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1 Introduction

In the last few years many models of metastable dynamical supersymmetry breaking (DSB)
based on the ISS breakthrough [1] have been proposed (see [2] and references therein).
Usually in DSB the strong dynamics jeopardizes the calculability of the model. The novelty
of the approach of ISS relies in describing the low energy theory by the Seiberg dual
phase [3, 4] which is weakly coupled in the IR. For a N = 1 SU(Nc) supersymmetric gauge
theory with Nf > Nc + 1 flavors the low energy physics can be equivalently described by
a different magnetic SU(Nf −Nc) gauge group with Nf flavors and a singlet.

The ISS model is based on SQCD with Nc+ 1 < Nf < 3/2Nc and small masses for the
quarks. In this window the dual gauge theory at low energy flows to an IR free fixed point.
This theory breaks supersymmetry at tree level in the small field region. In this region
the strong dynamics effects are safely negligible and perturbation theory is reliable. The
supersymmetric vacua are recovered in another region of the field space, namely at large
vevs. The supersymmetry breaking vacuum is metastable and its lifetime can be made
parametrically large by tuning the scales of the theory.

In principle the same mechanism is applicable in the conformal window if Nf & 3/2Nc,
where there is a weakly interacting fixed point. In [1] the authors showed that in such
window the non supersymmetric vacuum is unstable to decay because the strong dynamics
effects are relevant and not negligible around the origin of the field space. Indeed the
bounce action between the non supersymmetric vacuum and the supersymmetric one is
not parametrically large, and the lifetime is short. Recent studies for realizing metastable
vacua in the conformal window has been done in [5].
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In this paper we deeply investigate this problem and we suggest viable model of
metastable supersymmetry breaking in the conformal regime of a SQCD like theory.

We start our analysis by revisiting the ISS model in the conformal window, studying
the RG evolution of the couplings and of the bounce action. The lifetime of the non super-
symmetric vacuum is proportional to the ratio between the IR supersymmetry breaking
scale and the IR holomorphic scale as expected. We find that this ratio depends only on
the gauge coupling calculated at the conformal fixed point. This shows that the lifetime
of the vacuum cannot be parametrically large below the IR scale at which the theory exits
from the conformal regime.

Nevertheless, we argue that by adding some deformations the metastable vacua can
still exist in the conformal window. We propose a deformation of the ISS model, by adding
a small number of massive quarks and some new singlets in the dual description of massive
SQCD. This model is a SU(N) SCFT dual to the SSQCD defined in [6] with some relevant
deformations. When these deformations are small, the theory is approximately a CFT. In
such approximate CFT regime this theory is interacting, and we restrict to Nf & 3/2Nc,
where a reliable perturbative analysis is sensible. This model can evade the argument
of ISS because the new massive fields modify the non perturbative superpotential and
thus the supersymmetric vacuum. As a consequence the bounce action has a parametrical
behavior in terms of the relevant deformations. The lifetime can be large if we impose
some constraints on the physical couplings at the CFT exit scale.

Differently from the IR free case, in which the low energy theory is free, in this case it is
interacting. The anomalous dimensions of the fields are not zero, and the Kahler potential
is renormalized. This implies that the physical couplings undergo RG evolution in the
approximate CFT regime. The constraints for the stability of the non supersymmetric
vacuum have to be imposed on the physical IR couplings after the RG evolution.

The paper is organized as follows. In section 2 we discuss the obstructions to the
existence of metastable vacua in the conformal window of SQCD, and we introduce the
analysis of the RG evolution for the couplings and the holomorphic scale. In the main
section 3 we outline our strategy for the search of metastable vacua by studying the SSQCD
model appropriately deformed. The essential idea just relies on the features of super CFT,
where RG analysis and determination of anomalous dimensions are feasible. In section 4
we discuss the generalization of our analysis to N = 1 SCFTs and give a general procedure
to generate new models of conformal supersymmetry breaking. In section 5 we conclude
and comment on possible applications. In the appendix A we study the RG flow associated
with the bounce action. In the appendix B we review the Seiberg duality in SSQCD and
discuss the origin of the relevant couplings.

