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1 Introduction

A period of exponential expansion of the early universe driven by the potential energy of a

scalar field — the inflaton — is an elegant explanation for the flatness, isotropy and homo-

geneity of the universe today [1–5]. Furthermore, it provides a very plausible mechanism

for generating the nearly scale invariant spectrum of primordial density fluctuations that

have been imprinted on the cosmic microwave background (CMB) [6, 7] and have grown

into the large scale structure of galaxies [8]. The nature of the inflaton is, however, still

unknown. While a large number of inflationary models that extend the scalar degrees of

freedom of the Standard Model (SM) have been proposed (see e.g. [9, 10]), the possibility

that the SM Higgs boson is the inflaton — a scenario attractive for its minimality — still

remains for the model of Higgs inflation from a non-minimal coupling to gravity [11].1

This model of Higgs inflation, based on the work of [21–24], makes use of a large

non-minimal gravitational coupling ξH†HR between the Higgs doublet H and the Ricci

scalarR.2 The effect of this coupling is to flatten the SM potential above the scale MPl/
√
ξ,

thereby allowing a sufficiently flat region for slow roll inflation. An analysis of the tree-level

1Other proposed models of Higgs inflation make use of special features of the SM potential that develop

if the Higgs quartic coupling λ runs to very small values. The quasiflat SM potential considered in [12],

however, predicts too large an amplitude of density fluctuations while false vacuum inflation [13–15] requires

an additional scalar particle to achieve a graceful exit from inflation. Further possibilities, not discussed here,

make use of derivative couplings of the Higgs to gravity or other non-renormalizable Higgs couplings [16–20].
2This is the only local, gauge-invariant interaction with mass dimension four or less that can be added

to the SM once gravity is included.
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potential finds ξ ' 5 × 104
√
λ is required to produce the correct amplitude of primordial

density fluctuations [11], which for Mh ' 125–126 GeV [25] gives ξ ∼ 2× 104. The predic-

tions for the spectral index and the tensor-to-scalar ratio are also well within the current

1σ allowed regions [6, 7].

It has been pointed out, however, that Higgs ξ-inflation with the large value ξ ∼ 104

suffers from a serious problem. Perturbative unitarity is violated at the scale MPl/ξ, and

new physics entering at MPl/ξ to restore unitarity is naively expected to contain new par-

ticles and interactions that affect the potential in an uncontrollable way [26–29].3 The

self-consistency of the model in the inflationary region h & MPl/
√
ξ is therefore ques-

tionable. To address the issue of unitarity violation while preserving the minimality of

Higgs inflation, one must make a rather strong assumption that either additional non-

renormalizable Higgs interactions accompany the non-minimal coupling and restore uni-

tarity [34] or that new strong dynamics entering at MPl/ξ restores unitarity in a non-

perturbative way [30, 31, 35, 36]. It is unknown whether the former approach can be

made consistent with quantum corrections or the effect of additional potential and Yukawa

interactions [33], while it is unclear whether strong coupling in graviton exchange pro-

cesses for the latter scenario can unitarize scattering cross sections without requiring new

physics [33]. If the latter scenario is possible, however, an approximate shift symmetry of

the potential in the inflationary region h &MPl/
√
ξ may keep quantum corrections to the

potential under control [31].

The problem of perturbative unitarity violation in Higgs ξ-inflation, at least with

regard to new physics entering at MPl/ξ below the inflationary scale, is perhaps not as

severe as the tree-level estimate of ξ suggests. A Higgs mass Mh ' 125–126 GeV is in the

region that, for a top quark mass only about 2σ below its central value, the effective Higgs

quartic coupling λeff(µ) can run to very small (positive) values near the Planck scale [37–

39]. The effect of small λeff(µ) near the Planck scale is to reduce the value of ξ necessary for

successful inflation [30, 35, 40] and hence push the scale of perturbative unitarity violation

toward the inflationary scale. If inflation with ξ ∼ 1 is possible for sufficiently small λeff(µ)

— a scenario that is not yet explored — the problem of perturbative unitarity violation

occurring below the inflationary scale can be avoided.4 Of course, an investigation of this

possibility requires a proper treatment of the RG evolution and effective potential within

the framework of Higgs ξ-inflation.

Extending the analysis of Higgs ξ-inflation to higher loop order is not entirely straight-

forward. While the renormalization group (RG) equations of the SM are perfectly adequate

for describing the RG evolution below MPl/ξ, there are two ambiguities in the RG evolution

3It has been argued that the scale of perturbative unitarity violation for a large background Higgs field

is higher than the small background field estimate MPl/ξ and, in particular, does not spoil the perturbative

analysis of inflation [30–32]. In this case, one must make a non-trivial assumption about the new physics

sector that the scale of new physics is background dependent [33]. In this paper, we make the more

conservative working assumption that the scale of new physics is independent of the background Higgs field

and therefore must be taken to be the lowest scale of perturbative unitarity violation, MPl/ξ.
4In this case, note that although the potential during inflation V 1/4 . 2 × 1016 GeV is constrained to

be sub-Planckian [6, 7], the non-minimal coupling ξH†HR with ξ ∼ 1 is still relevant to inflation since the

Higgs field h ∼MPl/
√
ξ is then assumed to be near the Planck scale.
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above MPl/ξ due to the non-minimal coupling of the Higgs. First, quantum loops involv-

ing the physical Higgs field (and not the Nambu-Goldstone bosons present in the Landau

gauge) are heavily suppressed in this region [30, 35]. To deal with this, one can either

use the chiral electroweak theory (SM with frozen radial Higgs mode) to derive the RG

equations above MPl/ξ [30] or one can simply use the RG equations of the SM with a sup-

pression factor for each Higgs running in a loop [35, 41–43]. Second, radiative corrections

to the SM potential (in particular the choice of the renormalization scale µ(h)) depend on

whether they are computed in the Einstein or Jordan frame [40], and it is unclear which

frame should be used without knowledge of physics at the Planck scale.

In this paper, we extend the two-loop analysis of Higgs ξ-inflation [30, 35] to include

the three-loop SM beta functions for the gauge couplings [44] as well as the leading three-

loop terms for the RG evolution of λ, the top Yukawa coupling yt, and the Higgs anomalous

dimension γ [45]. For the first time, a complete two-loop insertion of suppression factors

for the physical Higgs loops, which was missing in [35], is carried out. The use of these RG

equations provides a modest update to the previous analyses of Higgs ξ-inflation. The main

focus of this paper, however, is to investigate the region of parameter space with λeff(µ)� 1

near the Planck scale that exists for the recently measured Higgs mass Mh ' 125–126 GeV

and a top quark mass Mt ∼ 171 GeV, about 2σ below its central value.5

The paper is organized as follows. In section 2, we give a brief review of Higgs ξ-

inflation and the tree-level analysis. In section 3, the RG equations and the effective

potential relevant for a two-loop analysis of Higgs ξ-inflation are presented. The numerical

results and inflationary predictions for both the Einstein and Jordan frame renormalization

prescriptions, with a particular focus on the small λmin
eff region, are given in section 4. A

summary of the results and the conclusions are given in section 5.

2 Tree-level analysis

Let us first briefly review Higgs ξ-inflation and the tree-level computation of the inflationary

predictions. Although the tree-level results will differ from those in the two-loop analysis,

many qualitative features of the computation will remain the same.

As an example of inflation from a non-minimally coupled scalar, Higgs ξ-inflation is

characterized by a non-minimal gravitational coupling ξH†HR between the Higgs doublet

H and the Ricci scalar R. The Lagrangian of the model is given by [11]

L = LSM −
M2

2
R− ξH†HR, (2.1)

where LSM is the SM Lagrangian and M is a mass parameter (the bare Planck mass)

that can safely be identified with the present Planck mass value MPl = (8πGN )−1/2 '
2.4 × 1018 GeV for

√
ξ � 1017. The part of (2.1) that is relevant to inflation gives the

5For the top quark mass central value, the SM potential develops an instability at around 1011 GeV [37,

38]. Since Higgs ξ-inflation requires the stability of the potential up to the inflationary scale MPl/
√
ξ, one

could interpret this result as disfavouring Higgs ξ-inflation at 2σ. The position advocated here is that a

special region of Higgs ξ-inflation with λeff(µ)� 1 exists within only 2σ of experimental measurements.
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action

SJ =

∫
d4x
√
−g
[
−
M2

Pl

2

(
1 +

2ξH†H

M2
Pl

)
R+ (∂µH)† (∂µH)− V

]
, (2.2)

where V = λ
(
H†H − v2/2

)2
is the SM potential and the subscript J denotes the Jordan

frame. This is the frame in which the inflationary model is defined.

