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Abstract: In the present paper we continue the project of systematic construction of in-

variant differential operators for non-compact semisimple Lie groups. Our starting points

is the class of algebras, which we call ’conformal Lie algebras’ (CLA), which have very

similar properties to the conformal algebras of Minkowski space-time, though our aim is

to go beyond this class in a natural way. For this we introduce the new notion of parabolic

relation between two non-compact semisimple Lie algebras G and G′ that have the same

complexification and possess maximal parabolic subalgebras with the same complexifica-

tion. Thus, we consider the exceptional algebra E7(7) which is parabolically related to the

CLA E7(−25) , the parabolic subalgebras including E6(6) and E6(−26). Other interesting

examples are the orthogonal algebras so(p, q) all of which are parabolically related to the

conformal algebra so(n, 2) with p + q = n + 2, the parabolic subalgebras including the

Lorentz subalgebra so(n − 1, 1) and its analogs so(p − 1, q − 1). We consider also E6(6)

and E6(2) which are parabolically related to the hermitian symmetric case E6(−14) , the

parabolic subalgebras including real forms of sl(6).

We also give a formula for the number of representations in the main multiplets valid

for CLAs and all algebras that are parabolically related to them. In all considered cases

we give the main multiplets of indecomposable elementary representations including the

necessary data for all relevant invariant differential operators. In the case of so(p, q) we

give also the reduced multiplets. We should stress that the multiplets are given in the most

economic way in pairs of shadow fields. Furthermore we should stress that the classification

of all invariant differential operators includes as special cases all possible conservation laws

and conserved currents, unitary or not.
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1 Introduction

Invariant differential operators play very important role in the description of physical sym-

metries — starting from the early occurrences in the Maxwell, d’Allembert, Dirac, equa-

tions, (for more examples cf., e.g., [1]), to the latest applications of (super-)differential op-

erators in conformal field theory, supergravity and string theory (for reviews, cf. e.g., [2, 3].

For example, applications of invariant differential operators in supersymmetry in-

volved the study of multiplets, superfields and supercurrents [4–8], of harmonic super-

spaces [9–19], of auxiliary fields of supergravity [20, 21], on the coupling of supersymmetric

Yang-Mills theories to supergravity [22–24], twistor formulation of superstrings [25–27],

Landau-Ginzburg description of N = 2 minimal models [28, 29], in various other applica-

tions to superstrings and supergravity [30–34].
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Invariant differential operators played important role in the group-theoretical approach

to conformal field theory [35–38], e.g., in the derivation of operator product expansion of

two scalar fields.

Invariant super-differential operators were crucial in the derivation of the classification

of positive energy unitary irreducible representations of extended conformal supersymmetry

in 4D [39–41], later in 3D & 5D [42], in 6D [42, 43], (see also [44, 45]), then for the derivation

of the character formulae in 2D [46]. Later applications include [47–71].

Special mentioning requires the applications of exceptional groups, cf. [72–94], since

they play important role in the present paper. Exceptional groups recently appeared also

as symmetries of Freudenthal dual Lagrangians, as investigated, e.g., in [95].

Finally, among our motivations are the mathematical developments — see the relevant

mathematical references: [96–120], and others throughout the text.

Thus, it is important for the applications in physics to study systematically such op-

erators. In a recent paper [121] we started the systematic explicit construction of invariant

differential operators. We gave an explicit description of the building blocks, namely, the

parabolic subgroups and subalgebras from which the necessary representations are induced.

Thus we have set the stage for study of different non-compact groups.

Since the study and description of detailed classification should be done group by

group we had to decide which groups to study first. A natural choice would be non-

compact groups that have discrete series of representations. By the Harish-Chandra cri-

terion [122, 123] these are groups where holds:

rankG = rankK,

where K is the maximal compact subgroup of the non-compact group G. Another formu-

lation is to say that the Lie algebra G of G has a compact Cartan subalgebra.

Example: the groups SO(p, q) have discrete series, except when both p, q are odd

numbers.

This class is still rather big, thus, we decided to consider a subclass, namely, the class

of Hermitian symmetric spaces. The practical criterion is that in these cases, the maximal

compact subalgebra K is of the form:

K = so(2)⊕K′ . (1.1)

The Lie algebras from this class are:

so(n, 2), sp(n,R), su(m,n), so∗(2n), E6(−14) , E7(−25) (1.2)

These groups/algebras have highest/lowest weight representations, and relatedly holomor-

phic discrete series representations.

The most widely used of these algebras are the conformal algebras so(n, 2) in n-

dimensional Minkowski space-time. In that case, there is a maximal Bruhat decompo-

sition [124]:

so(n, 2) = P ⊕ Ñ =M ⊕ A ⊕ N ⊕ Ñ , (1.3)

M = so(n− 1, 1) , dimA = 1, dimN = dim Ñ = n
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that has direct physical meaning, namely, so(n−1, 1) is the Lorentz algebra of n-dimensional

Minkowski space-time, the subalgebra A = so(1, 1) represents the dilatations, the conju-

gated subalgebras N , Ñ are the algebras of translations, and special conformal transfor-

mations, both being isomorphic to n-dimensional Minkowski space-time. The subalgebra

P =M ⊕ A ⊕ N (∼=M ⊕ A ⊕ Ñ ) is a maximal parabolic subalgebra.1

There are other special features which are important. In particular, the complexifica-

tion of the maximal compact subgroup is isomorphic to the complexification of the first

two factors of the Bruhat decomposition:

KC = so(n,C)⊕ so(2,C) ∼= so(n− 1, 1)C ⊕ so(1, 1)C =MC ⊕AC . (1.4)

In particular, the coincidence of the complexification of the semi-simple subalgebras:

K′C =MC (1.5)

means that the sets of finite-dimensional (nonunitary) representations ofM are in 1-to-1

correspondence with the finite-dimensional (unitary) representations of so(n). The latter

leads to the fact that the corresponding induced representations are representations of finite

K-type [122, 123].

It turns out that some of the hermitian-symmetric algebras share the above-mentioned

special properties of so(n, 2). That is why, in view of applications to physics, these algebras

should be called ’conformal Lie algebras’ (CLA), (or groups).

This subclass consists of:

so(n, 2), sp(n,R), su(n, n), so∗(4n), E7(−25) (1.6)

the corresponding analogs of Minkowski space-time V being:

Rn−1,1, Sym(n,R), Herm(n,C), Herm(n,Q), Herm(3,O) . (1.7)

The corresponding groups are also called ’Hermitian symmetric spaces of tube

type’ [125]. The same class was identified from different considerations in [126] called

there ’conformal groups of simple Jordan algebras’. In fact, the relation between Jordan

algebras and division algebras was known long time ago. Our class was identified from still

different considerations also in [127] where they were called ’simple space-time symmetries

generalizing conformal symmetry ’. For more references on Jordan algebras relevant in our

approach cf., e.g., [128–144, 148].

We have started the study of the above class in the framework of the present approach

in the cases: so(n, 2), su(n, n), sp(n,R), E7(−25), in [149–152], resp., and we have

considered also the algebra E6(−14), [153, 154].

In the present paper we are mainly interested in non-compact Lie algebras (and groups)

that are ’parabolically’ related to the conformally Lie algebras.

• Definition: Let G,G′ be two non-compact semisimple Lie algebras with the same

complexification GC ∼= G′C. We call them parabolically related if they have parabolic subal-

gebras P =M⊕A⊕N , P ′ =M′ ⊕A′ ⊕N ′, such that: MC ∼= M′C (⇒ PC ∼= P ′C).♦

1The precise general definition is given in section 2.
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Certainly, there are many such parabolic relationships for any given algebra G. Further-

more, two algebras G,G′ may be parabolically related with different parabolic subalgebras.

For example, the exceptional Lie algebras E6(6) and E6(2) are considered in section 7 (as

related also to E6(−14)) with maximal parabolics such that MC ∼= M′C ∼= sl(6,C). But

these two algebras are related also by another pair of maximal parabolics P̃C, P̃ ′C such

that M̃C ∼= M̃′C ∼= sl(3,C)⊕ sl(3,C)⊕ sl(2,C), cf. [121], (11.4), (11.7).