While we were completing this paper, the work [7] appeared which has some overlap
with our results.
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2 The case of SQCD

In their original paper [1] the authors studied a SU(Nc) gauge theory with Nf flavors of
quarks charged under an SU(Nf )2 flavor symmetry broken to SU(Nf ) by the superpotential

W = mQQ̃ (2.1)

where the mass m is much smaller than the holomorphic scale of the theory Λ. In the
window Nc + 1 < Nf this theory admits a dual description in term of a magnetic gauge
group SU(Ñ) = SU(Nf−Nc), Nf magnetic quarks q and q̃ and the electric meson N = QQ̃

normalized to have mass dimension one. The dual superpotential reads

Wm = −hµ2N + hNqq̃ + Ñ
(

Λ̃b̃hNf detN
) 1
Ñ (2.2)

where we introduced the marginal coupling h and the holomorphic scale of the dual theory
Λ̃, and we added the non perturbative contribution due to gaugino condensation. From
now on we set h = 1. The holomorphic scales Λ and Λ̃ are related by a scale matching
relation [4]. The one loop beta function coefficient is b̃ = 3Ñ −Nf = 2Nf − 3Nc.

In the range Nc+1 < Nf < 3/2Nc, this theory has a supersymmetry breaking vacuum
at N = 0, with non zero vev for the quarks. The supersymmetric vacuum is recovered
in the large field region for N . The parametrically long distance between the two vacua
guarantees the long life time of the non supersymmetric one.

The metastable non supersymmetric vacua found in the magnetic free window of mas-
sive SQCD are destabilized in the conformal window 3/2NC < Nf < 3NC . This fact is
based on the observation that the non perturbative superpotential in (2.2) is not negligible
in the small field region, as instead it happens in the magnetic free window.

Here we give a pedagogical derivation of the behavior of the SQCD bounce action in
the conformal window. As stated in [1], while in the free magnetic phase there are two
parameters, m and Λ, in the conformal phase Λ is not a parameter anymore. Thus, there is
no possibility to get a dimensionless parameter to guarantee an arbitrary large lifetime for
the metastable state. We show this intuitive idea with an explicit computation which will
be useful in the rest of our analysis. In general, in the presence of relevant deformations
the conformal regime is only approximated. If these deformation are small enough there
is a large regime of scales in which the theory flows to lower energies while remaining
approximatively conformal. The physical couplings vary along the RG flow because of
the wave function renormalization of the fields, until the theory exits from the conformal
regime. Below this scale the theory is IR free and the renormalization effects are negligible.

We study the RG properties of the ISS model in the conformal window by using a
canonical basis for the fields. Flowing from a UV scale EUV to an IR scale EIR the fields are
not canonically normalized anymore, and we have to renormalize them by the wave function
renormalization Zi(EIR, EUV), namely φIR

i =
√
Ziφ

UV
i . In terms of the renormalized fields

the Kahler potential is canonical. The couplings appearing in the superpotential undergo
RG evolution, and are the physical couplings. In this way the coupling µIR of the IR
superpotential becomes

µIR = µUVZN (EIR, EUV)−
1
4 (2.3)
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The holomorphic scale that appears in the superpotential is unphysical in the conformal
window and it is defined as

Λ̃ = Ee
− 8π2

g2∗ b̃ (2.4)

where E is the RG running scale, and g∗ is the gauge coupling at the superconformal fixed
point. In the canonical basis Λ̃ is rescaled as well during the RG conformal evolution
as [8–10]

Λ̃IR = Λ̃UV
EIR

EUV
(2.5)

In the ISS model the two possible sources of breaking of the conformal invariance are the
masses of the fields at the non supersymmetric vacuum and at the supersymmetric vacuum.
We define the CFT exit scale as EIR = Λc. In this model this scale is necessarily set by
the masses of the fields at the supersymmetric vacuum, which are proportional to the vev
of the field N . In fact by setting

Λc ≡ 〈N〉susy = µIR

(
µIR

Λ̃IR

) b̃
Nf−Ñ (2.6)

the physical mass at this scale results

µIR = Λce
− 4π2

g∗2Ñ � Λc (2.7)

Hence the assumption that 〈N〉susy stops the conformal regime is consistent. The opposite
case, with Λc ≡ µIR � 〈N〉susy cannot be consistently realized.

The bounce action at the scale Λc is

SB ∼
(
µIR

Λ̃IR

) 4b̃
Nf−Ñ ∼ e

16π2

g2∗Ñ (2.8)

This bounce is not parametrically large and it depends only on the coupling constant g∗
at the fixed point. In general, as we shall see in the appendix A, the bounce action is not
RG invariant, but it runs during the RG flow. In this case SB at the CFT exit scale only
depends on the ratio of the two relevant scales in the theory which is the RG invariant
coupling constant.

In general, by adding other deformations, the bounce action is not RG invariant any-
more and we have to study its flow. In some cases, the lifetime of a vacuum decreases as
we flow towards the infrared. In the next section, by adding new massive quarks to the
ISS model, we show that long living metastable vacua exist in the conformal window.