To compute the inflationary observables, it is convenient to first remove the non-

minimal coupling to gravity in (2.2) by performing the conformal transformation

gµν → g̃µν = Ω2gµν , Ω2 = 1 +
2ξH†H

M2
Pl

. (2.3)

The resulting Einstein frame action is given by

SE =

∫
d4x
√
−g̃
[
−
M2

Pl

2
R̃+

1

Ω2
(∂µH)† (∂µH) +

3ξ2

Ω4M2
Pl

∂µ(H†H)∂µ(H†H)− V

Ω4

]
,

(2.4)

where R̃ is calculated with the metric g̃. The action (2.4) simplifies greatly in the unitary

gauge H = 1√
2

(
0
h

)
, which may be used for the tree-level computation, giving

SE =

∫
d4x
√
−g̃
[
−
M2

Pl

2
R̃+

1

2

(
Ω2 + 6ξ2h2/M2

Pl

Ω4

)
∂µh∂

µh− V

Ω4

]
, (2.5)

where V = λ
4

(
h2 − v2

)2
and Ω2 = 1 + ξh2/M2

Pl. It is also convenient to remove the non-

canonical kinetic term for the Higgs field in (2.5) by changing to a new scalar field χ,

defined by

dχ

dh
=

√
Ω2 + 6ξ2h2/M2

Pl

Ω4
. (2.6)

The Einstein frame action then takes the form

SE =

∫
d4x
√
−g̃
[
−
M2

Pl

2
R̃+

1

2
∂µχ∂

µχ− U(χ)

]
, (2.7)

where the potential is given by

U(χ) =
V

Ω4
=

λ(h2 − v2)2

4(1 + ξh2/M2
Pl)

2
(2.8)

with h = h(χ). It is the flattening of the potential U(χ) to a constant value U0 ≡ λM4
Pl/4ξ

2

in the region h &MPl/
√
ξ that allows slow roll inflation to occur.

The standard analysis of inflation in the slow roll approximation can be carried out

for the field χ and potential U(χ). In the inflationary region h2 & M2
Pl/ξ � v2, the slow

roll parameters for ξ � 1 can be approximated by [35, 46] (see [23] for exact expressions)

ε =
M2

Pl

2

(
dU/dχ

U

)2

'
4M4

Pl

3ξ2h4
, (2.9)

η = M2
Pl

d2U/dχ2

U
'

4M4
Pl

3ξ2h4

(
1− ξh2

M2
Pl

)
, (2.10)

ζ2 = M4
Pl

(
d3U/dχ3

)
dU/dχ

U2
'

16M6
Pl

9ξ3h6

(
ξh2

M2
Pl

− 3

)
. (2.11)
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Slow roll ends when either ε ' 1 or |η| ' 1. For (2.9) and (2.10), this occurs when ε ' 1

at a field value hend ' (4/3)1/4MPl/
√
ξ ' 1.07MPl/

√
ξ. The number of e-folds of inflation

as h changes from h0 to hend is given by [47]

N =

∫ h0

hend

1

M2
Pl

U

dU/dh

(
dχ

dh

)2

dh ' 3

4

[
h2

0 − h2
end

M2
Pl/ξ

+ ln

(
1 + ξh2

end/M
2
Pl

1 + ξh2
0/M

2
Pl

)]
. (2.12)

The values of the parameters (2.9)–(2.11) at a particular field value h0, corresponding to

the time at which the pivot scale k∗ ' 0.002Mpc−1 left the horizon during inflation, can

be used to compare with the CMB data. This value of h0 (or equivalently N) is a model-

dependent quantity that is sensitive to the details of reheating. For Higgs ξ-inflation, an

analysis of reheating finds that N ' 59, or equivalently h0 ' 9.14MPl/
√
ξ, is the value at

which k∗ left the horizon during inflation [47, 48]. Using (2.9) in the WMAP9 normalization

U/ε ' (0.0274MPl)
4 [6], the required value of ξ is6

ξ ' 48000
√
λ = 48000

Mh√
2v
' 17000. (2.13)

The predictions for the spectral index ns, the tensor-to-scalar ratio r, and the running of

the spectral index dns/d ln k are given by

ns = 1− 6ε+ 2η ' 0.967, (2.14)

r = 16ε ' 0.0031, (2.15)

dns
d ln k

= 24ε2 − 16εη + 2ζ2 ' 5.4× 10−4. (2.16)

These predictions for ns and r are well within the current 1σ allowed regions from [6, 7],

while the prediction of dns/d ln k is consistent with observations at the 1–2σ level.

3 Two-loop analysis

An analysis of Higgs ξ-inflation beyond the tree level must include both the running of the

couplings and loop corrections to the (effective) potential [30, 35, 40]. The most significant

effect of these higher order corrections comes from the running of the Higgs quartic coupling

λ = λ(µ). For Mh ' 125–126 GeV, it is well known that the running of λ(µ) — or more

specifically λeff(µ) — causes the SM potential to develop an instability below the Planck

scale unless the top quark mass is about 2σ below its central value [37, 38]. Since Higgs ξ-

inflation requires the stability of the potential up to the inflationary scale MPl/
√
ξ, in order

to realize this model of inflation one must make the moderate assumption of a top quark

mass Mt . 171 GeV. In this case, it has been shown that the small values of λeff(µ) near

the Planck scale can significantly reduce the non-minimal coupling ξ required for successful

inflation [30, 35, 40].7 The reason for this is relatively simple: the tree-level estimate (2.13)

6The Planck 2013 normalization U/ε ' (0.0269MPl)
4 [7] gives ξ ' 18000.

7Actually, the one-loop [40] and two-loop [30, 35] analyses predate the Higgs mass measurement and

were carried out to determine the range of Mh allowed for Higgs ξ-inflation. In retrospect, however, a Higgs

mass near the lower end of the allowed region suggests a value of ξ . 103 is required for successful inflation,

with the lower limit of ξ unknown.
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shows that it is the combination λ/ξ2 that must be small (∼ 4 × 10−10) in order to give

the proper normalization of the CMB power spectrum. If λeff(µ) is much smaller in the

inflationary region than its tree-level value λ ' 0.13, then ξ must also be smaller than the

tree-level estimate ξ ' 18000.

The smaller value of ξ required for successful inflation is particularly important since it

is closely related to one of the most significant drawbacks of Higgs ξ-inflation: the violation

of perturbative unitarity at the scale MPl/ξ. For ξ → 1, this scale is pushed toward

the inflationary scale MPl/
√
ξ and the questionable assumptions of non-renormalizable

operators [34] or new strong dynamics [30, 31, 35, 36] entering to restore unitarity are no

longer required.8 Since the lower limit of ξ in the case of small λeff(µ) during inflation

has not been explored, an important question is whether it is possible to realize Higgs

ξ-inflation with ξ ∼ 1 and hence avoid the perturbative unitarity issues with the model.

Such a region is, by nature, highly sensitive to the running of λeff(µ) and requires a proper

loop analysis within the Higgs ξ-inflation framework.

To investigate the lower limit of ξ with λeff(µ) � 1 during inflation, we first describe

the RG equations and the two-loop effective potential that are appropriate for Higgs ξ-

inflation in sections 3.1 and 3.2, respectively. The analysis of inflation, including the lower

limits on ξ and the inflationary predictions, are presented in section 4.

3.1 Renormalization group equations

The modification of the well-known RG equations of the SM for the Higgs ξ-inflation

scenario has been discussed in [30, 35, 40–43]. Essentially, the scalar propagator of the

physical Higgs field, which enters into loop diagram calculations for the RG equations,

must be multiplied by the field-dependent factor [35, 42]9

s(h) =
1 + ξh2/M2

Pl

1 + (1 + 6ξ)ξh2/M2
Pl

. (3.1)

For small field values h � MPl/ξ, s ' 1 and the RG equations for the SM are perfectly

adequate for describing the RG evolution. For large field values h � MPl/ξ, however,

the physical Higgs propagator is suppressed by a factor s ' 1/(1 + 6ξ) and hence the RG

equations differ from those of the SM. Two methods of dealing with this effect have been

considered in the literature [30, 35], leading to somewhat different results.