Another interesting example are the algebras so∗(2m) and so(p, q) which have a series

of maximal parabolics withM-factors [121],:

Mj = su∗(2j)⊕ so∗(2m− 4j) , j ≤
[
m
2

]
, (1.8)

M′
j = sl(2j,R)⊕ so(p− 2j, q − 2j) , j ≤

[
q
2

]
≤

[
p
2

]
,

whose complexifications coincide for p+ q = 2m

(Mj)
C = (M′

j)
C = sl(2j,C)⊕ so(2m− 4j,C) , j ≤

[
q
2

]
≤

[
m
2

]
=

[
p+q
4

]
. (1.9)

As we know only form = 2n, i.e., for so∗(4n) is fulfilled relation (1.5), withM =Mn =

= su∗(2n) from (1.8), (recalling that K′ ∼= su(2n)). Obviously, so(p, q) is parabolically

related to so∗(4n) with this M-factor only when p = q = 2n, i.e., G′ = so(2n, 2n) with

M′
n = sl(2n,R) (which is outside the range of (1.9)).

We leave the classification of the parabolic relations between the non-compact semisim-

ple Lie algebras for a subsequent publication. In the present paper we consider mainly

algebras parabolically related to conformal Lie algebras with maximal parabolics fulfill-

ing (1.5). We summarize the relevant cases in table 1, where we have included also the

algebra E6(−14) ; we display only the semisimple part K′ of K; sl(n,C)R denotes sl(n,C) as

a real Lie algebra, (thus, (sl(n,C)R)
C = sl(n,C) ⊕ sl(n,C)); e6 denotes the compact real

form of E6 ; and we have imposed restrictions to avoid coincidences or degeneracies due to

well known isomorphisms: so(1, 2) ∼= sp(1,R) ∼= su(1, 1), so(2, 2) ∼= so(1, 2) ⊕ so(1, 2),

su(2, 2) ∼= so(4, 2), sp(2,R) ∼= so(3, 2), so∗(4) ∼= so(3)⊕ so(2, 1), so∗(8) ∼= so(6, 2).

After this extended introduction we give the outline of the paper. In section 2 we

give the preliminaries, actually recalling and adapting facts from [121]. We add a remark

on conservation laws and conserved currents which are an integral part of our approach.

In section 3 we consider the case of the pseudo-orthogonal algebras so(p, q) which are

parabolically related to the conformal algebra so(n, 2) for p+ q = n+2. We add historical

remarks and a remark on shadow representations. In section 4 we consider the algebras

su∗(4k) and sl(4k,R) as parabolically related to the CLA su(2k, 2k). In section 5 we

consider the algebra sp(r, r) as parabolically related to the CLA sp(2r) (of rank 2r). In

section 6 we consider the algebra E7(7) as parabolically related to the CLA E7(−25) . In

section 7 we consider the algebras E6(6) and E6(2) as parabolically related to the hermitian

symmetric case E6(−14) . In section 8 we give Summary and Outlook.

2 Preliminaries

Let G be a semisimple non-compact Lie group, and K a maximal compact subgroup of G.

Then we have an Iwasawa decomposition G = KA0N0, where A0 is Abelian simply con-
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G K′ M G′ M′

dimV

so(n, 2) so(n) so(n− 1, 1) so(p, q), so(p− 1, q − 1)

n ≥ 3 p+ q =

n = n+ 2

su(2k, 2k) su(2k)⊕ su(2k) sl(2k,C)R su∗(4k) su∗(2k)⊕ su∗(2k)

k ≥ 2

(2k)2 sl(4k,R) sl(2k,R)⊕ sl(2k,R)

sp(2r,R) su(2r) sl(2r,R) sp(r, r) su∗(2r)

rank = 2r ≥ 4

r(2r + 1)

so∗(4n) su(2n) su∗(2n) so(2n, 2n) sl(2n,R)

n ≥ 3

n(2n− 1)

E7(−25) e6 E6(−26) E7(7) E6(6)

27

below not CLA!

E6(−14) so(10) su(5, 1) E6(6) sl(6,R)

21 E6(2) su(3, 3)

Table 1. Table of conformal Lie algebras (CLA) G with M-factor fulfilling (1.5) and the corre-

sponding parabolically related algebras G′.

nected vector subgroup of G, N0 is a nilpotent simply connected subgroup of G preserved

by the action of A0. Further, let M0 be the centralizer of A0 in K. Then the subgroup

P0 = M0A0N0 is a minimal parabolic subgroup of G. A parabolic subgroup P = M ′A′N ′ is

any subgroup of G which contains a minimal parabolic subgroup.

Further, let G,K,P,M,A,N denote the Lie algebras of G,K,P,M,A,N , resp.

For our purposes we need to restrict to maximal parabolic subgroups P = MAN , i.e.

rankA = 1, resp. to maximal parabolic subalgebras P =M⊕A⊕N with dim A = 1.

Let ν be a (non-unitary) character of A, ν ∈ A∗, parameterized by a real number d,

called the conformal weight or energy.

Further, let µ fix a discrete series representation Dµ of M on the Hilbert space Vµ , or

the finite-dimensional (non-unitary) representation of M with the same Casimirs.

We call the induced representation χ = IndGP (µ⊗ ν ⊗ 1) an elementary representation

of G [37]. (These are called generalized principal series representations (or limits thereof)

– 5 –



J
H
E
P
0
2
(
2
0
1
3
)
0
1
5

in [155].) Their spaces of functions are:

Cχ = {F ∈ C∞(G, Vµ) | F(gman) = (2.1)

= e−ν(H) ·Dµ(m−1)F(g)}

where a = exp(H) ∈ A′, H ∈ A′ , m ∈ M ′, n ∈ N ′. The representation action is the left

regular action:

(T χ(g)F)(g′) = F(g−1g′) , g, g′ ∈ G . (2.2)

• An important ingredient in our considerations are the highest/lowest weight represen-

tations of GC. These can be realized as (factor-modules of) Verma modules V Λ over GC,

where Λ ∈ (HC)∗, HC is a Cartan subalgebra of GC, weight Λ = Λ(χ) is determined

uniquely from χ [156].

Actually, since our ERs may be induced from finite-dimensional representations ofM

the Verma modules are always reducible. Thus, it is more convenient to use generalized

Verma modules Ṽ Λ such that the role of the highest/lowest weight vector v0 is taken

by the (finite-dimensional) space Vµ v0 . For the generalized Verma modules (GVMs) the

reducibility is controlled only by the value of the conformal weight d. Relatedly, for the

intertwining differential operators only the reducibility w.r.t. non-compact roots is essential.

• One main ingredient of our approach is as follows. We group the (reducible) ERs with

the same Casimirs in sets called multiplets. The multiplet corresponding to fixed values of

the Casimirs may be depicted as a connected graph, the vertices of which correspond to

the reducible ERs and the lines (arrows) between the vertices correspond to intertwining

operators. The explicit parametrization of the multiplets and of their ERs is important

for understanding of the situation. The notion of multiplets was introduced in [157, 158]

and applied to representations of SOo(p, q) and SU(2, 2), resp., induced from their minimal

parabolic subalgebras. Then it was applied to the conformal superalgebra [159], to infinite-

dimensional (super-)algebras [160–163], to quantum groups [164].2

Remark: Note that the multiplets of Verma modules include in general more members, since

there enter Verma modules which are induced from infinite-dimensional representations of

M but nevertheless have the same Casimirs. The main multiplets in this case contain as

many members as the Weyl group W (GC) of GC. For example, for su(2, 2) the maximal

multiplets contain 24 members (|W (sl(ℓ,C))| = ℓ!), which were considered in [158] and

the su(2, 2) sextets of ERs induced from the maximal parabolic with M = sl(2,C) are

submerged in the 24-member multiplets.♦

In fact, the multiplets contain explicitly all the data necessary to construct the inter-

twining differential operators. Actually, the data for each intertwining differential operator

consists of the pair (β,m), where β is a (non-compact) positive root of GC, m ∈ N, such

that the BGG Verma module reducibility condition (for highest weight modules) is fulfilled:

(Λ + ρ, β∨) = m, β∨ ≡ 2β/(β, β) (2.3)

where ρ is half the sum of the positive roots of GC. When the above holds then the Verma

module with shifted weight V Λ−mβ (or Ṽ Λ−mβ for GVM and β non-compact) is embedded

2For other applications we refer to [165–168].
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in the Verma module V Λ (or Ṽ Λ). This embedding is realized by a singular vector vs
expressed by a polynomial Pm,β(G

−) in the universal enveloping algebra (U(G−)) v0 , G
− is

the subalgebra of GC generated by the negative root generators [169]. More explicitly, [156],

vsm,β = Pm,β v0 (or vsm,β = Pm,β Vµ v0 for GVMs).3

Then there exists [156] an intertwining differential operator of order m = mβ :

Dm,β : Cχ(Λ) −→ Cχ(Λ−mβ) (2.4)

given explicitly by:

Dm,β = Pm,β(Ĝ−) (2.5)

where Ĝ− denotes the right action on the functions F .