3 Metastable vacua by adding relevant deformations

In this section we describe our proposal for realizing metastable supersymmetry breaking
in the conformal window of N = 1 SQCD-like theories. The key point is the addition of
massive quarks in the dual magnetic description. This introduces a new mass scale that
controls the distance in the field space of the supersymmetric vacua.
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N
(1)
f N

(2)
f Ñ

N N
(1)
f ⊗N

(1)
f 1 1

q + q̃ N̄
(1)
f ⊕N

(1)
f 1 Ñ ⊕ ¯̃N

p+ p̃ 1 N̄f
(2) ⊕N (2)

f Ñ ⊕ ¯̃N

K + L N̄f
(1) ⊕N (1)

f N
(2)
f ⊕ N̄f

(2) 1

Table 1. Matter content of the dual SSQCD.

We start from the magnetic description of the ISS model of the previous section. We
add a new set of massive fields p and p̃ charged under a new SU(N (2)

f ) flavor symmetry.

We also add new bifundamental fields K and L charged under SU(N (1)
f )× SU(N (2)

f ). The

added number of flavors is such that 3/2Ñ < N
(1)
f +N

(2)
f < 3Ñ . The superpotential of the

model is

W = Kpq̃ + Lp̃q +Nqq̃ + ρp p̃− µ2N (3.1)

and the field content is summarized in the table 1. This model corresponds to the dual
description of the SSQCD studied in [6], deformed by two relevant operators. In the
appendix B we show the Seiberg dual electric description of this theory, and we discuss a
mechanism to dynamically generate the mass term for the new quarks.

In the rest of this section we shall show that in the case N
(1)
f > Ñ there are ISS

like metastable supersymmetry breaking vacua if we are near the IR free border of the
conformal window

3Ñ & N
(1)
f +N

(2)
f (3.2)

The non supersymmetric vacuum. The non supersymmetric vacuum is located near
the origin of the field space where the superpotential (3.1) can be studied perturbatively.
Appropriate bounds on the parameters ρ and µ allow to neglect the non perturbative
dynamics. We will see that these bounds can be consistent with the running of the coupling
constants.

Tree level supersymmetry breaking is possible if

N
(1)
f > Ñ ⇒ 2Ñ > N

(2)
f (3.3)

where the second inequality follows from (3.2). The equation of motion for the field N

breaks supersymmetry through the rank condition mechanism. We solve the other equa-
tions of motion and we find the non supersymmetric vacuum

q =

(
µ+ σ1

φ1

)
q̃ = ( µ+ σ2 φ2 ) N =

(
σ3 φ3

φ4 X

)

p = φ5 p̃ = φ6 L = ( φ7 Ỹ ) K =

(
φ8

Y

)
(3.4)
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where we have also inserted the fluctuations around the minimum, σi and φi. The fields
X, Y and Ỹ are pseudomoduli. The infrared superpotential is

WIR = Xφ1φ2 − µ2X + µ(φ1φ4 + φ2φ3) + µ(φ5φ8 + φ6φ7)

+Y φ2φ5 + Ỹ φ1φ6 + ρφ5φ6 (3.5)

In the limit of small ρ, this is the same superpotential studied in [11]. This superpotential
corresponds to the one studied in [12] in the R symmetric limit. The fields X, Y and Ỹ

are stabilized by one loop corrections at the origin with positive squared masses.

The supersymmetric vacuum. We derive here the low energy effective action for the
field N , and we recover the supersymmetric vacuum in the large field region. The super-
symmetric vacuum is characterized by a large expectation value for N . This vev gives mass
to the quarks q and q̃ and we can integrate them out at zero vev. Also the quarks p and
p̃ are massive and are integrated out at low energy. The scale of the low energy theory ΛL
is related to the holomorphic scale Λ̃ via the scale matching relation

Λ3Ñ
L = Λ̃3Ñ−N(1)

f −N
(2)
f det ρ detN (3.6)

The resulting low energy theory is N = 1 SYM plus a singlet, with effective superpotential

W = −µ2N + Ñ(Λ̃3Ñ−N(1)
f −N

(2)
f det ρdetN)1/Ñ (3.7)

where the last term is the gaugino condensate. By solving the equation of motion for N
we find the supersymmetric vacuum

〈N〉susy =
µ

2Ñ

N
(1)
f

−Ñ

Λ̃

3Ñ−N(1)
f

−N(2)
f

N
(1)
f

−Ñ
ρ

N
(2)
f

N
(1)
f

−Ñ

(3.8)

