

Tr(∆ρOD)
2 I , (4.3)

where I is given by

I =

∫ NT

0
dN ′

∫ NT

0
dN ′′

[
e
− 1

2

(NT−N′)2

N2
coh

(NT ;N′) + e
− 1

2

(NT−N′′)2

N2
coh

(NT ;N′′)

+ 2 e
− 1

4

(NT−N′)2

N2
coh

(NT ;N′) e
− 1

4

(NT−N′′)2

N2
coh

(NT ;N′′)

]
. (4.4)

Recalling that the suppression factors restrict N ′, N ′′ to take on values close to NT

and that CBH(N) is a slowly varying function except at late times, we can make the

approximation CBH(N
′), CBH(N

′′) = CBH(NT ) and then evaluate the Gaussian integrals.

For instance,

∫ NT

0
dN ′ e

− 1
2

(NT−N′)2

N2
coh

(NT ;N′) =

∫ NT

0
dx e

− 1
2

x2

N2
coh

(NT ;NT )

=

√
π

2
Ncoh(NT ;NT ) , (4.5)

where NT ≫ 1 has also been used to treat the upper boundary of the x integral as infinite.

In this way, one ends up with

I =
√
2πNTNcoh(NT ;NT ) +O

(
C−1
BH(NT )

)
. (4.6)
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Then, reinserting the other factors from (ρ
(NT )
OD )2 and dropping the subleading term, we

arrive at

Tr
[
(ρ

(NT )
OD )2

]
=

√
2π

4

Ncoh(NT ;NT )CBH(NT )

NT
Tr

[
(∆ρOD)

2
]
. (4.7)

As the purity of the Hawking matrix is 1/NT , the purity of ρ
(NT )
OD is smaller by a factor

of NcohCBH ≃ C
1/2
BH ≪ 1 . It appears that the purity of the off-diagonal correction only

catches up to the small purity of the Hawking matrix when CBH(NT ) ≃ 1 ; implying

that there is no chance for purification. However, it will be shown later on that such a

conclusion is premature.

4.2 The rate of information transfer

It is interesting to compare the preceding calculation for Tr
[
(ρ

(NT )
OD )2

]
with that of our

earlier study [24]. We previously obtained Tr
[
(ρ

(NT )
OD )2

]
∼ CBH(NT ) , so that the modified

result in eq. (4.7) is smaller by a factor of
[
NTC

1/2
BH (NT )

]−1
≃ C

1/2
BH . This estimate can

be substantiated as follows: NT and SBH = C−1
BH are parametrically equal for a “typical

BH”, meaning for times t1bit < t < ttrans . In which case, the time-dependent model

effectively replaces NT with Ncoh(NT ;N) = SBH(N) C
1/2
BH (NT ) ≃ NTC

1/2
BH (NT ) . Much in

the same way, our previous time-independent estimates for the rate of information transfer

can be corrected for time dependency by replacing NT with Ncoh(NT ;N) ≃ NTC
1/2
BH ≃

C
−1/2
BH (NT ) where appropriate. Here and below, N means a time close enough to NT for

insignificant suppression.

For instance, consider the estimate for the information I in eq. (2.19). It should now

be modified,

I(NT ) = SH(NT )− S(NT )

≃ K̃

2
SH(NT )Ncoh(NT ;N) CBH(NT ) , (4.8)

with a numerical factor modifying K to K̃.

We can use eq. (4.8) to determine when the first bit of information comes out of the

BH. For such early times,

K̃

2
SH(NT )Ncoh(NT ;N) CBH(NT ) ≃ K̃

2
SH(NT ) C

1/2
BH (NT ) , (4.9)

so the first bit of information comes out when S−1
H (NT ) ≃ C

1/2
BH (NT ) or NT ≃ S

1/2
BH (NT ) .

This happens at the coherence time. Of course, we already knew this, since each coherence-

sized block contains one bit of information; cf, eq. (3.22). Hence, t1bit = tcoh , the same

as for the previous time-independent treatment.

It will be shown below (also see eq. (3.15)) that the transparanecy time occurs when

Ncoh(NT ;N) CBH(NT ) ≃ 1 . This and eq. (4.8) tells us that the amount of information

released by this time is

I(ttrans) ≃ K̃

2
SH(NT ) . (4.10)
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The value of SH by that time is parametrically equal to the total entropy of the BH,

SH(ttrans) ≃ SBH(0). So, parametrically, all the BH information is released by ttrans.

