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1 Introduction

The attractor mechanism [1–4], initially discovered in the context of N = 2 black holes, has

been recognized as a universal phenomenon governing any extremal flow in supergravity

with an AdS horizon. It applies to both BPS and non-BPS solutions [5, 6], ungauged [7] and

gauged [8] higher-derivatives supergravities, and general intersections of brane solutions [9].

Also AdS4 vacua arising in string theory compactifications with fluxes can be thought

as the near-horizon geometries of extremal black brane solutions. In fact, the vacuum

conditions of flux compactifications display many analogies with the attractor equations
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defining the near-horizon limit of extremal black holes. This was first shown in [5] in the

context of N = 1 orientifolds of type IIB on Calabi-Yau three-folds. In that paper, first

it was observed that the N = 1 scalar potential has a form close to the N = 2 black

hole potential, with the black hole central charge Z replaced by the combination e
K
2 W

involving the N = 1 Kähler potential K and superpotential W , and with the NSNS and

RR fluxes playing the role of the black hole electric charges. Then, exploiting the underlying

special Kähler geometry of the Calabi-Yau complex structure moduli space, the differential

equations both for black hole attractors and for flux vacua were recast in a set of algebraic

equations. This treatement did not consider the Calabi-Yau Kähler moduli, which do not

appear in the type IIB flux superpotential. Explicit attracting Calabi-Yau solutions were

derived in [10] (see also [11] for recent developements on CY attractors), while extensions

to non-Calabi-Yau attractors were elaborated in [12–15]. A recent review on the subject,

including a complete list of references, can be found in [16], while for exhaustive reviews

on flux compactifications with a thorough bibliography see [17–20].

In this paper we develop the above ideas focussing on a four-dimensional N = 2

setup. We consider general N = 2 gauged supergravities related to type II theories via flux

compactification on non-Calabi-Yau manifolds, and we explore their AdS vacua exhibiting

partial (N = 1) or total (N = 0) spontaneous supersymmetry breaking. In particular, we

find infinite classes of AdS vacua for an arbitrary number of vector and hypermultiplets,

and we study their U-duality invariants. The solutions are derived by solving a general

system of first order conditions guaranteeing the equations of motion.

At the four dimensional level, the family of supergravities we consider can be obtained

by deforming the Calabi-Yau effective action. The latter is characterized by the choice of

two special Kähler manifolds M1 and M2: while M2 defines the vector multiplet scalar

manifold, M1 determines via c-map the quaternionic manifold MQ parameterized by the

scalars in the hypermultiplets [21, 22]. The deformation we study is the most general

abelian gauging of the Heisenberg algebra of axionic isometries which is always admitted

by MQ [23–25]. The gauging involves both electric and magnetic charges in a consistent

way, the latter appearing as mass terms for tensor fields [26–30]. From the point of view of

compactifications, this deformation is expected to correspond to a dimensional reduction of

type IIA/IIB on SU(3) and SU(3)×SU(3) structure manifolds (and possibly non-geometric

backgrounds) in the presence of general NSNS and RR fluxes [31–38]. In this perspective,

our setup provides a unifying framework for the study of N = 2 flux compactifications of

type II theories on generalized geometries.

We start our analysis in section 2 by reconsidering the expression derived in [25] for

the N = 2 scalar potential associated with the gauging described above. This expres-

sion is manifestly invariant under the symplectic transformations rotating the flux charges

together with the symplectic sections of both the special Kähler geometries on M1 and

M2. We derive a convenient reformulation of the scalar potential in terms of a triplet

of Killing prepotentials Px , x = 1, 2, 3, and their covariant derivatives. The Px encode

the informations about the gauging, and play a role analogous to the central charge Z

of N = 2 black holes, or to the covariantly holomorphic superpotential e
K
2 W of N = 1

compactifications. Interestingly, in our reformulation the only derivatives appearing are
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the special Kähler covariant derivatives with respect to the coordinates on M1 and M2,

with no explicit contributions from the MQ coordinates orthogonal to M1. This rewriting

is advantageous since it allows to take into account the hypersector continuing however to

dispose of the nice properties of special Kähler geometry.

In section 3 we move to the study of the extremization equations for the potential.

These are spelled out in subsection 3.1, and resemble the attractor equations of N = 2 black

holes, though they are more complicated to solve. To achieve this goal, in subsection 3.2

we propose a new general approach: this is based on a deformation of the supersymmetry

conditions to a set of first order equations in the Px and their special Kähler covariant

derivatives, which still imply the (second order) equations of motion and hence yield non-

supersymmetric vacua. Again exploiting special Kähler geometry, our first order conditions

can be reformulated in an algebraic form exhibiting manifest symplectic covariance. The

proof that these equations extremize the scalar potential is worked out in subsection 3.3.

In section 4 we find explicit AdS solutions for the wide class of supergravities whose

scalar manifolds M1 and M2 are symmetric with cubic prepotentials. These solutions

generalize those derived in [39] in the context of dimensional reduction of type IIA on

coset spaces with SU(3) structure (see footnote 9 below for the earlier history of the so-

lutions in [39]). Indeed, our analysis allows for an arbitrary number of vector multiplets

(subsection 4.1) and hypermultiplets (subsection 4.2), as well as for a large set of fluxes.

Subsection 4.3 is dedicated to the study of the U-duality transformation properties

of our solutions. We identify and evaluate the relevant U-invariants, and we provide a

manifestly U-invariant expression for the AdS cosmological constant.

In subsection 4.4 we compute the central charge of the dual three-dimensional CFT’s

associated to the solutions found. This is done by employing the entropy function for-

malism [7, 40] originally introduced for black hole attractors, and then generalized to the

context of general black brane solutions [9]. The entropy function F is defined as the Leg-

endre transform of the higher-dimensional supergravity action with respect to the brane

electric charges, evaluated at the near horizon geometry. Since in our description the brane

electric fluxes are assumed dualized to magnetic ones, F corresponds just to (minus) the

supergravity action in the four-dimensional description. As we will see, the central charge

results then proportional to the inverse of the cosmological constant, and hence determined

by the same U-duality invariants mentioned above.

In subsection 4.5 we come back to the explicit examples of type IIA dimensional re-

ductions on coset spaces studied in [39] (see also [41] for N = 1 orientifold truncations on

the same manifolds). We give more details about the relevant scalar manifolds, and we

discuss the models arising from reduction of type IIB on the same manifolds.

In section 5 we draw our final considerations. Finally, the appendix contains a lot of

background material as well as some details of our computations. In appendix A firstly

we discuss how the most general scalar potential of N = 2 supergravity with gaugings of

quaternionic isometries can be put in a form involving the Px and their special Kähler and

quaternionic covariant derivatives (cf. eq. (A.11)). Secondly, we prove that for the theory

we consider this expression reduces to a formula in which only special Kähler covariant

derivatives appear. In appendix B we deal with the N = 1 susy conditions, expressing
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them both as differential conditions on the Px, and as symplectically covariant algebraic

equations [37]. Appendix C illustrates how the gaugings we consider can arise from dimen-

sional reduction of type II theories on manifolds with SU(3) structure. Appendix D details

the computations of the U-duality invariants that are relevant for our solutions.

2 Revisiting the N = 2 flux potential

In this section we reconsider the scalar potential V derived in [25] by gauging the N = 2

effective action for type II theories on Calabi-Yau three-folds, and we reformulate it in

terms of Killing prepotentials Px and their special Kähler covariant derivatives. From a

dimensional reduction perspective, V arises [38] in general type II flux compactifications

on 6d manifolds with SU(3) or SU(3) × SU(3) structure (and non-geometric backgrounds)

preserving eight supercharges [31, 34–37]. An explicit dictionary between the gauging and

the fluxes is presented in appendix C for type IIA on SU(3) structures, together with a

further list of references.

Scalars in N = 2 supergravity organize in vector multiplets and hypermultiplets, re-

spectively parameterizing a special Kähler manifold M2 and a quaternionic manifold MQ.

In the cases of our interest, MQ is derived via c-map from a special Kähler submanifold

M1 [21, 22]. For both type IIA/IIB compactifications, we denote by h1 + 1 the number of

hypermultiplets (where the 1 is associated with the universal hypermultiplet), and by h2+1

the number of vector fields (including the graviphoton in the gravitational multiplet), so

that h1 = dimCM1 and h2 = dimCM2. Furthermore, we introduce complex coordinates

zi , i = 1, . . . h1 on M1, and xa , a = 1, . . . , h2 on M2, and we denote by

ΠI
1 = e

K1
2

(
ZI

GI

)
, I = (0, i) = 0, 1, . . . , h1 ,

ΠA
2 = e

K2
2

(
XA

FA

)
, A = (0, a) = 0, 1, . . . , h2 (2.1)

the covariantly holomorphic symplectic sections of the special Kähler geometry on M1 and

M2 respectively. All along the paper, indices in a double font like I and A correspond to

symplectic indices. The respective ranges are I = 1, . . . , 2(h1 +1) and A = 1, . . . , 2(h2 +1) .

To complete the geometric data on M1 and M2, we introduce the respective Kähler

potentials K1, K2, Kähler metrics gī, gab̄ , and symplectic invariant metrics C1, C2 :

K1 = − log i
(
Z

IGI − ZIGI

)
, gī = ∂i∂̄K1

K2 = − log i
(
X

AFA −XAFA

)
, gab̄ = ∂a∂b̄K2

C1 IJ = CIJ

1 =

(
0 1l

−1l 0

)
= C2 AB = CAB

2 ⇒ CABCBC = −δC
A , CIJC

JK = −δK
I .

(2.2)

Finally, the coordinates zi on M1 are completed to coordinates on MQ by the real axions

ξI = (ξI , ξ̃I)
T arising from the expansion of the higher dimensional RR potentials, together

with the 4d dilaton ϕ and the axion a dual to the NSNS 2-form along the 4d spacetime.
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The quaternionic manifold MQ always admits a Heisenberg algebra of axionic isome-

tries [23], which are gauged once fluxes are turned on in the higher-dimensional back-

ground [24, 25, 42–46]. The NSNS fluxes, including geometric (and possibly non-geometric)

fluxes, are encoded in a real ‘bisymplectic’ matrix QA
I, while the RR fluxes are encoded in

a real symplectic vector cA. Explicitly,1

QA
I =

(
e I
A eAI

mAI mA
I

)
, cA =

(
pA

qA

)
. (2.3)

Abelianity and consistency of the gauging impose the following constraints on the

charges [24, 25]

QT C2Q = QC1Q
T = cTQ = 0 . (2.4)

In the context of dimensional reductions, these can be traced back to the Bianchi identities

for the higher-dimensional field strengths, together with the nilpotency of the exterior

derivative on the compact manifold [34, 36] (cf. appendix C).

The scalar potential generated by the gauging can be written as the sum of two con-

tributions: V = VNS +VR, where VNS can be seen to come from the reduction of the NSNS

sector of type II theories, while VR derives from the RR sector. Both these contributions

take a symplectically invariant form, and read [25]

VNS =−2e2ϕ
[
ΠT

1 Q̃
T M2Q̃Π1 + ΠT

2 QM1Q
T Π2 + 4ΠT

1 CT
1Q

T
(
Π2Π

T
2 + Π2Π

T
2

)
QC1Π1

]

VR =−1

2
e4ϕ(c+ Q̃ ξ)T M2 (c+ Q̃ ξ) , (2.5)

with

Q̃A
I = (CT

2QC1)
A

I , (2.6)

while (M1)IJ and (M2)AB are symmetric, negative-definite matrices built respectively from

the period matrices (N1)IJ and (N2)AB of the special Kähler geometries on M1 and M2

via the relation

M =

(
1 −ReN
0 1

)(
ImN 0

0 (ImN )−1

)(
1 0

−ReN 1

)
. (2.7)

Nicely, expressions (2.5) for VNS and VR can be recast in a form that reminds that of

the N = 2 black hole potential (as well as the N = 1 supergravity potential), with the

1A consistent formulation of N = 2 supergravity involving both electric and magnetic charges can be

obtained by dualizing some hyperscalars to two-forms [26–30]. After a subset of the hypermultiplets is

transformed in tensor multiplets, the residual scalar manifold is no more quaternionic. Anyway, it turns

out that the correct expression for the scalar potential can be derived by employing the data (vielbeine,

Sp(1) connection) of the quaternionic manifold prior the dualization of the scalars, and by reasoning as

if the gauging was performed both with respect to electric and magnetic gauge potentials. The resulting

expression for V reads as the symplectic completion of the standard formula [47] for the potential following

from a purely electric gauging. See appendix A for more details.

