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1 Introduction

Conformal perturbation theory has a long history [1–3]. One of its uses is to explore the
conformal manifold of a CFT [4, 5]. How to do this is well understood in principle, but in
practice performing concrete computations can be quite challenging. The first challenge is to
find a CFT that has an actual conformal manifold, that is whose spectrum contains exactly
marginal operators. Such theories are not that common; in fact it is believed that the only
examples are theories with a global U(1) symmetry, or theories with enough supersymmetry,
namely N = 2 supersymmetry [6–8].

The second challenge is to have explicit expressions for the correlation functions. At
first order perturbation, this is not an issue since the form of the 3pt functions is fixed by
conformal symmetry. The perturbation integral can thus be evaluated directly and the result
depends only on a single parameter of the theory, namely the 3pt constant [9, 10]. For higher
order perturbations however, conformal invariance no longer fixes the functional form of the
higher point correlation functions. Their precise form thus depends on the dynamics of the
CFT. The third challenge is then to integrate these correlation functions. This poses several
technical problems. First it is necessary to introduce a regularization scheme to deal with
divergences. The choice of this scheme does not matter much at first order, but becomes
important at higher order, as it is related to the choice of coordinates on the conformal
manifold. Then an efficient way of evaluating the resulting integrals needs to be found.

In practice, these challenges constrain the types of examples we can work with. Because
of point one, we need to find a CFT with N = 2 supersymmetry. It is of course believed
that Calabi-Yau sigma models provide a vast class of such examples. However, because
of point two, these are mostly unusable for our purposes because we do not have explicit
expressions for the their correlators. There are effectively only two types of models whose
correlators are known well enough so that we can work with them: torus theories and their
orbifolds, and rational theories.

Perturbations of torus orbifolds were considered in [11–14]. Deforming by a modulus in
the untwisted sector is not very interesting, as it simply deforms the underlying torus, giving
another torus orbifold. To have interesting perturbations, it is thus necessary to deform
by a modulus in the twisted sector. The twist sector selection rules however then imply
that all first order contributions vanish. It is thus necessary to focus on the second order
contributions, which are indeed non-vanishing.

In this article however we want to investigate examples with first and second order
contributions that are both non-vanishing. For the reasons given above, this rules out torus
orbifolds. We therefore focus on CY sigma models described by rational CFTs that are not
torus orbifolds. Luckily, there are such theories: the so-called Gepner models [15, 16]. Such
models are based on N = 2 minimal models. These minimal models have central charge
c = 3k/(k + 2), and they are rational with respect to the N = 2 superconformal algebra,
which in particular means that all their dynamical data such as correlation functions can be
computed explicitly. Gepner models that describe the sigma model of a CY D-fold are then
constructed as the tensor product of such minimal models with total central charge 3D whose
symmetry algebra is extended by the spectral flow operator. This (worldsheet) spectral flow
operator corresponds to the spacetime supersymmetry operator, and in particular imposes

– 1 –



J
H
E
P
0
1
(
2
0
2
4
)
1
9
7

integrality of the U(1) charges. Because of this, Gepner models give supersymmetric string
theories. In fact, [15, 16] argued that they correspond to specific points in the moduli space
of Calabi-Yau compactifications, namely to Fermat curves. Such Gepner models thus provide
theories that do have a conformal manifold and correlation functions that are known explicitly,
which makes them suitable for the purposes of this article.

Our goal in this article is twofold. First, we want to establish the framework for conformal
perturbation theory of Gepner models and use it to explore their moduli space neighborhood.
For this we need to compute correlation functions and evaluate the perturbation integrals.
Our second goal is motivated by a more specific question: are rational CFTs dense in this
moduli space? The motivation for this question comes from torus compactifications, where the
answer is yes [17–19]. [20] then conjectured that rational CFTs are dense also in the moduli
space if the CY is a K3, but not if it is a higher dimensional CY manifold. This conjecture
was approached from a geometric perspective in [21–23]. Here we want to approach it using
conformal perturbation theory.1

From the point of view of perturbation theory, how could a new rational CFT arise near
a Gepner point? Because c = 6 or higher, this CFT cannot be rational with respect to the
overall N = (2, 2) algebra. This means that there must be additional chiral fields in the CFT,
that is fields with h̄ = 0. At the Gepner point itself, such additional fields were of course
given by the N = (2, 2) algebra of the individual factors; however, we do not expect these to
survive the perturbation. The idea is therefore to start with a field that is not chiral at the
Gepner point with say weight (h(0), h̄(0)). Under perturbation by a modulus with coupling
constant λ, we are hoping to find a nearby point λ0 such that

h̄(λ0) = 0 . (1.1)

The symmetry algebra at λ0 is thus enhanced by this new chiral field. If we are lucky, then
the CFT at λ0 might indeed be rational. Even though not sufficient, having such a field
is definitely necessary for this. See for instance [14] for a description of this mechanism
for the toy model of a free boson on S1.

In this article we investigate a toy version of this mechanism. Note that since unitarity
imposes h̄ ≥ 0, it is clear that h̄(λ) has to be a minimum at λ0. We will try to identify
such minima for certain fields, regardless of whether h̄ = 0 at the minimum. To this end we
approximate h̄(λ) by a quadratic function. For it to have an interesting minimum, we need
both the linear and the quadratic term of that function to be non-vanishing. That is, we
want a contribution both from first and second order perturbation theory.

To achieve such a situation, we consider the Gepner model (2)4; that is, the N = (2, 2)
CFT with central charge c = 6 consisting of four copies of the k = 2 minimal model. Geomet-
rically, this corresponds to the sigma model of the K3 given by the quartic Fermat surface

X4 + Y 4 + Z4 +W 4 = 0 . (1.2)

In a sense this is the simplest Gepner model. Its correlators are easier to compute due to
the fact that it consists of copies of the k = 2 minimal model only. This minimal model

1A similar question was recently studied in [24] using perturbative RG flows.
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Figure 1. h̄ as a function of the coupling constant λ for the two lifted fields. Note the minima at
λ = ±0.32.

has c = 3/2, and is in fact equivalent to the Ising model tensored with a free boson. Its
correlation functions are therefore well known.

We investigate the lifting of the lightest non-BPS states in the spectrum of this Gepner
point. It turns out that there are 12 such states with h = h̄ = 1/4. The moduli space of
K3 is given by O(4)×O(20)\O(4, 20)/O(4, 20;Z) (see for instance [25] for a review). There
are thus 80 real moduli, or, in N = 4 language, 20 N = 4 multiplets of moduli. It is
straightforward to identify them in our Gepner model, and it turns out that they naturally
fall into three types which we call A,B and C.

We first investigate the lifting of the 12 lightest states at first order. For this, we pick
the (c, c) moduli for each of the 20 N = 4 multiplets. It turns out that the 2 type A moduli
do not lift any of the states at first order, and the remaining 18 moduli each lift only 2 of
the 12 states. The vanishing of so many correlation functions is not too surprising, since the
Gepner point is a point of much enhanced symmetry; in particular there are four separate
U(1) charges that need to be preserved. But importantly, unlike for the torus orbifold case,
there are states that are lifted at first order. Since we are interested in finding interesting
minima, we focus only on these states.

Next we proceed to second order perturbation theory and compute the pertinent 4pt
functions. Surprisingly, we find that the 6 type B moduli in our hard sphere regularization
scheme do not give a second order contribution to the lifting! It is not clear to us what to
make of this observation, as there does not seem to be a deep underlying reason for this.
It is possible that this is an artefact of the specific Gepner model we investigate, or even
just of the specific states we consider.

