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different orders of magnitude of the ∆L = 2 Yukawa couplings, chosen in agreement with

the observed neutrino mass and mixing pattern, we demonstrate that H++
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1 Introduction

It is by and large agreed that the Large Hadron Collider (LHC) has discovered the Higgs

boson predicted in the standard electroweak theory, or at any rate a particle with close

resemblance to it [1, 2]. At the same time, driven by both curiosity and various physics mo-

tivations, physicists have been exploring the possibility that the scalar sector of elementary

particles contains more members than just a single SU(2) doublet. A rather well-motivated

scenario often discussed in this context is one containing at least one complex scalar SU(2)

triplet of the type
(

∆++,∆+,∆0
)

[3, 4]. A small vacuum expectation value of the neutral

member of the triplet, constrained as it is by the ρ-parameter, can lead to Majorana masses

for neutrinos, driven by ∆L = 2 Yukawa interactions of the triplet. Such mass generation

does not require any right-handed neutrino, and this is the quintessential principle of the

type II seesaw mechanism [5–13].

One of the most phenomenologically striking features of this mechanism is the occur-

rence of a doubly-charged scalar. Its signature at TeV scale colliders is expected to be

seen, if the triplet masses are not too far above the electroweak symmetry breaking scale.

The most conspicuous signal consists in the decay into a pair of same-sign leptons, i.e.

∆++ → ℓ+ℓ+. The same-sign dilepton invariant mass peaks resulting from this make the

doubly-charged scalar show up rather conspicuously. Alternatively, the decay into a pair

of same-sign W bosons, i.e. ∆++ → W+W+, is dominant in a complementary region of

the parameter space, which — though more challenging from the viewpoint of background

elimination — can unravel a doubly-charged scalar [14–23].
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In this paper, we shall discuss the situation where a third decay channel, namely a

doubly-charged scalar decaying into a singly-charged scalar and a W of the same sign, is

dominant or substantial. Such a decay mode is usually suppressed, since the underlying

SU(2) invariance implies relatively small mass splitting among the members of a triplet.

However, when several triplets of a similar nature are present and mixing among them is

allowed, a transition of the above kind is possible between two scalar mass eigenstates.

Apart from being interesting in itself, several scalar triplets naturally occur in models for

neutrino masses and lepton mixing based on the type II seesaw mechanism. In particular,

it has been shown that in such a scenario a realization of viable neutrino mass matrices

with two texture zeros [24–29],1 using symmetry arguments [34], requires two or three

scalar triplets [35]. In this paper, we take up the case of two coexisting triplets. We

demonstrate that in such cases one doubly-charged state can often decay into a singly-

charged state and a W of identical charge. This is not surprising, because each of the two

erstwhile studied decay modes is controlled by parameters that are rather suppressed. In

the case of ∆++ → ℓ+ℓ+, the amplitude is proportional to the ∆L = 2 Yukawa coupling,

while for ∆++ → W+W+, it is driven by the triplet vacuum expectation value (VEV).

The restrictions from neutrino masses as well as precision electroweak constraints makes

both of these rates rather small. On the other hand, in the scenario with two scalar

triplets with charged mass eigenstates H++
k and H+

l (k, l = 1, 2), the decay amplitude

for H++
1 → H+

2 W+, if kinematically allowed, is controlled by the SU(2) gauge coupling.

Therefore, if one identifies regions of the parameter space where it dominates, one needs to

devise new search strategies at the LHC [36–44], including ways of eliminating backgrounds.

We note that the mass parameters of the two triplets, on which no phenomenological

restrictions exist, are a priori unrelated and, therefore, as a result of mixing between the

two triplets, the heavier doubly-charged state can decay into a lighter, singly-charged state

and a real W over a wide range of the parameter space. In that range it is expected that

this decay channel dominates for the heavier doubly-charged state. By choosing a number

of benchmark points, we demonstrate that this is indeed the case.

In section 2, we present a summary of the model with a single triplet and explain

why the decay ∆++ → ∆+W+ is disfavoured there. The details of a two-triplet scenario,

including the scalar potential and the composition of the physical states, are presented

in section 3. We select several benchmark points and show the decay patterns of the

corresponding doubly-charged scalars in section 4, where their production rates at the

LHC are also presented. We point out the usefulness of H++
1 → H+

2 W+ at the LHC in the

context of our model with two scalar triplets in section 5. We summarise and conclude in

section 6. In appendix A the input parameters for the benchmark points are listed while

appendix B contains the formulas for the decay rates of the doubly-charged scalars.

2 The scenario with a single triplet

In this section we perform a quick recapitulation of the scenario with a single triplet field,

in addition to the usual Higgs doublet φ, using the notation of [45]. The Higgs triplet

1Texture zeros are a favorite means of achieving relations between masses and mixing angles, see for

instance [30–33].
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∆ =
(

∆++,∆+,∆0
)

is represented by the 2× 2 matrix

∆ =

(

∆+
√
2∆++

√
2∆0 −∆+

)

. (2.1)

The VEVs of the doublet and the triplet are given by

〈φ〉0 =
1√
2

(

0

v

)

and 〈∆〉0 =
(

0 0

w 0

)

, (2.2)

respectively. Thus, the triplet VEV is obtained as 〈∆0〉 = w/
√
2 . The only doublet-

dominated physical state that survives after the generation of gauge boson masses is a

neutral scalar H.

The most general scalar potential involving φ and ∆ can be written as

V (φ,∆) = aφ†φ+
b

2
Tr
(

∆†∆
)

+ c
(

φ†φ
)2

+
d

4

(

Tr
(

∆†∆
))2

+
e− h

2
φ†φTr

(

∆†∆
)

+
f

4
Tr
(

∆†∆†
)

Tr (∆∆)

+ hφ†∆†∆φ+
(

t φ†∆φ̃+H.c.
)

, (2.3)

where φ̃ ≡ iτ2φ
∗. For simplicity, we assume both v and w to be real and positive, which

requires t to be real as well. In other words, all CP-violating effects are neglected in

this study.