Thus, in each such situation we have an invariant differential equation of order

m = mβ :

Dm,β f = f ′ , f ∈ Cχ(Λ) , f ′ ∈ Cχ(Λ−mβ) . (2.6)

In most of these situations the invariant operator Dm,β has a non-trivial invariant

kernel in which a subrepresentation of G is realized. Thus, studying the equations with

trivial r.h.s.:

Dm,β f = 0 , f ∈ Cχ(Λ) , (2.7)

is also very important. For example, in many physical applications in the case of first order

differential operators, i.e., for m = mβ = 1, equations (2.7) are called conservation laws,

and the elements f ∈ kerDm,β are called conserved currents.

The above construction works also for the subsingular vectors vssv of Verma modules.

Such a vector is also expressed by a polynomial Pssv(G
−) in the universal enveloping algebra:

vsssv = Pssv(G
−) v0 , cf. [172, 173]. Thus, there exists a conditionally invariant differential

operator given explicitly by: Dssv = Pssv(Ĝ−), and a conditionally invariant differential

equation, for many more details, see [172, 173]. (Note that these operators/equations are

not of first order.)

Below in our exposition we shall use the so-called Dynkin labels:

mi ≡ (Λ + ρ, α∨
i ) , i = 1, . . . , n, (2.8)

where Λ = Λ(χ), ρ is half the sum of the positive roots of GC.

We shall use also the so-called Harish-Chandra parameters:

mβ ≡ (Λ + ρ, β) , (2.9)

where β is any positive root of GC. These parameters are redundant, since they are ex-

pressed in terms of the Dynkin labels, however, some statements are best formulated in

their terms.4

3For explicit expressions for singular vectors we refer to [170, 171].
4Clearly, both the Dynkin labels and Harish-Chandra parameters have their origin in the BGG reducibil-

ity condition (2.3).
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3 The pseudo-orthogonal algebras so(p, q)

3.1 Choice of parabolic subalgebra

Let G = so(p, q), p ≥ q, p + q > 4.5 Most of the results here are known for q = 1, 2,

cf. [149, 174–176], and the purpose of the consideration is to extend those for arbitrary q.

For fixed p, q this algebra has at least q maximal parabolic subalgebras [121]. For

example, when p > q there are the following possibilities forM-factor (cf. (7.11) of [121]):

Mmax
j = sl(j,R)⊕ so(p− j, q − j) , j = 1, 2, . . . , q . (3.1)

(There are more choices when p = q.)

We would like to consider a case, which would relate parabolically all G = so(p, q) for

p + q-fixed. Thus, in order in order to include the case q = 1 (where there is only one

parabolic which is both minimal and maximal), we choose the case j = 1:

M =Mmax
1 = so(p− 1, q − 1) . (3.2)

Then we have:

dim N = dim Ñ = p+ q − 2 . (3.3)

With this choice we get for the conformal algebra exactly the Bruhat decomposition in (1.3).

We label the signature of the ERs of G as follows:

χ = {n1 , . . . , nh ; c } , (3.4)

nj ∈ Z/2 , c = d− p+q−2
2 , h ≡

[
p+q−2

2

]
,

|n1| < n2 < · · · < nh , p+ q even ,

0 < n1 < n2 < · · · < nh , p+ q odd ,

where the last entry of χ labels the characters of A , and the first h entries are labels of

the finite-dimensional nonunitary irreps ofM∼= so(p− 1, q − 1).

The reason to use the parameter c instead of d will become clear below.

3.2 Main multiplets

Following results of [149, 174–176] we present the main multiplets (which contain the

maximal number of ERs with this parabolic) with the explicit parametrization of the ERs

5We shall explain the last restriction at the end of this section.
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in the multiplets in a simple way (helped by the use of the signature entry c):

χ±
1 = {ǫ n1 , . . . , nh ; ±nh+1} , (3.5)

nh < nh+1 ,

χ±
2 = {ǫ n1 , . . . , nh−1 , nh+1 ; ±nh}

χ±
3 = {ǫ n1, . . . , nh−2, nh, nh+1 ; ±nh−1}

. . .

χ±
h−1 = {ǫ n1 , n2 , n4 , . . . , nh , nh+1 ; ±n3}

χ±
h = {ǫ n1 , n3 , . . . , nh , nh+1 ; ±n2}

χ±
h+1 = {ǫ n2 , n3 , . . . , nh , nh+1 ; ±n1}

ǫ =

{
± , p+ q even

1, p+ q odd

(ǫ = ± is correlated with χ±). Clearly, the multiplets correspond 1-to-1 to the finite-

dimensional irreps of so(p+ q,C) with signature {n1, . . . , nh, nh+1} and we are able to use

previous results due to the parabolic relation between the so(p, q) algebras for p+ q-fixed.

Note that the two representations in each pair χ± were called shadow fields in the

1970s, see more on this towards the end of this section.

Further, the number of ERs in the corresponding multiplets is equal to 2
[
p+q
2

]
=

2(h + 1). This maximal number is equal to the following ratio of numbers of elements of

Weyl groups:

|W (GC,HC)| / |W (MC,HC
m)| , (3.6)

where HC, HC
m are Cartan subalgebras of GC, MC, resp.

The above formula actually holds for all conformal Lie algebras and those parabolically

related to them. More precisely, we have:

• The number of elements of the main multiplets of a conformal Lie algebra G with M-

factor fulfilling (1.5) is given by (3.6). The same number holds for any algebra G′ parabol-

ically related to G w.r.t.M.♦

Further, we denote by C±i the representation space with signature χ±
i .

We first give the multiplets pictorially in figures 1 and 2 for p+ q even and odd, resp.,

and then explain notations and results:

The ERs in the multiplet are related by intertwining integral and differential operators.

The integral operators were introduced by Knapp and Stein [177, 178]. They cor-

respond to elements of the restricted Weyl group of G. In fact, these operators are de-

fined for any ER, not only for the reducible ones, the general action being in the context

of (3.4), (3.5):

G : Cχ −→ Cχ′ , (3.7)

χ = {n1 , . . . , nh ; c } ,

χ′ = { (−1)p+q+1n1 , . . . , nh ; −c } .
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✲✛

✲✛

✲✛

✲✛

q q q q q q q q q q q q q q
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ε1 − ε2 d1 ε1 + ε2d
′
1

ε1 − ε3 d2 ε1 + ε3d
′
2

ε1 − εh dh−1 ε1 + εhd
′

h−1

ε1 − εh+1 dh ε1 − εh+1dh

ε1 + εh+1

d
′

h

ε1 + εh+1

d
′

h

❄

❄

❄

❄

✻
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✻
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❅

❅
❅
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❅

❅
❅

❅
❅

❅❅❘�
�

�
�

�
�

�
�

�
�

�
�

�
�

��✒

Figure 1. Main multiplet for SO(p, q) for p+ q = 2h+ 2 ≥ 6, with maximal parabolic subalgebra

P =M⊕A⊕N whereMC = so(2h,C) (arrows are differential operators di, d
′

i, dashed arrows are

integral operators) ε1 ± εk, are the non-compact roots.