More importantly however, the remaining 12 moduli of type C give a positive second order
contribution. Each such modulus thus gives a second order approximation of h̄(λ) for two
states that indeed has a minimum near the Gepner point (see figure 1). These minima turn out
to be about h̄ = 0.16, which is significantly smaller than the starting value of h̄ = 0.25. These
states thus provide a toy version of the symmetry enhancing mechanism described above.
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What does all this tell us about rational CFTs in CY moduli spaces? We first remark that
our computation is only a rough toy model for the symmetry enhancing mechanism. Since
h̄ ̸= 0, the field does not lead to an enhanced symmetry at the point. Such an enhancement is
anyway impossible for the scalar fields we are considering: they could at best become a second
vacuum with h = h̄ = 0, which would of course violate cluster decomposition. Moreover our
second order version of h̄(λ) may not be a good approximation to the full function h̄(λ),
and our minimum not a good approximation to the actual minimum. To test the denseness
conjecture of [20], we have to perform our analysis with a field of non-zero spin. We would
then want to repeat it for a CY 3-fold and compare to the K3 results. If we find a qualitative
difference between the two, this could then be taken as evidence in favor of the conjecture. We
will leave this to future work. As it is, our article illustrates how the symmetry enhancement
mechanism can work in principle and how to do the necessary computations in practice.

2 Conformal perturbation theory

2.1 Shift of conformal dimension

Let us give a quick overview of conformal perturbation theory [4, 9, 26], following the
exposition in [14]. We are interested in the shift of the conformal weight of primary fields
under perturbation by an exactly marginal field Φ, the modulus. For this we schematically
expand the two point function

⟨φ†(z1)φ(z2)⟩λ = ⟨φ†(z1)φ(z2)eλ
∫
d2wΦ(w)⟩ = 1

(z1 − z2)2h(λ)(z̄1 − z̄2)2h̄(λ)
(2.1)

in powers of the coupling λ. From the correlator (2.1) we can read off the shift in the
conformal dimensions (h, h̄) of φ. To be more precise, we are looking to compute the
coefficients h(n) in the expansion

h(λ) =
∞∑
n=0

h(n)λn , (2.2)

where h(0) is the dimension of the field in the unperturbed theory. Since the spin is integral
and therefore constant under perturbations, the exact same expression (except for the h̄(0)

term) must hold for h̄(λ).
Our discussion so far has been very schematic. In particular, we did not deal with the

issue of divergences and their regularization. A more precise form of (2.1) is

⟨φ†(z1)φ(z2)⟩λ = ⟨φ†(z1)φ(z2)eλ
∫

ε
d2wΦ(w)+c.t.⟩ = A(ε, λ)

(z1 − z2)2h(λ)(z̄1 − z̄2)2h̄(λ)
. (2.3)

Here
∫
ε indicates a regularized version of the integral with regularization parameter ε

and c.t. indicates some (ε dependent) counterterms. A(ε, λ) finally is the wave function
renormalization of φ.

To find the coefficients in (2.2), we first write the right-hand side of (2.1) as

1
(z1 − z2)2h(0)

1
(z̄1 − z̄2)2h̄(0)

∞∏
n=1

exp(−2h(n)λn log |z1 − z2|2) exp(−2an(ε)λn) , (2.4)
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where the an(ε) are the appropriate expansion coefficients of A(ε, λ) and we have used the fact
that h(n) = h̄(n) for n ≥ 1. In fact, since ε is the only dimensionful quantity, the ε dependent
part is necessarily of the form an(ε) = −h(n) log ε2, so that we can combine the terms to
−2h(n)λn log(|z12|2/ε2). Expanding the z12 dependent part of this to second order in λ, we find

−2 log |z12|2h(1)λ+ 2(log |z12|2h(1))2λ2 − 2 log |z12|2h(2)λ2 + . . . . (2.5)

To fix the coefficients h(n), we compute the n-th term in the expansion of the left-hand
side of (2.1),

λn

n!

∫
d2w1 . . . d

2wn⟨φ†(z1)φ(z2)Φ(w1) . . .Φ(wn)⟩ . (2.6)

A shift in h thus occurs if the integral (2.6) produces logarithmic terms log |z1 − z2|. This
integral is divergent due to the singularities that arise when a modulus Φ approaches another
field. It therefore needs to be regularized in some way. As usual, regularization will introduce
a length scale and thus break manifest conformal invariance. Only if Φ is indeed exactly
marginal will the perturbed theory still be conformal. In practice, this breaking shows up
as the appearance of logarithmic terms log |z1 − z2|. These are of course exactly the type
of terms that are needed to shift the conformal weight h.

The regularization scheme that we use is hard sphere regularization with minimal
subtraction. This means we cut out little discs of radius ε around all fields, and subtract any
divergent powers of ε, leaving any constant terms untouched. This is a local regularization
scheme since the discs cut out only depend on the insertion point of the colliding fields, and
not on the positions z1, . . . zn of any other fields. Note that we are primarily interested in
logarithmic divergences, that is terms of the form log ε. The reason for this is that because of
the comment above, such terms will always be accompanied by logarithmic terms log |z1 − z2|.
In practice it is thus a convenient shortcut to simply identify terms of the form log ε. We
will however briefly discuss how log |z1 − z2| terms arise below.

Let us briefly discuss the counterterms that appear in (2.3). In general they are integrals
of local fields with coefficients in ε and λ. Their purpose is to cancel the divergences that
appear when the moduli Φ collide with each other. Consider the order λ2 counterterm. Let

Φ(w1)Φ(w2) ∼
∑

∆k≤2

CΦΦΨk

|w1 − w2|4−∆k
Ψk(w2) (2.7)

be the scalar singular part of the OPE of Φ with itself. In the integral (2.6), the collision
of Φ(w1) with Φ(wi) gives a divergence∫

|w1−wi|>ε
d2w1⟨. . .Φ(w1)Φ(wi) . . .⟩ =

∑
∆k≤2

2πCΦΦΨk

2−∆k
ε∆k−2⟨. . .Ψk(wi) . . .⟩ . (2.8)

We want to use a minimal subtraction scheme for our counterterms. That is, we want to only
cancel terms divergent in ε. This means that to order λ2, we choose our counterterms as

−
∑

∆k<2
λ2 2πCΦΦΨk

2−∆k
ε∆k−2

∫
d2wΨk(w) +

∑
∆k=2

λ22πCΦΦΨk
log(ε)

∫
d2wΨk(w) . (2.9)

These then cancel the divergences arising from (2.8) at second order in any perturbed
correlator.
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2.2 Perturbation theory up to second order

Let us now work out explicit expressions for perturbation theory up to second order. At
first order, eq. (2.6) is of the form

λ

∫
d2w1⟨φ†(z1)φ(z2)Φ(w1)⟩ = λ2πCφ†φΦ log

(
|z12|2

ε2

)
z
−2hφ

12 z̄
−2h̄φ

12 . (2.10)

The ε dependence gives the wave function renormalization. Re-inserting the appropriate z12
and comparing to (2.4), we recover the well known result

h(1) = −πCφ†φΦ . (2.11)

If there are multiple fields φi with the same conformal dimension, then we have to perform
degenerate perturbation theory to take into account operator mixing: h(1) becomes now
the matrix

H
(1)
ij = −πC

φ†
iφjΦ , (2.12)

where (hφi , h̄φi) = (hφj , h̄φj ). We can then simply choose a new orthonormal basis for the
fields φi such that H(i) becomes diagonal.