Another useful approximation for the information I that is valid up to the transparency

time is the following:

I(NT ) ≃ K̃

2
SH(NT )Ncoh(NT ;N) CBH(NT )

≃ K̃

2
SH(NT )

√
CBH(NT )

CBH(N)
CBH(NT )

≃ K̃

2
SH(NT ) SBH(0) C

3/2
BH (NT ) , (4.11)

with the last relation resulting from the approximation CBH(N) ∼ CBH(0) = S−1
BH(0) .

Equation (4.11) correctly estimates the value of the released information up to ttrans.

Comparing with eq. (4.10), we see that the transparency time coincides with CBH(NT ) ≃
S
−2/3
BH (0) , as already claimed in subsection 3.4 (see below eq. (3.19)). Notice, however,

that the derivative dI
dSH

cannot be estimated correctly from this expression because SBH(0)

is a constant.

Let us next consider the modified version of eq. (2.20), which is obtained by differ-

entiating eq. (4.8). To evaluate the derivative dI
dSH

∣∣∣
NT

, we recall that ∂SH
NT ≃ 1 ,

∂NT
CBH ≃ C2

BH . The latter can be ignored to leading order, and so

dI

dSH

∣∣∣∣
NT

≃ K̃

2
Ncoh(NT ;N) CBH(NT ) , (4.12)

from which it is evident that the information transfer rate is initially small but becomes

order unity at the late stages of evaporation.

We have defined the transparency time as the moment at which the rate of information

transfer is unity

dI

dSH

∣∣∣∣
ttrans

≃ 1 . (4.13)

And so ttrans is the time at which Ncoh(NT ;N) CBH(NT ) ≃ 1 as already stated. Let us

recall that ttrans has replaced the Page time in this respect. We again see that there is

nothing particularly special about the original Page time in our updated framework.

We now want to verify that the transparency time occurs at one coherence time before

the end of evaporation. By this time, the BH still has an entropy of SBH(ttrans) =

C−1
BH(ttrans) ≃ S

2/3
BH (0) . And so we start by setting [∆N ]trans = S

2/3
BH (0) , where

[∆N ]trans = SBH(0) − Ntrans is the time from transparency to evaporation. In integral

form, this is ∫ 0

[∆N ]trans

dN = − 2π

~G

∫ 0

[∆RS ]trans

dRS RS = S
2/3
BH (0) , (4.14)

with the first equality following from ∂N
∂RS

= −2πRS
~G .
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N
N

2
N -N2�3

N

NT

N -N2�3

N

I

Figure 1. Information released as a function of the number NT of emitted Hawking particles shown

for the Page model (blue) and our model (solid and dashed purple). Here, N denotes the maximal

value of NT which is approximately SBH(0). The lower dashed line depicts the block picture of

§3.4. The upper dashed line is for NcohCBH = 1, so it estimates the derivative at the transparency

time correctly and corresponds to the approximation in eq. (4.12). The solid purple line depicts

the approximation in eq. (4.11).

Integrating, we then have [∆RS ]trans ≃ lpS
1/3
BH (0) ≃

(
lp

RS(0)

)1/3
RS(0) . But, since

dRS
dt ≃ − l2p

R2
S

, it follows that [∆t]trans ≃ [∆RS ]
3
trans

l2p
≃ R2

S(0)
lp

. That is, [∆t]trans ≃ tcoh
as claimed.

The results of this section are summarized in figure 1, showing the rate of informa-

tion release.

4.3 Qualitative discussion of the final purification

Let us now address the question of what happens at times later than ttrans, when the BH

becomes parametrically Planckian in size, SBH(NT ) & 1 . Our results are not formally

valid in this region of parameter space, as indicated by the derivation of the suppression

factor in the appendix. Although a more rigorous analysis will eventually be required, we

argue that the scaling of Ncoh(NT ;N) does capture its correct behavior even in the region

where our analysis cannot be formally validated. Based on the scaling of Ncoh(NT ;N),

which indicates that Ncoh(NT ;N) → SBH(N) in the late-time limit, we will argue that

the radiation does indeed purify at the late stages of the evaporation.