The choice a < 0, b > 0 ensures that the primary source of spontaneous symmetry

breaking resides in the VEV of the scalar doublet. Without any loss of generality, we

assume the following orders of magnitude for the parameters in the potential:

a, b ∼ v2; c, d, e, f, h ∼ 1; |t| ≪ v. (2.4)

Such a choice is motivated by

1. proper fulfillment of the electroweak symmetry breaking conditions,

2. the need to have w ≪ v small due to the ρ-parameter constraint,

3. the need to keep doublet-triplet mixing low in general, and

4. the urge to ensure perturbativity of all quartic couplings.

The mass Lagrangian for the singly-charged scalars in this model is given by

L±
S = −

(

H−, φ−
)

M2
+

(

H+

φ+

)

(2.5)

with2

M2
+ =

(

(q + h/2)v2
√
2v(t− wh/2)√

2v(t− wh/2) 2(q + h/2)w2

)

and q =
|t|
w
. (2.6)

2Note that the matrix M2
+ given here is correct, whereas in equation (42) of reference [45] the 11 and

22-elements of the same mass matrix are exchanged by error.
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The field φ+ is the charged component of the doublet scalar field of the Standard Model

(SM). One of the eigenvalues of this matrix is zero corresponding to the Goldstone boson

which gives mass to the W boson. The mass-squared of the singly-charged physical scalar

is obtained as

m2
∆+ =

(

q +
h

2

)

(

v2 + 2w2
)

, (2.7)

whereas the corresponding expression for the doubly-charged scalar is

m2
∆++ = (h+ q)v2 + 2fw2. (2.8)

Thus, in the limit w ≪ v, we obtain

m2
∆++ −m2

∆+ ≃ h

2
v2. (2.9)

It is obvious from the above that a substantial mass splitting between ∆++ and ∆+ is

in general difficult. This is clear from figure 1 where we plot the mass difference between

the two states for different values of h. Sufficient splitting, so as to enable the decay ∆++ →
∆+W+ to take place with appreciable branching ratio, will require h ≃ 1, m∆++ . 250GeV

and a correspondingly smaller m∆+ . The limits from LEP and Tevatron disfavour triplet

states with such low masses. Thus one concludes that the phenomenon of the doubly-

charged scalar decaying into a singly-charged one and a W is very unlikely.

3 A two Higgs triplet scenario

There may, however, be some situations where a single triplet is phenomenologically inad-

equate. This happens, for example, when one tries to impose texture zeros in the neutrino

mass matrix within a type II seesaw framework by using Abelian symmetries [35]. Having

this is in mind, we venture into a model consisting of one complex doublet and two Y = 2

triplet scalars ∆1, ∆2, both written as 2×2 matrices:

∆1 =

(

δ+1
√
2δ++

1√
2δ01 −δ+1

)

and ∆2 =

(

δ+2
√
2δ++

2√
2δ02 −δ+2

)

. (3.1)

The VEVs of the scalar triplets are given by

〈∆1〉0 =
(

0 0

w1 0

)

and 〈∆2〉0 =
(

0 0

w2 0

)

. (3.2)

The VEV of the Higgs doublet is as usual given by equation (2.2).

The scalar potential in this model involving φ, ∆1 and ∆2 can be written as

V (φ,∆1,∆2) = aφ†φ+
1

2
bkl Tr

(

∆†
k∆l

)

+ c(φ†φ)2 +
1

4
dkl

(

Tr
(

∆†
k∆l

))2

+
1

2
(ekl − hkl)φ

†φTr
(

∆†
k∆l

)

+
1

4
fkl Tr

(

∆†
k∆

†
l

)

Tr (∆k∆l)

+ hkl φ
†∆†

k∆lφ+ gTr
(

∆†
1∆2

)

Tr
(

∆†
2∆1

)

+ g′Tr
(

∆†
1∆1

)

Tr
(

∆†
2∆2

)

+
(

tk φ
†∆kφ̃+H.c.

)

, (3.3)
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Figure 1. Variation of mass difference between the doubly and singly-charged scalars, for various

values of the parameter h.

where summation over k, l = 1, 2 is understood. This potential is not the most general one,

as we have omitted some of the quartic terms. This is justified in view of the scope of this

paper, as laid out in the introduction. Moreover, due to the smallness of the triplet VEVs,

the quartic terms are not important numerically for the mass matrices of the scalars.

As in the case with a singlet triplet, we illustrate our main point here taking all the

VEVs v, w1, w2 as real and positive, and with real values for t1, t2 as well. Again, the

following orders of magnitude for the parameters in the potential are assumed:

a, bkl ∼ v2; c, dkl, ekl, hkl, fkl, g, g
′ ∼ 1; |tk| ≪ v. (3.4)

We also confine ourselves to cases where w1, w2 ≪ v, keeping in mind the constraint on

the ρ-parameter.

In general, the scalar potential (3.3) can only be treated numerically. However, since

the triplet VEVs wk are small (we will have wk . 1GeV in our numerical part), it should

be a good approximation to drop the quartic terms in the scalar triplets. In the following

we will discuss the VEVs and the mass matrices of the doubly and singly-charged scalars in

this approximation, so that our broad conclusions are transparent. However, the numerical

results presented in section 4 are obtained using the full potential (3.3), including even the

effects of the small triplet VEVs. We find that the results are in very good accordance

with the approximation.

For the sake of a convenient notation we define the following 2×2 matrices and vectors:

B = (bkl), E = (ekl), H = (hkl), t =

(

t1
t2

)

, w =

(

w1

w2

)

. (3.5)
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With this notation the conditions for a stationary point of the potential are given by
(

B +
v2

2
(E −H)

)

w + v2 t = 0, (3.6)

a+ cv2 +
1

2
wT (E −H)w + 2 t · w = 0, (3.7)

where we have used the notation t · w =
∑

k tkwk. These two equations are exact if one

neglects all terms quartic in the triplet VEVs in V0 ≡ V (〈φ〉0, 〈∆〉0). In equation (3.7) we

have already divided by v, assuming v 6= 0. Using equation (3.6), the small VEVs wk are

obtained as

w = −v2
(

B +
1

2
v2(E −H)

)−1

t. (3.8)

Now we discuss the mass matrices of the charged scalars. A glance at the scalar

potential equation (3.3) — neglecting quartic terms in the triplet scalars — reveals that

the first two lines of V make no difference between the singly and doubly-charged scalars.

