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1 Introduction

B meson decays are an excellent source of information for constraining physics beyond the

Standard Model. Precision based on a solid theory and advanced experiments is becoming

increasingly important as we know that effects due to fields which are not present in the

Standard Model are small. Next to leptonic decays, exclusive semileptonic decays are

easiest to treat in theory. Take for example the decay B → πlν which is relevant for a

determination of Vub. Theory only needs to predict two form factors (in practice a single

one dominates) from non-perturbative QCD. This is a strong motivation to extend the

HQET programme of the ALPHA-collaboration [1–6] to include matrix elements of all

components of the weak heavy-light currents. And it is a significant step beyond what has

been achieved so far, where only the HQET action and the time-component of the axial

current were determined non-perturbatively [2, 6].

Instead of the previous five we now need 19 parameters in order to have the effec-

tive theory defined non-perturbatively including all 1/m terms, namely all terms of mass

dimension five in the action and dimension four in the currents. Therefore, 19 matching

conditions are needed. It is important to choose them well. Each matching condition sim-

ply consists of a matching observable Φi which is evaluated in QCD and in HQET — in

the latter theory including the terms of order 1/m and no more. Setting ΦQCD
i = ΦHQET

i

determines (in fact defines) the parameters in HQET. What does it mean to choose the

matching observables well? Ideally we would like each one of them to be sensitive to a sin-

gle parameter in HQET, in practice we would like them to receive little contributions from
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terms of order 1/m2 in the effective theory. If such contributions from O(1/m2) terms are

unnaturally large, they affect the determined parameters and then inflict unnaturally large

1/m2 terms into the observables that one wants to determine from HQET after the match-

ing has been carried out. One thus better chooses the matching observables in QCD which

are strongly dominated by the terms of order m0 and m−1. Since the ALPHA strategy

consists of matching in a finite volume with Schrödinger functional boundary conditions,

the size of different terms in the expansion is given in terms of z−n = (Lm)−n with L the

linear extent of the finite volume.

Of course, in the whole process, the most important terms are those which appear at

order m0, the static terms. They are simply dominating numerically. It is thus of impor-

tance to make sure that those matching observables which determine the normalization of

the static currents are chosen well. Due to the breaking of relativistic invariance we need to

normalize the space and time components of the currents separately. Thus we consider the

axial vector current A0, Ak and the vector one V0, Vk. Previously, the normalization factor

ZHQET
A0

of A0 has been studied in detail [2, 5–9]. It is defined through a Schrödinger func-

tional two-point function [2]. Since in static approximation A0 and Vk are related through

the spin symmetry (see section 2 for a more precise statement), the natural condition for

ZHQET
Vk

follows from a simple spin rotation. However, ZHQET
Ak

and ZHQET
V0

do not appear

in the Schrödinger functional two-point functions which have been considered so far. We

are thus lead to either consider two-point functions with more complicated kinematics or

three-point functions.

In fact three-point functions appear naturally, since they are also used to determine

the desired form factor for B → πlν [10–16]. One thus uses a process in the finite volume

matching which is related to one of the desired infinite volume matrix elements and there

is even a potential that higher order in 1/m terms cancel between the matching and the

physical matrix element. On the other hand, these functions have not been considered

before. We therefore evaluate them first in perturbation theory, including the one-loop

parts. We can then verify that they are indeed dominated by the first two terms in the

1/m-expansion.

The perturbative study is rather straight forward, since one of us has developed

“pastor”, a tool to carry out one-loop computations of Schrödinger functional correlation

functions in a largely automatic manner. Still, the scope of this paper is not to consider the

full system of 19 unknowns, but to study the two numerically dominating matching con-

ditions for ZHQET
V0

and ZHQET
Ak

. The pastor software package was first introduced in [17]

and the publication of a more thorough description along with the source code is planned

for the near future.