These operators intertwine the pairs C±i (cf. (3.5)):

G±
i : C∓i −→ C

±
i , i = 1, . . . , 1 + h . (3.8)

In the conformal setting (both Euclidean q = 1 and Minkowskian q = 2) the integral

kernel of the Knapp-Stein operator is given by the conformal two-point function [37].
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1 C
+
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/ /C
−

2 C
+
2

/ /C
−

h
C

+

h

/C
−

h+1 C
+

h+1

ε1 − ε2 d1 ε1 + ε2d
′
1

ε1 − ε3 d2 ε1 + ε3d
′
2

ε1 − εh dh−1 ε1 + εhd
′

h−1

ε1 − εh+1 dh ε1 + εh+1d
′

h

ε1

dh+1

❄

❄

❄

❄

✻

✻

✻

✻

Figure 2. Main multiplet for SO(p, q) for p+ q = 2h+ 3 ≥ 5, with maximal parabolic subalgebra

P =M⊕A⊕N whereMC = so(2h+1,C) (arrows are differential operators di, d
′

i, dashed arrows

are integral operators) ε1 ± εk, ε1 are the non-compact roots.

The intertwining differential operators correspond to non-compact positive roots of the

root system of so(p+ q,C), cf. [156]. In the current context, compact roots of so(p+ q,C)

are those that are roots also of the subalgebra so(p + q − 2,C), the rest of the roots are

non-compact. In more detail, we briefly recall the root systems:
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For p + q = 2h + 2 even, the positive root system of so(2h + 2,C) may be given by

vectors εi ± εj , 1 ≤ i < j ≤ h + 1, where εi form an orthonormal basis in Rh+1, i.e.,

(εi, εj) = δij . The non-compact roots may be taken as ε1 ± εi , 2 ≤ i ≤ h + 1. The root

ε1−εi corresponds to the operator di−1 , the root ε1+εi corresponds to the operator d′i−1 .

For p + q = 2h + 3 odd, the positive root system of so(2h + 3,C) may be given by

vectors εi ± εj , 1 ≤ i < j ≤ h + 1, εk, 1 ≤ k ≤ h + 1. The non-compact roots may be

taken as ε1 ± εi , ε1 . The root ε1 − εi corresponds to the operator di−1 , the root ε1 + εi
corresponds to the operator d′i−1 . The root ε1 has a special position since it intertwines

the same ERs that are intertwined by the Knapp-Stein integral operator G+
h+1 . The latter

means that G+
h+1 degenerates to the differential operator dh+1 , and this degenerations

determines that dh+1 ∼ �
n1 , (for n1 ∈ N), where � is the d’Alembert operator, as

explained explicitly for the case so(3, 2) in [179]. (The latter phenomenon happens for the

Knapp-Stein integral operators at critical points, but usually there is no non-compact root

involved, cf., e.g., [37].)

The degrees of these intertwining differential operators are given just by the differences

of the c entries [176]:

deg di = deg d′i = nh+2−i − nh+1−i , i = 1, . . . , h , (3.9)

deg d′h = n2 + n1 , p+ q even ,

deg dh+1 = 2n1 , p+ q odd .

where d′h is omitted from the first line for (p+ q) even. By our construction they are equal

to the Harish-Chandra parameters for the non-compact roots:

deg di = mε1−εi+1
, (3.10)

deg d′i = mε1+εi+1
, i = 1, . . . , h ,

deg dh+1 = mε1 . (3.11)

Matters are arranged so that in every multiplet only the ER with signature χ−
1 contains

a finite-dimensional nonunitary subrepresentation in a subspace E . The latter corresponds

to the finite-dimensional unitary irrep of so(p+q) with signature {n1 , . . . , nh , nh+1}. The

subspace E is annihilated by the operator G+
1 , and is the image of the operator G−

1 .

Although the diagrams are valid for arbitrary so(p, q) (p+ q ≥ 5) the contents is very

different. We comment only on the ER with signature χ+
1 . In all cases it contains an UIR

of so(p, q) realized on an invariant subspace D of the ER χ+
1 . That subspace is annihilated

by the operator G−
1 , and is the image of the operator G+

1 . (Other ERs contain more UIRs.)

If pq ∈ 2N the mentioned UIR is a discrete series representation. Other ERs contain

more discrete series UIRs. The number of discrete series is given by the formula [155]:

|W (GC,HC)| / |W (KC,HC)| , (3.12)

where HC is a Cartan subalgebra of both GC and KC.

And if q = 2 the invariant subspace D is the direct sum of two subspaces D = D+⊕D−,

in which are realized a holomorphic discrete series representation and its conjugate anti-

holomorphic discrete series representation, resp. These are contained only in χ+
1 and count
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for two series in the formula (3.12). Furthermore, any holomorphic discrete series repre-

sentation is infinitesimally equivalent to a lowest weight GVM of the conformal algebra

so(p, 2), while an anti-holomorphic discrete series representation is infinitesimally equiva-

lent to a highest weight GVM.

Highest/lowest weight GVMs are related to other pairs besides χ+
1 .

A detailed analysis of these occurrences is done for the conformal algebra so(3, 2)

in [149] and for so(4, 2) in [149, 175].

3.3 Reduced multiplets

Besides the main multiplets which are 1-to-1 with the finite-dimensional irreps of so(p +

q,C), there are other multiplets which we describe here.

• We start with the case p+ q even. In this case there are h+ 1(= (p+ q)/2) multiplets

— doublets — each consisting of a pair with signatures χ̃± given explicitly as follows:

χ̃±
1 = {±n1 , . . . , nh ; ±nh} (3.13)

χ̃±
2 = {±n1 , . . . , nh−1 , nh+1 ; ±nh−1}

χ̃±
3 = {±n1, . . . , nh−2, nh, nh+1 ; ±nh−2}

. . .

χ±
h−1 = {±n1 , n2 , n4 , . . . , nh , nh+1 ; ±n2}

χ̃±
h = {±n1 , n3 , . . . , nh , nh+1 ; ±n1} , n1 6= 0

χ̃±
h+1 = {∓n1 , n3 , . . . , nh , nh+1 ; ±n1} , n1 6= 0

Clearly, the signature χ̃±
i may be obtained from χ±

i by setting the corresponding Harish-

Chandra parameter equal to zero:

mε1±εi+1
= deg di = deg d′i = nh+2−i − nh+1−i = 0 , i = 1, . . . , h− 1 ,

mε1−εh+1
= deg dh = n2 − n1 = 0 , for χ̃±

h , (3.14)

mε1+εh+1
= deg d′h = n2 + n1 = 0 , for χ̃±

h+1 . (3.15)

Although written compactly as (3.5) no pair is related to any other pair. This may

be seen easily as follows. Consider (3.5) and set formally nh+1 = nh . The signatures χ±
1

and χ±
2 coincide are become equal to χ̃±

1 , but the rest of the signatures χ±
i , i ≥ 3 are not

allowed in our class, e.g.,

χ±
3 −→ {ǫ n1, . . . , nh−2, nh, nh ; ±nh−1}

is not allowed since it violates (3.4) due to equality of twoM-signature entries (nh). Thus,

from the whole multiplet only the pair χ̃±
1 remains in our class. Similarly for the rest of

the pairs.

Inside a fixed pair χ̃±
i , i = 1, . . . , h + 1, act two operators: a Knapp-Stein integral

operator from χ̃+
i to χ̃−

i , and a differential operator from χ̃−
i to χ̃+

i . In more detail:

• Let first i = 1, . . . , h− 1. Inside a fixed pair χ̃±
i , acts the Knapp-Stein integral operator

G−
i (3.8) (coinciding with G−

i+1 for this signature), and a differential operator d̃i of degree
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2nh+1−i which is a degeneration of the Knapp-Stein integral operator G+
i (coinciding with

G+
i+1 for this signature). For this differential operator for n1 = 0 we have: d̃i ∼ �

nh+1−i ,

(nh+1−i ∈ N).6

• Inside the fixed pair χ̃±
h acts the Knapp-Stein integral operator G−

h (3.8) (coinciding with

G−
h+1 for this signature), and the differential operator d′h of degree 2n1 (cf. the previous

subsection) which in addition is a degeneration of the Knapp-Stein integral operator G+
h

(coinciding with G+
h+1 for this signature).