To compute the second order shift, we perform a Möbius transformation

f(z) := (z − z2)(w1 − z1)
(z − z1)(w1 − z2)

, (2.13)

which sends w2 to the cross ratio x := f(w2). The second order integral then reads

λ2

2

∫
d2w1 z

−2hφ

12 z̄
−2h̄φ

12

∣∣∣∣ z1 − z2
(z1 − w1)(w1 − z2)

∣∣∣∣2 ∫ d2x ⟨φ†(∞)Φ(1)Φ(x)φ(0)⟩′ . (2.14)

Here the prime indicates an integral that is regularized using the hard sphere scheme described
above. However, as pointed out in [13], we need to be careful about how this regularization
works for the integral after the conformal transformation (2.13). The issue is that now the x
integral depends on w1 and also on z1 and z2 due to the regulator, namely the small disk cut out
at the insertion point x. After performing the conformal map (2.13), the radius of the disks is

w1 − z1
w1 − z2

εeiθ

z2 − z1
+ . . . . (2.15)

Reference [13] describes how to deal with this w1 dependence. The idea is to introduce
an auxiliary regularization scheme by subtracting the non-integrable divergences Greg of
the correlator,

G(r)(x) := ⟨φ†(∞)Φ(1)Φ(x)φ(0)⟩′ −Greg(x) . (2.16)

Here Greg(x) is the sum of the contribution of fields that give a non-integrable divergence
at 0, 1,∞. Up to suppressed powers of ε, the integral in this case is simply given by —
see [13, section 2.3]:

λ2

2

∫
d2w1 z

−2hφ

12 z̄
−2h̄φ

12

∣∣∣∣ z1 − z2
(z1 − w1)(w1 − z2)

∣∣∣∣2 ∫ d2x ⟨φ†(∞)Φ(1)Φ(x)φ(0)⟩′

= πλ2 log
(
|z12|2

ε2

)
z
−2hφ

12 z̄
−2h̄φ

12

∫
d2xG(r)(x) . (2.17)
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This is then the ‘proper’ contribution to the perturbation integral at second order. Refer-
ence [13] argued that if power divergences in ε appear, they will be removed by regularizing
the integral and hence will not contribute to h(2).

In fact the argument [13] needs to be slightly modified, as it assumed that there were
no first order contributions. This is equivalent to saying that Greg(x) did not contain any
logarithmic divergences. If there are such divergences, they will in fact lead to the (log z12)2

term in (2.5). To see this, insert an orthonormal basis of states into (2.6) to obtain

λ2

2!
∑
ϕ

∫
d2w1d

2w2⟨φ|Φ(w1)|ϕ⟩⟨ϕ|Φ(w2)|φ⟩ . (2.18)

In this expansion, the states ϕ that have the same dimensions as φ will lead to a product
of two logarithmic terms. Since we chose ϕ to diagonalize the first order lifting matrix,
the contribution is of the form

λ22π2C2
φ†φΦ

(
log ε−2

)2
= 2λ2(h(1) log ε−2)2 . (2.19)

Once we reintroduce the z1 and z2 dependence, we immediately find that this is exactly the
quadratic term of the expansion of the exponential of the first order shift in (2.4). To get the
linear term h(2) in the expansion of the exponential of the second order shift, we can subtract
the contribution of the external fields φ in the internal channel from the correlation function.
In fact, [14] argued that this subtraction also works at higher order and is the analogue of
the connected diagrams in standard QFT perturbation theory.

In total, we thus obtain

h(λ) = h(0) − πCφ†φΦλ− π

2Mλ2 +O(λ3) , (2.20)

where
M =

∫
C
d2xG(r)(x) (2.21)

and G(r) is the integral of the suitably regulated four-point function in eq. (2.17), or more
precisely, its constant part [12].

3 N = 2 minimal models

3.1 Primaries and fusion rules

Let us now introduce the ingredients of the CFT that we will consider. N = 2 minimal
models are CFTs that are rational with respect to the N = 2 superconformal algebra. They
have central charge

c = 3k
k + 2 (3.1)

and can be constructed as cosets or as a tensor product of Zk parafermions with a free
boson [27, 28]. We will focus on the case k = 2, where the parafermions become ordinary
fermions, which in turn can be described by the Ising model. In the following we mostly
follow the conventions of [29], which provides a nice overview of N = 2 minimal models.

– 7 –
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In the NS sector, the primary fields are given by N l
m, l = 0, 1, . . . k and m = −l,−l +

2, . . . , l, with conformal weight and charge

∆l
m = l(l + 2)−m2

4(k + 2) , Qlm = m

k + 2 . (3.2)

In the R sector, the primary fields are given by Rlm,α, l = 0, 1, . . . k, m = −l,−l + 2, . . . , l
and α = ±1, with conformal weight and charge2

∆l
m = l(l + 2)− (m+ α)2

4(k + 2) + 1
8 , Qlm = m+ α

k + 2 − α
1
2 . (3.3)

In what follows, we will focus on the NS sector. The fusion rules are

[N l1
m1 ]× [N l2

m2 ] =
min(l1+l2,2k−l1−l2)∑
l=|l1−l2| step 2

[Ψl
m] , (3.4)

where

Ψl
m = (N l

m1+m2)
even |m1 +m2| ≤ l (3.5)

Ψl
m = (Nk−l

m1+m2±(k+2))
odd |m1 +m2| > l . (3.6)

The appearance of two types of fusion channels, namely ‘odd’ and ‘even’ comes from the
fact that the Ward identities do not allow to eliminate all G-descendants from three point
functions of descendants: we will be left with either 0 or 1 G-descendant in the three point
function. This means that the even fusion rules describe correlators that have an even total
number of G-descendants, and odd fusions rules correlators with an odd total number. Indeed
we can check this on the level of U(1) charges: we have

Q(N l1
m1) +Q(N l2

m2) = Q(Ψl
m) (3.7)

in the even case, and

Q(N l1
m1) +Q(N l2

m2) = Q(Ψl
m)± 1 (3.8)

in the odd case.
For future use, let us write down some specific fusion rules in the case of k = 2:

N1
1 ×N1

1 = (N2
2 )even + (N2

−2)odd (3.9)
N1

1 ×N1
−1 = (N0

0 )even + (N2
0 )even (3.10)

N2
2 ×N1

1 = (N1
−1)odd (3.11)

N2
2 ×N1

−1 = (N1
1 )even (3.12)

N2
2 ×N2

2 = (N2
0 )odd (3.13)

N2
2 ×N2

−2 = (N0
0 )even (3.14)

2Note our convention for the U(1) charge differs by a factor of 1
2 from [29].

– 8 –



J
H
E
P
0
1
(
2
0
2
4
)
1
9
7

3.2 The bosonic subalgebra and characters

In view of the Gepner construction below, it is useful to decompose the irreducible representa-
tions of the N = 2 SCA into irreducible representations of its bosonic subalgebra, that is the
algebra generated by its bosonic generators and even numbers of fermionic generators. The
primaries above then split into two irreducible representations with even and odd fermion
number respectively. This will be very useful once we introduce the GSO projection, for
which we need to keep track of the fermion parity. Moreover, this also allows to treat
Ramond and NS representations on equal footing, since they both have trivial monodromy
with respect to the bosonic subalgebra.