2 The large mass limit of QCD: Heavy Quark Effective Theory

We consider QCD with at least three flavors, one of them massive, mb = m, and the others

massless, in particular mu = md = 0. A pseudo-scalar state with the flavor content bd̄ is

written |Pbd̄ , L〉, with L denoting a single external (kinematical) length scale. Analogously

a light pseudo-scalar state is |Pud̄ , L〉 and vector states are labelled with V instead of P .
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We are interested in matrix elements

MQCD(L,m) = 〈Xud̄, L|Ĵub
ν (x)|Xbd̄, L〉 , (2.1)

of the QCD heavy-light current operators which correspond to the classical field

Jub
ν (x) = ZJ ψu(x)Γνψb(x) . (2.2)

In particular we consider the axial vector current, Jν = Aν , with Γν = γ5γν and the vector

current, Jν = Vν with Γν = γν . In physical processes, L is an inverse momentum scale, but

we will later use states in a finite periodic L×L×L volume. For the moment the relevant

point is that L is the only scale apart from m. Then there is a perturbative expansion

MQCD(L,m) = (MQCD)(0)(z) + ḡ2(L)(MQCD)(1)(z) + O(ḡ4(L)) , z = Lm . (2.3)

We will specify the renormalization scheme for ḡ,m when it becomes relevant. The renor-

malization factors ZJ of the flavor currents are to be chosen such that the currents satisfy

the chiral Ward identities [18, 19]. In the large mass limit, m → ∞, L fixed, the matrix

elements MQCD are logarithmically divergent [20, 21],

(MQCD)(1)(z)
z→∞∼ H(1) − γ0 log(z)H(0) , γ0 = −1/(4π2) , z = Lm . (2.4)

This limit of QCD is described by an effective field theory, HQET. Up to corrections of order

1/z, it is the static effective theory [22] where the b-field is replaced by a two-component

static field,

ψb(x)→ ψh(x) =
1

2
(1 + γ0)ψh(x) , (2.5)

with Lagrangian,1

Lstat(x) = ψh(x)(δm+D0)ψh(x) . (2.6)

The mass counter term δm does not play a role in the following. The static flavor currents

are form-identical with the QCD ones, for example V stat
0 (x) = ψu(x)γ0ψh(x), Astat

k (x) =

ψu(x)γ5γkψh(x). Chiral Ward identities fix the relative normalization of the static vector

and axial vector currents but not the overall normalization. Furthermore space and time-

components are to be treated separately and the currents have an anomalous dimension

in the effective theory. Choosing the lattice regularization we can in a first step define

finite currents by renormalizing them in the lattice minimal subtraction scheme. The

renormalized currents are then

(J stat
lat )ν(x;µ) = Zlat(µa, g0) J stat

ν (x) = Zlat(µa, g0)ψu(x)Γνψh(x) , (2.7)

with a renormalization constant

Zlat(µa, g0) = 1− γ0 log(aµ)g2
0 + O(g4

0) , (2.8)

1We are in the frame where |Xbd̄〉 has spatial momentum zero and HQET at zero velocity applies.
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which is common to all currents (see [23] for a pedagogical introduction). Their matrix

elements

Mstat
Jν (L, µ) = Zlat(µa, g0)〈Xud̄|Ĵ stat

ν (x)|Xbd̄〉stat , (2.9)

are then finite. When we set µ = m, they are equal to the corresponding QCD matrix

elements up to higher order terms in 1/m,

MQCD
Jν

(L,m) = Cmatch
Jν (ḡ2(m))Mstat

Jν (L,m) + O(1/m) , (2.10)

and up to the finite renormalization factor

Cmatch
Jν (g2) = 1 +BJνg

2 + O(g4) . (2.11)

The one-loop coefficients are

BA0 = −0.137(1) , (2.12)

BV0 −BA0 = 0.0521(1) = BVk −BAk , (2.13)

BAk −BV0 = −0.016900 . (2.14)

Here eq. (2.12), due to [8, 24], and eq. (2.13), due to [25], depend on the lattice reg-

ularisation. They are given for the Eichten-Hill lattice action for the static quark, the

O(a)-improved Wilson action for the light quarks and the plaquette gauge action. We note

that eq. (2.13) follows from requiring a chiral Ward identity. On the other hand the bare

currents V0 and Ak are related by the spin symmetry of the static effective theory which is

exact in lattice regularization. The difference, eq. (2.14), is therefore known very precisely

from continuum perturbation theory [26]. Of course the renormalization of the fields and

therefore in particular BJν are independent of the states in eq. (2.1).