The first method of treating the suppressed Higgs loops, which is described in [35], is

to insert one suppression factor s into the RG equations of the SM for each off-shell Higgs

propagator. Originally this was done by extracting out all Higgs doublet propagators

at one-loop order and inserting the appropriate factors of s, repeating the process only

8Of course, the Higgs field h during inflation becomes trans-Planckian in this case and one must worry

about the effects of higher dimensional operators suppressed by the Planck scale, which may spoil the

flatness of the potential or the inflationary predictions [47]. As remarked in [35], however, the same worry

applies to many minimal models of inflation, such as m2φ2 chaotic inflation.
9The reason for this suppression is that the canonical momentum of h (which is evaluated in the Einstein

frame with a canonical gravity sector) gives a non-standard commutator [h(~x), ḣ(~y)] = i~s(h)δ3(~x − ~y) in

the Jordan frame after imposing the standard commutation relations [h(~x), π(~y)] = i~δ3(~x− ~y).
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for obvious terms at two-loop order [35]. It was later pointed out, however, that only

the propagator of the physical Higgs field and not the Nambu-Goldstone bosons that are

present in the Landau gauge should come with such a factor [30]. The corrected RG

equations with systematic insertions of s for all two-loop terms, except for βλ, are given

in [43]. By using these RG equations in the full two-loop SM effective potential from [38]

(with m2 → 0 and M2
h → 3sλh2) and demanding that the potential be independent of µ,

we have been able to extract the two-loop part for βλ.10 A similar procedure can then be

used to obtain the two-loop RG equation for the Higgs mass parameter m2 (in the notation

of [38]) with appropriate suppression factors. Although βm2 is not actually required for an

analysis of Higgs ξ-inflation, it can be used to derive the RG equation for ξ through the

relation βξ = (ξ + 1/6) γm, where γm = βm2/m2 [42]. The complete set of two-loop RG

equations with suppressed physical Higgs loops is given in appendix A.

The second method of treating the suppressed Higgs loops is to instead view the effect

as a suppression of the effective Higgs coupling to other SM fields and, for large ξ, neglect

the physical Higgs field altogether in the region h & MPl/ξ [30]. The resulting theory

(SM with frozen radial Higgs mode) is known as the chiral electroweak theory and has

been studied previously in the literature. It is therefore possible to extract one-loop RG

equations, which are valid for ξ � 1, from earlier works such as [49]. In [30], however, the

RG equations for λ, yt, and ξ derived in this way differ from (A.1), (A.2), and (A.6) with

s = 0. A closer look reveals two sources (though not necessarily errors) for this discrepancy.

First, the equation for the running of v2 used in [30], which was first given in [49], differs

from the running of the SM Higgs field h2 in the Landau gauge,

16π2µ
∂

∂µ
h2 =

(
3

2
g′2 +

9

2
g2 − 6y2

t

)
h2. (3.2)

In the usual SM case, the running of the Higgs vacuum expectation value v2 and the Higgs

field h2 are both gauge-dependent quantities [50] and have the same running [51]. Although

it has been argued that v2 in the chiral electroweak theory is a gauge-invariant parameter

and therefore its running should also be gauge invariant, we have found it difficult to

reproduce the chiral electroweak theory result using Feynman diagrams and understand

why its running differs from the running of h2 in the SM. In any case, if eq. (5.6) of [30]

is replaced by the similar expression (3.2), the resulting one-loop equation for βyt agrees

with (A.2) for s = 0. Second, βλ is derived in [30] by demanding that the one-loop effective

potential be independent of µ, where the one-loop potential does not include the usual

contribution from the Nambu-Goldstone bosons [38]

∆U1 =
3M4

G

64π2

(
ln
M2
G

µ2
− 3

2

)
, (3.3)

where M2
G = λh2. Although the Goldstone boson contribution to the effective potential is

strongly suppressed for prescription I (see section 3.2), the result of excluding this term in

10In the process, we believe that two typos in the complete expression for the two-loop SM effective

potential have been discovered. In [38], the final term of (A.3) should read −χIttg instead of −χIttz and

the second last term on the third line of (A.5) should read −3Iw00 instead of +Iw00.

– 7 –
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deriving βλ is equivalent to suppressing some Feynman diagrams with off-shell Goldstone

boson propagators; that is, the
(
6 + 18s2

)
λ2 term in (A.1) disappears entirely. While this

difference is small in the region h & MPl/ξ (numerically it is smaller than the two-loop

correction to βλ), if the contribution (3.3) is included in eq. (4.1) of [30] the resulting

one-loop equation for βλ agrees with (A.1) for s = 0. Note that the one-loop equation

for βξ in [30] still differs from (A.6) even after accounting for these changes. Specifically,

the latter has a factor of ξ + 1/6 instead of ξ and an additional term (6 + 6s)λ compared

to the former. Again, these differences in βξ are small (typically below the size of the

two-loop correction to βξ) since we always have ξ � 1/6 and since λ is small in the region

MPl/ξ . h .MPl/
√
ξ over which ξ runs.

It is also worth mentioning that the second method includes the effects of additional

counterterms taken from the chiral electroweak theory [49] that arise to cancel divergences

in the non-renormalizable SM sector without a Higgs field. These effects appear through

the additional couplings α0 and α1 that modify the renormalization of the Z boson mass [30]

and contribute to the effective potential at the two-loop level. Numerically, however, the

Z boson mass contribution at the two-loop level, and hence this effect, is subleading [38].

The two methods of treating the suppressed Higgs loops for h & MPl/ξ are therefore

quite similar, at least for large ξ. The first method uses s factors to smoothly interpolate

between the SM-like RG evolution at low energies and the RG evolution with suppressed

physical Higgs propagators at high energies, while the second method models this transition

as an abrupt change at MPl/ξ.
11 Since the s-factor treatment also handles the case ξ ∼ 1,

though, we adopt the first method [35, 41–43] and use a suppression factor s for each off-

shell Higgs propagator in the SM RG equations for our analysis of Higgs ξ-inflation. Despite

the different treatments of the RG equations described above, the numerical differences are

small enough that a two-loop analysis in the region h &MPl/ξ should be justified.

With the recent SM calculation of the three-loop beta functions for the gauge cou-

plings [44] and the leading three-loop terms for βλ, βyt , and γ [45], it is relatively simple to

include these contributions in the RG equations (A.1)–(A.7) so that the Higgs ξ-inflation

analysis matches the NNLO analysis of [38] for h . MPl/ξ (see appendix A). Note that

we do not attempt to insert the appropriate factors of s into these expressions since the

corrections would be smaller than the uncertainty in the RG equations for h &MPl/ξ.

For a complete description of the RG evolution in Higgs ξ-inflation, the equa-

tions (A.1)–(A.7) with the three-loop corrections (A.8)–(A.13) must be supplemented by

values of the SM couplings at the electroweak scale and the value of ξ at some high scale,

say MPl/ξ. Appropriate initial values for the SM couplings can be found in [38]. For the

central values of α−1
Y (MZ) and α−1

2 (MZ), the initial values of the gauge couplings g′ and

g are

g′(MZ) =

√
4π

98.35
' 0.3575, (3.4)

g(MZ) =

√
4π

29.587
' 0.65171, (3.5)

11A smooth interpolation is preferred, but for ξ � 1 the function s(h) changes rapidly in the region

h ∼MPl/ξ and so the modification of the numerics is negligible [30].
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where MZ = 91.1876 GeV. For the strong gauge coupling gs, the initial value depends more

sensitively on the uncertainty in αs(MZ) = 0.1184± 0.0007. It is given by

gs(Mt) = 1.1645 + 0.0031

(
αs(MZ)− 0.1184

0.0007

)
− 0.00046

(
Mt

GeV
− 173.15

)
, (3.6)

where Mt is the top quark pole mass determined from experiment. The initial value of the

top quark Yukawa coupling yt is

yt(Mt) = 0.93587 + 0.00557

(
Mt

GeV
− 173.15

)
− 0.00003

(
Mh

GeV
− 125

)
− 0.00041

(
αs(MZ)− 0.1184

0.0007

)
± 0.00200th, (3.7)

where Mh is the Higgs pole mass, while the initial value of the Higgs quartic coupling λ is

λ(Mt) = 0.12577 + 0.00205

(
Mh

GeV
− 125

)
− 0.00004

(
Mt

GeV
− 173.15

)
± 0.00140th. (3.8)

Note that the theoretical uncertainty for λ(Mt) in (3.8) is equivalent to an uncertainty in

the Higgs pole mass of ±0.7 GeV [38]. This means, in particular, that for the measured

Higgs mass Mh = 125.7±0.4 [52] it is quite reasonable to use values of Mh ' 124–127 GeV

in (3.7) and (3.8). For the non-minimal coupling ξ, we are (a priori) free to choose its

initial value ξ0 at some high scale. We take the scale to be MPl/ξ0 so that, by definition,

ξ(MPl/ξ0) = ξ0. (3.9)

The RG equations (A.1)–(A.13) with the initial values (3.4)–(3.9) are therefore the

ones we use to describe the RG evolution of the couplings for Higgs ξ-inflation.

3.2 Two-loop effective potential

The effective potential for Higgs ξ-inflation, like the RG equations, differs from the well-

known SM result [38, 53] due to the suppression of the physical Higgs propagators. As

described in [40], however, the effective potential cannot be fixed unambiguously; there are

two inequivalent renormalization prescriptions depending on whether quantum corrections

to the potential are computed in the Einstein frame (prescription I) [11] or the Jordan

frame (prescription II) [54]. Without knowing the behaviour of the quantum theory at

the Planck scale, it is unclear which prescription should be used. The former prescription

has been connected to ideas of a possible quantum scale invariance [55–57] while [54] has

argued that the latter prescription is correct because the Jordan frame is the one in which

physical distances are measured.