Let us substantiate our arguments by looking at the relevant integral, which is that of

eq. (4.4) with CBH(NT ) . 1 meant as a number of order unity but still smaller than 1,

I =

∫ NT

0
dN ′

∫ NT

0
dN ′′

[
e
− 1

4
2

CBH(NT )
[CBH(N ′)(NT−N ′)]2

+ e
− 1

4
2

CBH(NT )
[CBH(N ′′)(NT−N ′)]2

+2 e
− 1

4
1

CBH(NT )
[CBH(N ′)(NT−N ′)]2

e
− 1

4
1

CBH(NT )
[CBH(N ′′)(NT−N ′′)]2

]
. (4.15)
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The magnitude of any of the exponents is at most of order unity. For instance, setting

N ′ = 1 (i.e., the initial emission of radiation), one finds that the first exponent goes

as 1
4

2
CBH(NT ) [CBH(1)(NT − 1)]2 ≃ 1

4
2

CBH(NT ) [CBH(0)SBH(0)]
2 = 1

4
2

CBH(NT ) ≃ 1 . Clearly,

for N ′, N ′′ > 1, similar estimates are also valid. Hence, the Gaussians are turning into

Heaviside functions and, parametrically, I ∼ 4(NT )
2 .

Then, using the estimate I ∼ 4(NT )
2 in eq. (4.3), we have

Tr
[
(ρ

(NT )
OD )2

]
∼ CBH(NT )Tr

[
(∆ρOD)

2
]
∼ 1 , (4.16)

from which P (ρ(NT )) ∼ 1 follows. The interpretation is that the density matrix does

appear to have purified towards the end of the evaporation. We expect to provide a more

rigorous analysis of the late-time purification at a later time [48].

The purification of the density matrix can be attributed to the late-time scaling

Ncoh(NT ;N) ≃ SBH(N) , which implies that even the earliest emitted particles are part of

the coherent radiation. At a first glance, this seems strange inasmuch as the dimensionless

time scale ∆N = NT − N and the dimensionless particle frequencies are conjugally re-

lated (cf, eq. (A.7)) in such a way that both have widths going as C
−1/2
BH (see the relevant

discussion in the Introduction). But this observation overlooks the fact that the coherence

time depends on three different time scales; the emission times of a given pair of particles

and the evolution time of the collapsing shell. At late enough times when the width of the

wavefunction for the shell grows to order unity, this distinction between time scales be-

comes important. Nevertheless, addressing this question in a quantitative way will provide

an interesting subject matter for our future work.

Another surprise is the apparent suddenness of the purification. After all, the “action”

only seems to begin at ttrans, which is but one coherence time before the end. This is, to

some extent, an artifact of the choice of time parameter; the evolution of the BH is more

gradual when described in terms of the monotonically increasing classicality parameter

CBH(NT ). As this parameter measures the degree of classicality of the geometry, one could

argue that it is also the most natural choice of clock for the current framework.

5 Early-late entanglement

Let us now address the entanglement between early and late-time radiation, both for a

“typical” BH and for an “old” one. The results should be relevant for an eventual resolution

of the firewall paradox [25], as this puzzle is often posed as a conflict as to which subsystem

the late radiation is entangled with and how strongly. Here, we will calculate the time

dependence of the early-late entanglement but defer addressing the implications to the

firewall paradox until later articles [46, 47].

We will now use the multi-particle density matrix in explicit Dirac notation,

ρSC(NT ;N
′, N ′′) =

1

NT
ρHδN ′,N ′′ |N ′〉〈N ′′| (5.1)

+
C

1/2
BH (NT )

2NT
∆ρOD D(NT ;N

′, N ′′)
[
1− δN ′,N ′′

]
|N ′〉〈N ′′| ,

where the suppression factor D(NT ;N
′, N ′′) is defined in eq. (3.9).
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5.1 Entanglement for t < ttrans

Let us first discuss the case that the BH is typical, namely, for times t1bit < t < ttrans.

First, we have to choose a reference time Ncut and factor the Hilbert-space |N〉 into the

states of “early emissions” |NE〉, for which NE ≤ Ncut , and “late emissions” |NL〉, for
which NL ≥ Ncut . In our framework, the natural choice of “cutoff” is one coherence time

prior to NT ,

Ncut = NT −Ncoh(Ncut;Ncut) = NT −
√
SBH(Ncut) . (5.2)

At the end of evaporation, Ncut is the transparency time.