Lifetime. The lifetime of the non supersymmetric vacuum is controlled by the bounce
action to the supersymmetric vacuum. In this case, the triangular approximation [13] is
valid and the action can be approximated as SB ' (∆Φ)4/(∆V ). If we estimate ∆Φ ∼
〈N〉susy and ∆V ∼ µ4 we obtain

SB =

(
Λ̃
ρ

) 4N
(2)
f

N
(1)
f

−Ñ
(
µ

Λ̃

) 12Ñ−4N
(1)
f

N
(1)
f

−Ñ (3.9)

This expression is not automatically very large since µ� Λ̃. However, we can impose the
following bound on ρ

〈N〉susy � µ → ρ� Λ̃
(
µ

Λ̃

)(3Ñ−N(1)
f )/N

(2)
f

(3.10)

If this bound is satisfied, the supersymmetric and the non supersymmetric vacua are far
away apart in the field space and the non perturbative terms can be neglected at the

– 6 –
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supersymmetry breaking scale. This differs from the ISS model in the conformal window.
In that case the non-perturbative effects became important at the supersymmetry breaking
scale. The bounce action was proportional to the gauge coupling constant at the fixed point
and it was impossible to make it parametrically long. The introduction of the new mass
scale ρ allows a solution to this problem.

The bound (3.10) should be imposed on the IR couplings at the CFT exit scale EIR =
Λc. In this case we have a new possible source of CFT breaking, namely the relevant
deformation ρ. However we look for a regime of couplings such that the CFT exit scale is
set by the supersymmetric vacuum scale, i.e. Λc = 〈N〉susy � µIR, ρIR. The scale Λc is

Λc = 〈N〉susy = Λ̃IR

(
µIR

Λ̃IR

) 2Ñ

N
(1)
f

−Ñ

(
Λ̃IR

ρIR

) N
(2)
f

N
(1)
f

−Ñ
(3.11)

At this scale we define εIR as the ratio between the IR masses ρIR and µIR and we de-
mand that

εIR =
ρIR

µIR
� 1 (3.12)

Rearranging (3.11) for µIR and ρIR we have

µIR = Λce
− 8π2

g2∗(2Ñ−N(2)
f

)
ε

N
(2)
f

2Ñ−N(2)
f

IR � Λc

ρIR = Λce
− 8π2

g2∗(2Ñ−N(2)
f

)
ε

2Ñ

2Ñ−N(2)
f

IR � Λc
(3.13)

This shows that requiring εIR � 1 is consistent with the CFT exit scale to be 〈N〉susy.
By substituting (3.11) and (3.13) in (3.9), the bounce action becomes

SB =
e

32π2

g2∗(2Ñ−N(2)
f

)

ε

4N
(2)
f

2Ñ−N(2)
f

IR

(3.14)

and in the limit N (2)
f → 0 it reduces to the one computed in the (2.8). Here the bounce

is not only proportional to a numerical factor depending on g2
∗, but there is also a param-

eter, relating the ratios of the physical masses ρIR and µIR at the CFT exit scale. The
bounce action can be large if εIR � 1, providing a parametrically large lifetime for the non
supersymmetric vacuum.

Using the RG evolution equations the bound εIR � 1 translates in constraints on the
UV masses ρUV and µUV at the UV scale. These masses are relevant perturbations and
their ratio must be small along the RG flow.

– 7 –
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RG flow in the approximate conformal regime. The relevant coupling constants
run from EUV to EIR = Λc. We require that these terms are so small in the UV to be
considered as perturbations of the CFT, i.e. ρUV, µUV � ΛUV.

The ratio εUV given at the scale EUV runs as the coupling constants down to Λc. We
now study the evolution of this ratio. The requirement of long lifetime of the metastable
vacuum (3.10) corresponds to εIR � 1 and it constrains both εUV and the duration of the
approximate conformal regime, Λc/EUV.