Also notice that in MQ the special Kähler coordinates are inert under the Heisenberg algebra symmetries

of MQ [22, 23]. It is only the latter that is gauged in the supergravity description considered in this paper.

– 5 –



J
H
E
P
0
2
(
2
0
1
0
)
0
2
7

NSNS and RR fluxes QA
I and cA playing a role analogous to the black hole charges. The

black hole central charge will here be replaced by the triplet of N = 2 Killing prepotentials

Px , x = 1, 2, 3 which describe the gauging under study. These read (see appendix A

for details):

P+ ≡ P1 + iP2 = 2eϕ ΠT
2QC1Π1

P− ≡ P1 − iP2 = 2eϕ ΠT
2QC1Π1

P3 = e2ϕ ΠT
2 C2(c+ Q̃ξ) . (2.8)

Here, P± encode the contribution of the NSNS sector, while P3 describes the contribution

of the RR sector [34, 36].

We find that the NSNS and RR potentials (2.5) can be recast in the suggestive form

VNS = gab̄DaP+Db̄P+ + gīDiP+D̄P+ − 2|P+|2

VR = gab̄DaP3Db̄P3 + |P3|2, (2.9)

whose main benefit is to involve only special Kähler covariant derivatives of the Px, which

are defined as

DiPx =

(
∂i +

1

2
∂iK1

)
Px , DaPx = (∂a +

1

2
∂aK2)Px . (2.10)

Eqs. (2.9) are the expressions for VNS and VR we are going to employ in the next sections.

An expression closely related to the above rewriting of VNS in terms of P+ appeared in [25],

and our derivation of VR in terms of P3 follows the same methods. In order to prove the

equivalence between (2.5) and (2.9) we employ the following useful identities of special

Kähler geometry [48]:

gīDiΠ1D̄Π
T
1 = −1

2

(
CT

1 M1C1 + iC1

)
− Π1Π

T
1 (2.11)

gab̄DaΠ2Db̄Π
T
2 = −1

2

(
CT

2 M2C2 + iC2

)
− Π2Π

T
2 . (2.12)

These yield

gab̄DaP+Db̄P+ = −2 e2ϕ
(
ΠT

1 Q̃
T M2Q̃Π1 + 2Π T

1 CT
1Q

TΠ2 ΠT
2 QC1Π1

)

gīDiP+D̄P+ = −2 e2ϕ
(
ΠT

2 QM1Q
T Π2 + 2ΠT

1 CT
1Q

T Π2 ΠT
2 QC1Π1

)

−2|P+|2 = −8 e2ϕ ΠT
1 CT

1Q
T Π2 ΠT

2QC1Π1

gab̄DaP3Db̄P3 + |P3|2 = −1

2
e4ϕ(c+ Q̃ξ)T M2(c+ Q̃ξ) , (2.13)

and the equivalence between (2.5) and (2.9) is seen by addition of these four lines.

In appendix A we illustrate an alternative, ab initio derivation, where (2.9) are obtained

starting from the general formula for the supergravity scalar potential given as a sum of

squares of fermionic shifts, and expressing the latter in terms of the Px and their derivatives.

It is instructive to compare the quantities in (2.8) with the black hole central charge,

which reads ZBH = ΠT
2 C2 c, where here c = (pA, qA) is to be interpreted as the symplectic

– 6 –
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vector of electric and magnetic charges of the black hole. In addition to the fact that we are

dealing with two quantities (P+ and P3) instead of a single one (ZBH), we face here the fur-

ther complication that these do not depend just on the covariantly holomorphic symplectic

section Π2 of the vector multiplet special Kähler manifold M2, but also on the scalars in

the hypermultiplets. However, the constrained structure of the quaternionic manifold, de-

termined via c-map from the special Kähler submanifold M1, comes to the rescue, yielding

a relatively simple dependence of P+ and P3 on the 4d dilaton eϕ (appearing as a mul-

tiplicative factor) and on the axionic variables ξI (appearing in P3 as a scalar-dependent

shift of the charge vector c). Finally, the M1 coordinates enter in P+ via the covariantly

holomorphic symplectic section Π1, making P+ a covariantly ‘biholomorphic’ object.

3 Vacuum equations and first order conditions

3.1 The vacuum equations

The extremization of the scalar potential (2.9) corresponds to the equations

∂ϕV = 0 ⇔ VNS + 2VR = 0 (3.1)

∂ξV = 0 ⇔ Q̃T M2 (c+ Q̃ξ) = 0 (3.2)

∂iV = 0 ⇔ iCijkg
j̄gkk̄D̄P−Dk̄P+ − DiP+P+ + gab̄DaDiP+Db̄P+ = 0 (3.3)

∂aV = 0 ⇔ iCabcg
bb̄gcc̄

(
Db̄P−Dc̄P+ +Db̄P3Dc̄P3

)
−DaP+P+ + 2DaP3P3

+ gīDiDaP+D̄P+ = 0 . (3.4)

To write (3.3), we used the following characterizing relations of special Kähler geometry [47]

DiDjΠ1 = iCijkg
kk̄Dk̄Π1 , DiD̄Π1 = gīΠ1 , (3.5)

where Cijk is the completely symmetric, covariantly holomorphic 3-tensor of the special

Kähler geometry on M1. The analogous identities obtained by sending 1 → 2 and i, j, k →
a, b, c have been used to derive eq. (3.4). In particular, these relations imply

DiDjP+ = iCijkg
kk̄Dk̄P− , (3.6)

as well as

DaDbP+ = iCabcg
cc̄Dc̄P− and DaDbP3 = iCabcg

cc̄Dc̄P3 . (3.7)

The system of equations above, in particular eqs. (3.3) and (3.4), take a form which reminds

the attractor equations for black holes in N = 2 supergravity. In the remaining of this sec-

tion we will show how this set of equations is solved by a supersymmetry inspired set of first

order conditions accounting for both supersymmetric and non-supersymmetric solutions.

3.2 First order conditions

In this subsection we propose a first order ansatz which generalizes the supersymmetry

conditions and allows to solve the vacuum equations (3.1)–(3.4). First we will give a

– 7 –
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summary of our results, then in the next subsection we will explicitly show how the vacuum

equations follow from the ansatz. Finally, in section 4 we will present some explicit examples

of supersymmetric and non-supersymmetric vacua satisfying our first order ansatz.

We consider the following set of equations, linear in the Px (and their derivatives), and

hence in the flux charges:

± e±iγ−iθP± = uP3

± e±iγ+iθDaP± = v DaP3

DiP+ = 0 = Dı̄P− , (3.8)

where γ, u, v, θ are real positive parameters. While γ will be just a free phase, the other

three parameters will need to satisfy certain constraints given below. The ansatz (3.8) gen-

eralizes the AdS N = 1 supersymmetry condition, which, as we illustrate in appendix B.1,

corresponds to the particular case2

susy ⇔ u = 2 , v = 1 , θ = 0 . (3.9)

Our aim is to implement the first order ansatz (3.8) to derive non-supersymmetric solutions

of the vacuum equations. In order to do this, we will restrict our analysis to the case in

which M2 is a special Kähler manifold with a cubic prepotential. Indeed, below we will

show that (3.8) extremizes the scalar potential if the parameters u, v satisfy

1

2
uv2 − u2v + u+ v = 0 , (3.10)

and — under the assumption that M2 is cubic — if we further require that

DaP3 = α3 ∂aK2 P3 , (3.11)

with α3 given by

e3iArg(α3)+2iArg(P3) = −
√

4u

3v

1 − v2 e2iθ

2 − u v e−2iθ
, |α3|2 =

u

3v
. (3.12)

As we will see, the second of (3.12) is actually a consequence of (3.8) and (3.11). Further-

more, notice that by evaluating the modulus square of both its sides, the first of (3.12)

yields a constraint involving u, v, θ only:

4u v2 cos(2θ) = 3u2v3 − 4u v4 − 4u+ 12 v . (3.13)

Explicit solutions to the above conditions on symmetric scalar manifolds M2 with a

cubic prepotential will be presented in section 4.

2The N = 1 conditions are completed by P3 = −iˆ̄µ, where µ̂ 6= 0 is the parameter appearing in

the Killing spinor equation on AdS, related to the AdS cosmological constant Λ via Λ = −3|µ̂|2. See

appendix B.1 for details.

For a study of the possible maximally supersymmetric configurations in N = 2 gauged supergravity, we

refer to [49].
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Below in this section we also consider the possibility of relaxing requirement (3.11).

While it will be clear that condition (3.10) has to hold independently of the assumptions

on the special geometry on M2, we will show that relation (3.13) is also necessary, at least

when M2 is a symmetric special Kähler manifold.

It will be very useful for our purposes to rephrase eqs. (3.8) in a symplectically covariant

algebraic form. Following similar steps to the ones presented for the supersymmetric case

in appendix B.2, we find that (3.8) are equivalent to3

0 =QT Π2 − iuP3e
iθ−ϕRe

(
eiγΠ1

)
, (3.14)

0 =QC1Re
(
eiγΠ1

)
, (3.15)

0 = 2QC1Im
(
eiγΠ1

)
+ 2e−ϕ(u+ v)Re

[
e−iθ P3C2Π2

]

−eϕ(M2v cos θ − C2v sin θ)(c+ Q̃ξ). (3.16)

Notice that, precisely as in the supersymmetric case, for non-vanishing P3 the second

equation actually follows from the first one (cf. below eq. (B.13)).

3.3 Extremization of V from the Ansatz

We now come to the proof that the extremization equations (3.1)–(3.4) for the scalar

potential V are satisfied by the conditions given above.

∂ϕV = 0. We start by considering the extremization of V with respect to the 4d dilaton

ϕ, namely eq. (3.1). Let us preliminarily show that the linear ansatz above implies

|DP3|2 =
u

v
|P3|2, (3.17)

where here and in the following we denote |DPx|2 ≡ gab̄DaPxDb̄Px. This can be seen from4

|DP3|2 = −1

2
e4ϕ (c+ Q̃ξ)T M2(c+ Q̃ξ) − |P3|2

=
(u+ v)

v cos θ
e2ϕ(c+ Q̃ξ)T CT

2 Re
[
Π2P3 e

−iθ
]
− |P3|2

=
u

v
|P3|2, (3.18)

where for the first equality we used (2.13), for the second equality we employed condi-

tion (3.16) and the constraints (2.4), while for the third one we recognized expression (2.8)

for P3 . From (3.8) and (3.17) we deduce the following chain of relations

1

v
|DP±|2 = v |DP3|2 = u |P3|2 =

1

u
|P±|2 . (3.19)

Also recalling DiP+ = 0, the dilaton equation (3.1) becomes just a condition on u and v:

0 = |DP+|2 − 2|P+|2 + 2( |DP3|2 + |P3|2 )

=

(
u v − 2u2 + 2

u

v
+ 2

)
|P3|2, (3.20)

3The equations in appendix B.2 are recovered by substituting the values (3.9) of u, v, θ, and setting

iP3 = ˆ̄µ. As shown in [37], these supersymmetry conditions match the ‘pure spinor equations’ derived

in [50–52] and characterizing the N = 1 backgrounds at the 10d level.
4An analogous computation leads to |DP+|

2 = u
v
|v|2|P3|

2, which is consistent with (3.8) and (3.17).
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which corresponds to eq. (3.10).

As an aside, we remark that using (3.17) the potential at the critical point can be

rewritten as

V = −VR = −
(

1 +
u

v

)
|P3|2 . (3.21)

Notice that in the supersymmetric case this yields V = −3|P3|2 = Λ (cf. footnote 2 for the

relation between P3 and the AdS cosmological constant Λ), which is consistent with the

Einstein equation on AdS4.