The density matrix is then expressed on the product space |NE〉 ⊗ |NL〉, ρE⊗L =

ρE⊗L(NT ;N
′
E , N

′
L, N

′′
E , N

′′
L) . It is given by

ρE⊗L(NT ;N
′
E , N

′
L, N

′′
E , N

′′
L) =

1

Nprod
ρH ⊗ ρH |N ′

E〉|N ′
L〉〈N ′′

E |〈N ′′
L|δN ′

E ,N ′′

E
δN ′

L,N
′′

L

+
CBH(NT )

4Nprod
∆ρOD ⊗∆ρOD

×
{
D(NT ;N

′
E , N

′′
E)D(NT ;N

′
L, N

′′
L)|N ′

E〉|N ′
L〉〈N ′′

E |〈N ′′
L|(N ′

E 6=N ′′

E , N ′

L 6=N ′′

L)

+D(NT ;N
′
E , N

′′
L)D(NT ;N

′′
E , N

′
L)|N ′

E〉|N ′
L〉〈N ′′

E |〈N ′′
L|(N ′

E 6=N ′′

L , N ′′

E 6=N ′

L)

}

, (5.3)

where Nprod = Ncut(NT − Ncut) . The products ρH ⊗ ρH , ∆ρOD ⊗ ∆ρOD should be

regarded as shorthand notation for ρH(ωE′ , ω̃E′′) ⊗ ρH(ωL′ , ω̃L′′) , ∆ρOD(ωE′ , ω̃E′′) ⊗
∆ρOD(ωL′ , ω̃L′′) for the first term inside the curly brackets and ∆ρOD(ωE′ , ω̃L′′) ⊗
∆ρOD(ωE′′ , ω̃L′) for the second.

It is the second term within the curly brackets that stores the entanglement between

early and late radiation,

[
e
− 1

4

(NT−N′

E)2

N2
coh

(NT ;N′

E
) + e

− 1
4

(NT−N′′

L)
2

N2
coh

(NT ;N′′

L
)

]
×

×
[
e
− 1

4

(NT−N′′

E)2

N2
coh

(NT ;N′′

E
) + e

− 1
4

(NT−N′

L)
2

N2
coh

(NT ;N′

L
)

]
|N ′

E〉|N ′
L〉〈N ′′

E |〈N ′′
L| . (5.4)

One can already see the source of entanglement; the density matrix does not factor into

ρE ⊗ ρL, rather there are correlations.

Let us now trace over the late radiation to obtain the reduced density matrix for the

early radiation ρE . The trace over the late radiation of the Hawking term is calculated

in a straightforward way and that of the first term within the curly brackets of eq. (5.3)

trivially vanishes. The only relevant term in eq. (5.3) is therefore the second term in the

curly brackets. To evaluate it, we need to perform the following integral:

Jb =

∫ NT

Ncut

dNL e
− 1

4
b

(NT−NL)
2

N2
coh

(NT ;NL) , (5.5)
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where b is either 0, 1 or 2 depending on which of the four different products of exponents

in expression (5.4) is being considered.

It can be seen that, for a BH of typical age, the width of the Gaussian in eq. (5.5)

Ncoh(NT ;NL) is approximately the same as Ncoh(Ncut;Ncut) for admissible values of NL.

But Ncoh(Ncut;Ncut) = NT −Ncut (see eq. (5.2)), meaning that the width spans over the

range of integration. Hence, Jb ≃ NT −Ncut for b = 0, 1, 2 .

Applying this estimate of Jb, we then obtain a reduced density matrix of the form

ρE(NT ;N
′
E , N

′′
E) =

ρH
Ncut

|N ′
E〉〈N ′′

E |δN ′

E ,N ′′

E

+
CBH(NT )

4Ncut
∆ρ2OD(ωE′ , ωE′′)

(
1 + e

− 1
4

(NT−N′

E)2

N2
coh

(NT ;N′

E
)

)

×
(
1 + e

− 1
4

(NT−N′′

E)2

N2
coh

(NT ;N′′

E
)

)
|N ′

E〉〈N ′′
E | . (5.6)

Here, ∆ρ2OD(ωE′ , ωE′′) =
∫
dω∆ρOD(ωE′ , ω)∆ρOD(ω, ωE′′) . Unlike ∆ρOD, which is purely

off-diagonal, ∆ρ2OD does have a diagonal component.

Let us now consider times t1bit < t < ttrans. In this case, the Gaussian-suppressed

terms are subdominant, leaving

ρE(NT ;N
′
E , N

′′
E) =

ρH
Ncut

|N ′
E〉〈N ′′

E |δN ′

E ,N ′′

E
+

CBH(NT )

4Ncut
∆ρ2OD(ωE′ , ωE′′)|N ′

E〉〈N ′′
E | . (5.7)

The Gaussian suppression has disappeared and has been replaced by a factor of CBH

on the correction term. The von Neumann entropy per particle is given by (see Footnote 1),

Sent

Ncut
= −TrE [ρE ln ρE ] . (5.8)

In fact, to leading order, we need only consider contributions from the diagonal elements

of ρE(NT ;N
′
E , N

′′
E). This is because the large number of off-diagonal elements, a factor of

∼ Ncut more of these than diagonal ones, enters only at quadratic order, leading to the

additional suppression NcutC
2
BH ≪ CBH .

