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1 Introduction

The AdS/CFT correspondence [1–4] has enabled the development of new insights into the

problem of strongly coupled gauge theories. In particular the AdS/QCD programme [5–8]

has developed “bottom-up” models that apply the ideas and perspectives of gauge/gravity

– 1 –



J
H
E
P
0
2
(
2
0
1
3
)
1
3
2

duality to QCD. Inspired by these we wish to explore AdS/✘✘
✘✘SUSY models as initiated

in [9–18]. There are also models [19–23] in which the geometry breaks supersymmetry.

Similar to AdS/QCD, the idea is to construct a setup which attempts to describe a large

Nc SQCD model with a spontaneous supersymmetry breaking sector. In particular it

is hoped that the breaking sector will be somewhat similar to ISS constructions [24] in

that supersymmetry is broken dynamically and is metastable. The notation of general

gauge mediation (GGM) [25] is used as a method to encode the supersymmetry breaking

effects which are then mediated to the supersymmetric standard model which exists entirely

outside the AdS system (on the UV brane).

The main objectives in using this approach, versus the five dimensional picture, are:

1. Using the holographic basis and operator field correspondence one arrives at an en-

tirely four dimensional action that encodes the supersymmetry breaking and the ap-

proximate CFT effects without reference to the fifth dimension. These effects appear

as correlators, with dressed vertices, coupled to external sources. This is achieved

in eq. (5.17). We hope that in doing this one can bring warped models of supersym-

metry breaking [10–16, 18, 19, 26–28] closer to the original GGM proposal [25].

2. As this notation is more standard within the AdS/QCD framework, one can make a

closer connection to scattering cross sections of visible → hidden processes [29]: form

factors and operator product expansions arise quite naturally in this basis. This

may be a useful tool to learn more about relating the strongly coupled supersym-

metry breaking sector to its UV complete description. A main result in this regard

is eq. (6.2). Some scaling features in common with quark-hadron duality are ob-

served, as a result of the infinite tower of vector mesons between visible and hidden

sector states.

It is generally believed that if one builds a consistent supergravity theory on an asymp-

totically AdS space then it will act as an effective description corresponding to some ap-

proximately conformal gauge theory defined on the boundary of that space. In particular

one no longer requires an exact duality as in the AdS/CFT correspondence, and although

quantifying the discrepency may be difficult, at least in principle one can argue that for

momenta k2 < Λ2, relative to the effective cutoff, the two theories should match. In partic-

ular there is an S matrix (due to the UV and IR boundaries that regulate the space) and so

particle spectra on the AdS side should correspond to composite states of the approximate

CFT. This correspondence is used to build a model that encodes an O’Raifeartaigh type

messenger model located on the IR brane and which encodes vector meson resonances in

the bulk associated with a weakly gauged flavour symmetry of the approximate CFT.

The model is as follows: we assume a large Nc approximately conformal SQCD sector

that breaks supersymmetry and admits a supergravity dual [30–33]. Working in the limit

that gravity corrections can be ignored and simply supplies the background metric, it is

assumed that the approximate CFT has a weakly gauged SU(Nf ) flavour symmetry. On

the AdS side this corresponds to a gauge theory in the bulk with dynamical sources. This

SU(Nf ) will be associated with the standard model gauge groups. The standard model
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gauge groups correspond to N = 1 super Yang Mills on the boundary and supply the UV

boundary sources in a gauge vector multiplet V 0. These couple to CFT operators which

are dual to a 5d bulk gauge theory with N = 1 supersymmetry, regulated by two branes

at z = L0 and z = L1 in the z direction.

In a five dimensional theory there are two possible bases: the Kaluza Klein (KK)

basis and the holographic basis. The poles in the holographic and KK basis necessar-

ily match. In the KK basis the vector superfield Vbulk has a KK expansion such that

Aµ(x, z) =
∑

nA
µ
n(x)fn(z) , with z the fifth directon and in the holographic case one takes

Aµ(q, z) = Aµ0 (q)V (q, z) which now takes on a holographic basis, x and q both being four

dimensional. A comparison of these may be found in [34, 35]. As discussed in [36] the holo-

graphic basis is more useful when exploring soft wall models or models where rather than

a discrete basis, a continuum basis with mass gap is more appropriate, as may arise from

approximately conformal theories. These types of extensions motivate studying these mod-

els in this holographic basis. Essentially one should use the holographic and Kaluza-Klein

basis concurrently, for instance the KK expansion is convenient to understand couplings

between different resonances and is most relevant for collider phenomenology as physical

mass eigenstates are produced in collisions. There can be a procedural difference however,

in the holographic picture one often wishes to integrate out the bulk dynamics and arrive

at an effective Lagrangian on the four dimensional boundary. Then one uses the boundary

action to generate purely four dimensional diagrams. This is the approach taken here.

This model is based on a slice of AdS5, which is particularly convenient as many things

can be solved exactly at leading order. It is found that the conditions of supersymmetry of

the Lagrangian will fix the boundary actions and completely determine all the field profiles

of the bulk gauge theory. This indicates that to implement spontaneous supersymmetry

breaking one may introduce new degrees of freedom either in the bulk or on the IR brane.

Before proceeding we wish to summarise a few of the key new results of this paper:

integrating out the bulk action one is able to show a four dimensional supersymmetric

action on the UV boundary that arises at order O(Nc). In addition one arrives at a

separate spontaneous supersymmetry breaking effective action on the UV boundary. Using

this effective action, subleading diagrams may be constructed. This same effective action

may be used to compute scattering cross sections of visible → hidden messengers which

arise at O(N0
c ). In addition form factors for cross sections are identified as a sum of

monopole contributions of an infinite tower of vector mesons directly analogous to that of

AdS/QCD models. This is related to the non-normalisable mode with Neumann boundary

conditions extending from the UV to IR brane.

In addition to the new results a few issues are clarified. In particular the relationship

between holographic gauge mediation and warped gauge mediation models is explained. It

is shown how computations of the beta function fit into this framework and useful ways

in which this approach may be extended are given. We also comment on some overall

successes of this framework: supersymmetry is broken spontaneously with both gaugino

and scalar soft masses that arise naturally as well as a controlled logarithmic running

of the beta function allowing for a viable phenomenology. In addition cross sections are

calculable and their form factors match results of the AdS/QCD programme.
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In this setup there are three sets of current couplings that need to be speci-

fied eq. (1.1) eq. (1.2) and eq. (1.3). The first is a coupling of the supersymmetric standard

model gauge fields to the SSM currents

L ⊃
∫

d4x gSM

∫

d4θJSMVSM . (1.1)

It is typical to work at energy scales E ∼ M̂ where M̂ = a(L1)M (using eq. (2.2)) is the

typical mass scale of the supersymmetry breaking sector. The supersymmetric standard

model exists outside the AdS system. Therefore one should should equate the VSM to

a set of source fields V0 on the AdS boundary. Note that UV localised states such as

those contained in JSM are not part of the approximate CFT and only couple to the CFT

indirectly through the source fields.

Next one defines a coupling between the boundary sources V0 and the bulk fields

L ⊃
∫

d4x gSM

∫

d4ϑOV0. (1.2)

The operators O are dual to a set of bulk fields Vbulk and the boundary value evaluated at

z = L0 of the bulk fields are the sources V0.

The currents that encode supersymmetry breaking will couple to the broken CFT

states and not to the source fields directly:

L ⊃
∫

d5x
√−g gIR

∫

d4ϑJ
✘
✘
✘SUSY Vbulkδ(z = IR), (1.3)

where one expects the spontaneous breaking of supersymmetry to be an IR effect param-

eterised by a set of currents J
✘
✘
✘SUSY . The coupling gIR has been introduced which can

be defined later. One may either work with current correlators that simply parameterise

the supersymmetry breaking effects on the IR brane, or introduce new degrees of freedom

which will play the role of a Goldstino multiplet coupled to some messenger fields. Indeed

the resulting effective action arising from “figuratively” taking correlators of these currents

should also encode supersymmetry being broken by the geometry. If one takes the messen-

gers literally, they are highly composite degrees of freedom in the IR of the theory. These

will be represented by chiral superfields localised in the IR. One may of course relax the

assumption of a delta function in eq. (1.3) at the cost of introducing new degrees of free-

dom to the bulk action. Similar constructions have been explored in flat five dimensional

models and quiver models [16, 37–39].

There are some particular criteria for the supersymmetry breaking sector and in par-

ticular the messenger fields. We are interested only in models where supersymmetry is

broken spontaneously. Firstly one should be able to identify a Goldstino mode such that

supersymmetry is truly spontaneously broken. Secondly as one is working in the limit that

supergravity corrections are switched off it is expected that the messenger sector satisfies

StrM2 = 0. This model satisfies these criteria by construction. The scale of supersymmetry

breaking M̂ will be associated to a pseudo modulus as the superpartner of a Goldstino. As

in dynamical supersymmetry breaking models this vev and the scale of the magnetic gauge

fields, given by mkk ∼ (n− 1/4)π/L1, are of the same order such that mkk/M̂ ∼ O(1).
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The structure of this paper is as follows: In section 2 the super Yang-Mills bulk action

on a slice of AdS5 is outlined and the parameters and operators of the weakly gauged flavour

symmetry of a largeNc approximate CFT are matched. In section 3 the equations of motion

of the free bulk fields are used to find their holographic decomposition. In section 4 the

boundary action is determined and used to compute the supersymmetric effective action

from two point functions of boundary correlators 〈O(x)O(0)〉. Through inversion, these

will determine the Green’s functions of the free fields and allow for the computation of

the beta function of the gauge theory from the boundary action. In section 5 we encode a

supersymmetry breaking sector on an IR brane encoded in bulk currents and compute soft

masses. In section 6 cross sections and form factors are explored. In section 7 we conclude

and discuss possible extensions. In appendix A the response of a bulk and boundary field

to different types of sources is reviewed. This will determine the bulk Green’s functions.

Appendix B outlines the notations and conventions used.

2 The action

In this section we construct a holographic model on a slice of AdS5. This setup is meant

as an effective description of some, as yet unknown, strongly coupled large Nc approximate

CFT [30–33]. The conformally flat metric of this model is given by

ds2 = a2(z)(ηµνdxµdxν + dz2) (2.1)

where the Minkowski metric is mostly positive ηµν = diag(−1, 1, 1, 1) and

a2(z) =

(

R

z

)2

. (2.2)

Setting R = 1 one obtains a(z) = 1/z2. The fifth coordinate z has range

L0 < z < L1, (2.3)

where the direction z corresponds to the energy scale, such that z = L0 is the UV AdS

boundary and z = L1 the IR brane. It is useful to define

GMN = a2(z)ηMN , GMN = a−2(z)ηMN ,
√−g = a(z)5. (2.4)

To define spinors in this space it is useful to identify the fünfbein components

eaµ = a(z)δaµ eµa = a−1δµa e5µ = 0 e5̂5 = a(z)δ5̂5 (2.5)

where GMN = eMA e
N
B η

AB. It is natural to also define theta warped coordinates [15, 40]

ϑ = θa1/2(z) and

∫

d2ϑ = a−1(z)

∫

d2θ. (2.6)

Following the holographic correspondence one expects that a flavour symmetry of the

approximate CFT corresponds to a gauge symmetry in the bulk AdS space. To weakly
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gauge the flavour symmetry one positions a UV brane a small distance z = L0 away from

z = 0 which results in a normalisable massless mode. We wish to explore the flavour

symmetry in the AdS background and assume that supergravity corrections are small.