∂ξIV = 0. Next we observe that the ξI equation (3.2) follows from eq. (3.16) after

multiplying it from the left by the matrix QT C2. The first and the last terms in the

obtained equation vanish due to constraint (2.4), while the second one vanishes after using

eq. (3.14).5 Notice that to satisfy this equation it is crucial that u and v be real.

∂iV = 0. Taking into account DiP+ = 0, the only non-trivially vanishing term in (3.3)

is the last one, containing both the Da and Di derivatives. In order to see that also this

term is zero, we evaluate

gab̄DaDiP+Db̄P+ = 4e2ϕDiΠ
T
1 CT

1Q
T

(
−1

2
CT

2 M2C2 −
i

2
C2 − Π2Π

T
2

)
QC1Π1

= ie2ϕ+iγDiΠ
T
1 CT

1Q
T
{

2(u+ v)Re
[
P3e

−iθ−ϕCT
2 M2Π2

]

+ eϕv cos θ(c+ Q̃ξ) + eϕv sin θCT
2 M2(c+ Q̃ξ)

}

=
1

2
eiγ(u+ v)

[
e−iθ P3DiP+ − eiθ P3DiP−

]
= 0 .

where in the first line we used (2.12) to obtain the right hand side, whose last two terms

actually vanish due to constraint (2.4) and to condition DiP− = 0. The second line follows

from substituting QC1Π1 from (3.15), (3.16) and using the identity CT
2 M2C2M2 = 1l. The

last line is derived employing again (2.4) and the identity M2Π2 = −iC2Π2, recalling

that (3.2) is satisfied, and recognizing the expressions (2.8) of P±. Both terms in the

parenthesis vanish due to (3.8).

∂aV = 0. Finally we consider eq. (3.4). Let us first show that the term involving both

Da and Di derivatives vanishes under the ansatz (3.8). We compute

gīDiDaP+D̄P+ = 4e2ϕDaΠ
T
2QC1

(
− 1

2
CT

1 M1C1 −
i

2
C1 − Π1Π

T
1

)
CT

1Q
T Π2

= 2i u e−iθ P3e
ϕDaΠ

T
2Q
[
Re
(
eiγM1Π1

)
− 2C1Π1Π

T
1 C1Re

(
eiγΠ1

)]

= u e−iθ P3e
ϕDaΠ

T
2QC1

(
eiγΠ1 + e−iγΠ1

)

=
1

2
u e−iθ P3

(
eiγDaP+ + e−iγDaP−

)
= 0 .

5Here we followed parallel steps to the proof [52, app. A] that in type II theories the general N = 1

conditions of [52] imply the equations of motion for the RR field-strengths on the internal manifold M6.
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In the first line we used identity (2.11); the term proportional to iC1 cancels due to con-

straint (2.4). Then the second line follows using (3.14), while for the third line we used

M1Π1 = −iC1Π1 as well as ΠT
1 C1Π1 = i. Recalling the expression (2.8) of P±, we thus

obtain the last line, which vanishes due to (3.8).

Using (3.8), eq. (3.4) then reads

(
1 − v2e2iθ

)
iCabcg

bb̄gcc̄Db̄P3Dc̄P3 +
(
2 − uve−2iθ

)
DaP3 P3 = 0 . (3.22)

In the supersymmetric case (3.9), and only in this case, the terms in the two parenthesis

vanish separately, and the scalar potential is therefore fully extremized.

To solve the non-supersymmetric vacuum equations we focus on the case in which M2

has a cubic prepotential, and require relation (3.11). This condition, together with the

following property of cubic geometries6

iCabcg
bb̄gcc̄ ∂b̄K2 ∂c̄K2 = 2 ∂aK2 , (3.23)

allows us to rewrite (3.22) as

(
1 − v2e2iθ

)
2ᾱ2

3 P2
3 +

(
2 − uve−2iθ

)
α3|P3|2 = 0 . (3.24)

where we used the relation gab̄∂aK2∂b̄K2 = 3 (cf. footnote 6), that holds for cubic geome-

tries. Using the second of (3.12) it is now easy to check that (3.24) corresponds to the first

of (3.12).

We have thus proved that conditions (3.8), together with (3.10)–(3.12), guarantee (a

non-supersymmetric) extremization of the scalar potential.

Relations between symplectic invariants. One can wonder whether it is possible to

find vacuum solutions of the type (3.8) that do not require ansatz (3.11). Here we show

that, even relaxing the latter condition, eq. (3.13) is however still needed, at least in the

case in which the special Kähler manifold M2 is symmetric.

We start by writing eq. (3.22) as

DaP3 =
A

P3

Cabcg
bb̄gcc̄Db̄P3Dc̄P3 , A ≡ − i

(
1 − v2e2iθ

)
(
2 − uve−2iθ

) . (3.25)

Contracting this equation with gab̄Db̄P3 one finds a necessary condition relating two sym-

plectic invariants:

|DP3|2 =
A

P3

Cabcg
aāgbb̄gcc̄DāP3Db̄P3Dc̄P3 . (3.26)

Replacing Db̄P3 and Dc̄P3 in (3.25) by the complex conjugate of (3.25) itself and using

the following identity, valid for symmetric special Kähler geometries:

gbbgcc CabcCb̄(d̄ēCf̄ ḡ)c̄ =
4

3
C(d̄ēf̄gḡ)a , (3.27)

6This can be verified using the relations given in (4.2), (4.4) below.
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G
H

SU(1,1)
U(1)

SU(1,1)
U(1) × SO(2,n)

SO(n)×U(1)
Sp(6,R)

SU(3)×U(1)
SU(3,3)

SU(3)×SU(3)×U(1)
SO∗(12)

SU(6)×U(1)

E7(−25)

E6×SO(2)

MQ
G2(2)

SO(4)
SO(4,n+2)

SO(n+2)×SO(4)

F4(4)

USp(6)×SU(2)

E6(2)

SU(6)×SU(2)

E7(−5)

SO(12)×SU(2)

E8(−24)

E7×SU(2)

RG 2 (2,n + 2) 14 20 32 56

RH 0 n + 1 6 (3,3) 15 27

Table 1. The first row displays the complete list of symmetric special Kähler manifolds G/H

with cubic prepotentials (see e.g. [23, 53]). The second row shows the quaternionic manifolds

MQ related to the special Kähler manifolds in the first row via the c-map [21]. The third row

displays the symplectic G-representation under which the symplectic sections (ΠI
1

or ΠA
2
) transform.

Finally, the last row shows the H-representation under which the scalar coordinates (zi or xa) on

G/H transform.

we get

DaP3 =
4AĀ2

3P3 P2
3

DaP3 Cb̄c̄d̄ g
b̄bgc̄cgd̄dDbP3DcP3DdP3 . (3.28)

Using (3.26) and (3.17) to rewrite the right hand side, we arrive at

4u

3 v
|A|2 = 1 , (3.29)

which is precisely eq. (3.13).

Explicit solutions. In the next section we will present explicit vacuum solutions A, B,

C (cf. (4.28)–(4.30)) satisfying the linear ansatz of subsection 3.2, with the parameters

u, v, θ given by

A (N = 0) : u = 3v = 2

√
6

5
, eiθ =

1√
6
(
√

5 − i)

B (N = 0) : u = v = 2 , eiθ =
1

2
(1 − i

√
3)

C (N = 1) : u = 2v = 2 , eiθ = 1 . (3.30)

4 Vacuum solutions

Applying the results of the previous section, in the following we present new explicit N = 0

and N = 1 AdS4 vacuum solutions of the N = 2 gauged supergravities under study, and

we discuss the associated U-duality invariants.

For simplicity we focus on the case where the special Kähler scalar manifolds M1 and

M2 are symmetric manifolds G/H with cubic prepotentials; a complete list is given in

table 1 below. We denote the cubic prepotentials on M1 and M2 respectively by

F =
1

6
dabc

XaXbXc

X0
, G =

1

6
dijk

ZiZjZk

Z0
, (4.1)

where dabc and dijk are scalar-independent, totally symmetric real tensors.
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Choosing special coordinates, for M2 we have

XA = (1, xa), FA = (−f, fa), f =
1

6
dabcx

axbxc, fa =
1

2
dabcx

bxc

V =
1

6
dabcx

a
2x

b
2x

c
2, Va =

1

2
dabcx

b
2x

c
2, Cabc = eK2 dabc

K2 = − log(−8V), ∂aK2 =
iVa

2V , (4.2)

where the complex coordinates xa are split into real and imaginary parts as xa = xa
1 + ixa

2 ,

with xa
2 < 0. Analogously, for M1 we have

ZI = (1, zi), GI = (−g, gi), g =
1

6
dijkz

izjzk, gi =
1

2
dijkz

jzk

Ṽ =
1

6
dijkz

i
2z

j
2z

k
2 , Ṽi =

1

2
dijkz

j
2z

k
2 , Cijk = eK1 dijk

K1 = − log(−8Ṽ), ∂iK1 =
iṼi

2Ṽ
. (4.3)

with zi = zi
1 + izi

2 and zi
2 < 0. For the case of a theory with no hypermultiplets other than

the universal one, expressions (4.3) are replaced simply by Z0 = 1 , G0 = −i and eK1 = 1
2 .

Moreover, the following relations involving the metric gab̄ = ∂a∂b̄K2 on M2 are valid:

gab̄ =
1

4V2
(VaVb − V Vab) , gab̄ = 2(xa

2 x
b
2 − 2V Vab)

gabVb = 4Vxa
2 , gabVaVb = 12V2, (4.4)

where Vab = dabcx
c
2 , and Vab is its inverse. Similar relations hold for the corresponding

quantities on M1 with a, b→ i, j and V → Ṽ .

To perform the forthcoming computations, it is convenient to introduce the following

holomorphic prepotentials W±, W3 :

P± = e
K1+K2

2
+ϕW± , P3 = e

K2
2

+2ϕW3 , (4.5)

whose Kähler covariant derivatives are defined via

DaWx = (∂a + ∂aK2)Wx ,

DiW+ = (∂i + ∂iK1)W+ , ∂iW− = 0 ,

Dı̄W− = (∂ı̄ + ∂ı̄K1)W− , ∂ı̄W+ = 0 , (4.6)

with ∂aK2 and ∂iK1 given in (4.2) and (4.3) respectively. Explicitly, recalling (4.5), (2.8),

and taking mAI = mA
I = 0 for simplicity, one finds

W+ = 2XA(eA
IGI − eAIZ

I) , W− = 2XA(eA
I ḠI − eAI Z̄

I) ,

W3 = XA(qA + eA
I ξ̃I − eAIξ

I) −FAp
A , (4.7)

Recalling (4.2) and defining fab = dabcx
c, we preliminarily compute:

∂aW+ = 2(ea
IGI − eaIZ

I) , ∂aW− = 2(ea
I ḠI − eaI Z̄

I) ,

∂aW3 = qa + ea
I ξ̃I − eaIξ

I + fap
0 − fabp

b . (4.8)
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To solve the vacuum equations (3.1)–(3.4) in full generality is a challenging problem that

goes beyond the scope of this paper. In the following we present some simple solutions as

prototypes of the general case.

4.1 Only universal hypermultiplet

We start by considering the case of a gauged supergravity with a single hypermultiplet (i.e.

h1 = 0), which we identify with the universal hypermultiplet of string compactifications.

Concerning the vector multiplets, we allow for an arbitrary number of them, and we just

require that the associated special Kähler scalar manifold is symmetric and has a cubic

prepotential,7 specified by the 3-tensor dabc. As it will be clear in the following, the latter

assumption will allow us to perform computations in a more explicit fashion. In addition we

assume that the only non-vanishing entries of the charge matrix Q be ea0 ≡ ea. We remark

that this choice might be generalized by using U-duality rotations. The constraints (2.4)

require that eap
a = 0 . For this choice of charges the prepotentials become

W+ = W− = −2eax
a ,

W3 = q0 + (qa − eaξ)x
a + p0f − pafa , (4.9)

where all along this subsection we denote ξ ≡ ξ0.