• Inside the fixed pair χ̃±
h+1 acts the Knapp-Stein integral operator G−

h+1 (3.8) (coinciding

with G+
h for this signature), and the differential operator dh of degree 2n2 which in addi-

tion is a degeneration of the Knapp-Stein integral operator G+
h+1 (coinciding with G−

h for

this signature).

• We continue with the case p+ q odd. In this case there are h doublets7 with signatures

χ̂± given similarly to the even case as follows:

χ̂±
1 = {n1 , . . . , nh ; ±nh} (3.16)

χ̂±
2 = {n1 , . . . , nh−1 , nh+1 ; ±nh−1}

χ̂±
3 = {n1, . . . , nh−2, nh, nh+1 ; ±nh−2}

. . .

χ̂±
h = {n1 , n3 , . . . , nh , nh+1 ; ±n1}

The signature χ̂±
i may be obtained from χ±

i by setting the corresponding Harish-Chandra

parameter equal to zero:

mε1±εi+1
= deg di = deg d′i = nh+2−i − nh+1−i = 0 , i = 1, . . . , h . (3.17)

Inside a fixed pair χ̂±
i , i = 1, . . . , h, acts the Knapp-Stein integral operator G−

i (3.8)

(coinciding with G−
i+1 for this signature), and a differential operator d̂i of degree 2nh+1−i

which is a degeneration of the Knapp-Stein integral operator G+
i (coinciding with G+

i+1 for

this signature). For the differential operators we have d̂i ∼ �
nh+1−i , (when nh+1−i ∈ N).

The difference with the even situation is only for i = h, where the degeneration of G+
h+1

was present already in the main multiplet.

If pq ∈ 2N the representations χ̃+
1 , χ̂

+
1 , contain an UIR called limits of the discrete

series representations. And if q = 2 that UIR is the direct sum of two subspaces in which

are realized limits of holomorphic discrete series representation and its conjugate limits

of anti-holomorphic discrete series representation, resp. The latter do not happen in any

other doublet, while limits of discrete series representations happen in other doublets. (For

more on this see [149] for so(3, 2) and [149, 175] for so(4, 2).)

6For so(4, 2), (h = 2, i = 1), when n1 = 0, n2 = 1 the latter d’Alembert operator arises also as a

conditionally invariant differential operator due to the presence of a subsingular vector in the corresponding

Verma module [172, 173].
7In the case so(3, 2) there are two additional doublets [149] involving the two singleton representations,

which are special for so(3, 2).

– 14 –



J
H
E
P
0
2
(
2
0
1
3
)
0
1
5

3.4 Remarks on shadow fields and history

• We labelled the signature of the ERs in (3.4) as

χ = {n1 , . . . , nh ; c }

using the parameter c instead of the conformal weight d = c + p+q−2
2 . This was used

already in [37] since the multiplets were given more economically in terms of pairs of ERs

in which the parameter c just changes sign. (Also mathematicians use the parameter c due

to the fact that in its terms the representation parameter space looks simple: the principal

unitary series representation induced from a maximal parabolic is given by c = iρ, ρ ∈ R;

the supplementary series of unitary representations is given by −s < c < s, s ∈ R, etc.)

Otherwise in the current context we should use for each Knapp-Stein operators conju-

gated doublet of shadow fields:

χ+ = [n1 , . . . , nh ; d ] , nj ∈ Z/2 , (3.18)

χ− = [ (−1)p+q+1n1 , . . . , nh ; dshadow = p+ q − 2− d ] .

The reason the representations χ± in the 1970s were called ”shadow fields” in the

context of the conformal algebra so(n, 2) is that the sum of their conformal weights equals

the dimension n of Minkowski space-time - isomorphic to N or Ñ , cf. (3.3). This continues

to be true for general so(p, q):

d+ dshadow = p+ q − 2 = n , (3.19)

and also for all conformal Lie algebras considered in the next sections.

Shadow fields appear all the time in conformal field theory. For example, in [180]

we showed that in the generic case each field on the AdS bulk has two boundary fields

which are shadow fields being related by a integral Knapp-Stein operator. Later Klebanov-

Witten [181] showed that these two boundary fields are related by a Legendre transform.

For a current discussion on shadow fields we refer to [182].

• The diagram for p + q even appeared first for the Euclidean conformal group in four-

dimensional space-time SU∗(4) ∼= Spin(5, 1) in [174]. Later it was generalised to the

Minkowskian conformal group in four-dimensional space-time SO(4, 2) in [175]. In both

cases, the three (= (p + q)/2) doublets (from the previous subsection) were also given

together the corresponding degeneration of the Knapp-Stein integral operators.

The exposition above including figures 1 & 2 follows the exposition for Euclidean

case so(n + 1, 1) in [176]. Later the results were generalised to the Minkowskian case

so(n, 2) [149].

• Actually, the case of Euclidean conformal group in arbitrary dimensions SO(p, 1) was

studied in [37] for representations ofM = so(p− 1) which are symmetric traceless tensors.

This means in (3.4) we should set n1 = n2 = · · · = nh−1 = 0, and then only the first two

pairs χ±
1 , χ

±
2 in (3.5) are possible. Thus from the two figures only the upper quadrants are

relevant, and were given in [37], cf. figure 1 there.

• Above we restricted to p+ q ≥ 5. The excluded cases are: so(3, 1), so(2, 2) ∼= so(2, 1)⊕

so(2, 1), so(2, 1), (so(1, 1) is abelian).
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In the case so(3, 1) ∼= sl(2,C) the multiplet in general contains only four ERs, and is

in fact representable by the diagram in the case of symmetric traceless tensors of so(p, 1),

p > 3, cf. [37], appendix B.

The case so(2, 1) ∼= sl(2,R) is special and must be treated separately. But in fact, it

is contained in what we presented already. In that case the multiplets contain only two

ERs which may be depicted by the top pair χ±
1 in both figures. (Formally, set h = 0 in

both figures.) They have the properties that we described, including the (anti)holomorphic

discrete series which are present in this case. That case was the first given already in 1946-7

independently by Gel’fand et al [183] and Bargmann [184].

4 The Lie algebras su∗(2n) and sl(n,R)

4.1 Case su∗(2n)

Let G = su∗(2n). It has maximal compact subalgebra K = sp(n), and thus G does not

have discrete series representations (as rankK = n < rank su∗(2n) = 2n− 1).

The algebra G = su∗(2n) has n−1 maximal parabolic subalgebras withM-factors (cf.

(5.8) from [121]):

Mmax
k = su∗(2k)⊕ su∗(2(n− k)) , 1 ≤ k ≤ n− 1 , (4.1)

with complexification:

(Mmax
k )C = sl(2k,C)⊕ sl(2(n− k),C) . (4.2)

We would like to relate parabolically this algebra with the appropriate conformal Lie

algebra, namely, with su(n, n). It was considered in [150] withM-factor: M′ = sl(n,C)R
which has complexification:

M′C = sl(n,C)⊕ sl(n,C) . (4.3)

Clearly, the latter expression can match (4.2) only if n = 2k, i.e., n must be even.

Thus, we set n = 2k and consider:

G = su∗(4k) , (4.4)

M = su∗(2k)⊕ su∗(2k) ,

MC = sl(2k,C)⊕ sl(2k,C) .

4.2 Case sl(n,R)

Let sl(n,R). Its maximal compact subalgebra is K = so(n), and thus it does not have dis-

crete series representations. It has [n2 ] maximal parabolic subalgebras obtained by deleting

a node from its standard Dynkin diagram and taking into account the symmetry (cf. [121]):

Mj = sl(j,R)⊕ sl(n− j,R) , 1 ≤ j ≤
[
n
2

]
. (4.5)
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We would like to match this with (4.3). Obviously this can happen only for n = 4k and

j = n/2 = 2k, so we consider:

G = sl(4k,R) , (4.6)

M = sl(2k,R)⊕ sl(2k,R) ,

MC = sl(2k,C)⊕ sl(2k,C) .