For sufficiently large λeff(µ), the running of λeff(µ) during inflation is small and the

choice of renormalization prescription is irrelevant from a practical point of view [30, 38, 40].

For the small λeff(µ) allowed by the recent Higgs mass measurement, however, the choice of

renormalization prescription can significantly affect the behaviour of λeff(µ) and hence the

potential during inflation. Both renormalization prescriptions must therefore be considered.
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For prescription I, the tree-level SM potential

V0(h) =
λ

4

(
h2 − v2

)2 ' λ

4
h2 (3.10)

is first rewritten in the Einstein frame (h = h(χ)) using (2.8), giving

U0(χ) =
λh4

4Ω4
. (3.11)

Note that the v2 term in (3.10) has been safely neglected in the inflationary region h2 &
M2

Pl/ξ � v2. The one-loop radiative corrections induced by the fields of the SM then take

the Coleman-Weinberg form [38]12

U1(χ) =
1

16π2

[
3M4

W

2

(
ln
M2
W

µ2
− 5

6

)
+

3M4
Z

4

(
ln
M2
Z

µ2
− 5

6

)
− 3M4

t

(
ln
M2
t

µ2
− 3

2

)
+
M4
h

4

(
ln
M2
h

µ2
− 3

2

)
+

3M4
G

4

(
ln
M2
G

µ2
− 3

2

)]
, (3.12)

where the particle masses MW , MZ , Mt, Mh, and MG are computed from the tree-level

potential (3.11), giving [11, 40, 60]13

M2
W =

g2h2

4Ω2
, M2

Z =

(
g2 + g′2

)
h2

4Ω2
, M2

t =
y2
t h

2

2Ω2
,

M2
h =

3sλh2

Ω4

(
1− ξh2/M2

Pl

1 + ξh2/M2
Pl

)
, M2

G =
λh2

Ω4
. (3.13)

Note that the particle masses M2
W , M2

Z , and M2
t in (3.13) differ from the flat space results

by the conformal factor Ω2 = 1 + ξh2/M2
Pl that appears in the denominator, while the

physical Higgs mass M2
h and Goldstone boson mass M2

G contain additional factors. With

the exception of the suppression factor s = s(h) in the physical Higgs mass, the appearance

of these additional factors in M2
h and M2

G is due to using the asymptotically flat tree-level

potential (3.11) to determine particle masses rather than the Jordan frame potential (3.10).

These additional factors lead to a suppression of the physical Higgs and Goldstone boson

contributions to the effective potential (relative to those from W , Z, and t) during inflation

for prescription I, as found in [11, 40, 60].

The two-loop radiative corrections U2(χ) can easily be found by using the modified

particle masses (3.13) in the two-loop SM result of [38], but due to the rather long and

unenlightening form of this expression we do not reproduce it here. The RG-improved

effective potential is then determined from Ueff(χ) = U0 + U1 + U2 in the usual way by

12Up to corrections from the time-dependence of the background Higgs field as it rolls down its potential.

Such corrections have been considered in [58, 59] for the simpler Abelian Higgs model but have not yet been

studied for the Higgs ξ-inflation model. Analyzing these corrections goes beyond the scope of this paper.
13We obtain this result by expanding H = 1√

2
( 0
h ) +

(
Ĝ+

(ĥ+iĜ0)/
√

2

)
in the full expression for the tree-level

potential U0 = λ(H†H)2/Ω4 = λ(H†H)2/(1 + 2ξH†H/M2
Pl)

2 to quadratic order in the fields ĥ, Ĝ+, Ĝ0,

where h is the classical background value of the Higgs field ĥ [60].
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using the RG equations from appendix A to run the couplings and making the replacement

h→ eΓ(µ)h, where

Γ(µ) = −
∫ µ

Mt

γ(µ′)d lnµ′ (3.14)

and γ = −d lnh/d lnµ is the anomalous dimension of the Higgs field [61].14 The effective

Higgs quartic coupling λeff(µ) is then defined through

Ueff(χ) ≡ λeff(µ)h4

4Ω4
, (3.15)

where all couplings in (3.15) are evaluated at some renormalization scale µ. The depen-

dence of the effective potential on the scale µ is spurious, but to minimize the logarithms

from higher loop corrections it is appropriate to take µ = κh/Ω proportional to the back-

ground mass of a vector boson or top quark [30]. For simplicity, we choose the constant of

proportionality to be κ = 1.

For prescription II, quantum corrections to the potential (3.10) are computed in the

Jordan frame before transforming to the Einstein frame. In this case, the one-loop radiative

corrections to the effective potential take the form [42]

U1(χ) =
1

16π2Ω4

[
3M4

W

2

(
ln
M2
W

µ2
− 5

6

)
+

3M4
Z

4

(
ln
M2
Z

µ2
− 5

6

)
− 3M4

t

(
ln
M2
t

µ2
− 3

2

)
+
M4
h

4

(
ln
M2
h

µ2
− 3

2

)
+

3M4
G

4

(
ln
M2
G

µ2
− 3

2

)]
, (3.16)

where the particle masses M2
W , M2

Z , M2
t , M2

h , and M2
G appear without the conformal factor

Ω2 or additional factors in their denominators,

M2
W =

g2h2

4
, M2

Z =

(
g2 + g′2

)
h2

4
, M2

t =
y2
t h

2

2
,

M2
h = 3sλh2, M2

G = λh2. (3.17)

The two-loop radiative corrections U2(χ) can be found by using the particle masses (3.17)

in the two-loop SM result [38] and dividing the expression by the conformal factor Ω4. The

effective Higgs quartic coupling λeff(µ) is again defined through (3.15), but in this case

taking the renormalization scale to be proportional to the background mass of a vector

boson or top quark requires µ = κh. For simplicity, we again choose κ = 1.

In practice, the most significant difference between the effective potentials for the two

renormalization prescriptions is the functional dependence µ = µ(h).15 For prescription I,

µ = h/Ω approaches a constant value in the inflationary region h & MPl/
√
ξ (and hence

so do the couplings g(µ), g′(µ), etc. in (3.13)) while for prescription II the renormalization

scale µ = h does not. As a result, the effective potential for prescription I approaches a

14Note the difference in sign between the definition of γ here and the definition of γ in [38].
15The additional suppression of the physical Higgs and Goldstone boson masses for prescription I is

relatively minor since these masses, and hence their contributions to the effective potential, are small

compared to MW , MZ , and Mt for the small λ in the inflationary region.
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constant value in the inflationary region (even after including radiative corrections) while

the effective potential for prescription II, due to the continued running of the couplings,

does not. This difference, as we will see, can have a large impact on Higgs ξ-inflation and

its predictions for small λeff(µ).

4 Numerical results

For a fixed Higgs mass Mh, top quark mass Mt, strong coupling αs(MZ), and non-minimal

coupling ξ0, it is straightforward to numerically solve the RG equations (A.1)–(A.13) with

initial conditions (3.4)–(3.9) and use the effective potential U(χ) (for either prescription I

or II) to compute the inflationary parameters. However, since the focus of this paper is

on the region of parameter space with λeff(µ) � 1, we instead replace the parameter Mt

in favour of λmin
eff ≡ min{λeff(µ)}. Intuitively, this can be understood as adjusting the

top quark mass Mt to yield the desired λmin
eff for a fixed choice of Mh, αs(MZ), and ξ0.

Figure 1 shows that the special region λmin
eff ' 0 exists for a top quark mass Mt ∼ 171 GeV

about 2–3σ below its central value. Since values of λmin
eff ∼ 0.01 are typical within the

experimental and theoretical uncertainty of the various parameters, a fine-tuning of some

combination of parameters is necessary to achieve 0 < λmin
eff . 0.01.16 Note that negative

values of λmin
eff , as well as sufficiently small positive values, cause the effective potential to

develop a second minimum below the inflationary scale and hence spoil Higgs ξ-inflation.

We therefore restrict ourselves to the region 0 < λmin
eff . 0.01 in which the effective potential

is stable.

The non-minimal coupling ξ0 is not actually a free parameter, of course, but must be

chosen to give the correct normalization of the CMB power spectrum (see section 2). For

a fixed Mh and αs(MZ), the procedure for determining the inflationary predictions for a

particular choice of λmin
eff and renormalization prescription is as follows:

1. Choose a value of ξ0. Adjust the top quark mass Mt to give the desired value of λmin
eff

when solving the RG equations. For λmin
eff . 0.01, this may involve fine-tuning Mt.

2. Use the effective potential U(χ) (for prescription I or II) to compute the inflationary

parameters and determine U(h0)/ε(h0) at a field value h0 corresponding to N = 59

e-folds before the end of inflation.

3. Repeat the steps above for different values of ξ0 until the correct normalization U/ε '
(0.0274MPl)

4 is achieved.17

4. Compute the inflationary predictions for the spectral index ns, the tensor-to-scalar

ratio r, and the running of the spectral index dns/d ln k.