It is convenient to introduce the following shifted variables (assuming p0 6= 0):

xa = xa − pa

p0
, q0 = q0 +

qap
a

p0
− 2P

(p0)2
, qa = qa −

Pa

p0
, (4.10)

with

P =
1

6
dabcp

apbpc , Pa =
1

2
dabcp

bpc . (4.11)

In terms of these variables one finds

W+ = W− = −2eax
a , ∂aW+ = ∂aW− = −2ea ,

W3 = q0 + (qa − ξea)x
a + p0f , ∂aW3 = qa − ξea + p0fa , (4.12)

with

f =
1

6
dabcx

axbxc , fa =
1

2
dabcx

bxc . (4.13)

In writing (4.12) we have used that eap
a = 0. Notice that since xa

2 ≡ xa
2, the expressions

in (4.4) can be equivalently written with the bold variable. The advantage of using the

bold variables introduced above is that the explicit dependence on pa is entirely removed.

Finally we introduce the following quantities built from the NSNS fluxes ea :

R =
1

6
dabceaebec , Ra =

1

2
dabcebec , (4.14)

7In particular, the second property is relevant for type IIA compactifications on 6d manifolds M6 with

SU(3) structure, where the Kähler potential K2 is expected to take the cubic form e−K2 = 4
3

R

M6

J ∧J ∧J ,

where J is the almost symplectic 2-form on M6. See subsection 4.5 and appendix C for more details.
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where dabc is the contravariant tensor of the symmetric special Kähler geometry satisfying

dabc d
b(d1d2 dd3d4)c =

4

3
δ(d1
a dd2d3d4). (4.15)

Solutions of the vacuum equations can be found starting from the simple ansatz

xa = xRa , qa = 0 , (4.16)

with x = x1 + ix2 a complex function of the charges to be determined. This ansatz can be

motivated by noticing that once qa is taken to zero, the only contravariant vector one can

build with ea’s variables is Ra. Using (4.15) one finds the following relations:

dabc R
bRc = 2Rea , Ra ea = 3R ,

V = (x2)
3R2 , Va = (x2)

2Rea ,

f = x3R2 , fa = x2Rea ,

W± = −6Rx , W3 = (q0 − 3R ξ x+ p0R2x3) ,

∂aW+ = ∂aW− = −2ea , ∂aW3 = ( p0Rx2 − ξ )ea ,

e−K1 = 2 , e−K2 = −8V . (4.17)

Moreover, the covariant derivatives of the prepotentials take the form

DaWx = ∂aK2 αxWx =
iea

2x2R
αxWx , (4.18)

with

α± = 1 − 2ix2

3x
, α3 = 1 − 2iRx2( p

0Rx2 − ξ )

q0 − 3R ξ x+ p0R2x3
. (4.19)

Using the relation (here there is no sum over x):

gab̄DaPxDb̄Px = 3|αxPx|2 , (4.20)

the scalar potential reads

V = eK1+K2+2ϕ
(
3|α+|2 − 2

)
|W+|2 + eK2+4ϕ

(
3|α3|2 + 1

)
|W3|2 . (4.21)

Let us now combine the ansatz (4.16) with the linear ansatz (3.8) that we have estab-

lished in the previous section. It is straightforward to verify that with (4.17), (4.18), the

first two equations of (3.8) are identically satisfied upon defining u, v, θ, γ as

u eiθ = 6ieK1/2−ϕ Rx

q0 − 3R ξ x+ p0R2x3
, v =

α+u e
2iθ

α3
, e−iγ = i . (4.22)

Then the second equation of (3.12) can be solved for ξ and yields

ξ =
q0x1 + p0R2(x4

1 + x2
1x

2
2)

R(3x2
1 + x2

2)
=

(
p0q2

0

R

)1/3
χ1(1 + χ3

1 + χ1χ
2
2)

3χ2
1 + χ2

2

, (4.23)
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where we have rescaled x1,2 as8

x = x1 + ix2 ≡
(

q0

p0R2

)1/3

(χ1 + iχ2) , (4.24)

in terms of dimensionless quantities χ1,2 . This also guarantees that v is real. Likewise,

equation (3.10) can be solved for ϕ and yields

e2ϕ =
3

4

(
R

p0q2
0

)2/3 (3χ2
1 + χ2

2)(−3χ2
1 + 5χ2

2)

χ2
2(1 − 4χ3

1 + 4χ6
1 + 9χ4

1χ
2
2 + 6χ2

1χ
4
2 + χ6

2)
. (4.25)

Moreover, from (4.21) we find for the scalar potential

V = − 9

32

(
R4

p0q5
0

)1/3
(3χ2

1 + χ2
2)(−3χ2

1 + 5χ2
2)

2

χ5
2(1 − 4χ3

1 + 4χ6
1 + 9χ4

1χ
2
2 + 6χ2

1χ
4
2 + χ6

2)
. (4.26)

Remarkably, all dependence on the charges factors out.

It remains to solve the first equation of (3.12), or equivalently (3.24). Plugging (4.17)–

(4.24) into (3.24), this complex equation finally gives rise to two real polynomial equations

in χ1,2, which can be solved explicitly, and admit precisely three real solutions

A : χ1 = 0 , χ2 = −5−1/6

B : χ1 = 20−1/3 , χ2 = −
√

3 20−1/3

C : χ1 = −1

2
20−1/3 , χ2 = −1

2

√
15 20−1/3 (4.27)

Putting everything together, the three solutions are given by

• Solution A (N = 0):

x1 = ξ = 0 , x2 = −5−
1
6

(
q0

p0R2

)1/3

, eϕ =
1

2
√

2
5

5
6

(
R

p0q2
0

)1/3

,

V = −75

64
5

5
6

(
R4

p0q5
0

)1/3

. (4.28)

• Solution B (N = 0):

x1=− 1√
3
x2 =

(
q0

20p0R2

)1/3

, ξ =

(
4p0q2

0

25R

)1/3

, eϕ =

√
2√
3

(
25R

4p0q2
0

)1/3

,

V = − 5√
3

(
25R4

4p0q5
0

)1/3

. (4.29)

• Solution C (N = 1):

x1=
1√
15
x2 = −1

2

(
q0

20p0R2

)1/3

, ξ = −
(
p0q2

0

50R

)1/3

, eϕ =

√
2√
3

5
1
6

(
2R

p0q2
0

)1/3

,

V = −8
√

3 5−
5
6

(
2R4

p0q5
0

)1/3

. (4.30)

8 For simplicity, we assume a sector of charges, where q0, p
0, R > 0 .
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The corresponding values of u, v, θ have been given in (3.30) above. Notice that the assumed

positivity of the charges guarantees eϕ > 0, x2 < 0 and V < 0.

The above solutions generalize to an arbitrary number of vector multiplets the ones

derived in [39] in the context of flux compactifications of type IIA on coset manifolds with

SU(3) structure.9 Furthermore, they allow for non-vanishing charges pa, qa (satisfying

qa = 0, namely p0qa = 1
2dabcp

bpc).

4.2 Adding hypermultiplets

The three solutions above can be generalized to the case of a cubic supergravity with

arbitrary number of vector multiplets and hypermultiplets. For simplicity we focus again

to the case where the vector multiplet scalar manifold is symmetric. Here we consider

a vacuum configuration with non-trivial charges: ea
i, ea ≡ ea0, p

0, q0, while qa and all

remaining charges in QA
I are set to zero. Recalling (4.10), the prepotentials and their

derivatives are now given by

W+ = 2xa(ea
igi − ea) , ∂aW+ = 2(ea

igi − ea) , ∂iW+ = 2xaea
jgij ,

W3 = q0 + xa(ea
iξ̃i − eaξ

0) + p0f , ∂aW3 = ea
iξ̃i − eaξ

0 + p0fa , (4.31)

where gij = dijkz
k. The expressions for W− and its derivatives are like those for W+, with

gi → ḡi and gij → ḡij . Again we follow an educated ansatz for the solution:

xa = xRa , zi = z Si , ξ̃i = ζ Ti , (4.32)

where Ra is defined as in (4.14), and we introduced the combinations of NSNS charges

Si = ea
iRa , T =

1

6
dijkS

iSjSk , Ti =
1

2
dijkS

jSk . (4.33)

In addition we impose the following relation

dijkea
ieb

jec
k = β dabc ⇒ Tiea

i = β Rea , T = β R2, (4.34)

where R is the same as in (4.14), and β is an arbitrary number. With these assumptions,

one has the following simplifications

V = (x2)
3R2, Va = (x2)

2Rea, f = x3R2, fa = x2Rea ,

Ṽ = (z2)
3 T, Ṽi = (z2)

2 Ti, g = z3 T , gi = z2 Ti

W+ = 6Rx (z2βR− 1), ∂aW+ = 2(z2βR− 1)ea , ∂iW+ = 4x z Ti

W3 = q0 − 3Rx ξ̂ + p0R2x3, ∂aW3 = ( p0Rx2 − ξ̂ ) ea , (4.35)

where we introduced

ξ̂ = ξ0 − βR ζ . (4.36)

9See subsection 4.5 for some more details. The N = 1 solutions appearing in [39, section 6] were already

known: they were first found at the 10d level in [54, 55], studied from a 4d perspective in [56, 57], and

extended in [58, 59]. The N = 0 solutions had already been derived, from a 10d perspective, in [60, 61].

Further N = 0 AdS vacua on the same cosets with non-zero orientifold charge where found in [62]. The

general conditions for supersymmetric AdS vacua of type IIA on SU(3) structures were first given in [63].
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Now let us consider the first order conditions of subsection 3.2. With respect to the case

of a single hypermultiplet, here we have in addition the last equation in (3.8). One can see

that its solution requires β > 0 for consistency with the assumption R > 0, and reads

z = −i
√

3

βR
. (4.37)

Plugging this into W± in (4.35), one gets W± = −24xR and DaW± = −8ea. Compar-

ing with (4.17), we see that after substituting (4.37) the Killing prepotentials Px of this

subsection are related to those of the previous subsection, here denoted by Px|h1=0 , by

P± = λP±|h1=0, P3 = P3|h1=0 , ξ → bξ
(4.38)

where the proportionality factor

λ =
2

3
3
4

(
β

R

)1
4

(4.39)

arises from the different expressions for e
K1
2 in the present (h1 > 0) case with respect to

the universal hypermultiplet (h1 = 0) case. It follows that the three solutions (4.28)–(4.30)

of the previous subsection generalize to the present case of an arbitrary number of vector

and hypermultiplets. Labelling by . . . |h1=0 the quantities appearing in (4.28)–(4.30), we

infer the solutions for the current h1 > 0 case:

x1 = x1|h1=0, x2 = x2|h1=0, ξ̂ = ξ |h1=0

eϕ = λ eϕ|h1=0 ∼
(
R

1
4β

3
4

p0q2
0

) 1
3

, V = λ4 V |h1=0 ∼
(
Rβ3

p0q5
0

) 1
3

, (4.40)

with z given by (4.37).

4.3 U-invariant cosmological constant

In this section, we propose a U-duality invariant formula for the dependence on NSNS and

RR fluxes of the scalar potential V at its critical points. This defines the cosmological

constant Λ = V |∂V =0 .

As considered in the treatment above, the setup is the following. The vectors’ and

hypers’ scalar manifolds are given by M2 = G/H and MQ. Here, G/H is a symmetric

special Kähler manifold with cubic prepotential (d-special Kähler space, see e.g. [23]), with

complex dimension h2, coinciding with the number of (abelian) vector multiplets. On the

other hand, MQ is a symmetric quaternionic manifold, with quaternionic dimension h1 +1,

corresponding to the number of hypermultiplets. The manifold MQ is the c-map [21] of

the symmetric d-special Kähler space M1 = G /H ( MQ, with complex dimension h1.