Thus, the difference in the respective mass matrices originates in the terms of the third

line. The mass matrix of the doubly-charged scalars is obtained as

M2
++ = B +

v2

2
(E +H) . (3.9)

As for the singly-charged fields ∆+
k , one has to take into account that they can mix with

φ+ of the Higgs doublet. Writing the mass term as

− L±
S =

(

δ−1 , δ
−
2 , φ

−
)

M2
+







δ+1
δ+2
φ+






+H.c., (3.10)

equation (3.3) leads to

M2
+ =

(

B + v2

2 E
√
2v (t−Hw/2)√

2v (t−Hw/2)† a+ cv2 + 1
2w

T (E +H)w

)

. (3.11)

Obviously, this mass matrix has to have an eigenvector with eigenvalue zero which corre-

sponds to the would-be-Goldstone boson. Indeed, using equations (3.6) and (3.7), we find

M2
+

(

vT
v/

√
2

)

= 0, (3.12)

which serves as a consistency check.

Note that the matrix B largely controls the mass of the triplet scalars and the order

of magnitude of its elements (or of its eigenvalues) is expected to be a little above the

electroweak scale, represented by v ≃ 246GeV. On the other hand, the quantities tk trigger

the small triplet VEVs, so they should be considerably smaller than the electroweak scale.

Therefore, in a rough approximation one could neglect the tk and the triplet VEVs in the

mass matrix M2
+. In that limit, also a + cv2 = 0 and the charged would-be-Goldstone

boson consists entirely of φ+, without mixing with the δ+k .

– 6 –
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The mass matrices (3.10) and (3.11) are diagonalized by

U †M2
++U = diag

(

M2
1 ,M

2
2

)

and V †M2
+V = diag

(

µ2
1, µ

2
2, 0
)

, (3.13)

respectively, with

(

δ++
1

δ++
2

)

= U

(

H++
1

H++
2

)

,







δ+1
δ+2
φ+






= V







H+
1

H+
2

G+






. (3.14)

We have denoted the fields with definite mass by H++
k and H+

k , and G+ is the charged

would-be-Goldstone boson.

The gauge Lagrangian relevant for the decays considered in this paper is given by

Lgauge = ig
2
∑

k=1

[

δ−k
(

∂µδ++
k

)

− (∂µδ−k ) δ
++
k

]

W−
µ

− g2√
2

2
∑

k=1

wkW
−
µ W−µ

δ++
k +H.c. . (3.15)

Here g is the SU(2) gauge coupling constant. Inserting equation (3.14) into this Lagrangian

allows us to compute the decay rates of H++
1 → H+

2 W+ and H++
k → W+W+ (k = 1, 2).

The corresponding formulas are found in appendix B.

The ∆L = 2 Yukawa interactions between the triplets and the leptons are

LY =
1

2

2
∑

k=1

h
(k)
ij LT

i C
−1iτ2∆kLj +H.c., (3.16)

where C is the charge conjugation matrix, the h
(k)
ij are the symmetric Yukawa coupling

matrices of the triplets ∆k, and the i, j are the summation indices over the three neutrino

flavours.3 The Li denote the left-handed lepton doublets.

The neutrino mass matrix is generated from equation (3.16) when the triplets acquire

VEVs:

(Mν)ij = h
(1)
ij w1 + h

(2)
ij w2. (3.17)

This connects the Yukawa coupling constants h
(1)
ij , h

(2)
ij and the triplet VEVs w1, w2, once

the neutrino mass matrix is written down for a particular scenario. In our subsequent

calculations, we proceed as follows. First of all, the neutrino mass eigenvalues are fixed

according to a particular type of mass spectrum. In this work we illustrate our points,

without any loss of generality, by resorting to normal hierarchy of the neutrino mass spec-

trum and setting the lowest neutrino mass eigenvalue to zero. Furthermore, using the

observed central values of the various lepton mixing angles, the elements of the neutrino

mass matrix Mν can be found by using the equation

Mν = UM̂νU
†, (3.18)

3We assume the charged-lepton mass matrix to be already diagonal.
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where U is the PMNS matrix given by [49]

U =







c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13






(3.19)

and M̂ν is the diagonal matrix of the neutrino masses. In equation (3.18) we have dropped

possible Majorana phases. One can use the recent global analysis of data to determine the

various entries of U [46]. We have taken the phase factor δ to be zero for simplicity. Then,

using the central values of all angles, including that for θ13 as obtained from the recent Daya

Bay and RENO experiments [47, 48], the left-hand side of equation (3.16) is completely

known, at least in orders of magnitude. The actual mass matrix thus constructed has

some elements at least one order of magnitude smaller than the others, thus suggesting

texture zeros.

For each of the benchmark points used in the next section, w1 and w2, the VEVs of the

two triplets, are determined by values of the parameters in the scalar potential. Of course,

the coupling matrices h(1) and h(2) are still indeterminate. In order to evolve a working

principle based on economy of free parameters, we fix the Yukawa coupling matrix h(2) by

choosing one suitable value for all elements of the µ–τ block and another value, a smaller

one, for the rest of the matrix. That fixes all the elements of the other matrix. Although

there is a degree of arbitrariness in such a method, we emphasize that it does not affect the

generality of our conclusions, so long as we adhere to the wide choice of scenarios adopted

in the next section, including both small and large values of the ∆L = 2 Yukawa couplings.