3 Matching conditions

3.1 Definitions of correlation functions

As discussed in the introduction, in the ALPHA strategy we use finite volume matrix ele-

ments to define the matching of HQET and QCD. These matrix elements are constructed

in the Schrödinger functional, where they are exactly related to ratios of correlation func-

tions, see [27] for more details. Here we define those correlation functions and ratios which

are suitable for the matching of V0 and Ak.

We choose the Schrödinger functional with vanishing background field, denote the

time-extent by T and the space-extent by L. As a shorthand we introduce (non-local)

boundary fields

Oij(Γ) =
a6

L3

∑
x,y

ζi(x)Γζj(y) , O′ij(Γ) =
a6

L3

∑
x,y

ζ ′i(x)Γζ ′j(y) , (3.1)

where the first one creates a meson with flavor content ij̄ at time zero and the second

annihilates a meson with flavor content jī at final time T . The boundary quark fields ζi, ζi
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are defined in [28]. For simplicity and because more sophisticated choices seem unnecessary,

we take each flavor to have the same periodicity phase θ in the boundary conditions ψ(x =

Lk̂) = eiθψ(x) , ψ(x = Lk̂) = e−iθψ(x) .

With these preliminaries we define boundary-to-boundary correlation functions (re-

member z = mL)

F bd
1 (θ, z) = −1

2
〈O′db(γ5)Obd(γ5)〉 , (3.2)

F ud
1 (θ) = −1

2
〈O′du(γ5)Oud(γ5)〉 , (3.3)

Kud
1 (θ) = −1

2
〈O′du(γk)Oud(γk)〉 , (3.4)

and three-point correlation functions with the desired currents

FV0(x0; θ, z) = −L
3

2
〈O′du(γ5)V ub

0 (x)Obd(γ5)〉 , (3.5)

J1
A1

(x0; θ, z) = −L
3

2
〈O′du(γ1)Aub

1 (x)Obd(γ5)〉 . (3.6)

3.2 Possible matching observables for V0, Ak

The defined correlation functions are easily combined to form the desired finite volume

matrix elements,

L3MQCD
V0

(L,m) = −ZV
FV0(T/2; θ, z)

[F ud
1 (θ)F bd

1 (θ, z)]1/2
, (3.7)

L3MQCD
Ak

(L,m) = −ZA

J1
A1

(T/2; θ, z)

[Kud
1 (θ)F bd

1 (θ, z)]1/2
, (3.8)

where we set T = L. As explained in [27] these ratios are equal to the matrix elements

eq. (2.1) with the finite volume states such as |Pbd̄ , L〉, all normalized to unity. We here

neglect O(a)-improvement, but this is used in the perturbative computations in section 4.

We now have good candidates for matching conditions which we write in the form

ΦQCD
Jν

(L,m) = Φstat
Jν (L,m) + log

{
Cmatch
Jν

(
ḡ2(m)

)}
+ O(1/m) , (3.9)

with ΦQCD
Jν

≡ log
(
L3MQCD

Jν

)
. In this way the log(Cmatch

Jν
)-term appears additively, which

is advantageous once the 1/m-terms are included [2].

3.3 Checking their quality

Expanding eq. (3.9) in the coupling we have

(ΦQCD
Jν

)(0)(z) = (Φstat
Jν )(0) + O(1/z) , (3.10)

(ΦQCD
Jν

)(1)(z) = (Φstat
Jν )(1) +BJν − γ0 log(am) + O(1/z) . (3.11)

The one-loop part can be rewritten as in eq. (2.4), namely

G
(1)
Jν

(z) ≡ (ΦQCD
Jν

)(1)(z) + γ0 log(z) = H
(1)
Jν

+ O(1/z) (3.12)
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with

H
(0)
Jν

= (Φstat
Jν )(0) , (3.13)

H
(1)
Jν

= (Φstat
Jν )(1) +BJν − γ0 log(a/L) , (3.14)

where we subtract the logarithmic singularity in z from (ΦQCD
Jν

)(1)(z) such that H
(1)
Jν

rep-

resents the one-loop coefficient of the matched static matrix element at renormalization

scale 1/L. In this form the size of 1/m terms is directly visible as deviations of the left

hand side of eq. (3.12) from H
(1)
Jν

. We want to investigate these deviations in the following

in order to ensure that eq. (3.7) and eq. (3.8) are good observables for the matching.