We discuss the numerical results for prescriptions I and II separately.

16In [39] it is argued that a UV fixed point in an asymptotically safe theory of gravity may ensure very

small values of λ(µ) near the Planck scale. In this case, fine-tuning may only be necessary for values of λmin
eff

smaller than the typical size of the shift in λeff(µ) due to radiative corrections to the effective potential,

δλeff(µ ∼MPl) ∼ 4× 10−4.
17Note that prescription II with sufficiently small λmin

eff can have two solutions for ξ0. The large ξ0 solution,

however, predicts ns > 1.02 and is therefore inconsistent with observations [6, 7].
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Figure 1. Values of λmin
eff as a function of Mt for fixed αs(MZ) = 0.1184 and ξ0 = 1000. The four

solid (dashed) curves correspond to a Higgs mass Mh of 124, 125, 126, and 127 GeV from bottom

to top for renormalization prescription I (II). The vertical dashed and dotted lines give the central

value and ±2σ range for Mt [38]. A shift in αs(MZ) of ±1σ (±0.0007) roughly corresponds to a

shift in Mh of ±0.5 GeV while changing ξ0 by an order of magnitude has little effect.

4.1 Inflationary predictions for prescription I

For prescription I, the results for ξ0 and the inflationary predictions for ns and r (as a

function of λmin
eff ) are presented in figure 2. The running of the spectral index dns/d ln k

always remains small, within the range (5.0–5.6)× 10−4.

Let us first discuss the non-minimal coupling ξ0. Figure 2 shows that the value of ξ0

required for the CMB normalization deviates from the tree-level estimate ξ0 ' 48000
√
λmin

eff

as λmin
eff decreases below about 10−4. In particular, ξ0 reaches a minimum value of ξ0 ∼ 400

at λmin
eff ∼ 10−4.4 and then begins to increase. This behaviour can be traced to the rapid

decrease in ε (and hence the tensor-to-scalar ratio r = 16ε) over this range, which causes

U/ε to increase despite smaller values of λmin
eff . A larger non-minimal coupling ξ0 is therefore

required to give the correct CMB normalization. This result demonstrates that the sharp

decrease in ξ0 seen in [40] and figure 4 of [30] for prescription I does not continue indefinitely

but only allows ξ0 as small as about 400. The violation of perturbative unitarity at the

scale MPl/ξ0 � MPl/
√
ξ0 therefore remains a problem for Higgs ξ-inflation in the small

λmin
eff region. For sufficiently small λmin

eff (e.g. . 10−4.6), no solutions for ξ0 are possible

since the effective potential develops a second minimum and hence spoils the Higgs ξ-

inflation scenario.18

Figure 2 also shows small deviations in the inflationary predictions for the spectral

index ns and the tensor-to-scalar ratio r. As λmin
eff decreases below about 10−3.5, the

18In this case, the effective potential rises to a local maximum and then decreases slowly to a constant

value as h → ∞. The shape of the potential may be suitable for a sort of false vacuum inflation in which

the Higgs field can start with any value h &MPl/
√
ξ, but an analysis of this case goes beyond the scope of

this paper.
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Figure 2. Numerical results for the non-minimal coupling ξ0 and inflationary predictions for the

spectral index ns and the tensor-to-scalar ratio r as a function of λmin
eff for prescription I. The

four solid curves correspond to a Higgs mass Mh of 124, 125, 126, and 127 GeV from left to right

while the dashed lines give the tree-level predictions. A shift in αs(MZ) of ±2σ (±0.0014) roughly

corresponds to a shift in Mh of ∓0.5 GeV. Changing the number of e-folds from N = 59 to 62

shifts the tree-level predictions by a small (calculable) amount but does not change the qualitative

behaviour of the curves about the tree-level predictions.

spectral index rises to about 0.970 from its tree-level prediction of 0.967 before decreasing

rapidly, while the tensor-to-scalar ratio drops quickly below its tree-level prediction of

0.0031. Although a similarly rapid change in ns and r can be seen in [30, 40] as the Higgs

mass approaches values corresponding to λmin
eff ' 0, the results presented here (as a function

of λmin
eff ) provide a much clearer picture of Higgs ξ-inflation in this now experimentally

favoured region. From a practical point of view, we see that the deviations of ns and r from

the tree-level predictions are sufficiently small that they would be difficult to distinguish

from the tree-level results observationally. Consequently, for all allowed values 10−4.6 .
λmin

eff . 10−2, the predictions for ns and r are well within the current 1σ limits [6, 7]. The

small prediction for dns/d ln k ∼ 5× 10−4 is also consistent with observations at the 1–2σ

level [6, 7].

4.2 Inflationary predictions for prescription II

For prescription II, there are two disjoint regions of λmin
eff that can lead to acceptable

inflation: one with larger values λmin
eff & 10−3.3–10−2.3 (depending on Mh) and one with

smaller values λmin
eff ∼ 10−4. The results for ξ0 and the inflationary predictions for ns and r

are quite different for these two regions and are presented in figures 3 and 4, respectively.
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Figure 3. Numerical results for the non-minimal coupling ξ0 and inflationary predictions for the

spectral index ns and the tensor-to-scalar ratio r in the larger λmin
eff region for prescription II. The

four solid curves correspond to a Higgs mass Mh of 124, 125, 126, and 127 GeV from left to right

while the dashed lines give the tree-level predictions. A shift in αs(MZ) of ±2σ (±0.0014) roughly

corresponds to a shift in Mh of ∓0.5 GeV. Changing the number of e-folds from N = 59 to 62

shifts the tree-level predictions by a small (calculable) amount but does not change the qualitative

behaviour of the curves about the tree-level predictions.

Let us first consider the region of larger values of λmin
eff , which is the only one that has

been considered previously in the literature [30, 35, 40]. Figure 3 shows that the required

value of ξ0 in this region behaves similarly to that of prescription I except that the minimum

value of ξ0 — if it can be reached without the potential developing a second minimum —

occurs at larger λmin
eff (i.e. λmin

eff & 10−3). This difference is due to the stronger effect of the

running of λeff(µ) for prescription II. Specifically, the running of λeff(µ) to its minimum

value overcomes the flattening of the potential in the inflationary region more quickly than

for prescription I, and hence causes the effective potential to develop a second minimum

for more moderate values of λmin
eff . As a result, a non-minimal coupling only as small as

ξ0 ∼ 2000–4000 (depending on Mh) is allowed for this region of λmin
eff . Similar lower limits

for ξ0, as well as the qualitative rise in ξ0 as λmin
eff decreases, have been found in [30, 40] for

prescription II. Again, these values of ξ0 are not small enough to prevent the perturbative

unitarity violation at MPl/ξ0 from occurring well below the inflationary scale.

Figure 3 also shows that the predictions for the spectral index ns and the tensor-to-

scalar ratio r decrease from their tree-level values as λmin
eff → 0. The decrease observed here

(similar to prescription I) is consistent with the results of [30, 40] rather than with the
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Figure 4. Predictions for the spectral index ns and the tensor-to-scalar ratio r for Higgs ξ-inflation

with prescription II and λmin
eff ∼ 10−4. The solid blue (brown) curve gives the results for a Higgs

mass Mh = 124 GeV (124.5 GeV) while the lower and upper shaded regions correspond to a shift in

αs(MZ) = 0.1184 of up to ±2σ (±0.0014), respectively. The marked points along the solid curves

indicate values of (λmin
eff , ξ0). Results are shown with the marginalized joint 68% and 95% confidence

level regions from Planck 2013 [7].

increase observed in [35]. Also note that the variation in ns over the allowed range of λmin
eff

is larger for prescription II than for prescription I. Since a deviation from the tree-level

prediction of ∆ns & 0.01 should be visible by Planck [62], it may therefore be possible

to connect a measurement of the spectral index with the RG evolution of λeff(µ) near the

Planck scale for prescription II. The running of the spectral index dns/d ln k always remains

quite small, within the range (4.5–6.4)× 10−4.

While the results of the larger λmin
eff region for prescription II are qualitatively similar

to those for prescription I, prescription II also allows a region of smaller λmin
eff and ξ0

with distinct inflationary predictions. The existence of this region, which has not been

considered in the literature before, can be understood as follows. For typical Higgs ξ-

inflation with large λmin
eff , the slow roll parameter ε decreases rapidly in the inflationary

region (see eq. (2.9)) and the required N = 59 e-folds of inflation are produced quickly (see

eq. (2.12)). For smaller λmin
eff and ξ0, however, there is a region of parameter space in which

the running of λeff(µ) causes ε to increase before the N = 59 e-folds are reached. The

inflationary observables are then computed at a field value h0 in a qualitatively different

region of parameter space with larger ε, leading to distinct predictions.