4 Benchmark points and doubly-charged scalar decays

Our purpose is to investigate the expected changes in the phenomenology of doubly-charged

scalars when two triplets are present. In general, the two scalars of this kind, namely, H++
1

and H++
2 can both be produced at the LHC via the Drell-Yan process, which can have

about 10% enhancement from the two-photon channel. They will, over a large region of

the parameter space, have the following decays:

H++
1 → ℓ+i ℓ

+
j , (4.1)

H++
1 → W+W+, (4.2)

H++
1 → H+

2 W+, (4.3)

H++
2 → ℓ+i ℓ

+
j , (4.4)

H++
2 → W+W+, (4.5)

with ℓi, ℓj = e, µ, τ in equation (4.1). As we discussed in section 2, in the context of

the single-triplet model the decay analogous to equation (4.3) is practically never allowed,

unless the masses are very low. On the other hand, mixing between two triplets opens

up situations where the mass separation between H++
1 and H+

2 kinematically allows the

transition (4.3). Denoting the mass of H++
k by Mk and that of H+

k by µk (k = 1, 2) and
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Mass (GeV) BP 1 BP 2 BP 3 BP 4

H++
1 515.99 515.99 521.54 524.15

Scenario 1 H++
2 443.04 429.16 455.59 470.15

H+
1 515.98 515.98 498.97 515.78

H+
2 368.45 360.15 423.26 418.65

H++
1 526.78 525.00 429.13 464.31

Scenario 2 H++
2 414.18 401.63 392.45 407.20

H+
1 520.26 519.86 414.48 459.23

H+
2 343.28 334.97 339.02 340.63

H++
1 521.54 464.31 525.00 429.13

Scenario 3 H++
2 455.59 407.20 401.63 392.45

H+
1 498.97 459.23 519.86 414.48

H+
2 423.26 340.63 334.97 339.02

Table 1. Charged scalar masses.

using the convention M1 > M2 and µ1 > µ2, this decay is possible if M1 > µ2 + mW .

We demonstrate numerically that this can naturally happen, by considering three distinct

regions of the parameter space and selecting four benchmark points (BPs) for each region.

We have seen that, in a model with a single triplet, the doubly-charged Higgs decays

into either ℓ+i ℓ
+
j or W+W+. The former is controlled by the ∆L = 2 coupling constants

hij , while the latter is driven by the triplet VEV w. Since neutrino masses are given by

Mν = hw, large (≃ 1) values of hij imply a small VEV w, and vice versa. Accordingly,

assuming hij 6= 0, three regions in the parameter space can be identified, where one can have

1. Γ
(

∆++ → ℓ+i ℓ
+
j

)

≪ Γ (∆++ → W+W+),

2. Γ
(

∆++ → ℓ+i ℓ
+
j

)

≫ Γ (∆++ → W+W+),

3. Γ
(

∆++ → ℓ+i ℓ
+
j

)

∼ Γ (∆++ → W+W+).

In the context of two triplets, we choose three different ‘scenarios’ in the same spirit, with

similar relative rates of the two channels H++
k → ℓ+i ℓ

+
j and H++

k → W+W+. Four BPs are

selected for each such scenario through the appropriate choice of parameters in the scalar

potential. The parameters for each BP are listed in appendix A. The resulting masses of

the various physical scalar states are shown in tables 1 and 2. Although our study focuses

mainly on the phenomenology of charged scalars, we also show the masses of the neutral

scalars. It should be noted that the lightest CP-even neutral scalar, which is dominated

by the doublet, has mass around 125GeV for each BP.

All the twelve BPs (distributed among the three different scenarios) have M1 suffi-

ciently above M2 to open up H++
1 → H+

2 W+. The branching ratios in different channels

are of course dependent on the specific BP. We list all the branching ratios for H++
1

and H++
2 in table 3, together with their pair-production cross sections at the LHC with√

s = 14TeV.
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Mass (GeV) BP 1 BP 2 BP 3 BP 4

H0
1R 365.70 364.86 350.39 364.59

H0
2R 193.89 194.00 256.09 245.96

Scenario 1 H0
3R 125.00 125.03 125.01 125.01

H0
1I 364.98 364.85 350.39 364.59

H0
2I 194.43 193.98 256.08 245.96

H0
1R 365.69 365.70 295.58 325.51

H0
2R 173.97 173.96 173.98 173.96

Scenario 2 H0
3R 125.02 125.02 125.04 125.02

H0
1I 365.69 365.70 295.59 325.52

H0
2I 173.97 173.96 173.98 173.96

H0
1R 350.39 325.51 365.69 295.58

H0
2R 256.08 173.96 173.98 173.96

Scenario 3 H0
3R 125.02 125.02 125.04 125.02

H0
1I 350.39 325.51 365.69 295.58

H0
2I 256.08 173.96 173.98 173.96

Table 2. Neutral scalar masses.

The cross sections and branching ratios have been calculated with the help of the

package FeynRules (version 1.6.0) [50, 51], thus creating a new model file in CompHEP

(version 2.5.4) [52]. CTEQ6L parton distribution functions have been used, with the

renormalisation and factorisation scales set at the doubly-charged scalar mass. Using the

full machinery of scalar mixing in this model, the decay widths into various channels have

been obtained, for which the relevant expressions are presented in appendix B.

The results summarised in table 3 show that, for the decay ofH++
1 , the channelH+

2 W+

is dominant for two of the four BPs in scenario 1 and all four BPs in scenarios 2 and 3.

This, in the first place, substantiates our claim that one may have to look for a singly-

charged scalar in the final state that opens up when more than one doublet is present.

This is because, for the BPs where H++
1 → H+

2 W+ dominates, the branching ratios for

the other final states are far too small to yield any detectable rates.

5 Usefulness of H
++

1 −→ H
+

2 W
+ at the LHC

Table 3 contains the rates for pair-production of the heavier as well as the lighter doubly-

charged scalar at the 14TeV run of the LHC. A quick look at these rates revals that,

for the heavier of the doubly-charged scalars, it varies from about 1.4 fb to 3.6 fb, for

masses ranging approximately between 400 and 550GeV. Therefore, as can be read off

from table 3, for ten of our twelve BPs, an integrated luminosity of about 500 fb−1 is likely

to yield about 700 to 1800 events of the H+
2 W+H−

2 W− type. Keeping in mind the fact

that H+
2 mostly decays in the channel H+

2 → ℓ+ν̄ℓ, such final states should prima facie be

observed at the LHC, although event selection strategies of a very special nature may be

required to distinguish the H+
2 from a W+ decaying into ℓ+νℓ.
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Data BP 1 BP 2 BP 3 BP 4

BR
(

H++
1 → H+

2 W+
)

0.08 0.10 0.99 0.99

BR
(

H++
1 → W+W+

)

0.92 0.90 0.01 0.004

BR
(

H++
1 → ℓ+i ℓ

+
j

)