4 One-loop computation

All the required quantities (FV0 , J1
A1

, F ud
1 , Kud

1 , and their static counterparts) were cal-

culated at the one-loop level using the pastor software package for automated lattice

perturbation theory calculations [17]. As input, pastor accepts a rather general class of

lattice actions and observables defined in the Schrödinger functional. It will then automat-

ically generate computer programs for the evaluation of all contributions of the observables

under investigation up to one-loop order including improvement- and counter-terms. We

did implement full O(a)-improvement, including the terms proportional to amq not written

in eq. (3.7) and eq. (3.8).

For the quantities in QCD, we choose lattice resolutions of L/a up to 40, while for

the HQET counterparts lower resolutions up to L/a = 30 are sufficient to obtain reliable

continuum extrapolations, c.f. figure 1. To determine the continuum limits, we employ

the method described in [29] using the implementation provided by pastor. We choose

θ ∈ {0, 0.5, 1.0} and z ∈ {4, 6, 8, 10}.
We employ the mass-independent lattice minimal subtraction scheme [28] in which the

O(a) improved renormalized mass at scale µ = 1/L is given by

m(L) = Zm,lat(g
2
0, a/L)mq

[
1 + a bm(g2

0)mq

]
, mq = m0 −mc (4.1)

in terms of the bare mass of the lattice theory. At one-loop order we have [30, 31]

bm(g2
0) = −0.5− 0.07217(2)CF g

2
0 +O(g4

0), (4.2)

Zm,lat(g
2
0, a/L) = 1− 1

2π2
log(a/L)g2

0 +O(g4
0). (4.3)

All calculations in pastor are performed with z = m(L)L as input. It inverts eq. (4.1) to

obtain m0 = m
(0)
0 + g2

0m
(1)
0 +O(g4

0) and calculates the series

O
(
m

(0)
0 + g2

0m
(1)
0

)
= O(0)

(
m

(0)
0

)
+g2

0

[
O(1)

(
m

(0)
0

)
+m

(1)
0 ∂m0O(0)

(
m

(0)
0

)]
+O

(
g4

0

)
(4.4)

for a given observableO(m0). For the evaluation of the diagrams of a Schrödinger functional

observable, it is beneficial to work in a time-momentum representation. Due to the periodic

spatial boundary conditions one does not have to perform a momentum-integration but a
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H
(1)
V0

G
(1)
V0

(z = 10)

G
(1)
V0

(z = 6)

Figure 1. Continuum extrapolation of HV0
, GV0

at one-loop level, θ = 0.5. The round-off errors

on the data points at finite L/a and the uncertainty of the continuum extrapolation for the static

point are much smaller than the symbol size.

sum over a finite set of allowed lattice momenta of size (L/a)3. The round-off errors

introduced by the numerical evaluation of this sum are estimated from the difference of

long double precision and double precision results for representative parameters. Apart

from this test we use double precision since it is roughly a factor three faster. The execution

time to evaluate the numerically most challenging loop diagram at L/a = 40 was about 50

hours on a single core CPU (Nehalem).

5 Results

5.1 Tree-level

We start the discussion of our results with the tree-level functions G
(0)
V0

(z) ≡ (ΦQCD
V0

)(0)(z)

and G
(0)
Ak

(z) ≡ (ΦQCD
Ak

)(0)(z). Together with the static values H
(0)
Jν

they are displayed in

figure 2 and figure 3 for three different values of θ. Curves are fits of the form H(0)(1+h1/z+

h2/z
2), fitted to the data with weights w(z) = 1/z3. The fits are thus dominated by the

results at large z. The coefficients hi, listed for the different cases in table 1, are small. For

all considered values of θ the 1/m-expansion is well behaved and we can also be confident

that the fitted coefficients are close to the true Taylor coefficients. Obviously, from the

point of view of tree-level, one would prefer θ = 0 where G
(0)
Jν

(z) = H
(0)
Jν

holds exactly.

5.2 One-loop

We get more information at one-loop order. In order to have all finite pieces defined, we

need to specify the renormalization scheme for the quark mass. As stated in section 4,
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Figure 2. G
(0)
V0
≡
(

ΦQCD
V0

)(0)
(z) in the continuum limit. Errors are much smaller than the

symbol size.
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Figure 3. G
(0)
Ak
≡
(

ΦQCD
A1

)(0)
(z) in the continuum limit. Errors are much smaller than the

symbol size.

we take m to be the renormalized mass in the lattice minimal subtraction scheme at scale

µ = 1/L. The continuum limit is taken as described in the previous section.