The five dimensional N = 1 super Yang Mills action is given by [41–44]

S5d =

∫

d5x
√−g 1

g25d
L (2.7)

with

L = −1

4
FMNF

MN − 1

2
DMΣDMΣ− i

2
(λ̄iγMDMλi −DM λ̄

iγMλi)

+mλλ̄
iλi +

1

2
m2

ΣΣΣ+ (Xa)2 + λ̄i[Σ, λ
i] (2.8)

where a Tr over gauge indices is implicit. The field content is a positive parity vector

multiplet V and a negative parity adjoint chiral multiplet Φadj . In five dimensions, R1,4,

the theory has 8 supercharges, or N = 2 from the four dimensional perspective. After

implementing the AdS5 metric, the fixed points at z = L0 and z = L1 result in a theory that

preserves only 4 supercharges, or N = 1 in four dimensions on an R1,3×S1/Z2 background.

The fermions are symplectic Majorana with an SU(2)R index as defined in [42] such that

λ1 =

(

λL,α
χ̄α̇R

)

, λ2 =

(

χRα
−λ̄α̇L

)

. (2.9)

The fermion λL is of positive parity the fermion χR is negative and therefore no Dirac

mass for the type mDλ
0χ0 may arise. There will be mixing of λ0 with the CFT states χn

however [43, 45].

2.1 Parameters and scales

It is useful to discuss the relevant parameters and scales in relation to holography and

a string theoretic embedding of this construction. Let us assume the four dimensional

approximate CFT is a large Nc gauge theory with gauge coupling gYM . The ’t Hooft

coupling is given by λt = g2YMNc. These scales may be related to the string scales: the

string coupling is given by gs = g2YM and the string length l2s = α′. This allows one to set

the AdS curvature radius R4 = 4πl4sgsNc [1, 2, 4].

The strong coupling limit of the four dimensional gauge theory is where λt ≫ 1. Taking

the large Nc limit gYM → 0. In terms of the string scale gs = g2YM → 0 in which case one

finds the supergravity limit that

(

R

ls

)4

= 4πgsNc = 4πλt ≫ 1. (2.10)

In this limit one finds a weakly coupled effective supergravity description of the strongly

coupled gauge theory, in a warped higher dimensional space.

There are also two other parameters which need to be discussed. The first is g5. As

the five dimensional gauge theory is living in the supergravity background, it should be
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possible to relate it to the fundamental scales of the four dimensional gauge theory. This

is achieved by matching, at tree level,

g25
R

=
12π2

Nc
∼ 1/F 2

n . (2.11)

The decay constants for the nth vector meson is labelled Fn appearing in eq. (2.13). The

boundary effective action that we compute in section 4 are tree level effects in the large Nc

limit. We also comment on the parameter gSM corresponding simultaneously to the cou-

pling of the standard model groups U(1)× SU(2)× SU(3), where we are for the most part

effectively computing for the U(1)em case. This is an external coupling gSM associated to

the external sources not related to the AdS/✘✘
✘✘SUSY construction and we may work pertur-

batively in αSM . In particular, the supersymmetric standard model and the AdS/✘✘
✘✘SUSY

setup completely decouple in the limit αSM → 0. Typically the one loop beta function can

relate g25/R ∼ g2SM log(L1/L0). For a Planck scale to electroweak scale hierarchy ∼ 1016

one finds Nc between 1 and 10. For an MP lanck to MSUSY hierarchy, Nc can be larger at

the cost of lifting MSUSY . We expect that mkk ∼ 1/L1 and MSUSY are of the same order.

In general it is possible to compute n point functions, for example

〈O · · · O〉 = δnLnZ[A0]

δA0 · · · δA0
(2.12)

where Aµ0 acts as a source for the operator Oµ analogous to q̄γµq. In terms of Witten

diagrams these n point functions are represented as contact diagrams. There are also

exchange diagrams. Some parameters are fixed by the above. Taking the two point function

of the boundary to boundary correlator one obtains

〈O(p)O(−p)〉 =
∑

n

F 2
n

p2 +m2
n + iǫ

. (2.13)

As reviewed in [46] the current correlator eq. (2.13) contains only colourless one meson

states in the planar limit. This will give a decay constant Fn = 〈0|O|n〉 and also a mass

mn to create an nth meson from the vacuum. It is expected that Fn ∼ √
Nc ∼

√

L/g5 so

there should be no issue with the perturbative expansion in this way [46, 47]. In terms of

embedding into string theory, the vector mesons should be associated with the open string

sector as opposed to the glueball spectrum of the closed string sector.

2.2 Identifying operators

Let us now discuss the identification of various operators. In the large Nc limit there are

in principle an infinite number of operators in the 4d strongly coupled gauge theory. In

the limit z → 0 one is able to identify the boundary value of a bulk field with conformal

dimension ∆ of the p form of dimension d

lim
z→L0

(

z∆−d+pX(xµ, z)
)

→ X0(xµ) (2.14)

– 7 –
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4D: operator Field ∆ m2

OL,R = φ†φL,R → D(z, x)L,R 2 -4

Oα(x)L,R = −i
√
2φ†qαL,R → λα(z, x)L,R 5/2 1/2

Oµ(x)L,R = q̄σµqL,R − i
(

φ†∂µφ− ∂µφ†φ
)

L,R
→ Aµ(z, x)L,R 3 0

Table 1. Operators corresponding to the bulk fields of the model.

which acts as a source for the bulk field and therefore treats the bulk field as a current

X(x, z) coupled to a source which are then both treated independently. The four dimen-

sional operators have scaling dimension ∆ and the bulk p-form field such that the AdS

mass m2 is determined by [2, 3]

R2m2
AdS = (∆− p)(∆ + p− 4) (2.15)

and for the fermions

R2m2
AdS = ∆(∆− d). (2.16)

We therefore wish to introduce coupling between source fields and bulk fields

gSM

∫

d4θOV0 (2.17)

where gSM is a coupling unrelated to the AdS parameters and where one can work per-

turbatively in αSM → 0, the decoupling limit of GGM [25]. As in AdS/QCD models, we

wish to match the UV (S)QCD flavour currents to bulk gauge fields, which then couple to

the external sources. These currents are made of the UV squark and quark fields. In this

paper we wish to take the diagonal flavour group, essentially Oµ = 1
2

(

Oµ
L +Oµ

R

)

, such that

it is evident that Aµ is the vectorial or diagonal of a possible SU(Nf )L × SU(Nf )R flavour

symmetry, which will each have their own dual field AµL,R. This allows one to match [1–4, 7]

a set of operators to a set of bulk fields as in table 1.

Whilst the bulk boundary correspondence eq. (2.14) holds for fields with positive parity

on the boundary, there is no equivalent correspondence for the negative parity fields such

as the degrees of freedom in1 Φadj . These fields do not have (broken) CFT operators [44]

and are emergent degrees of freedom. There may be negative parity bulk fields or IR

brane localised fields as well. Conversely if one switches boundary conditions there are no

sources for V [44]. It is useful to highlight from the outset that the above currents in the

table are not the currents associated with supersymmetry breaking currents. This differs

from [20, 22], where these fields are identified directly with the supersymmetry breaking

currents. We expect that our prescription, of an IR or bulk effective action, should apply

also to those papers, even if supersymmetry is broken by the geometry.

The supersymmetry breaking currents will be labelled J as originally in [15, 16, 18]. To

motivate these currents J , let us compare to the case of AdS/QCD [5–8]. In those models

the boundary operator q̄q is mapped to the pion bulk field X(x, z), which then supplies a

1There may be non dynamical sources.
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bulk pion current Jπ = π∂µπ. This construction naturally allows for the computation of

cross section σ(e+, e− → π+, π−). We expect that the SUSY breaking currents arise in a

similar fashion, as is also discussed in [14], in which the J currents are extracted from a

“magnetic” description on the IR brane.

The currents J are able to encode the spontaneous breaking of supersymmetry. In

particular these currents (J ) do not directly couple to the external sources but to the

approximate CFT states, which is important for a phenomenologically viable model and

to encode the expected form factors of vector mesons.

The final, “all orders” current correlators that couple to external sources may be found

from taking
d2Seff [V0]

dAµ0 (x)dA
ν
0(y)

= 〈Kµ(x)Kν(y)〉full (2.18)

after fully integrating out the bulk and IR boundary actions. In analogy to QCD, this cor-

relator may be compared with the total hadronic vacuum polarisation amplitude Πhad(s).

This correlator receives pieces from eq. (4.15) and eq. (5.17) (and higher order contribu-

tions). The parts in eq. (5.17) contribute the predominant effect of the running gauge

coupling and the parts in eq. (5.17) are the leading contributions of supersymmetry break-

ing effects after integrating out the IR brane.

3 The fields

In this section we wish to take the free field equations of motion for the bulk theory

and determine the holographic decomposition. This will allow one to compute boundary

correlators for the supersymmetric theory and then when we introduce supersymmetry

breaking sources, will allow one to carry out perturbation theory to compute higher order

correlators. Some of the results in this section have been collated from work on holographic

QCD. The starting point is to take the free bulk equations of motion.

3.1 Equations of motion

The vector superfield of the bulk gauge theory contains Aµ, λα and D = (dzΣ − X3) as

dynamical degrees of freedom. As the bulk theory is N = 1 in five dimensions there is

also an adjoint chiral superfield Φadj which contains (A5+ iΣ) and χ as dynamical degrees

of freedom. As λ and χ are related as a symplectic Majorana fermion, determining λ

completely fixes the properties of χ.

The equations of motion for the gauge field is given by [48]

∂M (
√−ggMNgPQFNQ(x, z)) = 0 (3.1)

taking Az = 0 and working in ∂µA
µ = 0 gauge. For the symplectic Majorana spinor the

equation is
(

gMNγMDN +mΨ

)

Ψ(x, z) = 0 (3.2)

A real scalar field Σ or A5 may be modelled by

1√−g∂M
(√−ggMN∂NΣ(x, z)

)

−m2
ΣΣ(x, z) = 0 (3.3)

– 9 –
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where it is possible to relate this to the dynamical part of the D-term D = dzΣ as pointed

out in [37].