The running of the relevant couplings in the conformal windows is parameterized by
the equations

ρIR = ρUVZp(Λc, EUV)−1/2Zp̃(Λc, EUV)−1/2 (3.15)

µIR = µUVZN (Λc, EUV)−1/4 (3.16)

The wave function renormalization Z is obtained by integrating the equation

d logZi
d logE

= −γi (3.17)

from EUV to Λc, where γi is constant in the conformal regime, and it reads

Zφ(Λc, EUV) =
(

Λc
EUV

)−γφi
(3.18)

The physical couplings at the CFT exit scale are

ρIR = ρUV

(
Λc
EUV

)γp
, µIR = µUV

(
Λc
EUV

)γN/4
(3.19)

where we have used the relation γp = γp̃.
The ratio ε evolves as

εIR = εUV

(
Λc
EUV

)γp−γN/4
(3.20)

and we demand that it is εIR � 1 in order to satisfy the stability constraint for the
non supersymmetric vacuum. The flow from εUV to εIR depends on Λc/EUV and on the
anomalous dimensions. The precise relation between εUV and εIR is found by calculating
the exact value of γp and γN . The anomalous dimensions of the fields φi are obtained from
the relation ∆i = 1 + γi/2 where ∆i = 3

2Ri. The R charges can be computed by using
a-maximization.

The a-maximization procedure, defined in [14], shows that in SCFT the correct R-
charge at the fixed point is found by maximizing the function

atrial(R) =
3
32
(
3TrR3 − TrR

)
(3.21)

The R-charges in (3.21) are all the non anomalous combinations of the R0 charges under
which the supersymmetry generators have charge −1 and all the other flavor symmetries
commuting with the supersymmetry generators. The Tr(R3) and Tr(R) are the coefficients
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of the gauge anomaly and gravitational anomaly. The R-charges that maximize (3.21) are
the R charges appearing in the superconformal algebra.

The R charge assignment has to satisfy the anomaly free condition and the constraint
that the superpotential couplings should be marginal. These conditions are

Ñ+N (1)
f (R[q]−1)+N (2)

f (R[p]−1)=0, R[p]+R[q]+R[L]=2, R[N ]+2R[q]=2 (3.22)

where the symmetry enforces R[q] = R[q̃], R[p] = R[p̃] and R[K] = R[L]. The atrial

function that has to be maximized is

atrial =
3
32

(
2N (1)

f Ñ
(
3(R[q]−1)3−R[q]+1

)
+2N (2)

f Ñ
(
3(R[p]−1)3−R[q]+1

)
+ 2N (1)

f N
(2)
f

(
3(R[L]−1)3−R[L]+1

)
+N (1) 2

f

(
3(R[N ]−1)3−R[N ]+1

)
+2Ñ2

)
(3.23)

By defining R[N ] = 2y we have R[q] = 1− y. The other R charges are

R[p] =
1
n

(n− x+ y), R[L] = y +
x− y
n

(3.24)

where n =
N

(2)
f

N
(1)
f

and x = Ñ

N
(1)
f

. We can simplify the a maximization in terms of the only

variable y, obtaining

ymax =
−3
(
n+ n3

)
+3(−1+n)2x−3x2+

√
n2(n4−8n(x−1)+8n3(x−1)+9(x−1)4−6n2(1+3(x−2)x))

3 (1− n (3 + n+ n2) + (−1 + n2)x)
(3.25)

Once we know the anomalous dimensions and once we fix the duration of the approximate
conformal regime we can see what is the bound to impose on the UV ratio εUV = ρUV/µUV

such that

εIR = εUV

(
Λc
EUV

) 3
2n

(n−2x+2y−yn)

� 1 (3.26)

As a result of the a-maximization procedure, we find that γN > 0 and γp < 0 in the
range (3.2). The former is a consequence of the unitarity of the theory. Thus, from (3.19) we
note that the coupling µ is suppressed during the RG flow, while ρ is enhanced, and (3.12)
poses a nontrivial constraint on the coupling constants of the theory at the CFT exit scale.

In the figures 1–6 we have plotted some region of the ranks x and n by fixing εUV

and Λc/EUV. The colored parts of the figures correspond to εIR < 1. We represented the
behavior of εIR varying from zero to one by changing the color of the shaded region from
red to orange and then to yellow. The white part of the figures represents the region in
which εIR > 1. We also marked the border line between the magnetic IR free and the
conformal window, corresponding to 3Ñ = (N (1)

f +N
(2)
f ).

From the figures we see that smaller values of the ratio εUV guarantee that the running
can be longer in the CFT window. The red region shaded in the figures, near N (1)

f +N (2)
f =

3Ñ , is filled also if the running is extended over a large regime of scales. At the lower edge

– 9 –
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Figure 1. ρUV
µUV

=10−2, Λc
EUV

= 10−4 Figure 2. ρUV
µUV

=10−4, Λc
EUV

= 10−4

Figure 3. ρUV
µUV

=10−2, Λc
EUV

= 10−6 Figure 4. ρUV
µUV

=10−4, Λc
EUV

= 10−6

Figure 5. ρUV
µUV

=10−2, Λc
EUV

= 10−8 Figure 6. ρUV
µUV

=10−4, Λc
EUV

= 10−8

of this region the anomalous dimensions are close to zero, the UV hierarchy imposed on
the relevant deformations is preserved during the flow, and εUV ∼ εIR.