4.3 Representations and multiplets

Above we have chosen theM-factors of the Lie algebras su∗(4k) and sl(4k,R) so that they

are parabolically related to the conformal Lie algebra su(2k, 2k) with M-factor MC =

sl(2k,C)⊕ sl(2k,C), cf. (4.4), (4.6), thus, we shall discuss them together.

The signature of the ERs of both G may be denoted as:

χ = {n1 , . . . , n2k−1 , n2k+1 . . . , n4k−1 ; c } , (4.7)

nj ∈ N , c = d− 2k ,

same as for su(2k, 2k).

The Knapp-Stein restricted Weyl reflection mapping χ to its shadow is given by:

G : Cχ −→ Cχ′ , (4.8)

χ′ = {(n1, . . . , n2k−1, n2k+1, . . . , n4k−1)
∗;−c} ,

(n1, . . . , n2k−1, n2k+1, . . . , n4k−1)
∗ .

=

(n2k+1, . . . , n4k−1, n1, . . . , n2k−1)

Further, we use the root system of the complex algebra sl(4k,C). The positive roots

αij in terms of the simple roots αi are:

αij = αi + αi+1 + · · ·+ αj , 1 ≤ i < j ≤ 4k − 1 , (4.9)

αii ≡ αi , 1 ≤ i ≤ 4k − 1

from which the non-compact are:

αij , 1 ≤ i ≤ 2k , 2k ≤ j ≤ 4k − 1

The correspondence between the signatures χ and the highest weight Λ is through the

Dynkin labels:

ni = mi ≡ (Λ + ρ, α∨
i ) = (Λ + ρ, αi) , i = 1, . . . , 4k − 1, (4.10)

c = −1
2(mα̃ +m2k) = −

1
2(m1 + · · ·+m2k−1 + 2m2k +m2k+1 + · · ·+m4k−1)

Λ = Λ(χ), α̃ = α1 + · · ·+ α4k−1 is the highest root.

In our diagrams we need also the Harish-Chandra parameters for the non-compact

roots using the following notation:

mij ≡ mαij
= mi + · · ·+mj , i < j
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The number of ERs in the corresponding multiplets is according to (3.6):

|W (GC,HC)|

|W (MC,HC
m)|

=
|W (sl(4k,C))|

|W (sl(2k,C))|2
=

(4k)!

((2k)!)2
=

(
4k

2k

)
(4.11)

(which was given for su(n, n) in [150]).

Below we give the diagrams for the cases k = 1, 2. Of course, the case k = 1 is

known long time ago, first as su∗(4) ∼= so(5, 1), cf. [174], then as su(2, 2) ∼= so(4, 2),

cf. [175], and also as sl(4,R) ∼= so(3, 3), as we recalled already in the previous section

on so(p, q) algebras. We present it here using a new diagram look which can handle the

more complicated cases that follow further. In this new look only the invariant differential

operators are presented explicitly. The integral Knapp-Stein operators, more precisely the

restricted Weyl reflection action is understood by a symmetry of the picture, either w.r.t.

a central point, or w.r.t. middle line.

Thus, in figure 3 we give the case k = 1, where the Knapp-Stein symmetry is w.r.t. to

the bullet in the middle of the figure. Then in figure 4 we give the diagram figure 1 for the

special case h = 2, as given originally for so(5, 1) in [174], and so(4, 2) in [175], stressing

that both figures 3 and 4 have the same content.

Next we give the case k = 2, in figure 5, which applies to su∗(8), sl(8,R) and

su(4, 4). (For reduced multiplets we refer to [150].) The diagram is very complicated

and just to be able to depict all the relevant information we must use the following

condensing conventions. Each intertwining differential operator is represented by an arrow

accompanied by a symbol ij...ℓ encoding the root βj...ℓ and the number mβj...ℓ
which is

involved in the BGG criterion. This notation is used to save space, but it can be used

due to the fact that only intertwining differential operators which are non-composite are

displayed, and that the data β,mβ , which is involved in the embedding V Λ −→ V Λ−mβ ,β

turns out to involve only the mi corresponding to simple roots, i.e., for each β,mβ there

exists i = i(β,mβ,Λ) ∈ {1, . . . , r}, (r = rankG), such that mβ = mi . Hence the data

βj...ℓ ,mβj...ℓ
is represented by ij...ℓ on the arrows.

5 The Lie algebras sp(p, r)

Let G = sp(p, r), p ≥ r. It has maximal compact subalgebra K = sp(p) ⊕ sp(r) and has

discrete series representations (as rankK = p + r = rankG). It has r maximal parabolic

subalgebras withM-factors (cf. (9.8) from [121]):

Mmax
j = su∗(2j)⊕ sp(p− j, r − j) , 1 ≤ j ≤ r (5.1)

with complexification:

(Mmax
j )C = sl(2j,C)⊕ sp(p+ r − 2j,C) . (5.2)

We would like to match this algebra with the appropriate conformal Lie algebra,

namely, with sp(n,R). It was considered in [151] with M-factor: M′ = sl(n,R) with
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Λ
−

0

❄

22

Λ′−

✟✟✟✟✟✙

❍❍❍❍❍❥

112 323

Λ′′− Λ′′+

• ✟✟✟✟✟✙

❍❍❍❍❍❥323 112

213

Λ′+

❄Λ+

0

Figure 3. Main multiplets for su∗(4) ∼= so(5, 1) and su(2, 2) ∼= so(4, 2) with parabolic factor

MC = sl(2,C)⊕ sl(2,C). The pairs of shadow fields are symmetric w.r.t. the bullet.

✲✛ / /

✲✛ / /

/ / ✲✛

χ
−
pνn χ

+
pνn

χ
′−
pνn χ

′+
pνn

χ
′′−
pνn χ

′′+
pνn

❄

❄

✻

✻❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅❅❘�
�

�
�

�
�

�
�

�
�

�
�

�
�

��✒

Figure 4. Sextet of partially equivalent ERs and intertwining operators for so(5, 1) ∼= su∗(4) and
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Figure 5. Main multiplets for su(4, 4) and su∗(8) with parabolic factorMC = sl(4,C)⊕ sl(4,C).

complexification M′C = sl(n,C). Obviously, the latter can match (5.2) only if n is even

and p = r = j = n/2. Thus, we shall consider

G = sp(r, r) , (5.3)

M = su∗(2r) ,

MC = sl(2r,C) .

The signature of the ERs of G is:

χ = {n1 , . . . , n2r−1 ; c } , nj ∈ N , c = d− r − 1
2 . (5.4)
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The Knapp-Stein restricted Weyl reflection acts as follows:

G : Cχ −→ Cχ′ , (5.5)

χ′ = { (n1, . . . , n2r−1)
∗ ; −c } , (n1, . . . , n2r−1)

∗ .
= (n2r−1, . . . , n1)

In terms of an orthonormal basis εi , i = 1, . . . , n, the positive roots of sp(2r,C) are:

∆+ = {εi ± εj , 1 ≤ i < j ≤ 2r; 2εi, 1 ≤ i ≤ 2r} , (5.6)

the simple roots are:

π = {αi = εi − εi+1, 1 ≤ i ≤ 2r − 1; α2r = 2ε2r} , (5.7)

the positive non-compact roots are:

βij ≡ εi + εj , , 1 ≤ i ≤ j ≤ 2r , (5.8)

the Harish-Chandra parameters: mβ ≡ (Λ + ρ, β) for the noncompact roots are:

mβij
=

( 2r∑

s=i

+
2r∑

s=j

)
ms , i < j , (5.9)

mβii
=

2r∑

s=i

ms

The correspondence between the signatures χ and the highest weight Λ is:

ni = mi , c = −1
2(mα̃ +m2r) = −

1
2(m1 + · · ·+m2r−1 + 2m2r) (5.10)

where α̃ = β11 is the highest root.