Using the metric eq. (2.1) gives the equations of motion

[

ηνρ∂ν∂ρ + a(z)−s∂za
s(z)∂z − a2M2

Φ

]

Φ(x, z) = 0 (3.4)

where Φ = {Aµ,Σ} with s = {1, 3} M2
Φ = {0,m2

Σ}. For the fermions one finds a coupled

equation

[

∂z + 2a−1(z)∂za(z)± a(z)mΨ

]

W+/W−(x, z) = ±p W−/W+(x, z) (3.5)

where {λ, χ} is related to {W+,W−} respectively. This is solved by finding the appropriate

independent second order equations [49].

In the Kaluza-Klein decomposition one finds solutions by identifying ∂2fn(z) =

−m2
nfn(z). In the holographic basis one leaves the p2 dependence. Let us discuss the

KK spectrum of this theory: there are massless modes for Aµ and λ, as well as a tower

of massive modes. Once one introduces the supersymmetric standard model on the UV

boundary (outside the AdS system) the massless modes will correspond to standard model

gauge fields. There are no massless modes for χ, Σ and A5. The massive modes arise as

part of a supersymmetric Higgs mechanism including Dirac masses between χ and λ. The

massless modes are related to the external fields of the theory which leads us to discuss

the holographic decomposition.

3.2 The holographic decomposition

We wish to specify the holographic decomposition of the bulk fields. To do this one

first identifies the boundary fields A0, λ0, D0 = dzΣ, which couple to the four di-

mensional operators Oµ,Oα,O respectively and which correspond to the bulk fields

Aµ(x, z), λα(x, z), dzΣ(x, z), as in table 1. The bulk fields are determined in terms of

Bessel functions {Jα, Yα} of the first and second kind.

3.2.1 The gauge field

For the gauge field to have a massless zero mode it should have Neumann boundary condi-

tions on both branes. This in turn fixes constraints on the fields in the same vector multiplet.

Additionally this sets A5 to have Dirichlet boundary conditions to cancel boundary terms,

fixing the conditions of Φadj in the process. The function V (q, z) may be related to Migdal’s

Pade approximation of the OPE [50]. Taking Neumann boundary conditions for the vector

∂zV = 0 we obtain for the gauge field [50, 51]

Aµ(q, z) = A0
µ(q)

V (q, z)

V (q, L0)
= A0

µ(q)K(q, z) (3.6)

with A(p, L0) = A0(p) implemented and in addition

Aµ(q, z) =

∫

d4xeiq.xAµ(x, z). (3.7)
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The bulk to boundary propagator or profile function is V (q, z), as solution of eq. (3.4) with

V (q, z) = zq [Y0(qL1)J1(qz)− J0(qL1)Y1(qz)] (3.8)

where q =
√

q2 and V µ
0 = V0ǫ

µ(q) and V µ(x, z) =
∫

d4qe−iq.x V µ(q, z). The derivative

gives an odd function [50]

∂zV (q, z) = zq2 [Y0(qL1)J0(qz)− J0(qL1)Y0(qz)] . (3.9)

The same construction may be applied to the fermions.

3.2.2 The fermions

The fermion may be split into two 2 component spinors, one of even and one of odd parity.

Taking the ansatz for eq. (3.5)

λα(q, z) =
1

W+(q, L0)
λ0α(q)W+(q, z) (3.10)

χα(q, z) =
1

W−(q, L0)
χ0
α(q)W−(q, z) (3.11)

and substituting into the equations of motion

γµqµW+(q, z)− ∂zW− + (c+ 2)W−(q, z) = 0 (3.12)

Due to the above equations it is straightforward to see that the boundary conditions

δλ̄χ|0,πR = δχ̄λ|0,πR = 0 (3.13)

require that one cannot have a massless mode for both fields. Therefore a Dirac mass for

the erstwhile massless modes cannot arise.

The Dirac equation is satisfied by relating the source λ0 to χ0

σµαα̇pµχ̄
0 = p

W−(q, L0)

W+(q, L0)
λ0α (3.14)

σµαα̇pµλ̄
0 = p

W+(q, L0)

W−(q, L0)
χ0
α. (3.15)

The solutions are [49]

W−(q, z) = z5/2 [Jα−1(qz)Yβ(qL1)− Jβ(qL1)Yα−1(pz)] (3.16)

for the odd case

W+(q, z) = z5/2 [Jα(qz)Yβ(qL1)− Jβ(qL1)Yα(pz)] (3.17)

for the even case, where

α = mψR+ 1/2 = c+ 1/2 (3.18)

β = α− 1. (3.19)

In fact we shall see that the conditions of positive parity for the multiplet V and super-

symmetry uniquely fixes β = 0 and α = 1. Independently we expect ∆ = 5/2 for the

operator field correspondence where ∆ = 3/2+ |c+1/2| which also predicts c = 1/2, where

c = mΨR. Let us now discuss the scalar fields.
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Figure 1. A diagram to represent the external field couplings to bulk vector mesons in eq. (4.1),

on the UV boundary.

3.2.3 The scalar

The negative parity Σ scalar couples to the boundaries through ∂zΣ. One identifies a scalar

through ∂zΣ(q, z) = D(q, z)

∂zΣ(q, z) = D0(q)
E(q, z)

E(q, L0)
(3.20)

where D(q, L0) = D0(q). It is required that the super-traced combination of current

correlators of the effective action in eq. (4.19) to vanish. This requirement fixes the form

of the fields up to an overall normalisation. This gives an odd function

E(q, z) = N(z) [Y0(qL1)Jτ (qz)− J0(qL1)Yτ (qz)] (3.21)

A condition is Dim[O] = 2, which relates to ∂zΣ where Dim[O] = 2 + τ , setting τ = 0 for

a general scalar explored in [33, 52]. This gives an even function

∂zE(q, z) = N(z)q [Y0(qL1)J1(qz)− J0(qL1)Y1(qz)] (3.22)

These field profiles will now be used to evaluate the boundary action.

4 The boundary action

In this section the procedure for determining the boundary action is reviewed. As already

stated one determines the boundary value of the bulk fields to be sources of the bulk fields

which one then treat as independent. This allows one to identify

gSM

∫

d4θV 0O(x) (4.1)

where V 0(x) is the boundary gauge theory and O(x) is a current multiplet. This is rep-

resented in figure 1. One should therefore determine the boundary action for the gauge

fields [33, 53, 54] and for fermions [49, 55, 56]. The boundary conditions for boundary

actions have also been explored in [57, 58].

Labelling the source fields

A0
µ(x) = Aµ(x, z = L0) , λ

0(x) = λ(x, z = L0) , D
0(x) = ∂zΣ(x, z = L0). (4.2)

One cannot also fix a true source for χ(x, z), χ0, on the UV boundary as the fermions of a

symplectic Majorana spinor are not independent [49] and χ vanishes on the UV boundary.

This is our first example of bulk fields without a proper boundary source.
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In addition the variation of the bulk action generates a boundary action which is

required to vanish. This sets χ(L1) = 0 and sets Neumann boundary conditions on the IR

brane

∂zAµ(x, L1) = 0 , ∂zλ(x, L1) = 0 , ∂zD(x, L1) = 0. (4.3)

With the above identification our procedure is as follows:

• Set the variation of the five dimensional action, with respect to every field, to vanish:

δS5d + δSboundary = 0.

• In addition implement Neumann boundary conditions for the positive parity multiplet

V and Dirichlet for Φadj . This fixes the freedom of the fields at the UV and IR.

• Use integration by parts, for which the equations of motion vanish leaving only the

boundary term.

• The resulting action should still be supersymmetric under N = 1 four dimensional

supersymmetry.

It is useful to compare this approach with the Kaluza-Klein approach. As commented

before [49] the cancellation of δS5d = 0 is automatic if the Dirichlet condition of even parity

(+) is used for λ, exactly in correspondence with the warped models [15, 18].

Following the above procedure, the resulting action is [20, 57, 58]

1

g25

∫

d4x
√−g5d

(

−1

4
GzMGPQFMQAP +

ieẑz
2
λ̄iλi −

1

2
GzM (∂MΣ(x, z))Σ(x, z)

)

|z=L1

z=L0

(4.4)

where eẑz = a(L0)δ
ẑ
z . This gives for the UV boundary

1

g25

∫

d4x

(

a(z)

2
(ηµνAµ∂zAν − 2ηµνAµ∂νA5)+

ia4(z)

2
λ̄iλi + a3(z)(∂zΣ(x, z))Σ(x, z)

)

z=L0

(4.5)

There are a few additional operators which may be added [6, 44], but this is a minimal

choice which can be related to the Gibbons-Hawking-York boundary term [57, 58] and these

terms are introduced precisely to make the bulk action supersymmetric in the presence of

boundaries. Taking a Fourier transform one can equivalently define

1

g25

∫

d4p

(2π)4

[

a(z)

2
(ηµνAµ(p, z)∂zAν(−p, z)− 2ηµνAµ(p, z)∂νA5(−p, z))

]

|z=L0
(4.6)

+
1

g25

∫

d4p

(2π)4

[

ia4(z)

2
λ̄i(p, z)λi(−p, z) + a3(z)(∂zΣ(p, z))Σ(−p, z)

]

|z=L0
.

For a small finite L0 (instead of taking the UV cutoff to infinity) the source fields are

normalisable and a kinetic term for these are generated [30]. This gauges the erstwhile

global symmetry on the boundary. In expectation of this one may introduce a UV action

for the sources

SUV ⊃
∫

d4x
√−gind

(

λ̄′0σ̄
aeµa∂µλ

′
0 +GρνGσνFρσFµν + a−2(L0)(D

′
0)

2
)

(4.7)
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Figure 2. A Witten diagram for a current correlator 〈OµOν〉. Operators Oµ on the UV boundary

(solid line) correspond to a gauge field Aµ in the bulk. The dotted line is the IR boundary. This

contribution is O(Nc).

where
√−gind = a(L0)

4 , related to the induced metric on the UV boundary. The last one

is inferred from a typical scalar

∫

d4x
√−gind (GµνDµφDνφ

∗) . (4.8)

The sources should be normalised so that the boundary kinetic terms will be canonical,

giving

λ0 = λ′0a
3/2(L0) , D0 = D′

0a(L0) , A0 = A0. (4.9)

It is now possible to compute the tree level effective action.

4.1 The supersymmetric effective action

Now that we have a boundary action and implemented the holographic principle it is

possible to compute the current correlators of the supersymmetric effective action. These

are pictured in figure 2. Individually these correlators have been explored before in [6, 30,

33, 49, 59]. The poles of the correlators correspond to the mass spectrum. The inverse of

these correlators correspond to a UV boundary to UV boundary Green’s functions. It is

useful to stress that these two point functions do not encode supersymmetry breaking. Of

course once supersymmetry is broken spontaneously it will shift the poles of the bulk fields.