Now, if one uses the standard definition of entanglement for pure states and applies

it to the Hawking density matrix, it comes out as entangled. We know that the Hawking

part of the matrix is thermal because of the tracing over the negative energy in-modes,

and so it does not represent any entanglement between late and early radiation. Formally,

one has to use an appropriate definition for mixed-state entanglement such as the “positive

partial transpose” criterion [49, 50]. Rather than use this sophisticated criteria, we will

calculate the entanglement entropy and subtract from it the contribution from the Hawking

density matrix.

We proceed by expanding the logarithm of the density matrix of eq. (5.7) in the von

Neumann formula in eq. (5.8) to linear order in CBH(NT ). Only the diagonal elements of

ρ contribute to this order, as just explained. We then subtract from the answer the zeroth

order result coming from the Hawking matrix. We also drop a factor of lnNT /2 that is
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due to the resolution of Gibbs’ paradox for indistinguishable particles. The final result of

this procedure is then

Sent =
1

2
NcutCBH(NT )Tr

[
(− ln ρH)(∆ρOD)

2
]
. (5.9)

For a typical BH, Ncut ≃ NT ≃ C−1
BH(NT ) . We can conclude that the entanglement

entropy is of order unity, Sent ∼ 1 .

Let us next consider the entanglement entropy at the transparency time, for which (cf,

subsection 4.2) CBH ≃ N
−2/3
T and Ncut ≃ NT −S

2/3
BH (0) ≃ NT , so that Sent ≃ N

1/3
T . This

is significant compared to earlier times but well short of that expected at the purification

scale, Sent ≃ NT . Hence, the time scale for maximal entanglement must still be later

than the transparency time.

5.2 Qualitative discussion of the entanglement entropy for t > ttrans

Our expectation is that purification is indeed attained at the last phase of evaporation

t > ttrans. Previously, we presented a qualitative argument based on the purity of the

radiation density matrix. Here, we will discuss in a qualitative way the entanglement

entropy at late times when CBH(NT ) approaches unity. We hope to be able to present a

more precise analysis in the future [48].

Let us begin by revising the form of the reduced density matrix. We once again set

CBH(NT ) . 1 and, because the Gaussian suppression factors become like theta functions

at late enough times (cf, subsection 4.3), replace the exponentials in eq. (5.6) with 1’s. Then

ρE(NT ;N
′
E , N

′′
E) =

ρH
Ncut

|N ′
E〉〈N ′′

E |δN ′

E ,N ′′

E
+

CBH(NT )

Ncut
∆ρ2OD(ωE′ , ω′′

E)|N ′
E〉〈N ′′

E | . (5.10)

In this case, the “correction” term in ρE is the dominant one. The Hawking contribution

is “only” diagonal whereas the correction uniformly fills up the entire matrix.

Let us now recall that a uniform M × M matrix filled with (say) c’s can be diago-

nalized to yield a single non-vanishing eigenvalue, λ = cM . In this way, the correction

part of the matrix can be reduced to a diagonal matrix with a single non-zero entry,

λ = CBH(NT )Tr
[
∆ρ2OD

]
. Once the Hawking contribution is discarded, the entanglement

entropy can be calculated in terms of the eigenvalue λ given above,

Sent = −λNcut lnλ . (5.11)

That is, a late-time entanglement of order Ncut ≃ NT ≃ SBH(0) as expected.

An order NT entanglement indicates a pure state while a small entanglement is an

indication of a product state. Hence, the radiation does (parametrically) purify, but only

in the final stages of the BH evaporation.

It is worth re-emphasizing that this conclusion should only be viewed as a qualitative

one. We have greatly simplified matters by treating the Gaussian suppression factors as

theta functions in the late-time limit. In reality, these late-time Gaussian factors are not

exactly uniform. Nevertheless, the matrix is close enough to uniform to suggest that our

qualitative results will survive a more accurate treatment.
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Let us further emphasize that the changing coherence scale is the physical mechanism

which enables the entanglement between late and early modes to (parametrically) maxi-

mize. This entangled region fills up a block of size Ncoh(NT ) that is typically of order
√
NT

but grows to NT near the end of evaporation. Meaning that, at the end, the entangled

region extends over the entirety of the Hilbert space for the emitted particles.