Figure 4 gives the numerical results for ξ0 and the inflationary predictions for the

spectral index ns and the tensor-to-scalar ratio r in this region. The results are shown

together with the most recent constraints from Planck [7]. Since many well-motivated

models with Higgs ξ-inflation contain additional degrees of freedom that can contribute to
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the effective number of neutrino species Neff (e.g. the νMSM [63, 64] with 3 light sterile

neutrinos), it is most appropriate to compare the results with the ΛCDM+r+Neff data.

It can be seen that, for λmin
eff ∼ 10−3.9 and Mh ' 124 GeV, there is a region of Higgs ξ-

inflation that is consistent with Planck at the 2–3σ level.19 This region, though marginally

disfavoured, is important for two reasons. First, unlike for the larger λmin
eff region, the tensor-

to-scalar ratio r & 0.15 in this region is quite large and would be visible by Planck [62].

It is therefore possible that the tensor modes from Higgs ξ-inflation could be detected in

the Planck polarization data.20 Second, the non-minimal coupling ξ0 ∼ 90 required in this

region is about an order of magnitude smaller than previously considered in the literature.

Although still not small enough to address the problem of perturbative unitarity violation

occurring below the inflationary scale, it provides the lower limit on ξ0 that is acceptable

for Higgs ξ-inflation. Smaller non-minimal couplings, including ξ0 ∼ 1, seem generally

unattainable because they require λmin
eff . 10−6 to give the correct CMB normalization,

which ultimately causes the effective potential to develop a second minimum before the

inflationary scale.

5 Conclusions

Higgs ξ-inflation is an attractive model of inflation since it does not require scalar degrees

of freedom in addition to those of the SM. For a large non-minimal coupling ξ, however, the

violation of perturbative unitarity at the scale MPl/ξ �MPl threatens the self-consistency

of the model in the inflationary region. In this paper we have investigated the possibility

that a Higgs mass Mh ' 125–126 GeV — a mass for which the effective Higgs quartic

coupling λeff(µ) runs to very small values near the Planck scale — may significantly reduce

the size of ξ required for inflation and address the perturbative unitarity violation problem.

This possibility, like the Higgs ξ-inflation scenario in general, requires a top quark mass

Mt ∼ 171 GeV, about 2σ below its central value.

To investigate this possibility we have updated the two-loop analysis of Higgs ξ-inflation

to include the three-loop SM beta functions for the gauge couplings as well as the leading

three-loop terms for the RG evolution of λ, the top Yukawa coupling yt, and the Higgs

anomalous dimension γ. We have also included, for the first time, a complete two-loop

insertion of suppression factors for the physical Higgs loops in the RG equations. The two-

loop SM effective potential with particle masses modified appropriately for Higgs ξ-inflation

has been used to match the level of the RG equations.

We have found that successful inflation in the region λeff(µ)� 1 requires smaller ξ than

previously considered in the literature, but even with a fine-tuning of parameters to give

19Recall that even with the Higgs mass measurement of Mh = 125.7 ± 0.4 [52], using Mh ' 124 GeV

in the RG evolution is still quite reasonable due to the theoretical uncertainty in determining λ at the

electroweak scale.
20The running of the spectral index in this region is also much larger (and negative) than typically found

in Higgs ξ-inflation: dns/d ln k ∼ −0.002 and −0.008 for Mh = 124 and 124.5 GeV, respectively. A large

running of the spectral index relaxes the constraints on r from Planck [7] and could open up even more of

the small λmin
eff region for detection.
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arbitrarily small λmin
eff it is not possible to achieve ξ ∼ 1 and prevent the violation of pertur-

bative unitarity below the inflationary scale. Specifically, we have found that the Einstein

frame renormalization prescription (prescription I) allows a non-minimal coupling as small

as ξ ∼ 400 for λmin
eff ∼ 10−4.4 without the potential developing a second minimum and hence

spoiling inflation. The predictions for the spectral index ns and the tensor-to-scalar ratio r

remain close to their tree-level values in this case and are within the 1σ allowed region from

CMB measurements. For the Jordan frame renormalization prescription (prescription II),

there are two distinct regions of λmin
eff that can lead to successful inflation. The larger λmin

eff

region behaves similarly to prescription I and allows a non-minimal coupling as small as

ξ ∼ 2000 without the potential developing a second minimum. The smaller λmin
eff region,

which has not been considered in the literature before, requires ξ ∼ 90 and predicts an ob-

servable tensor-to-scalar ratio r & 0.15 for λmin
eff ∼ 10−3.9. Smaller non-minimal couplings,

including ξ ∼ 1, seem generally unattainable since they require λmin
eff . 10−6 to give the

correct CMB normalization, which ultimately causes the effective potential to develop a

second minimum before the inflationary scale.
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A Renormalization group equations for Higgs ξ-inflation

In this appendix we list the (gauge-independent) RG equations for the couplings λ, yt, g
′,

g, gs, and ξ in the MS scheme that are used in our analysis of Higgs ξ-inflation. For each

coupling we write dx/dt = βx, where t = ln(µ/µ0). The anomalous dimension of the Higgs

field γ in the Landau gauge, for use in (3.14), is also given. As described in section 3.1,

the RG equations contain one suppression factor s = s(h) for each off-shell physical Higgs

propagator.21 Note that the RG equations for the SM can be recovered by setting s = 1.

The two-loop RG equations for λ, yt, g
′, g, gs, and ξ are as follows. For the Higgs

quartic coupling we have

βλ =
1

(4π)2

[(
6 + 18s2

)
λ2 − 6y4

t +
3

8

(
2g4 +

(
g2 + g′2

)2)
+
(
−9g2 − 3g′2 + 12y2

t

)
λ

]
+

1

(4π)4

[
1

48

(
(912 + 3s) g6 − (290− s) g4g′2 − (560− s) g2g′4 − (380− s) g′6

)
+ (38− 8s) y6

t − y4
t

(
8

3
g′2 + 32g2

s +
(
12− 117s+ 108s2

)
λ

)
21The suppression factor s(h) = s(h(µ)) can be written in terms of µ by inverting µ = h/Ω or µ = h for

prescriptions I or II, respectively (see section 3.2).
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+ λ

(
−1

8

(
181 + 54s− 162s2

)
g4 +

1

4

(
3− 18s+ 54s2

)
g2g′2

+
1

24

(
90 + 377s+ 162s2

)
g′4 +

(
27 + 54s+ 27s2

)
g2λ+

(
9 + 18s+ 9s2

)
g′2λ

)
−
(
48 + 288s− 324s2 + 624s3 − 324s4

)
λ2 + y2

t

(
− 9

4
g4 +

21

2
g2g′2 − 19

4
g′4

+ λ

(
45

2
g2 +

85

6
g′2 + 80g2

s −
(
36 + 108s2

)
λ

))]
. (A.1)

For the top quark Yukawa coupling we have

βyt =
yt

(4π)2

[
−9

4
g2 − 17

12
g′2 − 8g2

s +

(
23

6
+

2

3
s

)
y2
t

]
+

yt

(4π)4

[
−23

4
g4 − 3

4
g2g′2 +

1187

216
g′4 + 9g2g2

s +
19

9
g′2g2

s − 108g4
s (A.2)

+

(
225

16
g2 +

131

16
g′2 + 36g2

s

)
sy2
t + 6

(
−2s2y4

t − 2s3y2
t λ+ s2λ2

)]
.

For the gauge couplings g′, g, and gs we have

βg′ =
g′3

(4π)2

[
81 + s

12

]
+

g′3

(4π)4

[
199

18
g′2 +

9

2
g2 +

44

3
g2
s −

17

6
sy2
t

]
, (A.3)

βg =
g3

(4π)2

[
−39− s

12

]
+

g3

(4π)4

[
3

2
g′2 +

35

6
g2 + 12g2

s −
3

2
sy2
t

]
, (A.4)

βgs =
g3
s

(4π)2 [−7] +
g3
s

(4π)4

[
11

6
g′2 +

9

2
g2 − 26g2

s − 2sy2
t

]
. (A.5)

And for the non-minimal coupling ξ we have

βξ =
1

(4π)2

(
ξ +

1

6

)[
−3

2
g′2 − 9

2
g2 + 6y2

t + (6 + 6s)λ

]
+

1

(4π)4

(
ξ +

1

6

)[(
−199

16
+

27

8
s

)
g4 +

(
−3

8
+

9

4
s

)
g2g′2 +

(
3

2
+

485

48
s

)
g′4

+

(
45

4
g2 +

85

12
g′2 + 40g2

s

)
y2
t +

(
18− 63

2
s

)
y4
t +

(
36g2 + 12g′2 − 36y2

t

)
(1 + s)λ

+
(
−108 + 126s− 144s2 + 66s3

)
λ2

]
. (A.6)

In addition, the Higgs anomalous dimension γ = −d lnh/dt is given by

γ =− 1

(4π)2

[
9

4
g2 +

3

4
g′2 − 3y2

t

]
− 1

(4π)4

[
271

32
g4− 9

16
g2g′2− 431

96
sg′4− 5

2

(
9

4
g2 +

17

12
g′2 + 8g2

s

)
y2
t +

27

4
sy4
t − 6s3λ2

]
.