3.89× 10−17 3.82× 10−17 3.34× 10−20 8.044× 10−21

Scenario 1 BR
(

H++
2 → W+W+

)

0.99 0.99 0.99 0.99

BR
(

H++
2 → ℓ+i ℓ

+
j

)

1.76× 10−20 1.72× 10−20 1.78× 10−18 1.76× 10−19

σ
(

pp → H++
1 H−−

1

)

1.664 fb 1.534 fb 1.446 fb 1.408 fb

σ
(

pp → H++
2 H−−

2

)

3.044 fb 3.5 fb 2.714 fb 2.308 fb

BR
(

H++
1 → H+

2 W+
)

0.99 0.99 0.99 0.98

BR
(

H++
1 → W+W+

)

7.44× 10−22 6.67× 10−22 1.08× 10−18 1.77× 10−21

BR
(

H++
1 → ℓ+i ℓ

+
j

)

0.01 0.01 0.001 0.02

Scenario 2 BR
(

H++
2 → W+W+

)

3.75× 10−19 3.39× 10−19 8.28× 10−15 4.16× 10−19

BR
(

H++
2 → ℓ+i ℓ

+
j

)

0.99 0.99 0.99 0.99

σ
(

pp → H++
1 H−−

1

)

1.36 fb 1.41 fb 3.59 fb 2.46 fb

σ
(

pp → H++
2 H−−

2

)

3.98 fb 4.65 fb 5.28 fb 4.38 fb

BR
(

H++
1 → H+

2 W+
)

0.99 0.99 0.99 0.99

BR
(

H++
1 → W+W+

)

5.56× 10−13 1.79× 10−11 6.75× 10−12 1.1× 10−10

BR
(

H++
1 → ℓ+i ℓ

+
j

)

3.69× 10−10 1.26× 10−12 1.16× 10−12 5.48× 10−12

Scenario 3 BR
(

H++
2 → W+W+

)

0.0001 0.98 0.97 0.99

BR
(

H++
2 → ℓ+i ℓ

+
j

)

0.99 0.02 0.03 0.01

σ
(

pp → H++
1 H−−

1

)

1.45 fb 2.46 fb 1.41 fb 3.59 fb

σ
(

pp → H++
2 H−−

2

)

2.71 fb 4.38 fb 4.65 fb 5.28 fb

Table 3. Decay branching ratios and production cross sections for doubly-charged scalars.

The primary advantage of focusing on the channel H++
1 −→ H+

2 W+ is that it helps

one in differentiating between the two kinds of type II cases, namely those containing one

and two scalar triplets, respectively. In order to emphasize this point, we summarize below

the result of a simulation in the context of the 14TeV run of the LHC. For our simulation,

the amplitudes have been computed using the package Feynrules (version 1.6.0), with the

subsequent event generation through MadGraph (version 5.12) [53], and showering with

the help of PYTHIA 8.0. CTEQ6L parton distribution functions have been used.

We compare the two-triplet case with the single-triplet case. In the first case, there

are two doubly charged scalars, and one has contributions from both H±±
1 and H±±

2 to the

leptonic final states following their Drell-Yan production. While the former, in the chosen

benchmark points, decays into H±
1 W±, the latter goes either to a same-sign W -pair or to

same-sign dileptons. If one considers two, three and four-lepton final states with missing

transverse energy (MET), there will be contributions from both of the doubly-charged

scalars, with appropriate branching ratios, combinatoric factors and response to the cuts

imposed. We have carried out our analysis with a set of cuts listed in table 4, which are

helpful in suppressing the standard model backgrounds. Thus one can define the following

ratios of events emerging after the application of cuts:

r1 =
σ(4ℓ+MET)

σ(3ℓ+MET)
, r2 =

σ(4ℓ+MET)

σ(2ℓ+MET)
. (5.1)
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MET > 70GeV

Σ|pvisT |+MET > 500GeV
∣

∣

∣
pleptonT

∣

∣

∣
> 30GeV

|η lep| < 2.5

|η jet| < 4.5

Table 4. Cuts used for determination of ratios of events r1 and r2. The subscript T stands for

‘transverse’ and η denotes the pseudorapidity.

BP 3 Ratio Two triplets One triplet

Scenario 1
r1 0.20 0.04

r2 0.05 0.01

Scenario 2
r1 0.44 < 10−6

r2 0.21 < 10−9

Scenario 3
r1 0.12 < 10−5

r2 0.04 < 10−6

Table 5. Ratio of events r1, r2 for two-triplet and single-triplet scenario respectively for benchmark

point 3.

The values of these ratios for the three scenarios of BP 3 are presented in table 5. In

each case, the ratios for the two-triplet case is presented alongside the corresponding single-

triplet case, with the mass of the doubly charged scalar in the latter case being close to

that of the lighter state H±±
2 in the former. Both of the situations where, in the later case,

the doubly charged scalar decays dominantly into either W±W± or ℓ±ℓ± are represented in

our illustrative results. One can clearly notice from the results (which apply largely to our

other benchmark points as well) that both r1 and r2 remain substantially larger in the two-

triplet case as compared to the single-triplet case. One reason for this is an enhancement

via the combinatoric factors in the two-triplet case. However, the more important reason

is that the 4ℓ events survive the MET cut with greater efficiency. In the single-triplet

case, the survival rate efficiency is extremely small when H±± decays mainly into same-

sign dileptons, the MET coming mostly from energy-momentum mismeasurement (as a

result of lepton energy smearing) or initial and final-state radiation. In the two-triplet

case, on the other hand, the decay H++
1 −→ H+

2 W+ leaves ample scope for having MET

in W -decays as well as in the decay H+
2 −→ ℓ+ν̄ℓ, thus leading to substantially higher cut

survival efficiency. Thus, from an examination of such numbers as those presented in table

5, one can quite effectively use the channel H++
1 −→ H+

2 W+ to distinguish a two-triplet

case from a single-triplet case, provided the heavier doubly-charged state is within the

kinematic reach of the LHC.