This will shift the poles in these correlators, which will appear as an explicit breaking of

supersymmetry, and a subleading effect of this breaking will appear in these correlators:

one should keep track of the factors of g5.

To compute the boundary correlators we should compute for instance

δ2S5d[V
0(x)]

δV 0
µ (x)δV

0
ν (0)

= 〈Oµ(x)Oν(0)〉 (4.10)

where the Fourier transformed vector current correlator is given by

∫

d4xeiq.x 〈Oµ(x)Oν(0)〉 = (q2gµν − qµqν)Π1(q
2) (4.11)

∫

d4xeiq.x 〈Oα(x)Oα̇(0)〉 = (σµαα̇∂µ)Π1/2(q
2). (4.12)
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The boundary correlators of eq. (4.10) may be related by

〈O(q)O(−q)〉a = lim
L0→0

(

q2Π(q2)a +UV counter terms
)

(4.13)

with a = 0, 1/2, 1. The UV counterterms cancel any local divergent terms in the limit

L0 → 0 [49]. In momentum space this will generate a supersymmetric effective action on

the UV boundary

∫

d4q

(2π)4

[

1

4
Π1(q

2)Fµν,0F
µν
0 − iΠ1/2(q

2)λ0σµ∂
µλ̄0 +

1

2
Π0(q)D

2
0

]

(4.14)

where for instance D2
0 is understood to mean D0(q)D0(−q). In position space this may be

rewritten

δLSUSYeff =
g2SM
2

Π0(0)D
2
0 − ig2SMΠ1/2(0)λ0σµ∂

µλ̄0 −
g2SM
4

Π1(0)Fµν,0F
µν
0 . (4.15)

A rescaling V 0 → gSMV
0 has been made to obtain this expression. This action is at order

O(1/g25) or equivalently O(Nc). This is the first set of correlators which we will discuss.

The scalar correlator is given by

ΠD0 (q
2) =

1

g25

(

a3−2(z)
E(q, z)

∂zE(q, L0)

)

z=L0

=
a(L0)

qg25

[Y0(qL1)J0(qL0)− J0(qL1)Y0(qL0)]

[Y0(qL1)J1(qL0)− J0(qL1)Y1(qL0)]
(4.16)

which couples to ∂zΣ is given by (after canonically normalising D2
0 → a−2D2

0 the boundary

action). For the gauge fields [50, 51]

ΠA1 (q
2) =

1

q2g25

(

a(z)
∂zV (q, z)

V (q, L0)

)

z=L0

=
a(L0)

qg25

[Y0(qL1)J0(qL0)− J0(qL1)Y0(qL0)]

[Y0(qL1)J1(qL0)− J0(qL1)Y1(qL0)]
.

(4.17)

For the gaugino source [6, 49, 59] one finds

Πλ1/2(q
2) =

1

qg25

(

a4−3(z)
W−(q, z)

W+(q, L0)

)

z=L0

=

a(L0)

qg25

[

Jα−1(qL0)Yβ(qL1)− Jβ(qL1)Yα−1(qL0)

Jα(qL0)Yβ(qL1)− Jβ(qL1)Yα(qL0)

]

(4.18)

where the 1/g25 has mass dimension +1. The correlators Πa(q
2) are dimensionless. As the

action is supersymmetric one expects the supertraced combination to vanish:

[

3Π1(q
2)− 4Π1/2(q

2) + Π0(q
2)
]

≡ 0 (4.19)

so comparing eq. (4.17) this sets β = α − 1 and α = 1 in eq. (4.18) and with eq. (4.16)

fixes τ = 0. Supersymmetry completely determines the boundary conditions and mode

expansions of all the fields in the theory and furthermore it determines the Green’s functions

of the boundary theory. We have reviewed this procedure as we feel it is instructive,

however on a more practical level it more appropriate to solve for the Green’s functions
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∆(p2; z, z′) and then one can directly determine the self energies Π(q2) as the inverse of

Green’s function at z = z′ = L0 [35]. It is useful to identify

〈O(p)O(−p)〉 = p2Π(p2) =
[

p2∆(p, L0, L0)
]−1

. (4.20)

There is also in principle the correlator (and its complex conjugate),

∫

d4xeiq.x 〈Oα(x)Oβ(0)〉 ≡ 0 (4.21)

The exact vanishing of this term is due to the supersymmetry of the action [22]. The five

dimensional N = 1 action has an SU(2)R symmetry broken to U(1)R by the presence of

the branes and resulting boundary conditions on the fermions. Once the supersymmetry

breaking terms are introduced on the IR brane the U(1)R symmetry is broken in general.

Despite this the correlators eq. (4.21) remains vanishing. One should consider the observed

correlator as the sum of the pieces eq. (4.21) and eq. (5.18). One could of course harm the

bulk and boundary theory to generate such a term, and in so doing harm the closure of

supersymmetry transformations of the theory. A harmful example would be a non canonical

kinetic term on the UV boundary
∫

d4x
√
gind

(

Z ′λασaαα̇e
µ
a∂µχ̄

α̇
)

(4.22)

(despite χ(L0) = 0 [49]) then using eq. (3.14) and rescaling by eq. (4.9) one finds

∫

d4p

(2π)4
λα0

(

Z ′p
W−(p, L0)

W+(p, L0)

)

λ0α. (4.23)

As we are not interested in introducing arbitrary explicit breakings of supersymmetry as

our goal is to explain the generation of explicit terms in the MSSM from the spontaneous

breaking of supersymmetry the above terms are ignored.

If there are massless poles in the above correlators this indicates that the source fields

are massless. The physical spectrum should match the same spectrum as the Kaluza-Klein

mode expansion [33, 49]. In particular this means there is a massless pole in Π0 in eq. (4.16)

as the Aµ0 source is massless and a massless pole in Π1/2 in eq. (4.18) as λ0 is massless. No

Dirac mass can arise for λ0 as there is no χ0 mode.

4.2 Running gauge coupling

The above correlators effect the running gauge coupling and change in the beta function

and have been explored before [30, 60–65]. Taking account of the massless zero modes only,

one would expect b = 3N , where N here is the weakly gauged flavour symmetry SU(N)

(not to be confused with the Nc of the broken CFT), which is given by

b =
11

3
T (adj)− 2

3
T (F )− 1

3
T (S) (4.24)

where T (adj) is the index in the adjoint gauge fields, T (F ) of the fermions λ0 which in this

case are also in the adjoint, T (S) for the complex scalar index and a sum over all fields
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is implicit. Taking into account the running from the full CFT states of Aµ, λα and one

should also take into account the running from Φadj which has odd parity.

The broken CFT effects from Aµ may be extracted from Π1(q
2) in eq. (4.17)

Π1(q
2) = T [R]

R

2g25
Ln(q2R2). (4.25)

This is determined from the group structure 〈OaOa〉 = T [R]δabΠ and the currents are

in the adjoint. The source field gauge coupling of the broken CFT runs logarithmically,

which becomes decoupled by removing the UV brane [30]. Above the cutoff of this theory

one should expect the running from the underlying theory degrees of freedom. Let us just

focus on the running of the external gauge field Aµ0 . It will also have effects from additional

correlators associated to the bulk fields λ, (Σ + iA5), χ and also from A0 directly:

ΠA0

1 (q2) + Πλ1(q
2) = − b

8π2
Ln

(

q2

µ2

)

+O(1/g2SM ) (4.26)

b = 3N from the adjoint source fields in the vector multiplet V and O(1/g2SM ) denotes the

higher order terms from the set of boundary operators {O} [63, 64]. The computation of the

additional correlator Πλ1(q
2) is very instructive. It may be computed in either the warped

or holographic picture. In the five dimensional, or warped picture, this correlators may be

computed from a bulk field. At leading order, and below the cutoff µ ∼ 1/L0, it is as if

only the source field λ0 contributes to this correlator [63, 64]. This again confirms that one

can work in either the holographic or five dimensional basis. It is expected that the states

localised at L1 will not contribute to the running of the couplings much above E ∼ 1/L1 [63]

and for this reason one can safely ignore effects from the supersymmetry breaking sector on

the IR brane. If this is the case then perhaps this has important consequences, for instance

locating an ISS type [24, 37, 66] model on the IR brane one could achieve metastable

supersymmetry breaking and alleviate the issue of an early Landau pole as in this setup

the messengers would not contribute to the running.

There are other correlators too

Π
(Σ+iA5)
1 (q2) ∼ 0, Πχ1 (q

2) ∼ 0 (4.27)

not to mention those that arise form purely standard model fields, located on the boundary.

The gauge coupling for A0
µ may be extracted from this collection to give

1

g2(q2)
=

1

g2(µ2)
+
bSSM

8π2
Ln

(

q2

µ2

)

− T [R]R

g25
Ln(qR) + ... (4.28)

for µ2 < 1/L2
0. The ellipses denote higher order terms in gSM . The beta function coefficients

of the supersymmetric standard model are given by bSSM = (−33/5,−1, 3). These results

have been used to explore unification in a warped setup [11].

In the supersymmetric limit there are a large number of correlators which all vanish

in sets labelled by S:
[

3ΠS1 (q
2)− 4ΠS1/2(q

2) + ΠS0 (q
2)
]

≡ 0, (4.29)
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certain collections of which give the leading order running of the four dimensional gauge

coupling. The experimentally observed correlator is in principle all orders in the hidden

sector gauge couplings and, on the AdS side, can therefore be represented by arbitrary many

diagrams or a sum of many correlators. To obtain the supersymmetry breaking effects one

should identify the correct contribution to the correlator and hence the relevant diagrams.

In summary, this section has shown how supersymmetry and holography determine

the UV and IR boundary conditions of the fields and we have seen how these correspond

to the same choices as those made in the Kaluza-Klein formulation of warped gauge me-

diation models [9–11, 13–16, 18]. With the condition that the supersymmetry breaking is

spontaneous, it is unlikely that changing the metric by, for instance, introducing a soft wall

dilaton profile [18], will have an effect on this outcome. As a result one may introduce new

operators or new fields either in the bulk or on the IR boundary to achieve a spontaneous

breaking of supersymmetry. These new fields will play the role of messenger fields coupled

to a Goldstino multiplet.

5 Supersymmetry breaking

In this section we will bring together the notation and results of the previous sections to

explore encoding a spontaneous supersymmetry breaking sector into the theory. In the

first instance a set of currents that encode these effects of supersymmetry breaking will

be introduced, following [25]. Integrating this out will generate an effective action and

a set of current correlators that will then encode the effects of supersymmetry breaking.

These current correlators may be used to parameterise our ignorance about the cause of the

breaking. Additionally we may imagine that there is some weakly coupled description in

which the currents may be extracted from messenger fields coupled to a Goldstino multiplet.