The combination G
(1)
Jν

(z), eq. (3.12), is shown in figure 4 and figure 5. We perform a

fit to the one loop data employing a function of the form

G
(1)
Jν

(z) = H
(1)
Jν

+ h1/z + f1 log(z)/z, (5.1)
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θ 0.0 0.5 1.0

h1 h2 h1 h2 h1 h2

G
(0)
Ak

0.00000 0.00000 0.77621 1.11933 1.05083 1.53061

G
(0)
V0

0.00000 0.00000 -2.30791 1.57043 -3.06017 3.11951

h1 f1 h1 f1 h1 f1

G
(1)
Ak

0.05245 -0.00132 0.12513 0.00139 0.21893 0.01547

0.03099 0.01054 0.10547 0.01225 0.19391 0.02929

G
(1)
V0

0.15093 -0.00923 0.08803 -0.00811 0.04548 -0.01340

0.12100 0.00692 0.07042 0.00139 0.05268 -0.01728

Table 1. Fit coefficients for GAk
and GV0 . The upper row of fit coefficients for the one-loop results

comes from the fits omitting the data at z = 4.

-0.075
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-0.065

-0.06
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-0.045

-0.04

-0.035
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-0.025

0 0.05 0.1 0.15 0.2 0.25

G
(1

)
V

0

1/z

θ = 0.0 θ = 0.5 θ = 1.0

Figure 4. G
(1)
V0

(z) in the continuum limit, compared to the static result.

choosing in this case constant weights, as only few data point are available anyway. It

is compared to a fit of the same form, omitting the data at z = 4. The fit parameters

for the one-loop quantities in table 1 are not expected to be accurate estimates for the

corresponding asymptotic expansion. The accuracy of the fits and the smallness of the

coefficient f1, however, may be taken as an indication that higher order terms in the 1/z-

expansion are not very important for the considered range in z.

The size of H(1) is relevant for us only as a consistency check: for all cases it is a

little smaller than the expected magnitude 1/(4π) for a perturbatively accessible quantity.
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Figure 5. G
(1)
Ak

(z) in the continuum limit, compared to the static result.

The interesting question is the magnitude of 1/z-terms as well as curvature when GJν are

considered a function of 1/z.

We observe that also at one-loop order the 1/z-terms in ΦJν remain small, but θ = 0

is not preferred any more. A choice θ = 0.5 appears a good compromise between tree-level

and one-loop. Take for illustration ḡ2 = 4 and z ≥ 10 as it is typical in the non-perturbative

application [6]. Then we roughly have a few per-mille 1/z correction at tree-level and an

≈ 3% correction at one-loop. This is very acceptable. We then have all rights to expect that

the 1/z2 corrections, which are omitted when HQET is treated non-perturbatively [4, 32],

are negligible and indeed the curvatures seen in figure 4 and figure 5 are small.

6 Conclusions

The proposed three-point functions appear very useful. They are seen to be strongly

dominated by the lowest terms in the 1/z expansion. As a consequence, the three-point

functions may well be applied to fix the remaining two unknowns, ZHQET
V0

and ZHQET
Ak

,

in the static approximation non-perturbatively. We would recommend θ = 0.5, but the

one-loop study does not suggest this choice to be much superior to θ = 0 or θ = 1. At

order 1/m the full system determining the 19 parameters has to be considered. Three of

these parameters come from the HQET action [33], two from the temporal components of

the vector and axial vector current respectively and the spatial components of the currents

require the inclusion of further six parameters each [34–36]. A study of this system in

perturbation theory is presently being carried out by the ALPHA collaboration.

We can also confirm that the new package pastor is very useful in studying such

problems in perturbation theory. This goes beyond issues related to the regularization
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such as renormalization factors or improvement coefficients. In fact, all results presented

here refer to the z-dependence in continuum perturbation theory, since we were able to

reliably take the continuum limit a/L → 0. We have presented the results in the lattice

minimal subtraction scheme for the quark mass. They can trivially be connected to the

MS scheme by using [31] m(L) = (1 + 0.122282 ḡ2)×mMS(1/L) + O(ḡ4).
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