Very close to the 3Ñ = (N (1)
f +N (2)

f ) line, our model represents a calculable metastable
supersymmetry breaking theory. Indeed in this region the perturbative analysis suffices,

– 10 –
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and from the figures 1–6 the lifetime is parametrically large. As we move away from the
3Ñ = (N (1)

f + N
(2)
f ) line the anomalous dimensions get larger. Even if the shaded region

spreads far from this line, we cannot rely on the perturbative computations we made above.
Thus, in this case the non perturbative effects get larger and a deeper analysis is necessary.

In conclusion we have found regions in the parameter space where the theory possesses
metastable non supersymmetric vacua. The RG flow analysis gives non trivial constraints
on the relevant deformations and on the duration of the approximate conformal regime.

4 General strategy

We discuss here the generalization of the mechanism of supersymmetry breaking in SCFTs
deformed by relevant operators. As in SSQCD, the lifetime of the metastable vacuum can
be long in the conformal window of other models, with opportune choices of the parameters.
Consider a SU(Nc) gauge theory with N (1)

f flavors of quarks in the magnetic IR free window
and with a metastable supersymmetry breaking vacuum in the dual phase. In the magnetic
phase a new set of N (2)

f massive quarks must be added to reach the conformal window.
If there is some gauge invariant operator O that hits the unitary bounds, R(O) < 2/3,
it is necessary to add other singlets and also marginal couplings in the superpotential
between the quarks and these new singlets. The mass term for the new quarks is a relevant
perturbation which grows in the infrared, and it has to be very small with respect to
the other scales of the theory, down to the CFT exit scale. This mass term modifies the
non perturbative superpotential and the supersymmetric vacuum, which sets the CFT exit
scale. One must inspect a regime of couplings such that the supersymmetric vacuum is
far away in the field space. This regime corresponds to a bound on the parameters of
the theory, which have to be consistent with the RG running of the physical coupling
constants. In the canonical basis the running of the physical couplings can be absorbed in
the superpotential by the wave function renormalization of the fields. If there is a relevant
operator ∆W = ηO, with classical dimension dim(O) = d, the physical coupling η runs
from the UV scale EUV to the IR scale EIR as

η(EIR) = η(EUV)ZO(EIR, EUV)−
1
2 = η(EUV)

(
EIR

EUV

)γ/2
(4.1)

We require that the running in this approximate conformal regime stops at the energy scale
Λc set by the masses at the supersymmetric vacuum. The bounds on the parameters that
ensure the stability of the metastable vacuum have to hold at this IR CFT exit scale. The
equation (4.1) translates these bounds in some requirements on the UV deformations. The
metastable vacua have long lifetime if there is some regime of UV couplings in which the
stability requirements are satisfied in the weakly coupled conformal window.

Here we have shown that in SSQCD there are some regions in the conformal window in
which a large hierarchy among the couplings allows the existence of long living metastable
vacua. We expect other models with this behavior.
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5 Discussion

In this paper we discussed the realization of the ISS mechanism in the conformal window
of SQCD-like theory. In [1] the metastable vacua disappeared if 3/2Nc < Nf < 3Nc

because the non perturbative dynamics was not negligible in the small field region, and
this destabilized the non supersymmetric vacua.

We have reformulated this problem in terms of the RG flow from the UV cut-off of
the theory down to the CFT exit scale. In the ISS model the CFT exit scale and the
supersymmetry breaking scale are proportional because of the equation of motion of the
meson. Their ratio depends only on the gauge coupling constant at the fixed point. The
bounce action is proportional to this ratio and cannot be parametrically long.

This behavior suggests a mechanism to evade the problem and to build models with
long living metastable vacua in the conformal window of SQCD-like theories. A richer
structure of relevant deformations than in the ISS model is necessary. Metastable vacua
with a long lifetime can exist if the bounce action at the CFT exit scale depends on the
relevant deformations and it is not RG invariant. We have studied this mechanism in an
explicit model, the SSQCD, and we have found that in this case, by adding a new mass
term for some of the quarks, the bounce action has a parametrical dependence on the
relevant couplings. The RG flow of these couplings for different regimes of scales sets the
desired regions of UV parameter that gives a large bounce action in the IR. We restricted
the analysis to a region of ranks in which the model is interacting but weakly coupled, and
the perturbative analysis at the non supersymmetric state is applicable. It is possible to
extend this example to other SCFT theories as we explained in section 4.