This can be done in two ways: the first way is to generate an effective action on the

IR brane and then mediate those effects to the UV boundary. The second is to construct a

four dimensional UV boundary effective action that encodes the supersymmetry breaking,

at order O(N0
c ) (compare with the action eq. (4.15) at order O(Nc)) and which couples only

to external sources. This second way corresponds to having integrated out the CFT effects.

It is useful to have a set of criteria: as the gravity background is switched off for

the moment the supersymmetry breaking theory contains an identifiable Goldstino mode

and the messenger fields satisfy StrM2 = 0. We assume that the bulk plus boundary

Lagrangian is supersymmetric under the relevant supersymmetry transformations, such

that the supersymmetry breaking should be a vacuum effect and therefore spontaneous.

In particular, just as the breaking of conformal symmetry is an IR effect (in this paper

implemented by the hard wall IR brane which allows for an S matrix and a discrete set of

states) we also expect that the spontaneous breaking of supersymmetry is associated with

the IR of the theory. In other words the messenger fields are entirely composite degrees

of freedom that should not appear in the UV. Additionally the supersymmetry breaking

currents do not directly couple to external fields: the IR brane fields couple to the CFT

bulk degrees of freedom [67], giving rise to form factors of vector mesons.
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In this case we suggest locating a set of supersymmetry breaking currents coupled to

a bulk gauge field [15] on the IR brane

gIR

∫

d5x
√−g

∫

d4ϑJ
✘

✘
✘SUSY V (x, z)δ(z − L1) (5.1)

using
√−g not

√−gind. In components this gives

gIR

∫

d5xa5(z)(JD + a−2jµA
µ + λj + λ̄j̄)δ(z − L1). (5.2)

As was discussed in [15], to accomodate canonically normalised fields such as messenger

fields from which the currents are to be extracted, one can rescale the currents

Ĵ = a3(z)J, ĵα = a7/2(z)jα, ĵµ = a3(z)jµ, (5.3)

to give

gIR

∫

d5x(a2ĴD + ĵµA
µ + a3/2λĵ + a3/2λ̄ˆ̄j)δ(z − L1). (5.4)

These are the correct rescalings for the given metric [15]. For the moment there need

not be any operator field correspondence for these currents. However it is interesting to

explore constructing an operator-field correspondence for a set of bulk messenger fields

φ(x, z), φ̃(x, z) and also for a Goldstino multiplet X(x, z). Some ideas in this direction

have been explored in [14], for instance in constructing a bulk meson Φ which is mapped

to some operator O = QQ̃. In [14] the actual messengers are also located on an IR brane

(they appear as magnetic quarks located on the IR brane) and so we shall find that both

the soft mass formulas and the scattering cross sections to messenger fields found in the

next sections will be applicable also to that model.

5.1 Equations of motion with currents

Taking the equations of motion one now finds

∂M (
√−ggMNgPQFNQ(x, z)) = ĵMδ(z − L1) (5.5)

in which jµ exists but j5 ≡ 0.

The dynamical part of the D-term D = dzΣ has an equation

1√−g∂M
(√−ggMN∂ND(x, z)

)

−m2
ΣD(x, z) = a2(z)Ĵδ(z − L1) (5.6)

The symplectic Majorana spinor decomposes into a positive and negative parity spinor for

which the current is associated to the positive parity component
(

gMNγMDN +mΨ

)

Ψ(x, z) = a3/2(z)ĵAδ(z − L1) (5.7)

in which A is a spinor index

jA =

(

jα
0

)

. (5.8)

and the right handed current j̄α̇R also vanishes exactly. One may attempt to solve these

equations exactly, or apply perturbation theory by computing an effective action which

give the linear response functions for such currents.
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Figure 3. A Witten diagram for a current correlator of eq. (5.17). Operators Oµ on the bound-

ary are dual to gauge fields Aµ(p, z) which couple to a bulk current Jµ(p, z), which in this case

is IR localised. This diagram represents a term in the effective action on the UV boundary:

A0
µ
(p)Λ(p)C̃1(p

2/M̂2)Λ(−p)A0
ν
(−p). This contribution is O(N0

c
).

5.2 The supersymmetry broken effective action

In this section the soft masses arising from spontaneous supersymmetry breaking are com-

puted, at leading order, for sfermions on the UV boundary and for the gaugino source that

corresponds to a massless zero mode of the Kaluza Klein expansion.

One may specify an action located on the IR brane located at δ(z − L1). It will have

the general form2

ZIR =
√−g

∫

d5xδ(z − L1)LIR. (5.9)

This can be left completely general or one may specify a perturbative action to be

messenger chiral superfields, φ, φ̃, coupled to a spurion X as in eq. (5.26). Specifiying the

perturbative action will allow us to correctly define some canonically normalised fields.

One may then integrate the generating functional on the IR brane ZIR and generate

an effective action which now encodes spontaneous supersymmetry breaking,

δL✘✘
✘SUSY

eff |z=L1
=

1

2
a4(z)C̃(0)D2 − ia3(z)C̃1/2(0)λσµ∂

µλ̄− 1

4
C̃1(0)FµνF

µν

+
1

2
a3(z)MB̃1/2(0)λλ+ c.c.+O(g2IR) (5.10)

at z = L1. The canonical fields are found after rescaling by eq. (4.9). We may define the

dimensionless supertraced combination of these current correlators to be

Ω(p2/M2) =
[

3C̃1(p
2/M̂2)− 4C̃1/2(p

2/M̂2) + C̃0(p
2/M̂2)

]

. (5.11)

In the next subsection we apply a different approach and generate an effective action on

the UV brane.

5.3 The four dimensional action

Due to the holographic correspondence it is always possible to relate bulk five dimensional

diagrams to their corresponding four dimensional effective vertices [36]. Typically this

2
√

−g instead of
√

−gind has been used.
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involves some overlap integral of bulk wavefunctions and bulk to brane propagators. Here

the situation is simplified by the exact locality of the source on the IR brane: no
∫

dz is

necessary. A similar example may be found for IR localised Yukawa couplings [48, 49]. The

action for the gauge field is now written as

Seff ⊃
∫

d4p

(2π)4

[

∑

S

A0
µΠ

S
1 (p

2)PµνA0
ν + gSMA

0
µ(Oµ + JµSM + J µ

✘
✘
✘SUSY
)

]

(5.12)

where the supersymmetry breaking current has been pulled from the IR to the UV

J µ
✘

✘
✘SUSY
(p) = gIRp

2Π1(p
2)∆(p;L0, L1)J

µ
✘

✘
✘SUSY
(p, L1) (5.13)

= gIRK(p, L1)J
µ
✘

✘
✘SUSY
(p, L1)

using the amputated boundary to bulk propagator. This gives an effective vertex function

Λ(p) = gIRK(p, L1) (5.14)

Taking the square of this term and Wick contracting one finds an effective term on the UV

boundary

Seff ⊃
∫

d4p

(2π)4

[

1

2
g2SMA

0
µP

µνẼ1(p
2/M̂2)A0

ν

]

(5.15)

where evidently

Ẽa(p
2/M̂2) = Λ(p)C̃a(p

2/M̂2)Λ(−p) and MF̃1/2(p
2/M̂2) = Λ(p)M̂B̃1/2(p

2/M̂2)Λ(−p).
(5.16)

Now the set of correlators Ẽa(p
2/M̂2), with a = 0, 1/2, 1 are the associated “blobs” that

encode supersymmetry breaking and are order O(N0
c ).

The supersymmetry breaking effective action on the UV boundary may be written in

this way:

δL✘
✘
✘SUSY

eff |UV =
g2SM
2
Ẽ0(0)D

2
0 − ig2SM Ẽ1/2(0)λ0σµ∂

µλ̄0 −
g2SM
4
Ẽ1(0)Fµν,0F

µν
0 (5.17)

+ g2SMMF̃1/2(0)λ0λ0 + c.c. (5.18)

The sources have been rescaled using eq. (4.9). This effective action can be represented

by Witten diagrams of the type found in figure 3. Using both the broken and unbroken

UV boundary effective action all the soft mass diagrams may now be computed without

reference to the fifth dimension. This reformulates warped gauge mediation models in a

way much closer to the original GGM proposal [25].

One may now compute various soft terms using the four dimensional boundary action.

The formula for sfermion masses is now given by

m2
f̃
= −g4SM

∫

d4p

(2π)4
1

p2

[

Λ2(p)Ω(p2/M̂2)
]

(5.19)

Each diagram that contributes to the result above is made of two bulk to boundary prop-

agators and then a current correlator located at z = L1. The function Ω contributes
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Figure 4. A Witten diagram for a subleading contribution to the scalar soft masses from a double

mass insertion of the gaugino soft mass. The operator Oα on the boundary is dual to the field λα
for which λ0 is the source. This soft mass is O(1/Nc).

a negative sign and the sfermion masses are positive [25]. The factors of g4SM arise

from eq. (1.1), eq. (4.1) and eq. (5.1) and appears to carry an extra factor of g2IR. Motivated

by current field identities [18] we may wish to think of (g2SM/gρ)V
0O in eq. (4.1) and then

g2SM (g2SM/gρ)g
2
IR would appear, to give the right overall g4SM . We expect there is a natural

resolution to this and keep the factors of g explicitly.

The next contribution to sfermion masses is

δm2
f̃
= g4SMg

2
IR

∫

d4p

(2π)4
1

p2
Λ2(p)∆(p, z, z)

[

M̂B̃1/2(p
2/M̂2)

]2
(5.20)

evaluated at z = L1 and is pictured in figure 4. Just as the discussion above this should

naturally appear with a factor g6SM with a factor g2IR inside the effective vertices. The

Green’s function carries a factor 12π2

Nc

. There is clearly some tension between the leading

and subleading diagrams as the second is suppressed by 1/Nc or a loop factor, however for

a messenger model the first diagram will be found to be suppressed by y2 ∼ |M̂L1|2. For

an Nc ∼ 10 would have to be y ∼ 0.3 for both diagrams to be of the same order. This

diagram is most relevant in the “Gaugino Mediated” limit [68–70].

It is interesting to explore this contribution from the perspective of the four dimensional

boundary action. Using the identity

∆(p; z, z′) = ∆(p;L0, L0)K(p, z)K(p, z′) +D(p; z, z′) (5.21)

where D(p, z, z′) is a Dirichlet Green’s function, one finds

δm2
f̃
= g4SM

∫

d4p

(2π)4
1

p4Π(p2)

[

MF̃1/2(p
2/M2)

]2
+ ... (5.22)

where the ellipses signify a piece proportional to the Dirichlet Green’s function which van-

ishes on the IR brane. This is what one would have found using only the four dimensional

effective action eq. (5.17) as effective vertices. Specifically one takes two insertions of the

Majorana soft term in eq. (5.17).