The number of ERs in the corresponding multiplets is according to (3.6):

|W (GC,HC)|

|W (MC,HC
m)|

=
|W (sp(2r,C))|

|W (sl(2r,C))|
=

22r(2r)!

((2r)!)
= 22r (5.11)

(which was given for sp(n,R) in [151]).

Below we give pictorially the multiplets for sp(r, r) for r = 1, 2, valid also for sp(2r,R).

(The case r = 3, together with the reduced multiplets and sp(5,R are given in [151].)

In fact, the case r = 1 is known long time as sp(1, 1) ∼= so(4, 1), cf. [37], then later

as sp(2,R) ∼= so(3, 2), cf. [179], as we recalled already in the previous section on so(p, q)

algebras. We present it here using the new diagram look which we already used in the

previous section. Thus, in figure 6 we give the case r = 1, where the Knapp-Stein symmetry

is w.r.t. to the bullet in the middle of the figure. Thus, it is seen that the action of the

differential operator indexed by 112 is the same as the Knapp-Stein operator from Λ′− to

Λ′+, so that the latter operator degenerates as discussed in section 1. Then in figure 7 we

give the diagram figure 2 for the special case h = 1, stressing that both figures 6 and 7

have the same content.

Finally, in figure 8 we give the case r = 2.
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Figure 6. Main multiplets for sp(1, 1) ∼= so(4, 1) and sp(2,R) ∼= so(3, 2) with parabolic factor

MC = sl(2,C).
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Figure 7. Quartet of partially equivalent ERs and intertwining operators for so(4, 1) = sp(1, 1)

and so(3, 2) ∼= sp(2,R) cf. [125, 148] resp. (arrows are differential operators, dashed arrows are

integral operators).

6 The non-compact Lie algebra E7(7)

Let G = E7(7). This is the split real form of E7 which is denoted also as E′
7 or EV . The

maximal compact subgroup is K ∼= su(8). This algebra has discrete series representations

(as rankG = rankK).

It has the following Dynkin-Satake diagram (same as for E7) [185]:

◦
α1

−−− ◦
α3

−−− ◦
α4

|
◦α2

−−− ◦
α5

−−− ◦
α6

−−− ◦
α7

(6.1)

The real algebra E7(7) has seven maximal parabolics which are obtained by deleting

one node as explained in [121]. We choose the one which is most suitable w.r.t. the maximal

compact subgroup K = su(8), as will become clear below. This parabolic is obtained by

deleting the root α7 from the Dynkin-Satake diagram (6.1), i.e., we shall use asM-factor

E6(6) (the split real form of E6).
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Figure 8. Main multiplets for sp(2, 2) and sp(4,R) with parabolic factorMC = sl(4,C).

Thus, our maximal parabolic is

P =M⊕A⊕N , A ∼= so(1, 1) , M∼= E6(6) , dimR N = 27 , (6.2)

cf. (11.17) of [121].

We label the signature of the ERs of G as follows:

χ = {n1 , . . . , n6 ; c } , nj ∈ N , c = d− 9 (6.3)

where the last entry of χ labels the characters of A , and the first 6 entries are labels of

the finite-dimensional nonunitary irreps ofM , (or of the finite-dimensional unitary irreps

of the compact e6).

Further, we need the root system of the complex algebra E7 . With Dynkin diagram

enumerating the simple roots αi as in (6.1), the positive roots are:

first there are 21 roots forming the positive root system of sl(7) (with simple roots

α1, α3, α4, α5, α6, α7 ), then 21 positive roots which are positive roots of the E6 subal-

gebra including the non-sl(7) root α2, and finally the following 21 roots including the
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non-E6 root α7:

α2 + α4 + α5 + α6 + α7 , α2 + α3 + α4 + α5 + α6 + α7 , (6.4)

α1 + α2 + α3 + α4 + α5 + α6 + α7 ,

α2 + α3 + 2α4 + α5 + α6 + α7 , α1 + α2 + α3 + 2α4 + α5 + α6 + α7 ,

α2 + α3 + 2α4 + 2α5 + α6 + α7 , α1 + α2 + 2α3 + 2α4 + α5 + α6 + α7 ,

α1 + α2 + α3 + 2α4 + 2α5 + α6 + α7 ,

α1 + α2 + 2α3 + 2α4 + 2α5 + α6 + α7 ,

α1 + α2 + 2α3 + 3α4 + 2α5 + α6 + α7 ,

α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6 + α7 ,

α2 + α3 + 2α4 + 2α5 + 2α6 + α7 ,

α1 + α2 + α3 + 2α4 + 2α5 + 2α6 + α7 ,

α1 + α2 + 2α3 + 2α4 + 2α5 + 2α6 + α7 ,

α1 + α2 + 2α3 + 3α4 + 2α5 + 2α6 + α7 ,

α1 + 2α2 + 2α3 + 3α4 + 2α5 + 2α6 + α7 ,

α1 + α2 + 2α3 + 3α4 + 3α5 + 2α6 + α7 ,

α1 + 2α2 + 2α3 + 3α4 + 3α5 + 2α6 + α7 ,

α1 + 2α2 + 2α3 + 4α4 + 3α5 + 2α6 + α7 ,

α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7 ,

2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7 = α̃ ,

where α̃ is the highest root of the E7 root system.

The differential intertwining operators that give the multiplets correspond to the non-

compact roots, and since we shall use the latter extensively, we introduce more compact

notation for them. Namely, the non-simple roots will be denoted in a self-explanatory way

as follows:

αij = αi + αi+1 + · · ·+ αj , αi,j = αi + αj , i < j , (6.5)

αij,k = αk,ij = αi + αi+1 + · · ·+ αj + αk , i < j ,

αij,km = αi + αi+1 + · · ·+ αj + αk + αk+1 + · · ·+ αm ,

i < j , k < m ,

αij,km,4 = αi + αi+1 + · · ·+ αj + αk + αk+1 + · · ·+ αm + α4 ,

i < j , k < m ,

i.e., the non-compact roots will be written as:

α7 , α67 , α57 , α47 , α37 , α1,37 , (6.6a)

α2,47 , α27 , α17 , α27,4 , α17,4 , α27,45 , (6.6b)

α17,34 , α17,45 , α27,46 , α17,35 , α17,46 , α17,36 ,

α17,35,4 , α17,25,4 , α17,36,4 , α17,26,4 ,

α17,36,45 , α17,26,45 , α17,26,45,4 , α17,26,35,4 , α17,16,35,4 = α̃ ,
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where the first six roots in (6.6a) are from the sl(7) subalgebra, and the 21 in (6.6b) are

those from (6.4).

Further, we give the correspondence between the signatures χ and the highest weight

Λ. The connection is through the Dynkin labels (2.8) mi, i = 1, . . . , 7, and is given

explicitly by:

ni = mi , i = 1, . . . , 6 , (6.7)

c = −1
2(mα̃ +m7) = −

1
2(2m1 + 2m2 + 3m3 + 4m4 + 3m5 + 2m6 + 2m7)

Here we note that the simple root system of the su(8) compact subalgebra of E7(7),

or equivalently, of the sl(8) subalgebra of E7 , is given by the sl(7) simple roots plus the

highest root α̂ of the E6 subalgebra:

α1, α3, α4, α5, α6, α7, α̂ = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6 (6.8)

Indeed, it is easy to check that:

(αi, α̂) = 0, i = 1, 3, 4, 5, 6, (α7, α̂) = −1 .

Now we should connect our considerations with the case of another real form of E7 ,

namely, the Lie algebra E7(−25), cf. [152]. In that paper we chose as maximal parabolic

P ′ =M′ ⊕A′ ⊕N ′, whereM′ ∼= E6(−26), dimR N = 27, cf. (11.24) of [121].

Since the algebras E7(7) and E7(−25) are parabolically related they have the same

signatures, and thus the same main multiplets.

The number of ERs in the corresponding main multiplets is according to (3.6):

|W (GC,HC)|

|W (MC,HC
m)|

=
|W (E7)|

|W (E6)|
=

210 34 5.7

27 34 5
= 56 (6.9)

(which was given for E7(−25) in [152]).