It would be interesting to find some dynamical mechanism to explain the hierarchy
among the different relevant perturbations, that are necessary for the stability of the
metastable vacua. For example in the appendix we see that in quiver gauge theories
the mass of the new quarks can be generated with a stringy instanton as in [15, 16]. The
supersymmetry breaking metastable vacua that we have found in the conformal window
might be used in conformally sequestered scenarios, along the lines of [17]. Another appli-
cation is the study of Yukawa interactions along the lines of [18, 19]. Superconformal field
theories naturally explain the suppression of the Yukawa couplings if some of the gauge
singlet fields are identified with the Ti = 10i and Fi = 5̄i generations of the SU(5) GUT
group. Here we have shown that supersymmetry breaking in superconformal sectors is
viable. It is in principle possible to build a supersymmetry breaking SCFT where some
of the generation of the MSSM are gauge singlets, marginally interacting with the funda-
mentals of the SCFT group. In this case the Yukawa arising from these generations can
be suppressed as in [18, 19]. Since supersymmetry is broken one can imagine a mechanism
of flavor blind mediation, like gauge mediation, to generate the soft masses for the rest of
the multiplets of the MSSM. Closely related ideas has recently appeared in [10] and [20].
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A The renormalization of the bounce action

In the paper we analyzed the bounce action at the CFT exit scale. We distinguished the
infrared bounce action SB,IR from SB,UV, the action evaluated at the UV scale. Indeed in
a supersymmetric field theory in the holomorphic basis the bounce action is obtained from
the Lagrangian

L = Zφφ̇
2 + Z−1

φ V (φ) (A.1)

and we have
SB,IR = SB,UVZ

3
φ (A.2)

Hence the bounce action undergoes non trivial renormalization. Here we show that our
analysis, performed in the canonical basis, is consistent with (A.2), both for the ISS model
and for the model in section 3.

The ISS bounce action in the UV is

SB,UV =
(
µUV

Λ̃UV

) 4b̃
Nf−Ñ (A.3)

In the IR this action is renormalized because of the wave function renormalization of the
fields. In the paper we computed the action in the canonical basis and renormalization
effects have been absorbed into the couplings. From (A.2) the IR renormalized action
SB,IR is

SB,IR = SB,UVZ
3
N (A.4)

where the wave function renormalization is

ZM =
(
EIR

EUV

)−γN
(A.5)

We now compute SB,IR and show that indeed it is (A.4). The coupling µIR and the scale
Λ̃IR are given as functions of their UV values

µIR = µUVZ
−1/4
N , Λ̃IR = Λ̃UV

EIR

EUV
= Λ̃UVZ

−1/γN
N (A.6)
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By substiting on the l.h.s. of (A.4) we have

SB,IR =
(
µIR

Λ̃IR

) 4b̃
Nf−Ñ =

(
µUVZ

−1/4
N

Λ̃UVZ
−1/γN
N

) 4b̃
Nf−Ñ

= SB,UVZ
3
N (A.7)

where the last equality is obtained by substituting b̃ = 2Nf − 3Nc and γN = 2b̃/Nf .
Nevertheless the bounce action in SQCD at the CFT exit scale results RG invariant. This
is because the mass scales of the theory are related by the equation of motion of N . The
relation between these scales is proportional to the gauge coupling which is constant during
the running in the conformal window. For this reason the lifetime of the metastable vacuum
cannot be parametrically large in SQCD.

In the model discussed in section 3 instead the bounce action depends non trivially on
the relevant deformations

SB,IR =

(
Λ̃IR

ρIR

) 4N
(2)
f

N
(1)
f

−Ñ
(
µIR

Λ̃IR

) 12Ñ−4N
(1)
f

N
(1)
f

−Ñ (A.8)

The UV bounce action has the same expression but in term of the UV couplings and scale.
The IR coupling and scale are related to the UV values as

µIR = µUVZ
−1/4
N ρIR = ρUVZ

− γp
γN

N Λ̃IR = Λ̃UVZ
− 1
γN

N (A.9)

The infrared bounce action is then

SB,IR = SB,UVZ
A
N (A.10)

where

A =
4N (2)

f (γp − 1)

(N (1)
f − Ñ)γN

+
(3Ñ −N (1)

f )(4− γN )

(N (1)
f − Ñ)γN

= 3 (A.11)

The last equality can be obtained by substituting the relations γφi = 3R[φi] − 2, with
R[N ] = 2y and R[p] = (n−x+y)/n. Hence we verified the general result (A.2) concerning
the renormalization of the bounce action.