Thus, the overall U-duality group is given by10

U ≡ G× G ( Sp (2h2 + 2,R) × Sp (2h1 + 2,R) . (4.41)

10In this paper, we call U-duality group the symmetry group that has a symplectic action on special

Kähler manifolds M2 × M1, and not the whole symmetry group of the overall scalar manifold M2 × MQ.
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The Gaillard-Zumino [64] embedding of G and G is provided by the symplectic representa-

tions RG and RG , respectively spanned by the symplectic indices A and I. The RR fluxes

cA = (p0, pa, q0, qa) sit in the (2h2 + 2) vector representation RG, whereas the NSNS fluxes

fit into the (2h2 + 2) × (2h1 + 2) bi-vector representation RG × RG

QAI = CAB
2 Q I

B =

(
mAI mA

I

−eAI −eAI

)
. (4.42)

A priori, in presence of cA and QAI, various (G× G )-invariants, of different orders in

RR and NSNS fluxes, can be constructed. Below we focus our analysis on invariants of

total order four and sixteen in fluxes, which respectively turn out to be relevant for the

U-invariant characterization of Λ for the solutions A, B, C of subsections 4.1 and 4.2.

Only universal hypermultiplet. Special Kähler symmetric spaces are characterized

by a constant completely symmetric symplectic tensor dA1A2A3A4 . This tensor defines a

quartic G-invariant I4

(
c4
)

given by

I4

(
c4
)

= dA1A2A3A4c
A1 . . . cA4 (4.43)

= −(p0q0 + paqa)
2 +

2

3
dabc q0p

apbpc − 2

3
dabc p0qaqbqc + dabcd

aefpbpcqeqf .

The non-trivial components of dA1A2A3A4 are listed in (D.1). A similar definition holds for

the symplectic tensor dI1I2I3I4 of the symmetric coset G /H .

For the explicit solutions found above, the RR fluxes cA satisfy p0 6= 0 and qa = 0, i.e.

qa ≡ 1

2

dabcp
bpc

p0
. (4.44)

Plugging this into (4.43) and using the relation (4.15) (holding in homogeneous symmetric

d-special Kähler geometries) one finds

I4

(
c4
)

= −
(
p0
)2

q2
0 with q0 ≡ q0 +

1

6

dabcp
apbpc

(p0)2
. (4.45)

Notice that the full dependence on pa is encoded in the shift q0 → q0 and therefore we can,

without loosing in generality, restrict ourselves to the simple choice cA = (p0, 0,q0, 0). The

RR and NSNS fluxes cA and QAI are then given by

cA ≡




p0

0

q0

0


 , QA

0 ≡




0

0

0

−ea


 , QA0 = 0 . (4.46)

Besides I4(c
4) one can build the following non-trivial quartic invariant

I4(cQ
3) = dA1A2A3A4c

A1 QA2
0Q

A3
0Q

A4
0 = −1

6
p0dabceaebec = −p0R . (4.47)

Let us remark that I4(cQ
3) is also invariant under the group SO(2) = U(1) which, due

to the absence of special Kähler scalars zi in the hypersector, gets promoted to global
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symmetry. G = SO(2) is thus embedded into the symplectic group Sp(2,R) via its irrepr.

2, through which it acts on symplectic sections (Z0,G0). The SO(2)-invariance of I4(cQ
3)

is manifest, because the latter depends on the SO(2)-invariant I2

(
(QA)2

)
= (QA0)

2 +

(QA
0)2 = (QA0)

2 (no sum over A is understood).

It is easy to see that the expressions in eqs. (4.28)–(4.30) depend only on the two

combinations I4(c
4) and I4(cQ

3) given in (4.43) and (4.47) respectively. In particular, we

obtain a manifestly (G×U(1))-invariant formula for the AdS cosmological constant at the

critical points

Λ = V ∼ −I4/3
4

(
cQ3

)

|I4 (c4)|5/6
∼ Q4

c2
. (4.48)

Notice that RR and NSNS fluxes play very different roles in their contribution to Λ. Indeed,

the cosmological constant grows quartically on NSNS fluxes and fall off quadratically on

RR charges. It would be nice to understand whether this is a general scaling feature of the

gauged supergravities under study.

Many hypermultiplets. Next let us consider the case with arbitrary number of hy-

permultiplets. From (4.40), it follows that the cosmological constant Λ = V in this case

depend only on the combinations I4 = (p0q0)
2 and I16 ∼ (p0)4Rβ3 ∼ c4Q12. In order to

write Λ in a U-duality invariant form we should then find an invariant I16 built out of 12

Q’s and 4 c’s that reduce to (p0)4Rβ3 on our choice of RR and NSNS fluxes. The following

(G× G )-invariant quantity does the job

I16

(
c4Q12

)
≡ dI1I2I3I4dI5I6I7I8dI9I10I11I12dA1B1B2B3dA2B5B6B7dA3B9B10B11dA4B4B8B12 ×

×cA1cA2cA3cA4QB1I1 . . . QB12I12 . (4.49)

The explicit expression of I16

(
c4Q12

)
is rather intricate. Nevertheless, this formula under-

goes a dramatic simplification when considering the configuration of NSNS and RR fluxes

supporting the solutions found in subsection 4.2. As before we encode the full dependence

on pa in the shift q0 → q0 and therefore we restrict ourselves to the charge vector choice

cA = (p0, 0,q0, 0). More precisely, we take NSNS and RR fluxes with all components of

QAI, cA zero except for

Q i
a = −eai , Qa0 = −ea , c0 = p0 , c0 = q0 , (4.50)

where e i
a satisfy the constraint (4.34) for some β ∈ R+. A simple inspection to (4.49), shows

that contributions to I16 come only from the components d0
ijk = −1

6 dijk of dI1...I4 and

d0
b1b2b3 = −1

6d
abc of dAB1B2B3 . Indeed using (4.15) one finds (see appendix D for details)

I16

(
c4Q12

)
= γ

(
p0
)4
Rβ3, (4.51)

with11

γ ≡ 1

66
(dabcdabc + h2 + 3)3. (4.52)

11 Interestingly, the quantity dabcdabc, appearing in (4.52) is related to the Ricci scalar curvature R of

the vector multiplets’ scalar manifold G/H , whose general expression for a d-special Kähler space reads

R = − (h2 + 1) h2 + dabcdabc, see [65].
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We conclude that the cosmological constant of the AdS vacuum solutions obtained in

subsection 4.2 can be written in a manifestly U-duality invariant form in terms of I4(c
4)

and I16(c
4Q12), and reads

Λ = V ∼ I1/3
16

(
c4Q12

)

|I4 (c4)|5/6
∼ Q4

c2
. (4.53)

4.4 Central charge via entropy function

According to holography, gravity theories on AdS space are related to CFT’s living on the

AdS boundary. The central charge of the CFT can be extracted from the so called entropy

function F evaluated at the near horizon geometry [9]. For AdS2, this function gives

the entropy of the black hole, for AdS3 the Brown-Henneaux central charge. In general,

F computes the extreme value of the supergravity “c-function” introduced in [66] (see

also [67]). This quantity is a U-duality invariant and provides us with the basic macroscopic

information about the boundary physics. In this subsection we apply the entropy function

formalism to our AdS4 solutions, and derive a U-duality invariant macroscopic formula for

the central charge of the dual CFT3.

The entropy function F is defined as the Legendre transform with respect to the electric

charges12 of the higher-dimensional supergravity action evaluated at the solution. In our

approach, we have dualized all electric charges (i.e. the 4-form flux along spacetime) into

magnetic ones (i.e. internal fluxes), hence F is simply minus the supergravity action.13

Reducing the higher-dimensional action down to four dimensions, taking the 4d scalars φi

to be constant and all the other non-metric fields to vanish, one has

F = −SIIA = − 1

2κ2

∫

AdS4

d4x
√
g4
[
R4 − 2V (φi)

]
= −r4AdS

[
R4 − 2V (φi)

]
, (4.54)

where R4 is related to the AdS4 radius rAdS by R4 = − 12
r2
AdS

, and we regularize the infinite

volume of AdS4 in such a way that

r4AdS =
1

2κ2

∫

AdS4

d4x
√
g4 . (4.55)

Any other choice of normalization redefines F by an irrelevant flux-independent constant.

The supergravity vacuum follows then by extremizing F with respect to the scalar fields

φi and the AdS radius rAdS :
∂F

∂φi
=

∂F

∂rAdS
= 0 . (4.56)

Denoting by 〈φ〉 a solution of ∂V
∂φi = 0, one finds for the AdS radius rAdS and the central

charge F

F = 6 r2AdS = − 18

V (〈φ〉) . (4.57)

12We call electric the field-strengths filling the timelike direction.
13 Alternatively, the same results can be found by considering instead of the 6-form along the internal

space a 4-form electric flux along AdS4, and performing the Legendre transform on this flux variable.
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The right hand equation reproduces the Einstein equation that relates the AdS radius rAdS

(or, equivalently, the cosmological constant Λ = −3/r2AdS) to the vev of the scalar potential.

Notice that solutions make sense only for 〈V 〉 < 0.

Taking into account the results of subsections 4.1 and 4.2, as well as eqs. (4.53)

and (4.48), one obtains the U-invariant expressions of the central charge F , respectively

for the case with only universal hypermultiplet and many hypermultiplets

Fh1=0 ∼
∣∣I4

(
c4
)∣∣5/6

I4/3
4 (cQ3)

⇒ Fh1=0 ∼ c2

Q4
. (4.58)

Fh1>0 ∼ −
∣∣I4

(
c4
)∣∣5/6

I1/3
16 (c4Q12)

⇒ Fh1>0 ∼ c2

Q4
, (4.59)

Notice the different contribution of RR and NSNS fluxes to the central charge F . Analo-

gously to the black hole entropy, the central charge grows quadratically in the RR charges

(RR fluxes), but falls off quartic in the NSNS charges (H-flux and (non-)geometric fluxes).

The same scaling behaviour was found in [68] for the central charge of the CFT3 dual to

type IIA on the AdS4×T 6/Z2
3 orientifold background. It would be interesting to understand

to what extent this is a general feature of flux compactifications.

4.5 Examples from type IIA/IIB compactifications

Explicit examples of compact manifolds M6 yielding N = 2 supergravity upon dimensional

reduction of type II theories are the cosets displayed in table 2. Type IIA reductions on

these spaces have been studied in [39]; see also [56, 57], and [41] for the relative N = 1

orientifold truncations. The cosets M6 of table 2 admit an SU(3) structure (see appendix C

for a definition), and correspond respectively to the sphere S6, the complex projective space

CP3, and the flag manifold F(1, 2; 3), endowed with a left-invariant metric.14 On these

spaces, the left-invariant metric and B-field deformations span a special Kähler manifold.

In type IIA reductions, the latter corresponds to the vector multiplet scalar manifold, and

for the three cosets at hand one obtains respectively the t3, the st2 and the stu models of

N = 2 supergravity. In addition, the compactification yields the universal hypermultiplet

(a, ϕ, ξ0, ξ̃0), parameterizing the quaternionic manifold SU(2,1)
U(2) , whose isometries are gauged

as described in section 2 and appendix A.

One can also consider type IIB compactified on the same cosets, again implementing

a left-invariant reduction ansatz. In this case, one gets a 4d N = 2 supergravity with no

vector multiplets and a number of hypermultiplets going from 2 to 4, depending on the

chosen M6. The special Kähler coset moduli space, which for type IIA compactifications

was identified with the vector multiplet scalar manifold, in type IIB corresponds to a

submanifold of the hyperscalar quaternionic manifold, and determines the latter via the

c-map. The additional coordinates are given by the axion dual to the B-field in 4d, by

the 4d dilaton ϕ, and by the scalars coming from the expansion of the type IIB Ramond-

Ramond potentials C0, C2 and C4 in a basis of left-invariant forms of even degree on

14The flag manifold F(1, 2; 3) is defined as the set of pairs made by a line and a plane in C3 such that the

line belongs to the plane.
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M6
G2

SU(3) = S6 Sp(2)
S(U(2)×U(1)) = CP3 SU(3)

U(1)×U(1) = F(1, 2; 3)

Type IIA





M2 ; f

M1

MQ

SU(1,1)
U(1) ; t3

−−−

SU(2,1)
U(2)

(
SU(1,1)
U(1)

)2
; st2

−−−

SU(2,1)
U(2)

(
SU(1,1)
U(1)

)3
; stu

−−−

SU(2,1)
U(2)

Type IIB





M2

M1 ; g

MQ

−−−

SU(1,1)
U(1) ; t3

G2(2)

SO(4)

−−−
(

SU(1,1)
U(1)

)2
; st2

SO(4,3)
SO(4)×SO(3)

−−−
(

SU(1,1)
U(1)

)3
; stu

SO(4,4)
SO(4)×SO(4)

Table 2. Supergravity scalar manifolds arising from N = 2 compactifications of type II theories

on the 6d coset manifolds M6. We recall that M2 is the special Kähler manifold parameterized by

the scalars in the vector multiplets, while M1 is the special Kähler submanifold of the quaternionic

hyperscalar manifold MQ, determining the latter via c-map. We also display the form of the

prepotentials f and g associated respectively with M2 and M1.