For labelling purposes we therefore introduce an additional parameter s = 0, 1, 2, 3 that
keeps track of the fermion parity and the Ramond and NS sectors. Here s = 0, 2 labels
the two parities in the NS sector, and s = 1, 3 in the R sector. The irreps of the bosonic
subalgebra are thus labelled by triples (l,m, s) with identifications m ∼ m± (2k + 4) and
s ∼ s ± 4. Moreover we have the field identification

(l,m, s) ∼ (k − l,m+ k + 2, s+ 2) . (3.15)

It can therefore be useful to have the labels run as

0 ≤ l ≤ k, m = −k − 1, . . . , k + 2 s = −1, 0, 1, 2 s+m+ l = 0 mod 2 (3.16)

and then by hand compensate for overcounting. We then label the fields by Φlm,s;m̄,s̄, with
weights and charge given by

hlm,s =
l(l + 2)−m2

4(k + 2) + s2

8 mod 1 , Qlm,s =
m

k + 2 − s

2 mod 2 . (3.17)

Their characters are given by [15]

χl(s)m (τ, z) =
∑

j mod k

clm+4j−s(τ)Θ2m+(4j−s)(k+2),2k(k+2)(τ, 2kz, 0) . (3.18)

Here the classical theta function associated with SU(2) at level m is

Θn,m(τ, z, u) = e−2πiu ∑
j∈Z+ n

2m

e2πτmj2+2πijz (3.19)

and clm is the string function of A(1)
1 ,

clm(τ) = η(τ)−3 ∑
−|x|<y≤|x|

(x,y) or (1/2−x,1/2+y)∈( l+1
2(k+2) ,

m
2k

)+Z2

sign(x)e2πiτ((k+2)x2−ky2
. (3.20)

These characters are indeed invariant under s 7→ s + 4, m 7→ m + 2k + 4 and under the
identification l 7→ k − l,m 7→ m + k + 2, s 7→ s + 2.
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3.3 The k = 2 minimal model and correlation functions

The correlation functions of minimal models can be obtained by using the coset construction
and then relating them to the su(2) WZW correlation functions originally derived in [30] —
see [31, 32] for explicit expressions. We will instead use the parafermion description [27, 28].
We will focus on the k = 2 minimal model and use the fact that the Z2 parafermion theory is
simply the Ising model, that is the c = 1/2 Virasoro minimal model. We can thus write the
k = 2 N = 2 minimal model as the tensor product of the Ising model with a free boson at
radius

√
2, and obtain all correlation functions from Ising and free boson correlation functions.

Let us give a brief reminder on the Ising model — see e.g. [33, 34] for a more detailed
review. The Ising model has operators ψ, ψ̄, σ, µ with weights

(h, h̄)σ = (h, h̄)µ = (1/16, 1/16) , (h, h̄)ψ = (1/2, 0) , (h, h̄)ψ̄ = (0, 1/2) . (3.21)

We will use the following correlation functions for ψ and ψ̄ [33]:

Fψψ̄(x, y) = ⟨σ(∞)ψ(x)ψ̄(ȳ)σ(0)⟩ = 1
2x1/2ȳ1/2 (3.22)

and
Fψψ(x, y) =

1
2(x− y)

(√
x

y
+
√
y

x

)
(3.23)

and

Fψψ̄ψψ̄(x, y) = ⟨σ(∞)ψ(x)ψ̄(x̄)ψ(y)ψ̄(ȳ)σ(0)⟩ = 1
4|x− y|2

(√
x

y
+
√
y

x

)(√
x̄

ȳ
+
√
ȳ

x̄

)
.

(3.24)
The correlation functions for σ and µ can be obtained by using the null vectors of the Ising
model [34]. We will use

Fσσσσ(x, x̄) = ⟨σ(∞)σ(1, 1)σ(x, x̄)σ(0)⟩ = Fµµµµ(x, x̄) = ⟨µ(∞)µ(1, 1)µ(x, x̄)µ(0)⟩

= 1√
2|x|1/4|1− x|1/4

√
1 + |x|+ |1− x| = 1

2|x|1/4|1− x|1/4

(
|1 +

√
1− x|+ |1−

√
1− x|

)
(3.25)

and

Fσµµσ(x, x̄) = ⟨σ(∞)µ(1, 1)µ(x, x̄)σ(0)⟩ =
1

2|x|1/4|1− x|1/4

(
(1−

√
1− x)1/2(1 +

√
1− x̄)1/2 + (1 +

√
1− x)1/2(1−

√
1− x̄)1/2

)
.

(3.26)

In fact we will see that it is more useful to work with the correlator after the transformation
z 7→ 1 − z, namely

Fσσµµ(x, x̄) = ⟨σ(∞)σ(1, 1)µ(x, x̄)µ(0)⟩

= 1
2|x|1/4|1− x|1/4

(
(1−

√
x)1/2(1 +

√
x̄)1/2 + (1 +

√
x)1/2(1−

√
x̄)1/2

)
.

(3.27)
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As mentioned above, these correlation functions can be obtained by computing the Virasoro
conformal blocks for c = 1/2 by solving the differential equation for the null vector, and
then fixing the coefficients in their sesquilinear combination by matching monodromies and
factorization into two point functions. For instance, to find Fσσµµ we used Fσσµµ(x, x̄) ∼
|x|−1/4 = ⟨σ(∞)σ(1, 1)⟩⟨µ(x, x̄)µ(0)⟩ for x → 0 and the fact that there is no monodromy
as x circles around 0. We do however pick up a minus sign when x circles around ∞. To
see this, it is useful to write the correlator as

Fσσµµ(x, x̄) =
i

2|x|1/4|1− x|1/4

(
(
√
x− 1)1/2(

√
x̄+ 1)1/2 − (

√
x+ 1)1/2(

√
x̄− 1)1/2

)
(3.28)

and then consider the limit x→ ∞; this gives indeed the expected branch cut at infinity.
For the correlation functions of the free boson part we have the usual expression

⟨
∏
i

: eikiϕ(zi) :: eik̄iϕ̄(zi) :⟩ =
∏
i<j

(zi − zj)kikj (z̄i − z̄j)k̄ik̄j . (3.29)

For future convenience we define the holomorphic part of the correlator of four free bosons
at 0, 1, x,∞ in terms of rescaled momenta

Bl2l3l4(x) := xl3l4/8(1− x)l2l3/8 , (3.30)

and similarly for the anti-holomorphic part.
Finally, to make the connection to the minimal model correlators explicit, let us give

the dictionary between the fields of the k = 2 minimal model and its Ising realization [35].
The symmetry algebra is realized as3

G−(z) = 1√
2
ψ(z)ei

√
2ϕ(z) , G+(z) = 1√

2
ψ(z)e−i

√
2ϕ(z) , (3.31)

and
J(z) = − i√

2
∂ϕ(z) , (3.32)

so that the field eikϕ(z) has h = k2/2 and Q = −k/
√
2. The anti-holomorphic symmetry

algebra has similar expressions. Moreover we need the primary fields

N1
±1,±1 = σ(z, z̄)e∓

i

2
√

2
ϕ(z)

e
∓ i

2
√

2
ϕ̄(z̄)

, N1
±1,∓1 = µ(z, z̄)e∓

i

2
√

2
ϕ(z)

e
± i

2
√

2
ϕ̄(z̄)

, (3.33)

and
N2

±2,±2 = e
∓ i√

2
ϕ(z)

e
∓ i√

2
ϕ̄(z̄)

. (3.34)

We also need some of their G descendants, namely

G−
−1/2N

2
2 (z) =

∮
z
dwG−(w)N2

2 (z) =
∮
z
dw

1√
2
ψ(w) : ei

√
2ϕ(w) :: e

−i√
2
ϕ(z) :

=
∮
z
dw

1√
2
ψ(w)(w − z)−1 : e

i√
2
ϕ(z) : + . . . = 1√

2
ψ(z) : e

i√
2
ϕ(z) : (3.35)

3Note that our normalization of the G differs from [35] by a factor of
√

2.
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and

G−
−1/2N

1
1,1(z, z̄) =

∮
z
dw

1√
2
ψ(w) : ei

√
2ϕ(w) : σ(z, z̄) : e

−i

2
√

2
ϕ(z) :

=
∮
z
dw

eiπ/4

2 (w − z)−1 : e
3i

2
√

2
ϕ(z) : µ(z, z̄)e

−i

2
√

2
ϕ̄(z̄) + . . . = eiπ/4

2 µ(z, z̄)e
3i

2
√

2
ϕ(z)

e
−i

2
√

2
ϕ̄(z̄)

.