6 Conclusion

Let us summarize our findings: we started by reviewing our previous calculation that

improves Hawking’s calculation of the density matrix for BH radiation by incorporating

the background quantum fluctuations. The novel feature of this semiclassical treatment is

the presence of off-diagonal elements in the density matrix. We have then further improved

our previous calculation of the density matrix by taking time dependence into consideration.

The radiation is emitted continuously and the geometry is continually evolving due to the

back-reaction of these emitted particles.

Our main result is the discovery of the coherence time tcoh. This scale affects the

density matrix by introducing an extra suppression factor in the off-diagonal elements

that limits the extent in time over which emitted particles are coherent. For most of the

BH evaporation process, this number of coherent particles is about
√
SBH(0), which is

much smaller than the total number of emitted particles during the lifetime of the BH,√
SBH(0) ≪ SBH(0) . We have also identified a clear physical reason for the appearance

of the coherence time: the wavefunction of the BH at one time is nearly orthogonal to the

wavefunction at another when the time separation is tcoh, causing the emissions of particles

that are separated by more than tcoh to become incoherent.

That some of the particle emissions are coherent is what allows for a unitary process of

evaporation. In this way, the wavefunction is serving as the conduit for total information

flow from the burning matter system to the final state of external radiation. This conclusion

was substantiated by three calculations: first, the trace of the square of the radiation density

matrix becomes larger at late times and parametrically approaches unity, Tr(ρ2) ∼ 1 .

Second, the total information released by the BH is of the same order as its total information

content, I ∼ SBH(0) . Third, the late-time entanglement entropy between the early and

late-emitted radiation is also of this order, Sent ∼ SBH(0) .

Qualitative arguments show that the number of coherent particles begins to grow

rapidly one coherence time before the end of evaporation and spans the entirety of the

emitted particles by the very end. This growth is surprising and deserves a more precise

treatment. Evidently, the key to this mechanism is the wavefunction of the collapsing shell

and the existence of several different time scales. This wavefunction provides a Gaussian

width for the time lapse between particle emissions that depends on these particular emis-

sion times as well as the time scale in the evolution of the BH. The former scales are fixed by

the geometry at the times of emission, whereas the latter is changing as the back-reaction

from the particles effectively shrinks the shell.

We have identified the time-of-first-bit t1bit as occurring at a time tcoh after the emission

of the first Hawking particle. On the other hand, the transparency time ttrans, which is the
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moment when the rate of information flow reaches order unity, occurs at a time tcoh before

the end of evaporation. Finally, the purification time only occurs after ttrans when the BH

is still large but parametrically approaching Planckian dimensions. The Page time [12, 13],

which is attributed to the time of transparency in the Page model, no longer has any specific

meaning in our framework. It has been split into two different time scales t1bit and ttrans.

We expect that this distinction could be essential to resolving the recently posed firewall

paradox [25]. For instance, let us suppose that a firewall is symptomatic of a transparent

BH, as is often implied to be the case. Then our revised picture would delay the need

for a firewall from the Page time to a parametrically smaller interval before the end of

evaporation. This is a matter that we will be reporting on in the near future [46, 47].

The emerging picture of the phases of information release during BH evaporation is

then the following: the first bit of information comes out from the BH after one coherence

time. Then the information continues to come out of the BH at a nearly constant rate of 1

bit per coherence time until the transparency time is approached. By this time, the rate of

information release becomes unity. The amount of information released by the transparency

time is already of the order of the total entropy of the BH. After ttrans, our description of

the BH radiation is only qualitative. But, based on the scaling of the quantities that could

be calculated, we have argued that the radiation purifies quickly when the BH evaporation

nears its final stages.
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A Determining the suppression factor

Our starting point here is eq. (3.6) and we focus on the impact of the additional phase

factors that appear there,

eiω
′(vshell(NT )−vshell(N

′))e−iω′′(vshell(NT )−vshell(N
′′)) . (A.1)

We will sometimes use a different choice of variables and change from N ′, N ′′ to

N = N ′+N ′′

2 , δN = N ′′−N ′

2 , so that

N ′′ = N + δN ,

N ′ = N − δN . (A.2)

We wish to express the phase factors in eq. (A.1) in terms of the particle number. For

this, we define

∆N ′ = NT −N ′

∆N ′′ = NT −N ′′ . (A.3)
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We will assume that the differences ∆N ′ and ∆N ′′ are small (in a sense made explicit

below) and expand the phase factors accordingly. Our premise being that the expectation

value on the left-hand side of eq. (3.6) rapidly approaches zero for large enough ∆N ′ and

∆N ′′. This assumption will be justified by its self-consistency.