M6. For instance, for a compactification on G2
SU(3) = S6, the quaternionic manifold is the

eight-dimensional non-compact coset
G2(2)

SO(4) , corresponding to the image of SU(1,1)
U(1) under

the c-map [69]. Table 2 collects the various scalar manifolds arising in these type IIA/IIB

coset dimensional reductions.

For type IIA coset compactifications, the N = 2 scalar potential and its vacuum struc-

ture were studied in [39]. The further results obtained above — specifically, the first order

equations of subsection 3.2, and the U-invariant formulae of subsections 4.3, 4.4 for the case

of the universal hypermultiplet — hold in particular for these coset examples. Moreover,

for the cosets Sp(2)
S(U(2)×U(1)) and SU(3)

U(1)×U(1) , the explicit solutions of subsection 4.1 extend

those given in [39, section 6] in that they allow for non-vanishing pa and qa, corresponding

to fluxes of the G2 and G4 RR field-strengths (cf. appendix C). Thanks to the consistency

of the reduction, which also was established in [39], the AdS vacua lift to bona fide solutions

of type IIA supergravity.

Concerning type IIB, the reduction based on a left-invariant ansatz can still be shown

to be consistent using the same arguments as for type IIA, and the scalar potential is a

subcase of the general formula (2.5) as well. However, this IIB scalar potential turns out

to be less interesting than for type IIA, since it displays a runaway behaviour. Indeed,

this case falls in the situation, considered in [25], in which one has more hyper than vector

multiplets, and the rank of the matrix Q is h2 +1 (= 1 here): then the equations of motion

for the RR scalars ξI imply (c + Q̃ξ) = 0, which in turn sets VR = 0. This leaves us with

an effective scalar potential V = VNS, which is runaway due to the overall e2ϕ factor.
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An issue that is left open is whether it is possible to identify the type IIB mirrors of

type IIA compactified on the cosets M6 above.

5 Discussion

In this paper we studied the scalar potential of N = 2 gauged supergravities underlying

flux compactifications of type IIA/IIB theories. Exploiting the N = 2 formalism — in

particular, the special Kähler geometry on the scalar manifolds M1 and M2 — we have

written the scalar potential and its extremization conditions in terms of the Killing pre-

potentials Px and their special Kähler covariant derivatives. The equations for AdS vacua

are solved via the system of first order conditions given in section 3.2, accounting for both

supersymmetric and non-supersymmetric solutions. This first order ansatz may be thought

as a possible alternative to the method of the “fake superpotential” [70] in the search for

a unifying principle to describe extremal solutions in supergravity. It would be interesting

to study the lifting of our ansatz to a ten-dimensional context, where it corresponds to a

deformation (by means of the parameters u, v, θ) of the pure spinor equations for N = 1

backgrounds derived in [50–52] employing the methods of generalized complex geometry.

In this perspective, it would also be interesting to investigate the possible relations with

the approach to “partially BPS vacua” developed in [61]. Notice that also our first order

ansatz leaves unbroken a subset of the supersymmetry conditions (namely, the last line

of (3.8)).

We found three (one supersymmetric and two non-supersymmetric) infinite series of

AdS4 vacua with a rich pattern of NSNS and RR fluxes. These generalize the solutions

of [39], derived from flux compactifications on cosets with SU(3) structure, to the case

of a general N = 2 cubic, symmetric supergravity with an arbitrary number of vector

and hypermultiplets. We remark that, having these solutions as a starting point, one can

generate full orbits of solutions by acting on the charges and on the symplectic sections of

M1 and M2 with U-duality transformations. We leave for the future a detailed analysis of

these orbits, as well as the search for the precise 10d lifting of the full set of our solutions.

A further issue to be investigated concerns the stability of the N = 0 AdS vacua: to

conclude about this, one should test the Breitenlohner-Freedman bound on the solutions,

as done in [39] within a theory including the universal hypermultiplet and at most 3 vector

multiplets. It might be that our first order relations turn out to be useful at this scope. It

would also be interesting to go beyond our classical analysis and study quantum effects in

this context, possibly combining 4-dimensional and string compactification methods.

Finally, we proposed a U-duality invariant formula for the cosmological constant built

out of the NSNS charges Q I
A

, the RR charges cA, and the characteristic quartic tensors

dI1...I4 , dA1...A4 . This invariant also describes the central charge of the dual 3-dimensional

CFT, as follows from explicit evaluation of the entropy function on the AdS4 solution.
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A An alternative derivation of V

In the following, first we discuss the general form of the scalar potential in N = 2 su-

pergravity, then we provide an alternative way to derive expression (2.9) for the flux-

generated potential.

In any theory of extended supergravity, a general Ward identity implies that the scalar

potential V is determined by the squares of the shifts that the gaugings induce in the

fermionic susy transformations. In the N = 2 context, this Ward identity reads

V δAB = − 12S
CA
SCB + gab̄W

aCAW b̄
CB + 2NA

I N I
B , (A.1)

where A,B, C = 1, 2 are SU(2) R-symmetry indices, and the matrices SAB, W aAB and NA
I

are the fermionic shifts appearing respectively in the supersymmetry transformations of

the gravitini ψAµ, gaugini λaA and hyperini ζI:

δψAµ = . . .+ ∇µεA − SABγµε
B

δλaA = . . .+W aABεB

δζI = . . .+NA
I εA . (A.2)

A prominent role is played by the gravitino shift SAB, which is expressed in terms of the

triplet of Killing prepotentials Px = e
K2
2 (PxAX

A − P̃A
x FA), with x = 1, 2, 3, encoding the

gauging of the isometries in the hyperscalar manifold. Introducing as in the main text

P± = P1 ± iP2, one has the relation

SAB =
i

2
σxAB Px = − i

2

(
−P− P3

P3 P+

)
, (A.3)

where (σx) B
A

are the standard Pauli matrices, and the SU(2) index A = 1, 2 is lowered

with the antisymmetric tensor ǫAB, using a SW-NE convention, i.e. σxAB = ǫBC(σx) C
A

. We

also raise the index with ǫAB = −ǫBA, satisfying ǫACǫCB = −δA
B
, hence σ AB

x = (σx) B
C
ǫCA.

Given the gravitino shift SAB, one has that the gaugino shift W aAB and the hyperino

shift NA
I

are determined by the derivatives of the Px via [47, 71]

W aAB = iσAB
x gab̄Db̄Px (A.4)

NA
I = −1

3
UA

Iu Ω uv
x DvPx = 2UA

Iuk̄
u , (A.5)
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where the index u labels the coordinates of the quaternionic manifold, and UA
Iu are the

quaternionic vielbeine prior the dualization of a subset of the hyperscalars to tensor fields

(cf. footnote 1). Furthermore, we put

ku = e
K2
2 (ku

AX
A − k̃uAFA), (A.6)

where ku
A are the Killing vectors generating the quaternionic isometries being gauged with

respect to electric gauge potentials, and and k̃uA are their magnetic counterparts. Finally,

the covariant derivatives are defined by

DaPx =

(
∂a +

1

2
∂aK2

)
Px (A.7)

DuPx = ∂uPx + ǫxyz(ωy)u Pz = 2(Ωx)uv k
v . (A.8)

Here (Ωx)uv is the curvature 2-form of the hyperscalar quaternionic manifold, Ωx =

(Ωx)uvdq
u ∧ dqv. Given the isometries ku, relation (A.8) actually defines the Px in N = 2

supergravity.

Substituting (A.3)–(A.5) in (A.1) and tracing over the SU(2) indices A,B, one obtains

the following standard expression for the N = 2 scalar potential [28, 29, 47]:

V = 4huvk
uk̄v +

∑

x

(
gab̄DaPxDb̄Px − 3|Px|2

)
. (A.9)

This was the starting point adopted in [25] to obtain expression (2.5). Recalling (A.8) and

using the identity [47]

huv(Ωx)su(Ωy)vt = −δxyhst − ǫxyz(Ωz)st , (A.10)

we observe that (A.9) can also be recast in the following form, involving just the Px and

their derivatives15

V =
∑

x=1,2,3

(
1

3
huv

DuPxDvPx + gab̄DaPxDb̄Px − 3|Px|2
)
. (A.11)

For our purposes, however, it is more convenient not to trace over A,B : we will instead

consider the equivalent expression defined by taking A = B = 2 in (A.1). This reads16

V = gab̄DaP+Db̄P+ + gab̄DaP3Db̄P3 +
1

2
huv

DuP+DvP+ − 3|P+|2 − 3|P3|2. (A.12)

The two above expressions for the N = 2 scalar potential hold for any gauging involving just

quaternionic isometries. We now evaluate the term in (A.12) containing the quaternionic

covariant derivatives by specializing to the case of dual (also named special) quaternionic

15Notice that huv
DuP1DvP1 = huv

DuP2DvP2 = huv
DuP3DvP3.

16One can also see that all the remaining information contained in (A.1) amounts to the constraint

2(Ωx)uvk̄ukv = ǫxyzPyPz, which is the abelian version of eq. (7.56) in [47], and has to be automatically

satisfied for consistency.
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manifolds, which arise in Calabi-Yau [21, 22] and generalized geometry compactifications

of type II theories. In this case, the quaternionic metric huv is

huvdq
udqv = gī dz

idz̄̄ + (dϕ)2 +
e4ϕ

4

(
da− ξT C1dξ

)2 − e2ϕ

2
dξT M1dξ , (A.13)

where gī = ∂zi∂z̄̄K1 is the metric on the special Kähler submanifold M1 of the dual

quaternionic manifold. We also need the Sp(1) connection 1-forms ωx, which read [22]

ω1 + iω2 = 2eϕ ΠT
1 C1dξ

ω3 = −e
2ϕ

2

(
da− ξT C1dξ

)
+ Q , (A.14)

where Q is the U(1) connection associated with the special Kähler geometry on M1 [47]:

Q = − i

2

(
∂iK1dz

i − ∂ı̄K1dz̄
ı̄
)

= − i

2

ZIImGIJdZ̄
J − c.c.

Z̄KImGKLZL
. (A.15)

The abelian isometries of the quaternionic metric (A.13) that are gauged are generated by

the Killing vectors

kA = −
[
2qA + e I

A(C1ξ)I

] ∂
∂a

− e I
A

∂

∂ξI
, k̃A =

[
− 2pA +mAI(C1ξ)I

] ∂
∂a

+mAI ∂

∂ξI
,

where eA
I = (eA

I , eAI)
T , mAI = (mAI ,mA

I)
T , and the abelianity [kA, kB ] = [k̃A, k̃B ] =

[kA, k̃
B ] = 0 is ensured by (2.4). Recalling (2.3), (2.6), the quantity in (A.6) then reads

k = −ΠT
2 C2(2c+ Q̃ξ)

∂

∂a
− ΠT

2Q
∂

∂ξ
. (A.16)

The Killing prepotentials Px associated with these isometries are given by [25, 43]

Px = (ωx)uk
u. (A.17)

By plugging in (A.14), (A.16), one finds the expressions given in (2.8). In the context of

flux compactifications, the Px can be derived by reducing the higher-dimensional gravitino

transformation [34, 36].

Then the quaternionic covariant derivatives DuPx ≡ ∂uPx + ǫxyz(ωy)uPz read

DziP+ =

(
∂i +

1

2
∂iK1

)
P+, DϕP+ = P+

D(a)P+ = − i

2
e2ϕP+, DξIP+ = 2ieϕP3(C1Π1)I −

i

2
e2ϕP+(C1ξ)I .