(3.36)

Here we used the OPE of ψ with σ, see for instance [33]. Similarly we have

Ḡ−
−1/2N

1
1,1(z, z̄) = e−iπ/4

2 µ(z, z̄)e
−i

2
√

2
ϕ(z)

e
3i

2
√

2
ϕ̄(z)

, (3.37)

G−
−1/2N

1
1,−1(z, z̄) = e−iπ/4

2 σ(z, z̄)e
3i

2
√

2
ϕ(z)

e
i

2
√

2
ϕ̄(z̄)

, (3.38)

Ḡ−
−1/2N

1
−1,1(z, z̄) = eiπ/4

2 σ(z, z̄)e
i

2
√

2
ϕ(z)

e
3i

2
√

2
ϕ̄(z)

. (3.39)

The expressions for G+
−1/2 are the same up to the change in the charge.

4 Gepner models

4.1 The Quartic Gepner model: (2)4

We can now use these N = 2 minimal models to construct a Gepner model. Gepner models
were introduced in [15, 16]. Their basic ingredient is a tensor product of r minimal models
such that their total central charge satisfies

r∑
i=1

3ki
ki + 2 = 3D . (4.1)

Here D is the complex dimension of the Calabi-Yau D-fold whose sigma model they represent,
in our case D = 2 for K3. More concretely, we will focus on the Gepner model with
r = 4, ki = 2. This corresponds to the quartic Fermat surface.

The idea is then to construct the K3 sigma model partition function out of the characters
of this tensor product. The natural starting point is simply the diagonal invariant of the
tensor product of the bosonic subalgebra of the factors,

Z =
∑

(li,mi,si)

4∏
i=1

χli(si)
mi

(χli(si)
mi

)∗ . (4.2)

This partition function is clearly modular invariant, as it is a product of modular invariant
functions. It does not however describe the CY sigma model that we are interested in. On the
one hand, there is no proper notion of Ramond and NS sectors yet: in the tensor product, the
individual factors are independently allowed to be in NS and Ramond sectors. On the other
hand, it does not contain the holomorphic top form ΩD/2,0 that acts as the (one unit) spectral
flow operator. To construct the partition function of a consistent CFT, we want to perform
a so-called simple current extension [36–38]. The advantage of this relatively technical way
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of constructing Gepner models is that it not only guarantees a modular invariant partition
function, but also allows to compute (consistent) correlators of the resulting theory.

As a side remark we note that strictly speaking we do not construct a Gepner extension,
but rather what [39] call a Calabi-Yau extension. The resulting theory describes the CY
sigma model rather than the worldsheet theory of the string compactification. The main
difference is that we extend by the one-unit spectral flow operator rather than the half-unit
operator. This means that the resulting theory only has NS-NS and R-R sectors and none
of the NS-R sectors of the string worldsheet theory that lead to spacetime fermions and
supersymmetry. The two extensions are closely related however and it is straightforward
to go from the CY extension to the Gepner extension.

Simple current extensions work in the following way: a simple current J is a holomorphic
field whose fusion with any primary field φ yields just a single field Jφ. Single currents form
a group G. We want to extend the chiral algebra of our CFT by such a J. To do this, we
first project out any fields φ whose monodromy charge

QJ(φ) := hJ + hφ − hJφ (4.3)

is not integral. This ensures that J is local, that is that the OPE of J with φ does not lead to
branch cuts. The primary fields φ that survive the projection are then organized into orbits
[φ] of G. The diagonal modular invariant of the extended theory is

Zext =
∑
[φ]

QJ(φ)∈Z ∀J∈G

|Sφ|

∣∣∣∣∣∣
∑

J∈G/Sφ

χJφ(τ)

∣∣∣∣∣∣
2

, (4.4)

where the χ are the characters of the original theory. Here Sφ is the subgroup of G that
leaves φ invariant under the fusion product; we will return to it momentarily. Note that (4.4)
is non-diagonal with respect to the original characters. Off-diagonal states are often called
twisted sectors of the extension, even though they are strictly speaking not the same as
twisted sectors of orbifold theories.

Let us now apply this to our minimal models. We first want to extend the model by
simple currents written schematically as GiGj . Here the indices denote in which factor
the current lives, such as

G1G2 = Φ0
0,2;0,0 ⊗ Φ0

0,2;0,0 ⊗ Φ0
0,0;0,0 ⊗ Φ0

0,0;0,0 . (4.5)

These form a group Z3
2. From (3.17) we see that their projection implements si/2 + sj/2 ∈ Z,

meaning that all factors are either in the NS or Ramond sector. Including their twisted
sectors leads to a partition function that is a sum over terms

4∏
i=1

χli(si)
mi

(χli(s̄i)
mi

)∗ , (4.6)

where the si and s̄i are all either odd or even (for the R-R or NS-NS sector respectively)
and satisfy the GSO-type condition

4∑
i=1

(
si
2 + s̄i

2

)
∈ 2Z . (4.7)
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Next we want to extend by the one-unit spectral flow operator J. This operator is given by

J =
4⊗

Φ0
2,2;0,0 =

∏
i

e
i√
2
ϕi(z)

, (4.8)

which indeed has h = 1 and Q = 2. It generates a group Z4. Following the notation in [40, 41],
we label the twisted sectors that arise from this extension by an integer n = 0, 1, 2, 3. The
character of the twist n sector is then given by

4∏
i=1

χ
li(si)
mi+n(χ

li(s̄i)
mi−n)

∗ , (4.9)

where the si, s̄i satisfy the same conditions as above. In addition, it is straightforward to
see that the projection condition for J is

4∑
i=1

mi

4 ∈ Z . (4.10)

In total, the partition function of the K3 sigma model at the Gepner point (2)4 is given
by summing (4.9) over li,mi, si, s̄i, n subject to the conditions (3.16), (4.7), (4.10) and the
identification (3.15).

4.2 Expressions for the characters

For concreteness, let us give the first few terms of the partition function in the NS-NS sector
of our quartic Gepner models. This will in particular allow us to identify the chiral primaries
of the theory and its lightest non-BPS states. For the n = 0 sector we get

Zn=0 =1 + 19√qy
√
q̄ȳ +

19√q
√
q̄

yȳ
+ qy2q̄ȳ2 + qq̄

y2ȳ2

+ 12q1/4q̄1/4 + 4q̄ + 46√q
√
q̄ + 4q

+ 24q3/4yq̄3/4ȳ + 12q3/4q̄3/4ȳ

y
+ 12q3/4yq̄3/4

ȳ
+ 24q3/4q̄3/4

yȳ
+ 48q3/4q̄3/4

+ 128qyq̄ȳ + 88qq̄ȳ
y

+ 88qyq̄
ȳ

+ 128qq̄
yȳ

+ 372qq̄ + . . . .

(4.11)

For n = 1 we get

Zn=1 =
√
qy

√
q̄

ȳ
+

19√q
√
q̄ȳ

y
+ q

y2 + q̄ȳ2

+ 18√q
√
q̄ + 12q3/4yq̄3/4ȳ + 24q3/4q̄3/4ȳ

y
+ 12q3/4q̄3/4

yȳ
+ 48q3/4q̄3/4

+ 4qq̄
y2 + 4qq̄ȳ2 + 88qyq̄ȳ + 128qq̄ȳ

y
+ 48qyq̄

ȳ
+ 88qq̄

yȳ
+ 284qq̄ + . . . .

(4.12)

For n = 2 we get

Zn=2 =√
qy
√
q̄ȳ +

√
q
√
q̄

yȳ
+ qq̄ȳ2

y2 + qy2q̄

ȳ2

+ 6√q
√
q̄ + 12q3/4q̄3/4ȳ

y
+ 12q3/4yq̄3/4

ȳ
+ 48q3/4q̄3/4

+ 48qyq̄ȳ + 88qq̄ȳ
y

+ 88qyq̄
ȳ

+ 48qq̄
yȳ

+ 212qq̄ + . . . .