6 Summary and conclusions

In this paper, we have argued, taking models with the type II seesaw mechanism for

neutrino mass generation as a motivation, that it makes sense to consider scenarios with

more than one scalar triplet. As the simplest extension, we have formulated in detail a

– 12 –



J
H
E
P
0
2
(
2
0
1
4
)
0
6
0

model with two Y = 2 complex triplets of this kind. On taking into account the mixing of

the triplets with each other (and also with the doublet, albeit with considerable restriction),

and thus identifying all the mass eigenstates along with their various interaction strengths,

we find that the heavier doubly-charged scalar decays dominantly into the lighter singly-

charged scalar and a W boson over a large region of the parameter space. It should be

re-iterated that this feature is a generic one and is avoided only in very limited situations

or in the case of unusually high values of the triplet Yukawa coupling. The deciding factor

here is the decay being driven by the SU(2) gauge coupling.

Thus the above mode is often the only way of looking for the heavier doubly-charged

scalar state and thus for the existence of two scalar triplets. Our choice of benchmark points

for reaching this conclusion spans cases where the ∆L = 2 lepton couplings of the triplets

have values at the high (close to one) and low as well as the intermediate level, consistent

with the observed neutrino mass and mixing patterns. In general, with the heavier triplet

mass ranging up to more than 500GeV, one expects about 700 to 1800 events of the

type pp → H+
2 W+H−

2 W− at the 14TeV run of the LHC, for an integrated luminosity of

500 fb−1. We have also demonstrated that ratios of the numbers of two, three and four-

lepton events with MET offer a rather spectacular distinction of the two-triplet case from

one with a single triplet only. It is thus both interesting and challenging to look for this

mode, with well-defined criteria for distinguishing the H+
2 through its decay products.
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A Input parameters for the various benchmark points

For the definition of the parameters of the scalar potential see equation (3.3). The pa-

rameter a and the elements of the matrix B are in units of GeV2, the tk are in units of

GeV, while all other parameters of the potential are dimensionless. The Yukawa coupling

matrices are defined in equation (3.16).

A.1 Input parameters for Scenario 1: BR
(

H
++

1 →W
+
W

+
)

≫BR
(

H
++

1 →ℓiℓj

)

BP 1. The input parameters for the scalar potential are

a = −15625,
1

2
B =

(

60508 −74990

−74990 60591.2

)

,
1

4
D =

(

1 0.89

0.89 1

)

,

1

2
(E −H) =

(

0.82 0.9

0.9 0.82

)

, H =

(

1 1

1 1

)

,
1

4
F =

(

1 0.5

0.5 1

)
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and

c = 0.26, g = g′ = 0.89, t1 = −1, t2 = −2.

For these parameter values, the VEVs obtained from minimization conditions are

v = 246.02GeV, w1 = 1.09GeV, w2 = 1.32GeV.

The Yukawa coupling matrices are fixed to be

h
(1)
ij =







2.25× 10−12 5.70× 10−12 1.62× 10−12

5.70× 10−12 0.80× 10−11 0.66× 10−11

1.62× 10−12 0.66× 10−11 1.74× 10−11






,

h
(2)
ij =







1.0× 10−12 1.0× 10−12 1.0× 10−12

1.0× 10−12 1.0× 10−11 1.0× 10−11

1.0× 10−12 1.0× 10−11 1.0× 10−11






.

BP 2. The input parameters for the scalar potential are

a = −15625,
1

2
B =

(

60509.6 −74990

−74990 60590

)

,
1

4
D =

(

1 0.9

0.9 1

)

,

1

2
(E −H) =

(

0.82 0.9

0.9 0.82

)

, H =

(

0.9 0.9

0.9 0.9

)

,
1

4
F =

(

0.9 0.45

0.45 0.9

)

and

c = 0.26, g = g′ = 0.9, t1 = −1, t2 = −2.

For these parameter values, the VEVs obtained from minimization conditions are

v = 246.02GeV, w1 = 1.09GeV, w2 = 1.32GeV.

The Yukawa coupling matrices are fixed to be

h
(1)
ij =







2.25× 10−12 5.69× 10−12 1.62× 10−12

5.69× 10−12 0.79× 10−11 0.66× 10−11

1.62× 10−12 0.66× 10−11 1.74× 10−11






,

h
(2)
ij =







1.0× 10−12 1.0× 10−12 1.0× 10−12

1.0× 10−12 1.0× 10−11 1.0× 10−11

1.0× 10−12 1.0× 10−11 1.0× 10−11






.

BP 3. The input parameters for the scalar potential are

a = −15625,
1

2
B =

(

58870 −55110

−55110 75000

)

,
1

4
D =

(

1 1

1 1

)

,

1

2
(E −H) =

(

0.8 0.95

0.95 1

)

, H =

(

0.7 1

1 1

)

,
1

4
F =

(

0.9 0.5

0.5 0.9

)

and

c = 0.2582, g = g′ = 1, t1 = −1, t2 = −2.
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For these parameter values, the VEVs obtained from minimization conditions are

v = 246.02GeV, w1 = 0.59GeV, w2 = 0.72GeV.

The Yukawa coupling matrices are fixed to be

h
(1)
ij =







5.15× 10−12 1.15× 10−11 3.98× 10−12

1.15× 10−11 2.48× 10−11 2.22× 10−11

3.98× 10−12 2.22× 10−11 4.21× 10−11






,

h
(2)
ij =







1.0× 10−12 1.0× 10−12 1.0× 10−12

1.0× 10−12 1.0× 10−11 1.0× 10−11

1.0× 10−12 1.0× 10−11 1.0× 10−11






.

BP 4. The input parameters for the scalar potential are

a = −15625,
1

2
B =

(

62945 −65200

−65200 76000

)

,
1

4
D =

(

1 0.9

0.9 1

)

,

1

2
(E −H) =

(

0.8 1

1 1

)

, H =

(

0.8 1

1 1

)

,
1

4
F =

(

0.8 0.5

0.5 1

)

and

c = 0.2582, g = g′ = 0.9, t1 = −1, t2 = −2.

For these parameter values, the VEVs obtained from minimization conditions are

v = 246.02GeV, w1 = 0.66GeV, w2 = 0.79GeV.