We will expand the phases by using a suitably modified version of eq. (3.2), v0 −
vshell(t) ≃ 1

RS(0)
(Rshell −RS(t)) . The point here is that the product of the dimensionless

frequency and dimensionless advanced time does not depend on the time-dependent scale

RS(t) that is used to make both dimensionless. Then, as our purpose is to expand out the

entire phases and not just the v’s, the canceled-out factors of RS(t) should not be included

in the expansions.

The partial derivative ∂RS
∂N is also required and can be evaluated using the fact that

N(t) = SBH(0)− SBH(t) = const.− π(RS(t))
2

~G , which gives us

∂RS

∂N
= − ~G

2πRS
. (A.4)

Hence,

vshell(NT ) = vshell(N
′′)− CBH(N

′′)

2
∆N ′′ + · · · ,

vshell(NT ) = vshell(N
′)− CBH(N

′)

2
∆N ′ + · · · , (A.5)

where the · · · denote higher orders in CBH. The second expansion is well defined provided

that CBH(N
′)∆N ′ . 1 (and similarly for the other one), which is equivalent to

∆N ′ .
R2

S(N
′)

~G
∼ SBH(N

′) . (A.6)

This is on the order of the total number of Hawking particles that will be emitted during

the whole period from N ′ to the end of the lifetime of the BH, and so this restriction

is a weak one. We can conclude that the first-order term in the expansions is a good

approximation to the exact value until NT becomes of order of SBH(0) and, then, is valid

if the differences ∆N ′, ∆N ′′ are smaller than SBH(0).

Evaluating the expectation value of eq. (3.6) in this way, we obtain a modified form

for the quantity ∆̂ISC(CBH(NT )) that appears in eq. (2.10),

∆̂ISC(NT ;N
′, N ′′) = ∆̂ISC(CBH(NT ))

× e
−iω′

(
CBH(N′)

2
(NT−N ′)

)

e
iω′′

(
CBH(N′′)

2
(NT−N ′′)

)

. (A.7)

To leading order in CBH, it is sufficient to consider only the explicitly shown exponential

phases. This is because the corrections to other appearances of RS in eq. (3.4) will pick

up an overall factor of 1
RS

∂RS
∂N ≃ CBH and the off-diagonal elements are already ∼ C

1/2
BH .
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We now understand how to modify ∆ρSC in eq. (2.11) to obtain its time-

dependent form,

∆ρSC(ω, ω̃;NT ;N
′, N ′′) =

t∗ωtω̃
(2π)3

CBH(NT )

(ωω̃)1/2
Γ (1 + i2ω) Γ(1− i2ω̃) e−π(ω+ω̃)

×
∫ ∞

0
dω′

∫ ∞

0
dω′′ e−

(ω′
−ω′′)2

4
CBH(NT )(ω′)−1/2−2iω(ω′′)−1/2+2iω̃

× e−i(ω′−ω′′)
CBH(N)

2
(NT−N) e−i(ω′+ω′′)

CBH(N)

2
δN , (A.8)

where CBH(N
′) ≃ CBH(N

′′) ≃ CBH(N) has been employed.

We then need to evaluate the integral,

I(N, δN) =

∫ ∞

0
dω′

∫ ∞

0
dω′′ e−

(ω′
−ω′′)2

4
CBH(NT )(ω′)−1/2−2iω(ω′′)−1/2+2iω̃

× e−i(ω′−ω′′)
CBH(N)

2
(NT−N) e−i(ω′+ω′′)

CBH(N)

2
δN . (A.9)

Following [24], we change variables to Y = ω′ − ω′′ and Z = (ω′ + ω′′)/Y

I(N, δN) =

∫ ∞

0
dY e−

Y 2

4
CBH(NT ) Y −i2(ω−ω̃) e−iY

CBH(N)

2
(NT−N)

×
[∫ ∞

1
dZ (Z + 1)−1/2−i2ω (Z − 1)−1/2+i2ω̃ e−iY Z

CBH(N)

2
δN

+

∫ ∞

1
dZ (Z − 1)−1/2−i2ω (Z + 1)−1/2+i2ω̃ e−iY Z

CBH(N)

2
δN

]
. (A.10)

Let us first consider one of the Z integrals (the top one),
∫ ∞

1
dZ (Z + 1)−1/2−i2ω (Z − 1)−1/2+i2ω̃ e−iY Z

CBH(N)

2
δN

=
1

2
e−iY

CBH(N)

2
δN

∫ ∞

1
dZ (Z + 1)−1/2−i2ω (Z − 1)−1/2+i2ω̃ e−iY (Z−1)

CBH(N)

2
δN

+
1

2
eiY

CBH(N)

2
δN

∫ ∞

1
dZ (Z + 1)−1/2−i2ω (Z − 1)−1/2+i2ω̃ e−iY (Z+1)

CBH(N)

2
δN

=
1

2

(
eiY

CBH(N)

2
δN + e−iY

CBH(N)

2
δN

)
f
(
ω, ω̃; δNCBH(N)

)
, (A.11)

where f is a function that can be expressed in terms of gamma functions and hypergeo-

metric functions.