(A.7)
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The RG equations (A.1)–(A.7) can easily be extended to include (i) the complete three-

loop expressions for the gauge coupling beta functions [44] and (ii) the leading three-loop

corrections to βλ, βyt , and γ [45]. These improvements can be made by adding the following

terms to the beta functions:

∆βλ =
1

(4π)6

[
(7176 + 4032ζ3)λ4 + 1746y2

t λ
3 + (1719 + 1512ζ3) y4

t λ
2

+

(
117

4
− 396ζ3

)
y6
t λ−

(
1599

4
+ 72ζ3

)
y8
t + (−2448 + 2304ζ3) g2

sy
2
t λ

2

+ (1790− 2592ζ3) g2
sy

4
t λ (−76 + 480ζ3) g2

sy
6
t +

(
2488

3
− 96ζ3

)
g4
sy

2
t λ

+

(
−532

3
+ 64ζ3

)
g4
sy

4
t

]
, (A.8)

∆βyt =
yt

(4π)6

[
−36λ3 +

15

4
y2
t λ

2 + 198y4
t λ+

(
339

8
+

27

2
ζ3

)
y6
t + 16g2

sy
2
t λ

− 157g2
sy

4
t +

(
3827

6
− 228ζ3

)
g4
sy

2
t +

(
−4166

3
+ 640ζ3

)
g6
s

]
, (A.9)

∆βg′ =
g′3

(4π)6

[
1315

64
g4 +

205

96
g2g′2 − 388613

5184
g′4 − g2g2

s −
137

27
g′2g2

s + 99g4
s

− y2
t

(
785

32
g2 +

2827

288
g′2 +

29

3
g2
s

)
+

315

16
y4
t + λ

(
3

2
g2 +

3

2
g′2 − 3λ

)]
,

(A.10)

∆βg =
g3

(4π)6

[
324953

1728
g4 +

291

32
g2g′2 − 5597

576
g′4 + 39g2g2

s −
1

3
g′2g2

s + 81g4
s

− y2
t

(
729

32
g2 +

593

96
g′2 + 7g2

s

)
+

147

16
y4
t + λ

(
3

2
g2 +

1

2
g′2 − 3λ

)]
,

(A.11)

∆βgs =
g3
s

(4π)6

[
109

8
g4 − 1

8
g2g′2 − 2615

216
g′4 + 21g2g2

s +
77

9
g′2g2

s +
65

2
g4
s

− y2
t

(
93

8
g2 +

101

24
g′2 + 40g2

s

)
+ 15y4

t

]
, (A.12)

∆γ = − 1

(4π)6

[
36λ3 +

135

2
y2
t λ

2 − 45y4
t λ−

(
789

16
+ 9ζ3

)
y6
t

−
(

15

2
− 72ζ3

)
g2
sy

4
t −

(
622

3
− 24ζ3

)
g4
sy

2
t

]
, (A.13)

where ζ3 ≡ ζ(3) ' 1.202.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 20 –

http://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
2
(
2
0
1
4
)
0
4
0

References

[1] A.A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys.

Lett. B 91 (1980) 99 [INSPIRE].

[2] A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness

problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].

[3] A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon,

flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B 108 (1982)

389 [INSPIRE].

[4] A. Albrecht and P.J. Steinhardt, Cosmology for grand unified theories with radiatively

induced symmetry breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].

[5] A.D. Linde, Chaotic inflation, Phys. Lett. B 129 (1983) 177 [INSPIRE].

[6] WMAP collaboration, G. Hinshaw et al., Nine-year Wilkinson Microwave Anisotropy Probe

(WMAP) observations: cosmological parameter results, Astrophys. J. Suppl. 208 (2013) 19

[arXiv:1212.5226] [INSPIRE].

[7] Planck collaboration, P. Ade et al., Planck 2013 results. XXII. Constraints on inflation,

arXiv:1303.5082 [INSPIRE].

[8] A.R. Liddle and D.H. Lyth, The cold dark matter density perturbation, Phys. Rept. 231

(1993) 1 [astro-ph/9303019] [INSPIRE].

[9] D.H. Lyth and A. Riotto, Particle physics models of inflation and the cosmological density

perturbation, Phys. Rept. 314 (1999) 1 [hep-ph/9807278] [INSPIRE].

[10] J. Martin, C. Ringeval and V. Vennin, Encyclopaedia inflationaris, arXiv:1303.3787

[INSPIRE].

[11] F.L. Bezrukov and M. Shaposhnikov, The standard model Higgs boson as the inflaton, Phys.

Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].

[12] G. Isidori, V.S. Rychkov, A. Strumia and N. Tetradis, Gravitational corrections to standard

model vacuum decay, Phys. Rev. D 77 (2008) 025034 [arXiv:0712.0242] [INSPIRE].

[13] I. Masina and A. Notari, Standard model false vacuum inflation: correlating the

tensor-to-scalar ratio to the top quark and Higgs boson masses, Phys. Rev. Lett. 108 (2012)

191302 [arXiv:1112.5430] [INSPIRE].

[14] I. Masina and A. Notari, The Higgs mass range from standard model false vacuum inflation

in scalar-tensor gravity, Phys. Rev. D 85 (2012) 123506 [arXiv:1112.2659] [INSPIRE].

[15] I. Masina and A. Notari, Inflation from the Higgs field false vacuum with hybrid potential,

JCAP 11 (2012) 031 [arXiv:1204.4155] [INSPIRE].

[16] C. Germani and A. Kehagias, New model of inflation with non-minimal derivative coupling

of standard model Higgs boson to gravity, Phys. Rev. Lett. 105 (2010) 011302

[arXiv:1003.2635] [INSPIRE].

[17] K. Nakayama and F. Takahashi, Running kinetic inflation, JCAP 11 (2010) 009

[arXiv:1008.2956] [INSPIRE].

[18] K. Kamada, T. Kobayashi, M. Yamaguchi and J. Yokoyama, Higgs G-inflation, Phys. Rev. D

83 (2011) 083515 [arXiv:1012.4238] [INSPIRE].

– 21 –

http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://inspirehep.net/search?p=find+J+Phys.Lett.,B91,99
http://dx.doi.org/10.1103/PhysRevD.23.347
http://inspirehep.net/search?p=find+J+Phys.Rev.,D23,347
http://dx.doi.org/10.1016/0370-2693(82)91219-9
http://dx.doi.org/10.1016/0370-2693(82)91219-9
http://inspirehep.net/search?p=find+J+Phys.Lett.,B108,389
http://dx.doi.org/10.1103/PhysRevLett.48.1220
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,48,1220
http://dx.doi.org/10.1016/0370-2693(83)90837-7
http://inspirehep.net/search?p=find+J+Phys.Lett.,B129,177
http://dx.doi.org/10.1088/0067-0049/208/2/19
http://arxiv.org/abs/1212.5226
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5226
http://arxiv.org/abs/1303.5082
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.5082
http://dx.doi.org/10.1016/0370-1573(93)90114-S
http://dx.doi.org/10.1016/0370-1573(93)90114-S
http://arxiv.org/abs/astro-ph/9303019
http://inspirehep.net/search?p=find+EPRINT+astro-ph/9303019
http://dx.doi.org/10.1016/S0370-1573(98)00128-8
http://arxiv.org/abs/hep-ph/9807278
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9807278
http://arxiv.org/abs/1303.3787
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.3787
http://dx.doi.org/10.1016/j.physletb.2007.11.072
http://dx.doi.org/10.1016/j.physletb.2007.11.072
http://arxiv.org/abs/0710.3755
http://inspirehep.net/search?p=find+EPRINT+arXiv:0710.3755
http://dx.doi.org/10.1103/PhysRevD.77.025034
http://arxiv.org/abs/0712.0242
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.0242
http://dx.doi.org/10.1103/PhysRevLett.108.191302
http://dx.doi.org/10.1103/PhysRevLett.108.191302
http://arxiv.org/abs/1112.5430
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.5430
http://dx.doi.org/10.1103/PhysRevD.85.123506
http://arxiv.org/abs/1112.2659
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.2659
http://dx.doi.org/10.1088/1475-7516/2012/11/031
http://arxiv.org/abs/1204.4155
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.4155
http://dx.doi.org/10.1103/PhysRevLett.105.011302
http://arxiv.org/abs/1003.2635
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.2635
http://dx.doi.org/10.1088/1475-7516/2010/11/009
http://arxiv.org/abs/1008.2956
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.2956
http://dx.doi.org/10.1103/PhysRevD.83.083515
http://dx.doi.org/10.1103/PhysRevD.83.083515
http://arxiv.org/abs/1012.4238
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.4238


J
H
E
P
0
2
(
2
0
1
4
)
0
4
0

[19] K. Kamada, T. Kobayashi, T. Takahashi, M. Yamaguchi and J. Yokoyama, Generalized

Higgs inflation, Phys. Rev. D 86 (2012) 023504 [arXiv:1203.4059] [INSPIRE].