(4.13)
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For n = 3 we get

Zn=3 =
√
q
√
q̄ȳ

y
+

19√qy
√
q̄

ȳ
+ q̄

ȳ2 + qy2

+ 18√q
√
q̄ + 12q3/4yq̄3/4ȳ + 24q3/4yq̄3/4

ȳ
+ 12q3/4q̄3/4

yȳ
+ 48q3/4q̄3/4

+ 4qy2q̄ + 88qyq̄ȳ + 48qq̄ȳ
y

+ 128qyq̄
ȳ

+ 88qq̄
yȳ

+ 4qq̄
ȳ2 + 284qq̄ + . . . .

(4.14)

Collecting the four sectors, we see that in terms of BPS states, we indeed get 80 moduli, the
vacuum, 4 (±2,±2) chiral primaries and 4 (0,±2) and (±2, 0) chiral primaries. As for the
lightest non-BPS states, we find 12 uncharged (1/4, 1/4) states, all of them in the n = 0
sector. These are the states whose lifting we will analyze.

4.3 Chiral primaries

Let us describe the moduli that we found in the character in more detail. The k = 2 minimal
model has chiral fields N l

l with h = l/8 and q = l/4, and anti-chiral fields N l
−l with h = l/8

and q = −l/4, with l = 0, 1, 2.
For the untwisted n = 0 sector, the main constraint that determines the number of chiral

fields comes from (4.10). The sum is simply the total U(1) charge of the state. The only cc
field that gives Q = 0 is of course the vacuum (N0

0;0)⊗4. There is also one cc field with Q = 2,
namely (N2

2;2)⊗4. For Q = 1, the chiral primaries are products of factors of N l
l;l such that the

total U(1) charge is Q = 1. Up to permutations, there are three possible ways to construct
such primaries: four factors of N1

1;1 (which we will call type A), two factors N2
2;2 (type B), and

one factor N2
2;2 and two factors N1

1;1 (type C). A quick combinatorial argument shows that
there are 1, 6 and 12 fields of the respective types. In summary, we have the following moduli:

1 type A : N1
1;1 ⊗N1

1;1 ⊗N1
1;1 ⊗N1

1;1 (4.15)
6 type B : N2

2;2 ⊗N2
2;2 ⊗ 1⊗ 1 (and permutations) (4.16)

12 type C : N2
2;2 ⊗N1

1;1 ⊗N1
1;1 ⊗ 1 (and permutations) (4.17)

Together with the Q = 1 cc field from the n = 2 sector found below this gives the 20 N = 4
moduli of K3. The aa, ac, ca components of these moduli can be constructed in a similar
way, giving the total 80 N = 2 moduli of K3.

In the twisted sectors we have cc primaries in the characters

(χn−1(0)
n−1 χ

n−1(−2)∗
−n−1 )4 . (4.18)

For the n = 2 twisted sector this means we have another type A modulus

N1
1;1 ⊗N1

1;1 ⊗N1
1;1 ⊗N1

1;1 (4.19)

with charge (1, 1). For n = 1 we have

(N0
0 )⊗4 ⊗ (N̄2

2 )⊗4 (4.20)
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with charge (0, 2) and for n = 3

(N2
2 )⊗4 ⊗ (N̄0

0 )⊗4 (4.21)

with charge (2, 0), corresponding to the corners of the Hodge diamond.
In listing all moduli, we encounter an apparent puzzle: it seems that the type A modulus

appears twice, once in the n = 0 sector and once in the n = 2 sector. Even though this may
not be a problem on the level of the partition function, clearly those two primaries must be
distinguished by their fusion rules and correlation functions. In fact, they are distinguished
by an additional quantum number. This quantum number arises from the fact that the type
A modulus is invariant under J2G1G2G3G4 because of the field identification (3.15). Its
stabilizer group Sφ is Z2, which leads to a two-fold degeneracy that is lifted by introducing a
Z2 quantum number corresponding to the two irreducible characters of Z2. In principle this
affects their fusion rules — see e.g. equation (2.10) in [39]. For our purposes however this
will not matter, as the correlators we are interested in vanish in either case.

4.4 CY extension and correlation functions

Let us briefly discuss how to compute correlation function of the extended theory. The
correlation functions of the underlying tensor theory follow of course directly from the
minimal model theory. However, for the extended theory in principle we need to employ the
Verlinde formula to obtain the new fusion rules, and then compute the correlators from the
conformal blocks of the bosonic subalgebra. For the extension by GiGk, we will circumvent
this procedure by working with the full N = 2 correlation functions in the NS sector. All
GiGk twisted states are then already included. The only issue is to deal with the GSO
projection when computing correlation functions. In general what we need to do is to impose
the GSO projection on the internal fields. The reason for this is that the odd fusion rules
can change the total fermion parity. More concretely, even fusion channels leave the fermion
parity invariant. So do odd channels as long as both left- and right-movers are in an odd
channel. Thus in our setup the only case that is affected is the fusion of something like
G−

−1/2N
1
1,1(x)N1

1,1(0), in which case the left movers are in the odd channel and the right
movers are in the even channel, which will be projected out. For our calculations it turns
out that this never becomes necessary. One quick way of checking this is to observe that
no branch cuts appear in our correlators.

For the extension by J, we first note that the integral charge condition is preserved
under fusion, meaning that as long as the external fields satisfy it, the internal fields do
so too, so that no additional projection is needed. Next, in principle we need to include J
twisted states. First note that these only involve the bosonic part of the correlator. The
bosonic correlation functions however are already constrained by bosonic charge conservation.
For fixed external fields, charge conservation uniquely fixes the internal channel, so that no
additional twisted states are allowed to appear.
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5 Lifting the h = 1/4, h̄ = 1/4 fields under type B moduli

5.1 First order lifting

From the expressions in section 4.2, we see that the lightest non-BPS states have h = 1/4, h̄ =
1/4. There are 12 of them, and they all come from the n = 0 sector. They are of the form

φ12 = N1
1;1 ⊗N1

−1;−1 ⊗N0
0;0 ⊗N0

0;0 (5.1)

and permutations thereof. We will denote them by φij , where i labels the factor with N1
1;1

and j the factor with N1
−1;−1.

The types of chiral primaries of appropriate charge and weight were described above.
The actual moduli are given by taking their G descendants such as

O = G−1/2Ḡ−1/2
(
N2

2;2 ⊗N2
2;2 ⊗ 1⊗ 1

)
. (5.2)

Here G denotes the diagonal supercharge of all the tensor factor supercharges, that is

G⊗ 1⊗ 1⊗ 1 + 1⊗G⊗ 1⊗ 1 + 1⊗ 1⊗G⊗ 1 + 1⊗ 1⊗ 1⊗G . (5.3)

In principle G = G++G− is the N = 1 supercharge, but when acting on (anti-)chiral primaries
only one of the N = 2 supercharges survives. Note that even though G is not in the theory due
to the GSO projection, GḠ is. Finally we need to define a hermitian modulus, which we do as

Φ = O +O†
√
2

. (5.4)

The alternative hermitian linear combination i(O −O†)/
√
2 leads to a vanishing first order

contribution, as can be seen from the expressions below.4 Since we are looking for non-
vanishing contributions, we will focus on (5.4).

Let us first discuss the first order lifting for the type A modulus. Since there are 12 fields
φij of the same weight, we need to use degenerate perturbation theory. To obtain the entries
of the lifting matrix the fusion rules (3.9)–(3.14) are useful. We immediately see that all
diagonal entries vanish, since two factors will be one-point functions. A slightly more careful
analysis shows that in fact all entries vanish: the only way to obtain the vacuum is the fusion
N1

1;1 ×N1
−1,−1, but there are only two fields N1

−1;−1 available. The type A modulus thus does
not lift the φij at first order. We will therefore not try to analyze its second order effects. The
same argument shows that the n = 2 twisted modulus also gives no first order contribution.