The Yukawa coupling matrices are fixed to be

h
(1)
ij =







4.52× 10−12 1.02× 10−11 3.47× 10−12

1.02× 10−11 2.12× 10−11 1.90× 10−11

3.47× 10−12 1.90× 10−11 3.68× 10−11






,

h
(2)
ij =







1.0× 10−12 1.0× 10−12 1.0× 10−12

1.0× 10−12 1.0× 10−11 1.0× 10−11

1.0× 10−12 1.0× 10−11 1.0× 10−11






.

A.2 Input parameters for Scenario 2: BR
(

H
++

1 →W
+
W

+
)

≪BR
(

H
++

1 →ℓiℓj

)

BP 1. The input parameters for the scalar potential are

a = −15627,
1

2
B =

(

77079.1 −74990

−74990 37283.5

)

,
1

4
D =

(

1 0.89

0.89 1

)

,

1

2
(E −H) =

(

0.82 0.9

0.9 0.82

)

, H =

(

1 1

1 1

)

,
1

4
F =

(

1 0.5

0.5 1

)

and

c = 0.2582, g = g′ = 0.89, t1 = −1× 10−9, t2 = −1.5× 10−9.

For these parameter values, the VEVs obtained from minimization conditions are

v = 246.01GeV, w1 = 1.0× 10−9GeV, w2 = 1.5× 10−9GeV.
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The Yukawa coupling matrices are fixed to be

h
(1)
ij =







7.84× 10−4 4.55× 10−3 8.71× 10−5

4.55× 10−3 1.19× 10−2 1.05× 10−2

8.71× 10−5 1.05× 10−2 2.22× 10−2






,

h
(2)
ij =







2.0× 10−3 2.0× 10−3 2.0× 10−3

2.0× 10−3 1.0× 10−2 1.0× 10−2

2.0× 10−3 1.0× 10−2 1.0× 10−2






.

BP 2. The input parameters for the scalar potential are

a = −15627,
1

2
B =

(

77079.1 −74990

−74990 37283.5

)

,
1

4
D =

(

1 0.9

0.9 1

)

,

1

2
(E −H) =

(

0.82 0.9

0.9 0.82

)

, H =

(

0.9 0.9

0.9 0.9

)

,
1

4
F =

(

0.9 0.45

0.45 0.9

)

and

c = 0.2582, g = g′ = 0.9, t1 = −1× 10−9, t2 = −1.5× 10−9.

For these parameter values, the VEVs obtained from minimization conditions are

v = 246.01GeV, w1 = 1.0× 10−9GeV, w2 = 1.5× 10−9GeV.

The Yukawa coupling matrices are fixed to be

h
(1)
ij =







7.84× 10−4 4.55× 10−3 8.71× 10−5

4.55× 10−3 1.19× 10−2 1.05× 10−2

8.71× 10−5 1.05× 10−2 2.22× 10−2






,

h
(2)
ij =







2.0× 10−3 2.0× 10−3 2.0× 10−3

2.0× 10−3 1.0× 10−2 1.0× 10−2

2.0× 10−3 1.0× 10−2 1.0× 10−2






.

BP 3. The input parameters for the scalar potential are

a = −15627,
1

2
B =

(

45594.7 −55110

−55110 17574.4

)

,
1

4
D =

(

1 1

1 1

)

,

1

2
(E −H) =

(

0.8 0.95

0.95 1

)

, H =

(

0.7 1

1 1

)

,
1

4
F =

(

0.7 0.5

0.5 1

)

and

c = 0.2582, g = g′ = 1, t1 = −1× 10−8, t2 = −1.5× 10−8.

For these parameter values, the VEVs obtained from minimization conditions are

v = 246.01GeV, w1 = 1.0× 10−8GeV, w2 = 1.5× 10−8GeV.
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The Yukawa coupling matrices are fixed to be

h
(1)
ij =







7.84× 10−5 4.55× 10−4 8.71× 10−6

4.55× 10−4 1.19× 10−3 1.05× 10−3

8.71× 10−6 1.05× 10−3 2.22× 10−3






,

h
(2)
ij =







2.0× 10−4 2.0× 10−4 2.0× 10−4

2.0× 10−4 1.0× 10−3 1.0× 10−3

2.0× 10−4 1.0× 10−3 1.0× 10−3






.

BP 4. The input parameters for the scalar potential are

a = −15627,
1

2
B =

(

58460.1 −65200

−65200 23292.4

)

,
1

4
D =

(

1 0.9

0.9 1

)

,

1

2
(E −H) =

(

0.8 1

1 1

)

, H =

(

0.8 1

1 1

)

,
1

4
F =

(

0.8 0.5

0.5 1

)

and

c = 0.2582, g = g′ = 0.9, t1 = −1× 10−9, t2 = −1.5× 10−9.

For these parameter values, the VEVs obtained from minimization conditions are

v = 246.01GeV, w1 = 1.0× 10−9GeV, w2 = 1.5× 10−9GeV.

The Yukawa coupling matrices are fixed to be

h
(1)
ij =







7.84× 10−4 4.55× 10−3 8.71× 10−5

4.55× 10−3 1.19× 10−2 1.05× 10−2

8.71× 10−5 1.05× 10−2 2.22× 10−2






,

h
(2)
ij =







2.0× 10−3 2.0× 10−3 2.0× 10−3

2.0× 10−3 1.0× 10−2 1.0× 10−2

2.0× 10−3 1.0× 10−2 1.0× 10−2






.

A.3 Input parameters for Scenario 3: BR
(

H
++

1 →W
+
W

+
)

∼BR
(

H
++

1 →ℓiℓj

)

BP 1. The input parameters for the scalar potential are

a = −15625,
1

2
B =

(

58872.8 −55110

−55110 75002.3

)

,
1

4
D =

(

1 1

1 1

)

,

1

2
(E −H) =

(

0.8 0.95

0.95 1

)

, H =

(

0.7 1

1 1

)

,
1

4
F =

(

0.7 0.5

0.5 1

)

and

c = 0.2582, g = g′ = 1, t1 = −1× 10−5, t2 = −2× 10−5.