The writing D(a) emphasizes that here a denotes the axion dual to the B-field, and should

not be confused with a special Kähler index.

Also evaluating the inverse of (A.13), we finally arrive at

1

2
huv

DuP+DvP+ = gīDiP+D̄P+ + |P+|2 + 4|P3|2.

Substituting this into (A.12) we obtain precisely expression (2.9) for the scalar potential.
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B Elaborating the N = 1 susy conditions

In this appendix we work out the N = 1 supersymmetry conditions within the N = 2

theory under study, building on the analysis done in [37].

B.1 In terms of (derivatives of) the prepotentials Px

We impose the vanishing of the N = 2 fermionic shifts given in (A.2) under a single

supersymmetry parameter ε. The latter is related to the (positive chirality) N = 2 super-

symmetry parameters ε1 and ε2 via ε1 = aε and ε2 = bε, with

a = |a|eiα , b = |b|eiβ , |a|2 + |b|2 = 1 .

The supersymmetry parameter ε is chosen to satisfy the Killing spinor equation on AdS4:

∇νε = 1
2µγνε

∗, whose complex parameter µ is hence related to the AdS cosmological

constant Λ by Λ = −3|µ|2.
The general N = 1 supersymmetry conditions can be condensed in the following

linear equations for the N = 2 Killing prepotentials Px introduced in (2.8) and their

covariant derivatives:

µ( |a|2 − |b|2 ) = 0 ⇒ |a| = |b| in AdS (B.1)

± e±iγP± = 2P3 = −2iˆ̄µ (B.2)

± e±iγDaP± = DaP3 (B.3)

DiP+ = 0 = Dı̄P− , (B.4)

where we introduced γ = α − β + π and µ̂ = e−i(α+β)µ. The AdS condition |a| = |b|
is understood in (B.2)–(B.4). The derivation of the above equations is a variation of the

analysis done in [37, section 4]. Upgrading the notation to the current conventions, in

the following we write the equations given therein, corresponding to the vanishing of the

fermion variations. The gravitino equation 〈δεψµA〉 = 0 yields

− āP− + b̄P3 = iaµ̄

āP3 + b̄P+ = ibµ̄ , (B.5)

while the hyperino equation 〈δεζI〉 = 0 gives

2āP3 + b̄P+ = 0 (B.6)

āP− − 2b̄P3 = 0 (B.7)

b̄ P
l

I (ImG)−1 IJ
(
QJA −N1JKQ

K
A

)
ΠA

2 = 0 (B.8)

ā P
l̄
I (ImG)−1 IJ

(
QJA −N 1 JKQ

K
A

)
ΠA

2 = 0 , (B.9)

with P
j

I = (P
j

0 , P
j

i ) = (−e j

i Z
i, e

j

i ), where e
j

i , (i, j = 1, . . . , h1) are the vielbeine of

the special Kähler manifold M1 (the flat indices are underlined, and the choice of special

coordinates ZI = (1, zi) is understood). Finally, the gaugino equation 〈δελaB〉 = 0 is

āDaP− − b̄DaP3 = 0

āDaP3 + b̄DaP+ = 0 . (B.10)
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Now it is easy to see that (B.5)–(B.7) yield (B.1), (B.2), while (B.10) is (B.3). Hence we

just need to prove that (B.8), (B.9) can be rewritten as (B.4). As a first thing, we use in

turn the following identities of special Kähler geometry

(ImG)−1 IJ = −(ImN1)
−1 IJ − 2eK1(ZI Z̄J + Z̄IZJ) ,

−(ImN1)
−1 IJ = 2eK1

(
DkZ

Igkl̄Dl̄Z̄
J + Z̄IZJ

)

to rewrite

PI(ImG)−1 IJ = 2eK1PI

(
DkZ

Igkl̄Dl̄Z̄
J − ZI Z̄J

)
.

Next, recalling the definition of P
j

I given below (B.9), we observe that PIZ
I = 0 and

that PIDkZ
I = PIδ

I
k = e

j

k . Hence (B.8), (B.9) are equivalent to (provided a and b do not

vanish, which is guaranteed by (B.1) once one fixes µ 6= 0)

Dı̄Z̄
J
(
QJA −N1 JKQ

K
A

)
ΠA

2 = 0 = DiZ
J
(
QJA −N 1 JKQ

K
A

)
ΠA

2 .

Recalling that in special Kähler geometry DiZ
JN 1 JK = DiGK , we arrive at

ΠT
2QC1DiΠ1 = 0 = ΠT

2QC1Dı̄Π1 ,

which is precisely the content of (B.4).

B.2 In a symplectically covariant algebraic form

Continuing to revisit the analysis of [37, section 4], in the following we show that the N = 1

supersymmetry conditions (B.1)–(B.4) can be reformulated in a symplectically covariant

algebraic form as

ΠT
2 Q− 2ˆ̄µe−ϕRe

(
eiγΠT

1

)
= 0 (B.11)

QC1Re
(
eiγΠ1

)
= 0 (B.12)

2QC1Im
(
eiγΠ1

)
− 6Im

(
µ̂e−ϕC2Π2

)
− eϕM2(c+ Q̃ξ) = 0 . (B.13)

Notice that, provided µ̂ 6= 0, eq. (B.12) is actually implied by (B.11), upon multiplication of

the latter by QC1 and use of constraint (2.4). In the main text, we employ a generalization

of (B.11)–(B.13) to study the extremization of the scalar potential V .

In order to derive (B.11), we multiply the two equations in (B.4) respectively by

gīD̄Π
T
1 and gı̄jDjΠ

T
1 . Recalling (2.8) and the special Kähler identity (2.11), we get

ΠT
2QC1

(
1

2
CT

1 M1C1 +
i

2
C1 + Π1Π

T
1

)
= 0

ΠT
2QC1

(
1

2
CT

1 M1C1 −
i

2
C1 + Π1Π

T
1

)
= 0 . (B.14)

Subtracting the second from the first, we have

2ΠT
2Q+ ie−ϕ

(
P−ΠT

1 − P+ΠT
1

)
= 0 ,

– 29 –



J
H
E
P
0
2
(
2
0
1
0
)
0
2
7

which yields (B.11) upon use of (B.2). One can also see that summing up the two con-

ditions (B.14) the same equation is retrieved (the identity M1Π1 = −iC1Π1 is required

in the computation). We also checked that in the case of the universal hypermultiplet,

where (B.4) does not hold, eq. (B.11) follows from (B.2) alone.

To derive (B.12), (B.13) we start from the susy condition Da(P3 ∓ e±iγP±) = 0, and

multiply it by gab̄Db̄Π2. We obtain

0 = gab̄Db̄Π2DaΠ
T
2

[
eϕC2(c+ Q̃ξ) ∓ 2e±iγQC1(ReΠ1 ± iImΠ1)

]

=

(
−1

2
CT

2 M2C2 +
i

2
C2 − Π2Π

T
2

)[
eϕC2(c+ Q̃ξ) ∓ 2e±iγQC1(ReΠ1 ± iImΠ1)

]

=
1

2

(
CT

2 M2 − i1l
) [
eϕ(c+ Q̃ξ) ± 2e±iγC2QC1(ReΠ1 ± iImΠ1)

]
− 3iµ̂e−ϕΠ2 ,

where to get the second line we use identity (2.12), while the third line is obtained recall-

ing (B.2). Adding up these two equations and taking the real part we arrive to (B.13);

no further informations is contained in the imaginary part, since one can check that it is

just (B.13) multiplied by M2. Analogously, taking either the imaginary or the real part of

the difference of the two equations above we get (B.12).

Finally, we remark that in turn (B.11)–(B.13) imply (B.2)–(B.4), and are therefore

equivalent to them. Indeed, eq. (B.2) is obtained by contracting eq. (B.11) with C1Π1 as

well as with C1Π1, and eq. (B.13) with ΠT
2 . Contraction of (B.12), (B.13) with DaΠ

T
2

yields (B.3), while multiplication of (B.11) by C1DiΠ1 or by C1Dı̄Π1 provides (B.4). The

following special Kähler geometry relations are needed in the proof:

ΠT
2 C2DaΠ2 = 0 = ΠT

2 C2DaΠ2 (same with a→ i , 2 → 1)

M2Π2 = −iC2Π2 , M2DaΠ2 = +iC2DaΠ2 .

C Flux/gauging dictionary for IIA on SU(3) structure

Gauged N = 2 supergravities with a scalar potential of the form studied in this paper

can be derived by flux compactifications of type II theories on SU(3) and SU(3) × SU(3)

structure manifolds. While we refer to the literature (see e.g. [31–39, 56, 57, 72]) for a

detailed study of such general N = 2 dimensional reductions and the related issues,17 in

this appendix we provide a practical dictionary between the 10d and the 4d quantities, with

a focus on the scalar potential derived from SU(3) structure compactifications of type IIA.

In particular, we illustrate how the expressions one derives for VNS and VR are consistent

with the scalar potential (2.5) studied in the main text.

C.1 SU(3) structures and their curvature

An SU(3) structure on a 6d manifold M6 is defined by a real 2-form J and a complex,

decomposable18 3-form Ω, satisfying the compatibility relation J ∧ Ω = 0 as well as the

17In this context, see also [73–78] for studies of compactifications preserving N = 1.
18A p-form is decomposable if locally it can be written as the wedging of p complex 1-forms.
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non-degeneracy (and normalization) condition

i

8
Ω ∧ Ω̄ =

1

6
J ∧ J ∧ J = vol6 6= 0 everywhere . (C.1)

Ω defines an almost complex structure I, with respect to which is of type (3, 0). In turn,

I and J define a metric on M6 via g = JI. The latter is required to be positive-definite,

and vol6 above denotes the associated volume form.

SU(3) structures are classified by their torsion classes Wi , i = 1, . . . 5, defined via [79]:

dJ =
3

2
Im(W 1Ω) +W4 ∧ J +W3

dΩ = W1 ∧ J ∧ J +W2 ∧ J +W 5 ∧ Ω , (C.2)

where W1 is a complex scalar, W2 is a complex primitive (1,1)–form (primitive means

W2 ∧ J ∧ J = 0), W3 is a real primitive (1,2) + (2,1)–form (primitive ⇔ W3 ∧ J = 0), W4

is a real 1-form, and W5 is a complex (1,0)–form.

Ref. [80] provides a formula for the Ricci scalar R6 in terms of the torsion classes. We

will restrict to W4 = W5 = 0, in which case the formula is

R6 =
1

2

(
15|W1|2 −W2yW 2 −W3yW3

)
. (C.3)

This can equivalently be expressed as

R6 vol6 = −1

2

[
dJ ∧ ∗dJ + dΩ ∧ ∗dΩ̄ − (dJ ∧ Ω) ∧ ∗(dJ ∧ Ω̄)

]
, (C.4)

as it can be seen recalling (C.2) and computing

dΩ ∧ ∗dΩ̄ = 12|W1|2vol6 − J ∧W2 ∧W 2 =
(
12|W1|2 +W2yW 2

)
vol6

dJ ∧ ∗dJ =
(
9|W1|2 +W3yW3

)
vol6

(dJ ∧ Ω) ∧ ∗(dJ ∧ Ω̄) = 36|W1|2vol6 . (C.5)

C.2 The scalar potential from dimensional reduction

The 4d scalar potential receives contributions from both the NSNS and the RR sectors of

type IIA supergravity. These are respectively given by

VNS =
e2ϕ

2V

∫

M6

( 1

2
H ∧ ∗H −R6 ∗ 1

)

=
e2ϕ

4V

∫

M6

[
H ∧ ∗H + dJ ∧ ∗dJ + dΩ ∧ ∗dΩ̄ − (dJ ∧ Ω) ∧ ∗(dJ ∧ Ω̄)

]
, (C.6)

VR =
e4ϕ

4

∫

M6

(
F 2

0 ∗ 1 + F2 ∧ ∗F2 + F4 ∧ ∗F4 + F6 ∧ ∗F6

)
, (C.7)

and the total potential reads V = VNS+VR. In (C.6), H is the internal NSNS field-strength,

V =
∫
M6

vol6, and ϕ is the 4d dilaton e−2ϕ = e−2φV , where we are assuming that the 10d

dilaton φ is constant along M6. The k-forms Fk appearing in expression (C.7) are the

internal RR field strengths, satisfying the Bianchi identity dFk − H ∧ Fk−2 = 0. The F6

form can be seen as the Hodge-dual of the F4 extending along spacetime, and the term

F6 ∧ ∗F6 arises in a natural way if one considers type IIA supergravity in its democratic

formulation [81].
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Expansion forms. In order to define the mode truncation, we postulate the existence

of a basis of differential forms on the compact manifold in which to expand the higher

dimensional fields. For a detailed analysis of the relations that these forms need to satisfy

in order that the dimensional reduction go through, see in particular [35].