Let us therefore turn to type B moduli. For concreteness, we will pick

O = G−1/2Ḡ−1/2
(
N2

2;2 ⊗N2
2;2 ⊗ 1⊗ 1

)
. (5.5)

Any other moduli of type B will lead to the same result after permuting factors.
Let us first discuss the form of the first order lifting matrix ⟨φ†

iΦφj⟩. Note that even
though O has overall charge zero, the first two factors have charge ±1

2 . This means that the
only non-vanishing entries occur between fields φi and φj whose charges in the first and sector

4We thank an anonymous referee for pointing this out.
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factor differ by exactly one. This implies in particular that the diagonal elements of the matrix
vanish. In fact, it follows that the only non-vanishing entries occur between the two fields

φ12 := N1
1;1 ⊗N1

−1;−1 ⊗ 1⊗ 1 , φ21 := N1
−1;−1 ⊗N1

1;1 ⊗ 1⊗ 1 , (5.6)

which satisfy φ†
12 = φ21.

Now we can compute the 3-pt function ⟨φ12Oφ12⟩ using the results in section 3.3. We
have two non-trivial factors, each of which we consists of an Ising part and a free boson part:

⟨N1
−1;−1N

1
−1;−1N

2
2;2⟩ = ⟨σσ⟩ = 1 (5.7)

and
⟨N1

1;1N
1
1;1G

−
−1/2Ḡ

−
−1/2N

2
2;2⟩ =

1
2⟨σσψψ̄⟩ =

1
2Fψψ̄(1, 1) =

1
4 . (5.8)

Similarly, ⟨φ12O
†φ12⟩ = 1

4 . In total we thus have

C
φ†

21Φφ12
= 1

2
√
2

(5.9)

and similarly for C
φ†

12Φφ21
. Diagonalizing the matrix gives two eigenstates

φ± = φ12 ± φ21√
2

(5.10)

that get lifted by

h(1) = ∓ π

2
√
2
. (5.11)

5.2 Second order lifting

Let us now compute the lifting of the states φ± at second order. Since those two states are
non-degenerate after perturbation at first order, at second order we can use non-degenerate
perturbation theory using the correlator

⟨φ†
±(∞)Φ(1)Φ(x)φ±(0)⟩ . (5.12)

When expressed in terms of φ12 and φ21, the cross terms vanish, and only diagonal entries are
non-vanishing. This follows from the fusion rules (3.13) and (3.14). Moreover, by hermitian
conjugation it is clear that φ12 and φ21 give the same contribution. For concreteness we
will thus compute ⟨φ12(∞)Φ(1)Φ(x)φ21(0)⟩.

To do this, we expand out the actual hermitian modulus Φ = 1√
2(O +O†). This leads

to four correlators with O(1)O(x), O†(1)O†(x), O†(1)O(x) and O(1)O†(x) inserted that need
to be evaluated. Let us discuss them one by one.

5.2.1 O(1)O(x)

When working out the diagonal G−1/2 operator (5.3), the G−1/2 annihilate the vacua in the
last two factors, so that each G and Ḡ only leads to 2 terms. The two moduli thus lead
to 24 = 16 terms in total. However, factorwise charge conservation makes most of these
terms vanish: each factor has to contain exactly one G− and one Ḡ−, meaning that once
we have distributed the G of O(1) to the two factors, for which there are 4 possibilities,
the distribution of the G of O(x) is completely fixed. There are thus four configurations,
which we evaluate in turn.
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1. Take the first factor to be of the form

⟨N1
1;1(∞)G−

−1/2Ḡ
−
−1/2N

2
2;2(1)N2

2;2(x)N1
−1;−1(0)⟩ . (5.13)

This correlation function can be written as the product of bosonic part and an Ising
part. In the notation of (3.30), the bosonic part is

B2−21(x)B2−21(x̄) = x−1/4(1− x)−1/2x̄−1/4(1− x̄)−1/2 . (5.14)

The Ising part is given by
1
2Fψψ̄(1, 1) =

1
4 , (5.15)

so that in total we get
1
4 |x|

−1/2|1− x|−1 (5.16)

As a sanity check, we note that the pole x−1/4 comes from the fusion N2
2 (x)N1

−1(0) ∼
x−1/4N1

1 (0), and the pole (1−x)−1/2 comes from (G−
−1/2N

2
2 )(1)N2

2 (x) ∼ (1−x)−1/2N2
0 (x)

The second factor necessarily has to have both G from O(x). It is therefore of the form

⟨N1
−1;−1(∞)N2

2;2(1)G−
−1/2Ḡ

−
−1/2N

2
2;2(x)N1

1;1(0)⟩ . (5.17)

The bosonic part is now

B−22−1(x)B−22−1(x̄) = x−1/4(1− x)−1/2x̄−1/4(1− x̄)−1/2 , (5.18)

and the Ising part is
1
2Fψψ̄(x, x̄) =

1
4x

−1/2x̄−1/2 , (5.19)

giving a total of
1
4 |x|

−3/2|1− x|−1 . (5.20)

Now the pole x−3/4 comes from the fusion (G−
−1/2N

2
2 )(x)N1

1 (0) ∼ x−3/4N1
−1(0), and

the pole (1− x)−1/2 is the same as above.

The third and fourth factors are of course trivial. Altogether the contribution from this
configuration is thus

1
16 |x|

−2|1− x|−2 . (5.21)

2. The next configuration has a first factor of

⟨N1
1;1(∞)N2

2;2(1)G−
−1/2Ḡ

−
−1/2N

2
2;2(x)N1

−1;−1(0)⟩ . (5.22)

The bosonic part is now

B−221(x)B−221(x̄) = x1/4(1− x)−1/2x̄1/4(1− x̄)−1/2 . (5.23)

and the Ising part is
1
2Fψψ̄(x, x̄) =

1
4x

−1/2x̄−1/2 , (5.24)
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giving
1
4 |x|

−1/2|1− x|−1 . (5.25)

The second factor is

⟨N1
−1;−1(∞)G−

−1/2Ḡ
−
−1/2N

2
2;2(1)N2

2;2(x)N1
1;1(0)⟩ (5.26)

giving
B2−2−1(x)B2−2−1(x̄) = x1/4(1− x)−1/2x̄1/4(1− x̄)−1/2 . (5.27)

and
1
2Fψψ̄(1, 1) =

1
4 , (5.28)

giving a total of
1
4 |x|

1/2|1− x|−1 (5.29)

The total contribution is thus
1
16 |1− x|−2 . (5.30)

3. The first factor is

⟨N1
1;1(∞)G−

−1/2N
2
2;2(1)Ḡ−

−1/2N
2
2;2(x)N1

−1;−1(0)⟩ (5.31)

giving
1
4 x̄

−1/2x−1/4x̄1/4(1− x)−1/2(1− x̄)−1/2 = 1
4 |x|

−1/2|1− x|−1 . (5.32)

The second factor is

⟨N1
−1;−1(∞)Ḡ−

−1/2N
2
2;2(1)G−

−1/2N
2
2;2(x)N1

1;1(0)⟩ (5.33)

giving
1
4x

−1/2x−1/4x̄1/4(1− x)−1/2(1− x̄)−1/2 = 1
4 |x|

−3/2x̄|1− x|−1 . (5.34)

In total we get
1
16 x̄|x|

−2|1− x|−2 . (5.35)

4. The first factor is

⟨N1
1;1(∞)Ḡ−

−1/2N
2
2;2(1)G−

−1/2N
2
2;2(x)N1

−1;−1(0)⟩ , (5.36)

giving
1
4x

−1/2x1/4x̄−1/4(1− x)−1/2(1− x̄)−1/2 = 1
4 |x|

−1/2|1− x|−1 . (5.37)