Below we give the main multiplets valid for both algebras in figure 9. For reduced

multiplets cf. [152].

7 Two real forms of E6

7.1 The Lie algebra E6(6)

Let G = E6(6) . This is the split real form of E6 denoted also as E′
6 or EI. The maximal

compact subgroup is K ∼= sp(4). This real form does not have discrete series representations

(as rankG 6= rankK).

We use the following Dynkin-Satake diagram (same as for E6):

◦
α1

−−− ◦
α3

−−− ◦
α4

|
◦α2

−−− ◦
α5

−−− ◦
α6

(7.1)

The real algebra E6(6) has four maximal parabolics which are obtained by deleting

one node as explained in [121]. (Note that deleting node 1 or node 6 produces the same
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Figure 9. Main type of multiplets for E7(7) and E7(−25) with parabolic factorMC = E6.

– 26 –



J
H
E
P
0
2
(
2
0
1
3
)
0
1
5

parabolic, same for deleting node 3 or node 5.) We choose the parabolic obtained by

deleting node 2.

Thus, the maximal parabolic is

P =M⊕A⊕N , A ∼= so(1, 1) , M∼= sl(6,R) , dimR N = 21 , (7.2)

cf. (11.4) of [121].

7.2 The Lie algebra E6(2)

Let G = E6(2) . This is another real form of E6 sometimes denoted as E′′
6 , or EII . The

maximal compact subalgebra is K ∼= su(6) ⊕ su(2). This real form has discrete series

representations.

The Satake diagram is:

◦
α1

−−− ◦
α3

−−− ◦
α4

|
◦α2

−−− ◦
α5︸ ︷︷ ︸
−−− ◦

α6

︸ ︷︷ ︸
(7.3)

The real algebra E6(2) has four maximal parabolics which are obtained by deleting one

node as explained in [121] (taking into account E6 symmetry as in the previous case). We

choose the parabolic obtained by deleting node 2.

Thus, the maximal parabolic is

P =M⊕A⊕N , A ∼= so(1, 1) , M∼= su(3, 3) , dimR N = 21 , (7.4)

cf. (11.7) of [121].

7.3 Representations and multiplets

We note that theM-factors of the two real forms of E6 discussed in the previous subsections

have the same complexification:

sl(6,R)C = su(3, 3)C = sl(6,C)

i.e., they are parabolically related and we can discuss them together.

The signature of the ERs of G is:

χ = {n1 , n3 , n4 , n5 , n6 ; c} , c = d− 11
2 ,

expressed through the Dynkin labels as:

ni = mi , −c = 1
2mα̃ =

1
2(m1 + 2m2 + 2m3 + 3m4 + 2m5 +m6)

Further, we need the root system of the complex algebra E6 . With Dynkin diagram

enumerating the simple roots αi as in (7.1), the positive roots are:
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first there are 15 roots forming the positive root system of sl(6) (with simple roots

α1, α3, α4, α5, α6), then the following 21 roots including the non-sl(6) root α2:

α2 , α2 + α4 , α2 + α3 + α4 , α2 + α4 + α5 , (7.5)

α2 + α3 + α4 + α5 , α1 + α2 + α3 + α4 , α2 + α4 + α5 + α6 ,

α1 + α2 + α3 + α4 + α5 , α2 + α3 + α4 + α5 + α6 , α2 + α3 + 2α4 + α5,

α1 + α2 + α3 + α4 + α5 + α6 , α1 + α2 + α3 + 2α4 + α5 ,

α2 + α3 + 2α4 + α5 + α6 , α1 + α2 + α3 + 2α4 + α5 + α6 ,

α1 + α2 + 2α3 + 2α4 + α5 , α2 + α3 + 2α4 + 2α5 + α6 ,

α1 + α2 + 2α3 + 2α4 + α5 + α6 , α1 + α2 + α3 + 2α4 + 2α5 + α6 ,

α1 + α2 + 2α3 + 2α4 + 2α5 + α6 ,

α1 + α2 + 2α3 + 3α4 + 2α5 + α6 ,

α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6 ≡ α̃ ,

where α̃ is the highest root of the E6 root system.

Relative to our parabolic subalgebra, the roots in (7.5) are non-compact, while the rest

are compact. As before we introduce more condensed notation for the noncompact roots:

α2 , α14 , α15 , α16 , α24 , α25 , α26

α2,4 , α2,45 , α2,46 , α25,4 , α15,4 , α26,4

α16,4 , α15,34 , α26,45 , α16,34 , α16,45

α16,35 , α16,35,4 , α16,25,4 = α̃

Now we should connect our considerations with the case of another real form of E6 ,

namely, the Lie algebra E6(−14), cf. [153, 154]. In that paper we chose as maximal parabolic

P ′ =M′ ⊕A′ ⊕N ′, whereM′ ∼= su(5, 1), dimR N = 21, cf. (11.21) of [121].

Since both the algebras and the maximal parabolics have the same complexification,

this means that they are parabolically related, thus, we have the same non-compact roots,

the same signatures, and the same multiplets. We show only the main multiplet in figure 10,

referring to [153, 154] for the diagrams of reduced multiplets. The main multiplet has 70

members and the figure has the standard E6 symmetry, namely, conjugation exchanging

indices 1 ←→ 6, 3 ←→ 5. The Knapp-Stein operators act pictorially as reflection w.r.t.

the dotted line separating the H−. . . members from the H+. . . members. Note that there

are five cases when the embeddings correspond to the highest root α̃: V Λ−

−→ V Λ+

,

Λ+ = Λ− − mα̃ α̃ . In these five cases the weights are denoted as: Λ±
k′′ , Λ

±
k′ , Λ

±

k̃
, Λ±

k ,

Λ±
ko , then: mα̃ = m1,m3,m4,m5,m6 , resp. We recall that Knapp-Stein operators G+

intertwine the corresponding ERs T −
χ and T +

χ . In the above five cases the Knapp-Stein

operators G+ degenerate to differential operators as we discussed earlier.

8 Summary and outlook

In the present paper we continued the project of systematic construction of invariant dif-

ferential operators for non-compact semisimple Lie groups. Our aim in this paper was
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Fig. 10. Main type of multiplets for , and with parabolic factor C = (6

Figure 10. Main type of multiplets for E6(6), E6(2) and E6(−14) with parabolic factor MC =

sl(6,C).
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to extend our considerations beyond the class of algebras, which we call ’conformal Lie

algebras’ (CLA). For this we introduce the new notion of parabolic relation between two

non-compact semisimple Lie algebras G and G′ that have the same complexification and

possess maximal parabolic subalgebras with the same complexification. Thus, we consid-

ered the algebras so(p, q) all of which are parabolically related to the conformal algebra

so(n, 2) with p+q = n+2, then the algebras su∗(4k) and sl(4k,R) parabolically related to

the CLA su(2k, 2k), then sp(r, r) as parabolically related to the CLA sp(2r) (of rank 2r),

then the exceptional Lie algebra E7(7) which is parabolically related to the CLA E7(−25) ,

finally the exceptional Lie algebras E6(6) and E6(2) parabolically related to the hermitian

symmetric case E6(−14) .

We have given a formula for the number of representations in the main multiplets valid

for CLAs and all algebras that are parabolically related to them. In all considered cases

we have given the main multiplets of indecomposable elementary representations including

the necessary data for all relevant invariant differential operators. In the case of so(p, q)

we have given also the reduced multiplets. We note that the multiplets are given in the

most economic way in pairs of shadow fields related by the Knapp-Stein restricted Weyl

symmetry (and the corresponding integral operators).

Finally, we should stress that the classification of all invariant differential operators in-

cludes as special cases all possible conservation laws and conserved currents, unitary or not.

We plan also to extend these considerations to the supersymmetric cases and also

to the quantum group setting. Such considerations are expected to be very useful for

applications to string theory and integrable models. It is interesting to note that almost

all of the algebras that appear in table 1 of [80] are treated in the present paper, though

our motivations and approach are different (see also [186–188]).
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