We take ω0 = 1 and ω̃0 = vol6
V

, and we assume there exist a set of 2-forms ωa satisfying

ωa ∧ ∗ωb = 4 gab vol6 , ωa ∧ ωb = −dabcω̃
c, (C.8)

where gab should be independent of the internal coordinates, dabc should be a constant

tensor, and the dual 4-forms ω̃a are defined as

ω̃a = − 1

4V
gab ∗ ωb . (C.9)

From the above relations, we see that

ωa ∧ ω̃b = −δb
a ω̃

0 , ωa ∧ ωb ∧ ωc = dabcω̃
0 . (C.10)

We also assume the existence of a set of 3-forms αI , β
I , satisfying

αI ∧ βJ = δJ
I ω̃

0. (C.11)

Adopting the notation ωA = (ω̃A, ωA)T = (ω̃0, ω̃a, ω0, ωa)
T and αI = (βI , αI)

T , we

see that the symplectic metrics C appearing in the main text are here given by

CIJ

1 = −
∫
αI ∧ αJ , CAB

2 = −
∫

〈ωA, ωB〉 , (C.12)

where the antisymmetric pairing 〈 , 〉 is defined on even forms ρ, σ as 〈ρ, σ〉 = [λ(ρ) ∧ σ]6,

with λ(ρk) = (−)
k
2 ρk , k being the degree of ρ, and [ ]6 selecting the piece of degree 6.

The basis forms are used to expand Ω as

Ω = ZIαI − GIβ
I = e−

K1
2 ΠI

1 αI , (C.13)

and J together with the internal NS 2-form B as:

J = vaωa , B = baωa ⇒ e−B−iJ = XAωA −FAω̃
A = e−

K2
2 ΠA

2ωA , (C.14)

where in the last equalities we define αI = CIJα
J = (αI ,−βI)T and ωA = CABω

B =

(ωA,−ω̃A)T , and we adopt the symplectic notation defined in (2.1). Here, (ZI ,GI) and

(XA,FA) represent the holomorphic sections on the moduli spaces of Ω and B + iJ ex-

panded as above, which (under some conditions [34–36]) indeed exhibit a special Kähler

structure, and correspond respectively to the manifolds M1 and M2 of the main text.

Notice that here XA ≡ (X0,Xa) ≡ (1, xa) = (1,−ba − iva), while FA = ∂F
∂XA , where

the cubic holomorphic function F = 1
6dabc

XaXbXc

X0 is identified with the prepotential on

M2. The Kähler potentials on M1 and M2 are recovered from K1 = − log i
∫

Ω ∧ Ω̄ and

K2 = − log 4
3

∫
J ∧ J ∧ J , the latter yielding the metric gab appearing in (C.8). Notice

that (C.1) implies e−K1 = e−K2 = 8V .
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The matrices M defined in (2.7) are given by

M1,IJ = −
∫
αI ∧ ∗αJ , M2,AB = −

∑

k

∫
(eBωA)k ∧ ∗(eBωB)k , (C.15)

and from the second relation one finds that the period matrix N2 on M2 reads

ReNAB = −
(

1
3dabcb

abbbc 1
2dabcb

bbc

1
2dabcb

bbc dabcb
c

)
, ImNAB = −4V

(
1
4 + gabb

abb gabb
b

gabb
b gab

)
, (C.16)

which is in agreement with the expression derived from F via the standard formula [82]

NAB = FAB + 2i
ImFADX

DImFBEX
E

XCImFCEXE
, FAB ≡ ∂2F

∂XA∂XB
. (C.17)

Finally, we also require the following differential conditions on the basis forms:

dωa = ea
IαI , dαI = ea

Iω̃a , dω̃a = 0 , (C.18)

where the ea
I = (ea

I , eaI) are real constants, usually called ‘geometric fluxes’. Defining the

total internal NS 3-form as H = Hfl + dB, and expanding its flux part as

Hfl = −e0IαI + e0Iβ
I ≡ −e0IαI , (C.19)

with constant e0
I, we can define eA

I = (e0
I, ea

I)T , and thus fill in half of the charge matrix

Q introduced in (2.3):

QA
I =

(
eA

I

0

)
. (C.20)

As first noticed in [36], more general matrices, involving the mA
I charges as well, can be

obtained by considering non-geometric fluxes, or SU(3)×SU(3) structure compactifications.

The nilpotency condition d2 = 0 applied to (C.18), together with the Bianchi identity

dH = 0, translates into the constraint

eA
IeBI = 0 with eAI = CIJeA

J, (C.21)

which, taking into account (C.20), is consistent with (2.4).

In the following, by using the above relations we recast in turn expressions (C.6), (C.7)

for VNS and VR in terms of 4d degrees of freedom, and show their consistency with (2.5).

Derivation of VNS. Recalling the expansions of J , H and Ω defined above, using the

assumed properties of the basis forms, and adopting the notation introduced in (2.1),

one finds
∫
dJ ∧ ∗dJ = −vavb ea

I M1,IJeb
J,

∫
H ∧ ∗H = −bAbB eAI M1,IJeB

J ,

∫
dΩ ∧ ∗dΩ̄ =

e−K1

4V
ΠI

1eaIg
abebJΠ

J

1,

∫
(dJ ∧ Ω) ∧ ∗(dJ ∧ Ω̄) =

e−K1

V
ΠI

1eaIv
avbebJΠ

J

1,
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where we define bA = (−1, ba). Plugging this into (C.6), we get the NSNS contribution to

V , expressed in a 4d language:

VNS = −e
2ϕ

4V

[
XAeA

I M1,IJeB
J XB − e−K1

4V
ΠI

1eaI(g
ab − 4vavb)ebJΠ

J

1

]
. (C.22)

Recalling (C.16), noticing that 1
4V

(gab − 4vavb) = −(ImN2)
−1 ab − 4eK2(XaXb + XaXb),

and recalling that e−K1 = e−K2 = 8V , we conclude that (C.22) is consistent with (2.5).

Derivation of VR. We consider the internal field-strength G = G0 + G2 + G4 + G6,

defined as Fk =
√

2
(
eBG

)
k
. The Gk satisfy the Bianchi identity dGk − Hfl ∧ Gk−2 = 0.

We define the expansion

G0 = p0, G2 = paωa, A3 = ξIαI

G4 = Gfl
4 + dA3 = −(qa − eaIξ

I)ω̃a, G6 = Gfl
6 −Hfl ∧A3 = −(q0 − e0I ξ

I)ω̃0, (C.23)

where p0, pa, q0, qa are constant, while the ξI are 4d scalars. The Bianchi identities then

amount just to the following constraint among the charges

pAeA
I = 0 , (C.24)

which, recalling (C.20), gives the last equality in (2.4). Then the integral in (C.7) reads

1

2

∑

k

∫
Fk ∧ ∗Fk =

∑

k

∫
(eBG)k ∧ ∗(eBG)k = (c+ Q̃ξ)T M2(c+ Q̃ξ) , (C.25)

where for the second equality we use (C.15), and here (c+ Q̃ξ)A = (pA, qA − eAIξ
I)T . The

expression for VR we obtain is therefore consistent with (2.5).

D Details on U-invariance

The explicit expression of the quartic G-invariant associated to a d-special Kähler

space G/H is [83, 84]

I4

(
c4
)

= dA1A2A3A4c
A1cA2cA3cA4 ,

= 6d00
00q

2
0

(
p0
)2

+4d abc
0 p0qaqbqc+6dab

cdqaqbp
cpd+24d0 a

0 bq0p
0qap

b+4d0
abcq0p

apbpc

= −(p0q0 + paqa)
2 +

2

3
dabc q0p

apbpc − 2

3
dabc p0qaqbqc + dabcd

aefpbpcqeqf ,

with dA1A2A3A4 = d(A1A2A3A4) throughout. Thus, the characterization of I4

(
c4
)

as an

Sp (2h2 + 2,R)-scalar entails that the unique independent non-vanishing components of

the corresponding dA1A2A3A4 read as follows:

d00
00 = −1

6
, d abc

0 ≡ −1

6
dabc , dab

cd ≡ 1

6

(
decdd

eab − δa
(cδ

b
d)

)
,

d0 a
0 b = − 1

12
δa
b , d0

abc ≡ 1

6
dabc , (D.1)
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where dabc = d(abc) and dabc = d(abc) are the covariant and contravariant d-tensor defining

the d-special Kähler geometry of vector multiplets’ scalar manifold G/H. Notice that,

whereas dabc is always scalar-independent, dabc is generally scalar-dependent. Nevertheless,

(at least) in symmetric d-special Kähler geometries dabc is scalar-independent, and thus so

is I4

(
c4
)
. The completely symmetric tensor dA1A2A3A4 whose unique independent non-

vanishing components are given by (D.1) is the unique invariant rank-4 tensor of the repr.

RG of G. An identical argument can be used for the unique invariant rank-4 tensor dI1I2I3I4

of the repr. RG of G , defined in terms of the tensors dijk and dijk determining the d-special

Kähler geometry of G /H , whose the hypermultiplets’ scalar manifold MQ is the c-map.

We now detail computations of various quantities, generally covariant with respect

to RG × RG , useful in the treatment given in subsection 4.3. Firstly, by using the rela-

tion (4.15) (holding at least in homogeneous symmetric d-special Kähler geometries), the

constraint (4.44) implies I4

(
c4
)

to read

I4

(
c4
)

= −
(
p0
)2

q2
0 with q0 ≡ q0 +

1

6

dabcp
apbpc

(p0)2
. (D.2)

Now let us consider the invariant I16(c
4Q12).

I16

(
c4Q12

)
≡ dI1I2I3I4dI5I6I7I8dI9I10I11I12dA1B1B2B3dA2B5B6B7dA3B9B10B11dA4B4B8B12

cA1cA2cA3cA4QB1I1 . . . QB12I12 . (D.3)

We set all components of QAI, cA to zero except for

Q i
a = −eai , Qa0 = −ea , c0 = p0 , c0 = q0 . (D.4)

With this choice the only contributions come from the components d0
ijk = −1

6 dijk of dI1...I4

and d0
b1b2b3 of dA B1B2B3 . More precisely, one can write

I16

(
c4Q12

)
=

1

64
(p0)4 dI1I2I3I4dI5I6I7I8dI9I10I11I12d

b1b2b3db5b6b7db9b10b11db4b8b12Qb1
I1 . . . Qb12

I12 .

There are four different type of contributions depending on how indices are contracted.

They are given by 1
67 (p0)4 β3 ×

D3db4b8b12eb4eb8eb12 = 6D3R (D.5)

9D2 db2b3b4 d
b1b2b3 db4b8b12 eb1eb8eb12 = 18D2 (h+ 3)R

27D db2b3b4 db6b7b8 d
b1b2b3 db5b6b7 db4b8b12 eb1eb5eb12 = 18D (h+ 3)2R

27D db2b3b4 db6b7b8 d
b10b11b12 db1b2b3 db5b6b7 db9b10b11d db4b8b12 eb1eb5eb9 = 6 (h+ 3)3R

with D = dabcdabc, while R was defined in (4.14). In writing (D.5) we use the symmetric

d-special Kähler identity

dabfd
a(bcdde)f =

4

3
δ
(b
b d

cde) =
1

3
(h2 + 3)dcde.

Collecting all pieces together one finds

I16(c
4Q12) =

1

66
(p0)4β3R (D + h2 + 3)3. (D.6)
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