The gaugino mass to the sources λ0 appear to take the form

mλ = lim
p2→0

g2SMΛ2(p)MB̃1/2(p
2/M2) (5.23)
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and we expect the cross sections associated with these current correlators will take this

form. However

lim
p2→0

Λ(p2) = g2IR (5.24)

as a typical form factor F (0) = 1, so this soft term appears with an extra factor of g2.

If we compare this with the Kaluza Klein expansion of λ(x, z) one would expect a term

directly as

mλλnλm = g2IRMB̃1/2(0)λnλm (5.25)

on the IR brane.

Higher order, subleading in g5, corrections may be computed following [71] for both

sfermion and gaugino masses. The final mass eigenstates are a mixture of the soft breaking

Majorana masses and the Dirac Kaluza-Klein masses which may be found following [43,

45]. A Casimir energy contribution to the vacuum energy will arise due to the breaking

of supersymmetry [15, 37]. Including also supergravity contributions it may be used to

stabilise the brane separation and fix the value of R.

To summarise, the procedure for computing soft masses by using a four dimensional

boundary action with the bulk to boundary propagator K(p, z) encoded into an effective

vertex Λ(p) and then dividing (canonically normalising the sources V 0) by Πa is equivalent

to computing the soft masses using the bulk Green’s functions as in warped models [15].

This approach gives considerable insight into the four dimensional interpretation of warped

models of general gauge mediation.

5.4 Soft masses for a messenger model

In the previous section we have accomplished the primary objective of integrating out the

bulk theory to create a UV boundary action that encodes supersymmetry breaking, with

dressed vertices associated with the intermediate CFT states. However we have in mind

that a supersymmetry breaking sector and messenger fields arise on the IR brane [14],

closely related to the magnetic description of ISS models [24]. It is therefore useful to give

formulas for their soft masses and also to compute cross sections to these states.

To do this we introduce a simple O’Raifeartaigh model on the IR brane which is

straightforward to generalise [72]:

LIR =

(
∫

d4θa3(L1)φ
†e2V φ+ a3(L1)φ̃

†e−2V φ̃

)

+

(
∫

d2θa4(L1)W + c.c.

)

. (5.26)

It is from the kinetic terms of these fields that the supersymmetry breaking curents are

extracted. This action suggests that one then identify gIR associated with the gauge groups

in the action eq. (5.26). Further one may interpret these messenger fields as composite fields

that live in the IR. Taking a simple superpotential

W = Xφφ̃ (5.27)

with X =M + ϑ2F . M is the characteristic mass scale of the hidden sector, or messenger

mass scale and F is the F-term of spontaneous symmetry breaking. To determine the

– 23 –



J
H
E
P
0
2
(
2
0
1
3
)
1
3
2

correct rescalings associated with canonical normalisation of the kinetic terms, we choose

to rescale

M̂ = a(z)M, F̂ = a2(z)F. (5.28)

The components of the canonically normalised messenger fields φ̂± have masses

m2
± = M̂2 ± F̂ . (5.29)

Using eq. (5.26) and the appropriate limits found in [37] we determine the gaugino soft

mass to be

mλ =
(αIR,r

4π

)

(

R

z

)

z=L1

p
∑

i=1

[

dr(i)F

M
2g(xi)

]

, (5.30)

where p is the number of messengers and dr(i) is the Dynkin index for the i messenger in

the group r, where r labels the standard model gauge groups of the weakly gauged flabour

symmetry SU(N)F ⊃ U(1)× SU(2)× SU(3). The function g(xi) can be found in [73] and

for x < 1 g(x) ∼ 1. In the limit mρ ≪M the external sfermion masses are found to be

m2
f̃
∼
∑

r

Cr
f̃

(αSM,r

4π

)2
(

R

z

)2

z=L1

p
∑

i=1

2dr(i)|
F

M
|2| 1
M̂

|2
∫

dp p Λ2(p) (5.31)

where the relevant quadratic Casimir is labelled Cr
f̃
. The integral on Λ(p) will supply a scale

mkk after change of variables and likely also a factor (R/L1). Whilst the limit mkk ∼ M̂ is

not possible to compute analytically for such a complicated model we know from simpler

models that there is also a hybrid regime [39, 74] as well. The hybrid regime is more

promising for phenomenology however numerical methods would be required to determine

this regime from these warped/holographic models. It is useful to discuss how the scale M

is determined. In Randall-Sundrum [75] models IR scales such as M are naturally of the

orderMP lanck and then M̂ =Me−kl sets a TeV scale. However M̂ in our case is essentially

the vev of a scalar φG component of Goldstino multiplet. It is a classical modulus and

get is vev from the Coleman Weinberg potential with contributions from the same scale

that gives mass to the magnetic gauge bosons: mkk ∼ 1/L1 [14]. One therefore expects

|M̂L1| ∼ O(1) is possible and overlaps with four dimensional constructions [76].

6 Scattering

We now wish to discuss scattering cross sections σa(visible → hidden) with intermediate

resonances [18, 29]. If one integrates out the full AdS system one could obtain the full

current correlators analogous to eq. (2.18). The correlator Πfull(q
2) may be thought of as

the correlator, “to all orders”, after fully integrating out the bulk and IR brane. Πfull(q
2)

contains many pieces associated to the sum over all intermediate states. For instance

taking a cut across figure 2, which is contained in eq. (2.18), would give the cross section

σ(vis→ An) where An are the vector meson kk states of the bulk field Aµ(x, z).

However, we are primarily interested in the matrix elements contained in Πfull(q
2)

that will give σ(visible → hidden) where hidden actually stands for the supersymmetry
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Figure 5. A diagram to represent certain pieces contained in the full matrix element iM(e+e− →
e+e−). One applies the optical theorem to obtain σ(e+e− → hidden). The double lines denote

intermediate meson resonances. The blob denotes the current correlator C̃1(s) in eq. (6.2). The cut

is applied across the correlator. This diagram is equivalent to the Witten diagram in figure 3.

breaking subset of the hidden sector: the states contained in the currents J
✘
✘
✘SUSY . This

subset of matrix elements are pictured in figure 5. The “blob” in figure 5 represents the

current-current correlator of Jµ
✘

✘
✘SUSY
.

Just as in AdS/QCD models one obtains a form factor of vector mesons, which in this

setup is essentially associated with the boundary to bulk propagator of the approximate

CFT or equivalently the amputated Green’s function ∆(p; z, z′) of the AdS description.

The expression for the scattering cross sections is given by

σa(s, vis→ hid) =
(4παSM )2

2s
Λ2(s) Disc C̃a(s/M̂) (6.1)

We wish to rewrite this result in terms of AdS/QCD. Using the identifications of ap-

pendix A.3 one may finally arrive at a general expression for the scattering cross sections

σa(vis→ hid) =
(4παSM )2

2s

(

g2IRg
2
5

)

∑

n=1

Fnψn(z)

p2 +m2
n

∑

n̂=1

Fn̂ψn̂(z)

p2 +m2
n̂

Disc C̃a(p
2/M̂) (6.2)

taking z = L1 and where the correlators C̃a(s) have an explicit form, if one specifies a

messenger sector, which may be found in [29]. The scattering cross section is at O(N0
c )

due to the factors g25 Fn Fn̂.

These form factors have a natural interpretation [50] in terms of Migdal’s Pade ap-

proximation of the OPE. In particular the form factors are very similar to those found

in AdS/QCD models. It encodes a sum of monopole contributions of an infinite tower

of vector mesons with decay constants Fn for each meson. It is useful to understand the

difference however. Normally for a bulk current that is identifiable there is an overlap

integral between the non normalisable and normalisable modes in the effective vertex

Λs(Q) =

∫

dzas(z)J (Q, z)ϕ(z)ϕ̃(z) (6.3)

where for instance ϕ(z), ϕ̃(z) are the wavefunctions of the fields in the current. This could

then be rewritten into the definition of the coupling constant gn analogous to gρππ:

gn = g5gIR

∫

dzψn(z)ϕ(z)ϕ̃(z)δ(z − L1). (6.4)
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As the currents in this example are IR localised there is no bulk wavefunction and further
∫

dzδ(z − L1) results in no integral overlap. These are considerable simplifications and it

may be desirable to have bulk messenger fields to achieve these additional features. This

would require a more exotic messenger sector such as bulk hypermultiplets.

Let us discuss vector meson dominance in such a model [77–79]. The messenger fields

are contained in the same current multiplet and similarly the vector mesons and mesinos in

the same vector multiplet such that the locality of currents in the IR and supersymmetry

of the bulk action fixes for each n

gAφφ̃ = gAψψ̃ = gλφψ̃ = gV ΦΦ̃. (6.5)

Interestingly this result is related to the effective vertex Λ(p) and the supersymmetry

breaking effective action on the UV brane eq. (5.17) which is UV convergent.

These gn are not related to gAAA , gAλλ̄ and gAΣΣ which are themselves related through

supersymmetry of the Yang Mills bulk action and do involve an integral of the form
∫

dzψˆ̂n(z)ψn̂(z)ψn(z). Again a closer similarity between couplings of vector-vector-vector

to vector-matter-matter may be achieved by locating the messenger fields in the bulk and

taking account of their bulk profiles. So it seems that one is unable to get a fully universal

set of relations between couplings that one may find in similar constructions that start

with the magnetic description of SQCD [80, 81] and may be a prediction to descriminate

between the two cases. It would be nice if there was a natural way to integrate out some

of the bulk degrees of freedom and arrive at a quiver-like model similar to those explored

in [74, 82, 83] somewhat in the direction of [14].

We may also define the size of the messenger field’s charge distribution from the form

factor through

〈r2〉 = 6
∂

∂p2
F (p2)|p2=0 = −

∑

n

6g5g
2
IRFnψn(L1)

m4
n

. (6.6)

Taking ψn(L1) = C(−1)n, Fn = F the decay constant (not to be confused with the F-term

of supersymmetry breaking) and m4
n = m4

ρn
4 one obtains

〈r2〉 = 42g5g
2
IRFCπ

4

720m4
ρ

∼ O(1/m2
ρ). (6.7)

As g5Fn = O(N0
c ) we see that the effective radius does not depend on Nc. This may be

compared with the simple two site quiver model arising from a magnetic description of

SQCD [18, 74, 80] in which

〈r2〉 = 6

m2
ρ

. (6.8)

It may be worthwhile to consider possible sum rules that can be derived from these results.

We also wish to make a final observation with regard to these cross sections. Including

all contributions to the correlator, both vector meson hidden states and susy breaking

hidden sector states, we would finally obtain a full Π(s)hidden. One might then hope to

define a duality in e+, e− → hidden states analogous to Sakurai’s duality in e+, e− →
hadrons [84]. Whilst in that case the vector meson spectrum was Regge-like, with 1/s
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scaling, still we can imagine that by taking integrals of the cross sections over a range

∆s, where ∆s/
√
s ≫ 1/L1 holds, i.e. a sort of smearing procedure, we might be able to

match integrals of the cross sections to some perturbative SQCD description, reproducing

features of the duality.