B The SSQCD

In this appendix we review the SSQCD defined in [6] and its behavior under Seiberg duality.
The model is a SU(Nc) gauge theory with quarks charged under the SU(N (1)

f )× SU(N (2)
f )

flavor symmetry and a singlet in the bifundamental of SU(N (2)
f ). The matter content is

given in table 2. The superpotential is

W = SPP̃ (B.1)

In the conformal window, 3/2Nc < N
(1)
f + N

2)
f < 3Nc there is a Seiberg dual description,

with SU(N (1)
f + N

(2)
f − Nc) magnetic gauge group with matter content given in table 1,
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N
(1)
f N

(2)
f Nc

Q̃+Q N̄
(1)
f ⊕N

(1)
f 1 Nc ⊕ N̄c

P̃ + P 1 N̄f
(2) ⊕N (2)

f Nc ⊕ N̄c

S 1 N̄f
(2) ⊗N (2)

f 1

Table 2. Matter content of the SSQCD.

N
~

α,β
SP(0)

N
f

N
2 1

f

Figure 7. The Stringy instanton contribution.

where the mass term for the field S and the meson M = PP̃ is integrated out. The dual
superpotential is

W = Kpq̃ + Lp̃q +Nqq̃ (B.2)

In the conformal window these theories are dual if there are no accidental symmetry, not
manifest in the UV Lagrangian, that emerges in the IR.

If some accidental symmetry arise, some gauge invariant operator, O, in the chiral
ring, violates the unitary bound and we have R(O) < 2/3 from the a-maximization.

The marginal term in the superpotential associated to this operator becomes irrelevant
and can be neglected in the IR.

In SSQCD the first operator that hits the unitary bound is N = QQ̃. By using the
ymax that we calculated in (3.25) we see that the unitary bound is hit at

x =
1
3

(
2− 2n+

√
1− 14n+ 13n2

)
(B.3)

where x = Ñ

N
(1)
f

and n =
N

(2)
f

N
(1)
f

. For higher values of x the dual superpotential becomes

W = Kpq̃ + Lp̃q (B.4)

In the paper we have studied a region were this meson does not hit the unitary bounds,
and we can trust the duality without adding new operators.

Relevant deformations. Some deformations must be added to (B.2) to recover (3.1).
The linear term for M can be generated in the electric gauge theory by adding a mass
term for the quarks Q and Q̃, while the mass term for the field p and p̃ can be generated
by adding a linear deformation k2S. When we integrate out the mass term mMS in the
magnetic theory the fields p and p̃ acquire a mass term proportional to ρ = k2/m.

However a large hierarchy is required between the scale µ and the mass ρ for the
existence of the metastable vacua. We can impose this hierarchy at hand or find a dynamical
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CFT exit scale

UV
E(   ) E

UV UV
Eµ(   )

(   )E
IR

µ(   )EIR EIR= c

Figure 8. The evolution of the scales from the UV (above) to the IR (below).

mechanism. For example, when N (2)
f = 1 we can think to embed the magnetic theory in a

quiver and couple the fields p and p̃ with an SP (0) node as in figure 7.
In the instantonic action an interaction S ∼ αpp̃β between the instanton moduli and

the fields is present. By integrating over the instantonic zero modes we are left with the
desired suppressed mass term

∆W =
∫

dα dβ eSinst = Λe−App̃ (B.5)

for the p and p̃ quarks, where A represents the area of curve associated to the SP (0) node
and Λ is associated to a string scale.

C RG flow and evolution of the scales

In this appendix we summarize the evolution of the scales in the RG flow from the UV to
the IR. We perturb the conformal theory by a mass term ρ and by a linear term µ. As we
discussed in the paper a large hierarchy has to be imposed between them. At the UV scale
EUV we have

ρ(EUV)� µ(EUV)� EUV (C.1)

As we observed in the analysis of the RG flow, in the IR the mass ρ grows, while the linear
term reduces. Our computation is trustable if the UV hierarchies translates in the IR to

ρ(EIR)� µ(EIR)� EIR (C.2)

where EIR is the scale of the supersymmetric vacua, and it sets the CFT exit scale too.
In figure 8 we give a representation of the evolution of these scales for the RG flow in this
approximately conformal theory.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License which permits any noncommercial use, distribution,
and reproduction in any medium, provided the original author(s) and source are credited.
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