For these parameter values, the VEVs obtained from minimization conditions are

v = 246.01GeV, w1 = 0.59× 10−5GeV, w2 = 0.72× 10−5GeV.
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The Yukawa coupling matrices are fixed to be

h
(1)
ij =







5.15× 10−7 1.15× 10−6 3.98× 10−7

1.15× 10−6 2.48× 10−6 2.22× 10−6

3.98× 10−7 2.22× 10−6 4.21× 10−6






,

h
(2)
ij =







1.0× 10−7 1.0× 10−7 1.0× 10−7

1.0× 10−7 1.0× 10−6 1.0× 10−6

1.0× 10−7 1.0× 10−6 1.0× 10−6






.

BP 2. The input parameters for the scalar potential are

a = −15627,
1

2
B =

(

58460.1 −65200

−65200 23292.4

)

,
1

4
D =

(

1 0.9

0.9 1

)

,

1

2
(E −H) =

(

0.8 1

1 1

)

, H =

(

0.8 1

1 1

)

,
1

4
F =

(

0.8 0.5

0.5 1

)

and

c = 0.2582, g = g′ = 0.9, t1 = −1× 10−4, t2 = −1.5× 10−4.

For these parameter values, the VEVs obtained from minimization conditions are

v = 246.01GeV, w1 = 1.0× 10−4GeV, w2 = 1.5× 10−4GeV.

The Yukawa coupling matrices are fixed to be

h
(1)
ij =







7.84× 10−9 4.55× 10−8 8.71× 10−10

4.55× 10−8 1.19× 10−7 1.05× 10−7

8.71× 10−10 1.05× 10−7 2.22× 10−7






,

h
(2)
ij =







2.0× 10−8 2.0× 10−8 2.0× 10−8

2.0× 10−8 1.0× 10−7 1.0× 10−7

2.0× 10−8 1.0× 10−7 1.0× 10−7






.

BP 3.

a = −15627,
1

2
B =

(

77079.1 −74990

−74990 37283.5

)

,
1

4
D =

(

1 0.9

0.9 1

)

,

1

2
(E −H) =

(

0.82 0.9

0.9 0.82

)

, H =

(

0.9 0.9

0.9 0.9

)

,
1

4
F =

(

0.9 0.45

0.45 0.9

)

and

c = 0.2582, g = g′ = 0.9, t1 = −1× 10−4, t2 = −1.5× 10−4.

For these parameter values, the VEVs obtained from minimization conditions are

v = 246.01GeV, w1 = 1.0× 10−4GeV, w2 = 1.5× 10−4GeV.
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The Yukawa coupling matrices are fixed to be

h
(1)
ij =







7.84× 10−9 4.55× 10−8 8.71× 10−10

4.55× 10−8 1.19× 10−7 1.05× 10−7

8.71× 10−10 1.05× 10−7 2.22× 10−7






,

h
(2)
ij =







2.0× 10−8 2.0× 10−8 2.0× 10−8

2.0× 10−8 1.0× 10−7 1.0× 10−7

2.0× 10−8 1.0× 10−7 1.0× 10−7






.

BP 4. The input parameters for the scalar potential are

a = −15627,
1

2
B =

(

45594.7 −55110

−55110 17574.4

)

,
1

4
D =

(

1 1

1 1

)

,

1

2
(E −H) =

(

0.8 0.95

0.95 1

)

, H =

(

0.7 1

1 1

)

,
1

4
F =

(

0.7 0.5

0.5 1

)

and

c = 0.2582, g = g′ = 1, t1 = −1× 10−4, t2 = −1.5× 10−4.

For these parameter values, the VEVs obtained from minimization conditions are

v = 246.01GeV, w1 = 1.0× 10−4GeV, w2 = 1.5× 10−4GeV.

The Yukawa coupling matrices are fixed to be

h
(1)
ij =







7.84× 10−9 4.55× 10−8 8.71× 10−10

4.55× 10−8 1.19× 10−7 1.05× 10−7

8.71× 10−10 1.05× 10−7 2.22× 10−7






,

h
(2)
ij =







2.0× 10−8 2.0× 10−8 2.0× 10−8

2.0× 10−8 1.0× 10−7 1.0× 10−7

2.0× 10−8 1.0× 10−7 1.0× 10−7






.

B Expressions for doubly-charged scalar decay widths

In this part, we list the formulae for the decay rates of H++
1 and H++

2 . The masses of the

doubly-charged scalars are denoted by M1,2 with M1 > M2 and those of the singly-charged

scalars by µ1,2 with µ1 > µ2. The mixing matrices U and V are defined in equation (3.13).
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With these quantities the decay rates for H±±
1 and H±±

2 can be evaluated as

Γ
(

H++
1 → ℓ+i ℓ

+
j

)

=
1

8π

∣

∣

∣
h
(1)
ij U11 + h

(2)
ij U21

∣

∣

∣

2
M1Sij , (B.1)

Γ
(

H++
1 → W+W+

)

=
g4M3

1

16πm4
W

∣

∣

∣

(

U †w
)

1

∣

∣

∣

2
(

3m4
W

M4
1

− m2
W

M2
1

+
1

4

)

β

(

m2
W

M2
1

)

, (B.2)

Γ
(

H++
1 → H+

2 W+
)

=
g2M3

1

16πm2
W

∣

∣

∣

∣

∣

∣

∑

k=1,2

V ∗
k2Uk1

∣

∣

∣

∣

∣

∣

2
[

λ

(

m2
W

M2
1

,
µ2
2

M2
1

)]3/2

, (B.3)

Γ
(

H++
2 → ℓ+i ℓ

+
j

)

=
1

8π

∣

∣

∣h
(1)
ij U12 + h

(2)
ij U22

∣

∣

∣

2
M2Sij , (B.4)

Γ
(

H++
2 → W+W+

)

=
g4M3

2

16πm4
W

∣

∣

∣

(

U †w
)

2

∣

∣

∣

2
(

3m4
W

M4
2

− m2
W

M2
2

+
1

4

)

β

(

m2
W

M2
2

)

, (B.5)

where

Sij =

{

1 for i 6= j,

1/2 for i = j.
(B.6)

The functions of λ(x, y), β(x) are defined as

λ(x, y) = 1 + x2 + y2 − 2xy − 2x− 2y, (B.7)

β(x) =
√

λ(x, x) =
√
1− 4x, (B.8)

respectively.
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