However, the leading behavior of the Z integrals can be expressed in a simple way

using the following considerations: the Z integrands are singular at Z = ±1 and well

defined elsewhere, so we can expect that the main contribution to the integral comes from

the vicinity of Z = ±1. These two contributions are equal in strength and are related by

an exchange symmetry (ω → −ω̃ , ω̃ → −ω) that leaves the Y integral intact. The two

Z integrals are also equivalent up to the same exchange symmetry (ω → −ω̃ , ω̃ → −ω),

which again leaves the Y integral intact. Therefore, we can expect after integrating to pick

up an extra overall factor of 1
2

(
eiY

CBH(N)

2
δN+e−iY

CBH(N)

2
δN

)
plus subdominant corrections.
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To understand the parameter that controls the strength of the corrections, let us

consider only contributions close to Z = 1 (Similar arguments apply to Z = −1.) Then

the phase can be written as

e−iY (Z−1)
CBH(N)

2
δN = 1− iY (Z − 1)

CBH(N)

2
δN +O

[(
(Z − 1)

CBH(N)

2
δN

)2
]

. (A.12)

So that anything besides the leading-order result is suppressed by powers of CBH(N)
2 δN , as

well as by powers of Z − 1 which make the integral less singular.

And so the conclusion is that, to leading order in small parameters, the Z integral

picks up a Y -dependent phase factor relative to the time-independent calculation,

∫ ∞

1
dZ (Z + 1)−1/2−i2ω (Z − 1)−1/2+i2ω̃ e−iY Z

CBH(N)

2
δN

+

∫ ∞

1
dZ (Z − 1)−1/2−i2ω (Z + 1)−1/2+i2ω̃ e−iY Z

CBH(N)

2
δN

=
1

2

(
eiY

CBH(N)

2
δN + e−iY

CBH(N)

2
δN

)
× (A.13)

×
[∫ ∞

1
dZ (Z+1)−1/2−i2ω (Z−1)−1/2+i2ω̃+

∫ ∞

1
dZ (Z−1)−1/2−i2ω (Z + 1)−1/2+i2ω̃

]
.

The remaining integration over Y in eq. (A.10) picks up an additional phase,

IY (N, δN) =

∫ ∞

0
dY e−

Y 2

4
CBH(N) Y −i2(ω−ω̃) e−iY

CBH(N)

2
(NT−N)

×1

2

(
eiY

CBH(N)

2
δN + e−iY

CBH(N)

2
δN

)
. (A.14)

This integral can be expressed as a product of a gamma functions and a confluent hyperge-

ometric function U
(
1
2 − i(ω − ω̃), 12 ,−

(CBH(N))2δN2

4CBH(NT )

)
. However, its leading-order behavior

can be determined by the following argument.

By shifting the integration variables to account for the phase factor

e−iY
CBH(N)

2
(NT−N)

(
eiY

CBH(N)

2
δN + e−iY

CBH(N)

2
δN

)
, (A.15)

one finds a Gaussian times an exponentially decaying factor,

IY =
1

2

(
e
− 1

4

[CBH(N)(NT−N−δN)]2

CBH(NT ) + e
− 1

4

[CBH(N)(NT−N+δN)]2

CBH(NT )

)
×

×
∫ ∞

0
dY e−

Y 2

4
CBH(NT ) Y −i2(ω−ω̃) (A.16)

plus subleading terms.
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Hence, at leading order, the time-dependent density matrix is equal to the time-

independent matrix of eq. (2.12) multiplied by the suppression factor

D(NT , N
′, N ′′) =

1

2

(
e
− 1

4

[CBH(N)(NT−N−δN)]2

CBH(NT ) + e
− 1

4

[CBH(N)(NT−N+δN)]2

CBH(NT )

)

=
1

2

(
e
− 1

4

[CBH(N′′)(NT−N′′)]2

CBH(NT ) + e
− 1

4

[CBH(N′)(NT−N′)]2

CBH(NT )

)
. (A.17)
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