[20] M.P. Hertzberg, Can inflation be connected to low energy particle physics?, JCAP 08 (2012)

008 [arXiv:1110.5650] [INSPIRE].

[21] D. Salopek, J. Bond and J.M. Bardeen, Designing density fluctuation spectra in inflation,

Phys. Rev. D 40 (1989) 1753 [INSPIRE].

[22] R. Fakir and W. Unruh, Improvement on cosmological chaotic inflation through nonminimal

coupling, Phys. Rev. D 41 (1990) 1783 [INSPIRE].

[23] D.I. Kaiser, Primordial spectral indices from generalized Einstein theories, Phys. Rev. D 52

(1995) 4295 [astro-ph/9408044] [INSPIRE].

[24] E. Komatsu and T. Futamase, Complete constraints on a nonminimally coupled chaotic

inflationary scenario from the cosmic microwave background, Phys. Rev. D 59 (1999) 064029

[astro-ph/9901127] [INSPIRE].

[25] P.P. Giardino, K. Kannike, I. Masina, M. Raidal and A. Strumia, The universal Higgs fit,

arXiv:1303.3570 [INSPIRE].

[26] C. Burgess, H.M. Lee and M. Trott, Power-counting and the validity of the classical

approximation during inflation, JHEP 09 (2009) 103 [arXiv:0902.4465] [INSPIRE].

[27] J. Barbon and J. Espinosa, On the naturalness of Higgs inflation, Phys. Rev. D 79 (2009)

081302 [arXiv:0903.0355] [INSPIRE].

[28] C. Burgess, H.M. Lee and M. Trott, Comment on Higgs inflation and naturalness, JHEP 07

(2010) 007 [arXiv:1002.2730] [INSPIRE].

[29] M.P. Hertzberg, On inflation with non-minimal coupling, JHEP 11 (2010) 023

[arXiv:1002.2995] [INSPIRE].

[30] F. Bezrukov and M. Shaposhnikov, Standard model Higgs boson mass from inflation: two

loop analysis, JHEP 07 (2009) 089 [arXiv:0904.1537] [INSPIRE].

[31] F. Bezrukov, A. Magnin, M. Shaposhnikov and S. Sibiryakov, Higgs inflation: consistency

and generalisations, JHEP 01 (2011) 016 [arXiv:1008.5157] [INSPIRE].

[32] S. Ferrara, R. Kallosh, A. Linde, A. Marrani and A. Van Proeyen, Superconformal symmetry,

NMSSM and inflation, Phys. Rev. D 83 (2011) 025008 [arXiv:1008.2942] [INSPIRE].

[33] R.N. Lerner and J. McDonald, Unitarity-violation in generalized Higgs inflation models,

JCAP 11 (2012) 019 [arXiv:1112.0954] [INSPIRE].

[34] R.N. Lerner and J. McDonald, A unitarity-conserving Higgs inflation model, Phys. Rev. D

82 (2010) 103525 [arXiv:1005.2978] [INSPIRE].

[35] A. De Simone, M.P. Hertzberg and F. Wilczek, Running inflation in the standard model,

Phys. Lett. B 678 (2009) 1 [arXiv:0812.4946] [INSPIRE].

[36] F. Bezrukov, D. Gorbunov and M. Shaposhnikov, Late and early time phenomenology of

Higgs-dependent cutoff, JCAP 10 (2011) 001 [arXiv:1106.5019] [INSPIRE].

[37] F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new

physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].

[38] G. Degrassi et al., Higgs mass and vacuum stability in the standard model at NNLO, JHEP

08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

– 22 –

http://dx.doi.org/10.1103/PhysRevD.86.023504
http://arxiv.org/abs/1203.4059
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.4059
http://dx.doi.org/10.1088/1475-7516/2012/08/008
http://dx.doi.org/10.1088/1475-7516/2012/08/008
http://arxiv.org/abs/1110.5650
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.5650
http://dx.doi.org/10.1103/PhysRevD.40.1753
http://inspirehep.net/search?p=find+J+Phys.Rev.,D40,1753
http://dx.doi.org/10.1103/PhysRevD.41.1783
http://inspirehep.net/search?p=find+J+Phys.Rev.,D41,1783
http://dx.doi.org/10.1103/PhysRevD.52.4295
http://dx.doi.org/10.1103/PhysRevD.52.4295
http://arxiv.org/abs/astro-ph/9408044
http://inspirehep.net/search?p=find+EPRINT+astro-ph/9408044
http://dx.doi.org/10.1103/PhysRevD.59.064029
http://arxiv.org/abs/astro-ph/9901127
http://inspirehep.net/search?p=find+EPRINT+astro-ph/9901127
http://arxiv.org/abs/1303.3570
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.3570
http://dx.doi.org/10.1088/1126-6708/2009/09/103
http://arxiv.org/abs/0902.4465
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.4465
http://dx.doi.org/10.1103/PhysRevD.79.081302
http://dx.doi.org/10.1103/PhysRevD.79.081302
http://arxiv.org/abs/0903.0355
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.0355
http://dx.doi.org/10.1007/JHEP07(2010)007
http://dx.doi.org/10.1007/JHEP07(2010)007
http://arxiv.org/abs/1002.2730
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.2730
http://dx.doi.org/10.1007/JHEP11(2010)023
http://arxiv.org/abs/1002.2995
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.2995
http://dx.doi.org/10.1088/1126-6708/2009/07/089
http://arxiv.org/abs/0904.1537
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.1537
http://dx.doi.org/10.1007/JHEP01(2011)016
http://arxiv.org/abs/1008.5157
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.5157
http://dx.doi.org/10.1103/PhysRevD.83.025008
http://arxiv.org/abs/1008.2942
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.2942
http://dx.doi.org/10.1088/1475-7516/2012/11/019
http://arxiv.org/abs/1112.0954
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.0954
http://dx.doi.org/10.1103/PhysRevD.82.103525
http://dx.doi.org/10.1103/PhysRevD.82.103525
http://arxiv.org/abs/1005.2978
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.2978
http://dx.doi.org/10.1016/j.physletb.2009.05.054
http://arxiv.org/abs/0812.4946
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.4946
http://dx.doi.org/10.1088/1475-7516/2011/10/001
http://arxiv.org/abs/1106.5019
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.5019
http://dx.doi.org/10.1007/JHEP10(2012)140
http://arxiv.org/abs/1205.2893
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.2893
http://dx.doi.org/10.1007/JHEP08(2012)098
http://dx.doi.org/10.1007/JHEP08(2012)098
http://arxiv.org/abs/1205.6497
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.6497


J
H
E
P
0
2
(
2
0
1
4
)
0
4
0

[39] M. Shaposhnikov and C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass,

Phys. Lett. B 683 (2010) 196 [arXiv:0912.0208] [INSPIRE].

[40] F.L. Bezrukov, A. Magnin and M. Shaposhnikov, Standard model Higgs boson mass from

inflation, Phys. Lett. B 675 (2009) 88 [arXiv:0812.4950] [INSPIRE].

[41] T. Clark, B. Liu, S. Love and T. ter Veldhuis, The standard model Higgs boson-inflaton and

dark matter, Phys. Rev. D 80 (2009) 075019 [arXiv:0906.5595] [INSPIRE].

[42] R.N. Lerner and J. McDonald, Gauge singlet scalar as inflaton and thermal relic dark

matter, Phys. Rev. D 80 (2009) 123507 [arXiv:0909.0520] [INSPIRE].

[43] R.N. Lerner and J. McDonald, Distinguishing Higgs inflation and its variants, Phys. Rev. D

83 (2011) 123522 [arXiv:1104.2468] [INSPIRE].

[44] L.N. Mihaila, J. Salomon and M. Steinhauser, Gauge coupling β-functions in the standard

model to three loops, Phys. Rev. Lett. 108 (2012) 151602 [arXiv:1201.5868] [INSPIRE].

[45] K. Chetyrkin and M. Zoller, Three-loop β-functions for top-Yukawa and the Higgs

self-interaction in the Standard Model, JHEP 06 (2012) 033 [arXiv:1205.2892] [INSPIRE].

[46] F. Bezrukov, The standard model Higgs as the inflaton, arXiv:0805.2236 [INSPIRE].

[47] F. Bezrukov, D. Gorbunov and M. Shaposhnikov, On initial conditions for the hot Big Bang,

JCAP 06 (2009) 029 [arXiv:0812.3622] [INSPIRE].
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