7 Conclusions and discussion

In this paper we have continued the programme of exploring spontaneous symme-

try breaking in five dimensional models using the framework of general gauge media-

tion [15, 16, 18, 25, 37–39]. In particular this is a holographic model based on AdS/QCD,

where previously spontaneous supersymmetry breaking models have focused on the five

dimensional aspect using a Kaluza-Klein basis [9–11, 13–16, 18]. Whilst of course the

Kaluza-Klein and holographic picture overlap significantly, it is insightful to explore both

perspectives. This construction allows for an entirely UV localised four dimensional effec-

tive action that encodes not only supersymmetry breaking but also encodes the full effective

vertex corrections due to the intermediate CFT states. We would like to interpret the mes-

senger sector and spurion of this model as arising from a dynamically broken metastable

supersymmetry breaking sector [24] as part of an approximate CFT. This description has

given a more natural encoding of scattering cross sections [29] to these states.

Some of the key results of this paper are that we have been able to identify a natural

interpretation of the terms in the effective action as an expansion in Nc ∼ 1/g25. Using an

entirely four dimensional effective action on the UV boundary, the effects of spontaneous

supersymmetry breaking has been encoded and various soft masses computed. In addition

one is able to identify the form factor for scattering cross sections in close analogy to

AdS/QCD models.

To develop this further, it would be interesting to introduce some bulk messengers

and Goldstino fields in analogy to the pion field X(x, z) of AdS/QCD, which is dual to

q̄q on the boundary. This would allow us to identify an operator dual to these bulk

messenger fields, from which the bulk supersymmetry breaking current may be extracted.

Perhaps a model of this nature could be achieved by first starting with maximal super

Yang Mills in five dimensions and taking an orbifold, thereby generating additional bulk

adjoint multiplets [85]. Also motivated by AdS/QCD models, 4 point functions have been

computed [86] and gravity to hadron form factors which involve metric perturbations.

Indeed it would be interesting to compute the supercurrent correlator on the IR brane

〈SµαSνβ〉 following [87]. These would be interesting both in terms of extending the scattering

programme of this paper as one expects form factors to appear, but also to understand

its embedding in supergravity more concretely. The framework of this paper will have a

natural extension in terms of the soft wall model [8], where a more Regge like trajectory in

which mesons scale as m2
n ∼ nm2

0 instead of n2, which will effect form factor in scattering

cross sections. One could also include both SU(Nf )L × SU(Nf )R flavour groups in the

bulk perhaps to explore the addition of chiral symmetry breaking, where this paper has in

some sense looked simply at the diagonal SU(Nf )D. Additionally one might expect that
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the CFT dual to this model has baryonic states: they would need to be mapped to solitons

of this AdS setup.

An interesting observation [88] that the addition of an adjoint chiral superfield of the

SU(3) sector may assist in a 125GeV Higgs within an extended standard model framework.

In addition Dirac soft masses [89] may arise naturally from the interaction of the fermionic

component of an adjoint chiral superfield and the vector superfield fermion. Within the

framework of this paper one would require a Φadj to obtain positive parity on both branes.

There are two immediate concerns: the value of the vev of scalar component so as not to

Higgs the standard model gauge groups and the procedure for determining the boundary

action with coupled fermions as in section 4. Perhaps this may be obtained starting from

maximal super Yang Mills in five dimensions: we hope to say more in [85]. It is also

particularly interesting that the method of computing a current current correlator overlap

significantly with the methods used in AdS/condensed matter applications [90]. With this

in mind it may be interesting to explore this type of construction at finite temperature.
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A The response to a bulk source

In this appendix wish to understand the response of a bulk field to these source currents.

This will determine for us both the bulk to boundary propagator and the Green’s function.

One can then apply the particular case where the bulk field is localised on the IR brane,

J5d = J4dδ(z−L1), without any difficulty. The results are necessary for the computations

in section 5.

In the literature there are a multitude of forms that the Green’s functions can take [61,

62, 64, 67, 93–95] and also limits explored in [62, 93, 96, 97]. This is in part due to

euclideanisation q = ip and also as there are various relations between the Bessel functions

J, Y and modified Bessel functions H,K, I. There are also a number of possible choices of

gauge.

A.1 Holographic renormalisation

The results of this paper are quite general and may be applied to any holographic con-

struction, by following the prescription of holographic renormalisation following [67, 98].

We wish to introduce some boundary source fields analogous to the canonical example

φ0: (Aµ0 , λ
α
0 , D0). Next we introduce a set of bulk operators, (analogous to 1

3Φ
4 [98] and

in particular page 23, for instance.) which may be extracted from fields coupled to the

supersymmetry breaking and label these (Jµ, Jα, J). Following [98] we wish to solve for
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the bulk fields perturbatively in g5. Writing out explicitly

Aµ = Aµfree + g5A
µ
1 + · · · (A.1)

λα = λαfree + g5λ
α
1 + · · · (A.2)

D = Dfree + g5D1 + · · · (A.3)

The ellipses denote higher order corrections. The fields denoted Φfree are solutions of the

free equations of motion and those of Φ1 are of the equations of motion with sources (as

in eq. (5.5)). Quite generally, the free solutions are solved by

Aµfree(x, z) =

∫

d4yK(z, x− y)Aµ0 (y) (A.4)

Where K(x− y; z) is the bulk to boundary propagator in position space. The bulk field’s

response to a bulk source [61, 67, 94, 95] is given by

Aµ1 (x, z) =

∫

d4ydz′
√−g∆(x, z : y, z′)a−2(z)jµ(y, z′) (A.5)

where jµ(y, z) is a bulk current and ∆(x, z : y, z′) is the Green’s function,
√−g is the d+1

dimensional metric. The factors also agree with eq. (5.2). A boundary current effects the

on shell source field as

A0,µ(x) =

∫

d4y
√−g∆(x, L0 : y, L0)a

−2(z)jµ(y). (A.6)

Hence one may define two objects, the Green’s function and the bulk to boundary propa-

gator. The bulk Green’s function is found from [93–95], by first making the identification

∆(x, z;x′, z′) =

∫

d4p

(2π)4
eip.(x−x

′)∆(p; z, z′). (A.7)

One can invert the supersymmetric correlators eq. (4.17) to define the Green’s functions [14,

94] such that (taking q = ip)

∆(p; z, L0) =
1

q2
qg25
a(L0)

[Y0(qz)J1(qL0)− J0(qz)Y1(qL0)]

[Y0(qz)J0(qL0)− J0(qz)Y0(qL0)]
(A.8)

The equivalence of the holographic and Kaluza-Klein basis is made by the identification

∫

dz

∫

dz′∆(p; z, z′) =
g25
R

∑

n

∫

dr

∫

dr′
fn(r)fn(r)

p2 −m2
n

. (A.9)

Taking a Fourier transform of eq. (A.4) one arrives at

Aµ(p, z) = A0
µ(p)K(p, z). (A.10)

This determines the bulk to boundary propagator eq. (3.8) up to a normalisation

K(p, z) =
V (p, z)

V (p, L0)
(A.11)

– 29 –



J
H
E
P
0
2
(
2
0
1
3
)
1
3
2

where V (p, L0) = 1 is often used [7, 50]. This naturally relates the bulk Green’s function

and bulk to boundary propagator through

Π1(p) = − 1

p2g25
a(z)∂zK(p, z)|z=L0

(A.12)

which when inverted gives

∆(p, L0, L0) =
1

p2
Π1(p)

−1 = −g25 [a(z)∂zK(p, z)]−1 |z=L0
. (A.13)

It is also useful to define

K(p, z) = p2Π1(p
2)∆(p, L0, z) =

∆(p, L0, z)

∆(p, L0, L0)
(A.14)

which is the amputated boundary to bulk propagator. Conversely one may write

∆(p, L0, z) = g25
K(p, z)

[a(z)∂zK(p, z)] |z=L0

. (A.15)

In summary one may work with either bulk Green’s functions or the boundary to bulk

propagator. Typically one finds that holographic models compute similar diagrams but

with an amputated Green’s function, compared with warped constructions.

A.2 Pulling operators from the IR to the UV

In the holographic picture one may first integrate out the bulk theory and generate an

effective boundary Lagrangian. Let us explore a few useful examples. The first [34, 49]

example is an IR localised Yukawa
∫

d5xδ(z − L1)
√−gind [y5qφΨ] . (A.16)

The physical Yukawa is then generated by pulling the coupling to the UV brane with a

Green’s function and then amputating that Green’s function by the UV to UV Green’s

function:

y = y5
∆(p, L0, L1)

∆(p, L0, L0)
N = y5K(p, L1)N (A.17)

where N is a normalisation a(L1)
3/2/

√

Z0(µ) for the fermions. Let us look at another

example. For a general bulk current Jµ(p, z) one has a coupling

Aµ(x, z)J
µ(x, z) (A.18)

To write this as a UV boundary operator one connects with a Green’s function and then

again amputates
∫

dzA0
µ

∆µν(p;L0, z)

∆(p, L0, L0)
Jν(p, z) =

∫

dzK(p, z)A0
µ(p)J

ν(p, z) (A.19)

In general this defines for us an effective vertex on the UV boundary

Λµ(p) =

∫

dzK(p, z)Jµ(p, z). (A.20)
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In the particular case that J(p, z) = J(p)δ(z − L1) one obtains

g(p)A0
µ(p)J

µ(p) = K(p, L1)A
0
µJ

µ (A.21)

where

p2Π1(p
2)∆(p, L0, z) = K(p, z). (A.22)

So it appears that the main distinction between the warped models [15] and this holographic

model is that one may additionally amputate by the UV boundary to UV boundary Green’s

function. This example will also allow us to generate a UV boundary effective action that

encodes the supersymmetry breaking effects.

A.3 Green’s functions for scattering

The natural relationship between the bulk to boundary propagator and the bulk Green’s

function will allow one to compute effective one loop diagrams in the bulk theory. It

appears in the AdS/QCD literature [7, 8] that for computing form factors one chooses

another basis for the Green’s function:

p2Π1(p) = − 1

p2g25
a(z)∂zG̃(p, z)|z=L0

=
1

g25

[

a(z)∂z[a(z)∂zG(p, z, z
′)
]

|z=z′=L0
(A.23)

One may solve the equations of motion of eq. (3.3) and eq. (3.5) with this Green’s function

G(p; z, z′) =
∑

n=1

ψn(z)ψn(z
′)

p2 −m2
n + iǫ

. (A.24)

These are not the same as the KK expansion, by using p2 = M2
n and satisfying ψn(0) = 0

and ∂zψn(L1) = 0. This expansion does not include the massless sources. The decay

constants may now be related to the ψn(x) functions

Fn =
1

g5

[(

R

z

)

∂zψn(z)

]

z=L0

and F ′
n =

1

g5

[(

R

z

)

∂zψn(z)

]

z=L1

. (A.25)

which can be determined at tree level from

F 2
n = lim

p2→m2
n

[

(p2 −M2
n)Π(p

2)
]

. (A.26)

Following [51] the decay constants are defined as

Fnǫµ = 〈0|Oµ|ρn〉 , Fn = 〈0|O|ρn〉 and Fnǫα = 〈0|Oα|ρn〉 . (A.27)

We have suppressed the group indices OaT a, ρb delivering a δab. As in [51] one takes

K(p, z) =
V (q, z)

V (q, L0)
= −g5

∞
∑

n=1

Fnψn(z)

p2 −m2
n

(A.28)

Taking q2 = −Q2 the non normalisable mode is given by

J (Q, z) = Qz

[

K1(Qz) + I1(Qz)
K0(QL1)

I0(QL1)

]

= g5

∞
∑

m=1

Fmψm(z)

Q2 +m2
m

. (A.29)

These identities will be used to compute scattering cross sections in section 6.

– 31 –



J
H
E
P
0
2
(
2
0
1
3
)
1
3
2

B Notation and conventions

We label the five dimensional indices M,N and A,B with four dimensional indices µ, ν.

We use a mostly positive metric ηµν = diag(−1, 1, 1, 1). The Dirac algebra in a curved

geometry is given by

{ΓM ,ΓN} = 2GMN (B.1)

through the relation ΓM = eMA γ
A we may find some locally flat coordinates such that

{γM , γN} = 2ηMN . (B.2)

In this case eMA = δMA /a(z). The covariant derivative acting on spinors is given by

DM = ∂M +
1

8
ωMAB[γ

A, γB] (B.3)

The spin connection is related to the gamma matrices by

ωµa5 = ηµa/a(z)∂za(z). (B.4)

In two component spinor notation

γM =

((

0 σµαα̇
σ̄µα̇α 0

)

,

(

−i 0
0 i

))

, and C5 =

(

−ǫαβ 0

0 ǫα̇β̇

)

, (B.5)

where σµαα̇ = (1, ~σ) and σ̄µα̇α = (1,−~σ). α, α̇ are spinor indices of SL(2, C). The γ45d =

−iγ54d where explicitly

γ54d =

(

−I 0

0 I

)

. (B.6)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.

References

[1] J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200]

[INSPIRE].

[2] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150] [INSPIRE].

[3] S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

[4] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories,

string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

[5] D. Son and M. Stephanov, QCD and dimensional deconstruction,

Phys. Rev. D 69 (2004) 065020 [hep-ph/0304182] [INSPIRE].

– 32 –

http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
http://arxiv.org/abs/hep-th/9802150
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802150
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9802109
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802109
http://dx.doi.org/10.1016/S0370-1573(99)00083-6
http://arxiv.org/abs/hep-th/9905111
http://inspirehep.net/search?p=find+EPRINT+hep-th/9905111
http://dx.doi.org/10.1103/PhysRevD.69.065020
http://arxiv.org/abs/hep-ph/0304182
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0304182


J
H
E
P
0
2
(
2
0
1
3
)
1
3
2

[6] L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces,

PoS(HEP2005)355.

[7] J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons,

Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].

[8] A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD,

Phys. Rev. D 74 (2006) 015005 [hep-ph/0602229] [INSPIRE].

[9] W.D. Goldberger, Y. Nomura and D. Tucker-Smith, Warped supersymmetric grand

unification, Phys. Rev. D 67 (2003) 075021 [hep-ph/0209158] [INSPIRE].

[10] Z. Chacko and E. Ponton, Bulk gauge fields in warped space and localized supersymmetry

breaking, JHEP 11 (2003) 024 [hep-ph/0301171] [INSPIRE].

[11] Y. Nomura, Supersymmetric unification in warped space, hep-ph/0410348 [INSPIRE].

[12] F. Benini et al., Holographic Gauge Mediation, JHEP 12 (2009) 031 [arXiv:0903.0619]

[INSPIRE].

[13] S. Abel and F. Brummer, Holographic metastability, JHEP 05 (2010) 070

[arXiv:1002.4628] [INSPIRE].

[14] S. Abel and T. Gherghetta, A slice of AdS5 as the large-N limit of Seiberg duality,

JHEP 12 (2010) 091 [arXiv:1010.5655] [INSPIRE].

[15] M. McGarrie and D.C. Thompson, Warped General Gauge Mediation,

Phys. Rev. D 82 (2010) 125034 [arXiv:1009.4696] [INSPIRE].

[16] M. McGarrie, Gauge Mediated Supersymmetry Breaking in Five Dimensions,

arXiv:1109.6245 [INSPIRE].

[17] W. Fischler and W.T. Garcia, Hierarchies of SUSY Splittings in Holographic Gauge

Mediation, JHEP 06 (2011) 046 [arXiv:1104.2078] [INSPIRE].

[18] M. McGarrie, General Resonance Mediation, arXiv:1207.4484 [INSPIRE].

[19] P. McGuirk, G. Shiu and Y. Sumitomo, Holographic gauge mediation via strongly coupled

messengers, Phys. Rev. D 81 (2010) 026005 [arXiv:0911.0019] [INSPIRE].

[20] P. McGuirk, Hidden-sector current-current correlators in holographic gauge mediation,

Phys. Rev. D 85 (2012) 045025 [arXiv:1110.5075] [INSPIRE].

[21] K. Skenderis and M. Taylor, Holographic realization of gauge mediated supersymmetry

breaking, JHEP 09 (2012) 028 [arXiv:1205.4677] [INSPIRE].

[22] R. Argurio, M. Bertolini, L. Di Pietro, F. Porri and D. Redigolo, Holographic Correlators for

General Gauge Mediation, JHEP 08 (2012) 086 [arXiv:1205.4709] [INSPIRE].

[23] R. Argurio, M. Bertolini, L. Di Pietro, F. Porri and D. Redigolo, Exploring Holographic

General Gauge Mediation, JHEP 10 (2012) 179 [arXiv:1208.3615] [INSPIRE].

[24] K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua,

JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].

[25] P. Meade, N. Seiberg and D. Shih, General Gauge Mediation,

Prog. Theor. Phys. Suppl. 177 (2009) 143 [arXiv:0801.3278] [INSPIRE].

[26] C. Bouchart, A. Knochel and G. Moreau, Discriminating 4D supersymmetry from its 5D

warped version, Phys. Rev. D 84 (2011) 015016 [arXiv:1101.0634] [INSPIRE].

– 33 –

http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(HEP2005)355
http://dx.doi.org/10.1103/PhysRevLett.95.261602
http://arxiv.org/abs/hep-ph/0501128
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0501128
http://dx.doi.org/10.1103/PhysRevD.74.015005
http://arxiv.org/abs/hep-ph/0602229
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0602229
http://dx.doi.org/10.1103/PhysRevD.67.075021
http://arxiv.org/abs/hep-ph/0209158
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0209158
http://dx.doi.org/10.1088/1126-6708/2003/11/024
http://arxiv.org/abs/hep-ph/0301171
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0301171
http://arxiv.org/abs/hep-ph/0410348
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0410348
http://dx.doi.org/10.1088/1126-6708/2009/12/031
http://arxiv.org/abs/0903.0619
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.0619
http://dx.doi.org/10.1007/JHEP05(2010)070
http://arxiv.org/abs/1002.4628
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.4628
http://dx.doi.org/10.1007/JHEP12(2010)091
http://arxiv.org/abs/1010.5655
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.5655
http://dx.doi.org/10.1103/PhysRevD.82.125034
http://arxiv.org/abs/1009.4696
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.4696
http://arxiv.org/abs/1109.6245
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.6245
http://dx.doi.org/10.1007/JHEP06(2011)046
http://arxiv.org/abs/1104.2078
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.2078
http://arxiv.org/abs/1207.4484
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.4484
http://dx.doi.org/10.1103/PhysRevD.81.026005
http://arxiv.org/abs/0911.0019
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.0019
http://dx.doi.org/10.1103/PhysRevD.85.045025
http://arxiv.org/abs/1110.5075
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.5075
http://dx.doi.org/10.1007/JHEP09(2012)028
http://arxiv.org/abs/1205.4677
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.4677
http://dx.doi.org/10.1007/JHEP08(2012)086
http://arxiv.org/abs/1205.4709
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.4709
http://dx.doi.org/10.1007/JHEP10(2012)179
http://arxiv.org/abs/1208.3615
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.3615
http://dx.doi.org/10.1088/1126-6708/2006/04/021
http://arxiv.org/abs/hep-th/0602239
http://inspirehep.net/search?p=find+EPRINT+hep-th/0602239
http://dx.doi.org/10.1143/PTPS.177.143
http://arxiv.org/abs/0801.3278
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.3278
http://dx.doi.org/10.1103/PhysRevD.84.015016
http://arxiv.org/abs/1101.0634
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0634


J
H
E
P
0
2
(
2
0
1
3
)
1
3
2

[27] T. Yamada, Observing Signals of the Bulk Matter RS Model through Rare Decays of SUSY

Particles, Phys. Rev. D 85 (2012) 016007 [arXiv:1109.3742] [INSPIRE].

[28] N. Okada and T. Yamada, Gaugino Mediation Combined with the Bulk Matter

Randall-Sundrum Model, Phys. Rev. D 84 (2011) 035005 [arXiv:1105.0241] [INSPIRE].

[29] J.-F. Fortin, K. Intriligator and A. Stergiou, Superconformally Covariant OPE and General

Gauge Mediation, JHEP 12 (2011) 064 [arXiv:1109.4940] [INSPIRE].

[30] N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology,

JHEP 08 (2001) 017 [hep-th/0012148] [INSPIRE].

[31] R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum

model, JHEP 04 (2001) 021 [hep-th/0012248] [INSPIRE].

[32] T. Gherghetta, TASI Lectures on a Holographic View of Beyond the Standard Model Physics,

arXiv:1008.2570 [INSPIRE].

[33] T. Gherghetta, Les Houches lectures on warped models and holography, hep-ph/0601213

[INSPIRE].

[34] H. Davoudiasl, S. Gopalakrishna, E. Ponton and J. Santiago, Warped 5-Dimensional Models:

Phenomenological Status and Experimental Prospects, New J. Phys. 12 (2010) 075011

[arXiv:0908.1968] [INSPIRE].

[35] E. Ponton, TASI 2011: Four Lectures on TeV Scale Extra Dimensions, arXiv:1207.3827

[INSPIRE].
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