The second factor is

⟨N1
−1;−1(∞)G−

−1/2N
2
2;2(1)Ḡ−

−1/2N
2
2;2(x)N1

1;1(0)⟩ , (5.38)

giving
1
4 x̄

−1/2x1/4x̄−1/4(1− x)−1/2(1− x̄)−1/2 = 1
4 |x|

−3/2x|1− x|−1 . (5.39)

In total we get
1
16x|x|

−2|1− x|−2 . (5.40)
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Collecting the contributions from all configurations we get

1
16

|1 + x|2

|x|2|1− x|2
(5.41)

5.2.2 O†(1)O†(x)

To compute this contribution, we can simply take the hermitian conjugate of the previous
contribution. φ21 and φ†

21 only differ by switching the first two factors. The result is thus
the same as above,

1
16

|1 + x|2

|x|2|1− x|2
. (5.42)

5.2.3 O†(1)O(x)

We have again four possible configurations:

1. The first factor is
⟨N1

1;1(∞)N2
−2;−2(1)N2

2;2(x)N1
−1;−1(0)⟩ . (5.43)

We have

B2−21(x)B2−21(x̄) = x−1/4x̄−1/4(1− x)−1/2(1− x̄)−1/2 = |x|−1/2|1− x|−1 . (5.44)

The second factor is

⟨N1
−1;−1(∞)G+

−1/2Ḡ
+
−1/2N

2
−2;−2(1)G−

−1/2Ḡ
−
−1/2N

2
2;2(x)N1

1;1(0)⟩ , (5.45)

giving

B−22−1(x)B−22−1(x̄) = x−1/4x̄−1/4(1− x)−1/2(1− x̄)−1/2 = |x|−1/2|1− x|−1 (5.46)

for the bosonic part, and

1
4Fψψ̄ψψ̄(1, x) =

1
16|1− x|2

(
x1/2 + x−1/2

) (
x̄1/2 + x̄−1/2

)
(5.47)

for the Ising part. Putting everything together, we get

1
16

|1 + x|2

|x|2|1− x|4
. (5.48)

2. Next, the first factor is

⟨N1
1;1(∞)G+

−1/2Ḡ
+
−1/2N

2
−2;−2(1)G−

−1/2Ḡ
−
−1/2N

2
2;2(x)N1

−1;−1(0)⟩ . (5.49)

We have

B−221(x)B−221(x̄) = x1/4x̄1/4(1− x)−1/2(1− x̄)−1/2 = |x|1/2|1− x|−1 (5.50)

for the bosonic part, and

1
4Fψψ̄ψψ̄(1, x) =

1
16|1− x|2

(
x1/2 + x−1/2

) (
x̄1/2 + x̄−1/2

)
(5.51)
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for the Ising part. The second factor is

⟨N1
−1;−1(∞)N2

−2;−2(1)N2
2;2(x)N1

1;1(0)⟩ . (5.52)

We have

B2−2−1(x)B2−2−1(x̄) = x1/4x̄1/4(1− x)−1/2(1− x̄)−1/2 = |x|1/2|1− x|−1 . (5.53)

Putting everything together, we get

1
16

|1 + x|2

|1− x|4
. (5.54)

3. Next, the first factor is

⟨N1
1;1(∞)G+

−1/2N
2
−2;−2(1)G−

−1/2N
2
2;2(x)N1

−1;−1(0)⟩ . (5.55)

We have
B−221(x)B2−21(x̄) = x1/4x̄−1/4(1− x)−1/2(1− x̄)−1/2 (5.56)

for the bosonic part and
1
4

1
1− x

(x1/2 + x−1/2) (5.57)

for the Ising part. The second factor is

⟨N1
−1;−1(∞)Ḡ+

−1/2N
2
−2;−2(1)Ḡ−

−1/2N
2
2;2(x)N1

1;1(0)⟩ . (5.58)

We have
B2−2−1(x)B−22−1(x̄) = x1/4x̄−1/4(1− x)−1/2(1− x̄)−1/2 (5.59)

for the bosonic part and
1
4

1
1− x̄

(x̄1/2 + x̄−1/2) (5.60)

for the Ising part. In total we thus get

1
16

x|1 + x|2

|x|2|1− x|4
. (5.61)

4. Next, the first factor

⟨N1
1;1(∞)Ḡ+

−1/2N
2
−2;−2(1)Ḡ−

−1/2N
2
2;2(x)N1

−1;−1(0)⟩ (5.62)

gives

B2−21(x)B−221(x̄) = x−1/4x̄1/4(1− x)−1/2(1− x̄)−1/2 = x−1/4x̄1/4|1− x|−1 (5.63)

for the bosonic part and
1
4

1
1− x̄

(x̄1/2 + x̄−1/2) (5.64)

for the Ising part. The second factor is

⟨N1
−1;−1(∞)G+

−1/2N
2
−2;−2(1)G−

−1/2N
2
2;2(x)N1

1;1(0)⟩ . (5.65)
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We get

B−22−1(x)B2−2−1(x̄) = x−1/4x̄1/4(1− x)−1/2(1− x̄)−1/2 = x−1/4x̄1/4|1− x|−1 (5.66)

for the bosonic part and
1
4

1
1− x

(x1/2 + x−1/2) (5.67)

for the Ising part. In total we thus get

1
16

x̄|1 + x|2

|x|2|1− x|4
. (5.68)

Summing this up, we get a total contribution of

1
16

|1 + x|4

|x|2|1− x|4
. (5.69)

5.2.4 O(1)O†(x)

By hermitian conjugation and permuting factors, this gives the same contribution as above,
namely

1
16

|1 + x|4

|x|2|1− x|4
. (5.70)

5.3 Integrating the overall contribution

Collecting all contributions and accounting for the factor of 1/
√
2 in Φ, the 4-pt function is

G(x) = 1
16

|1 + x|2

|x|2|1− x|2
+ 1

16
|1 + x|4

|x|2|1− x|4
= |1 + x|2(1 + |x|2)

8|x|2|1− x|4
. (5.71)

This correlation function diverges as G(x) ∼ 1
8|x|2 at 0 and ∞. This is exactly as expected

from (5.9), and will give the logarithmic divergences discussed at the end of section 2.2.
Moreover, at x = 1 we have G(x) ∼ |1− x|−4, which confirms that the overall normalization
of the correlator is correct.

To evaluate the integral of G(x), let us define the integrals

I(a, b) :=
∫
d2x|x|2a|1− x|2b , (5.72)

and
J(a, b) :=

∫
d2x|x|2a|1− x|2b(x+ x̄) . (5.73)

We thus have∫
d2xG(x) = 1

8(I(−1,−2) + 2I(0,−2) + I(1,−2) + J(−1,−2) + J(0,−2)) . (5.74)

To evaluate these integrals, it is useful to transform coordinates so that the integrand becomes
integrable at x = 1, meaning b > −1. In particular we can use the transformation x 7→ 1− x

to get the identities

I(a, b) = I(b, a) J(a, b) = 2I(b, a)− J(b, a) (5.75)
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and x 7→ 1/x to get

I(a, b) = I(−2− a− b, b) J(a, b) = J(−3− a− b, b) . (5.76)

The total integral thus becomes

1
4(I(−2, 1) + 3I(−2, 0)− J(−2, 0)) . (5.77)

We discuss how to evaluate integrals of the form (5.72) and (5.73) in appendix A. For general
a and b they lead to hypergeometric functions. The specific values of a and b used here
however allow us to evaluate them in elementary form. We find

I(−2, 0) = π

ϵ2
+O(ϵ2) , (5.78)

I(−2, 1) = π

ϵ2
− 4π log ϵ+O(ϵ2) , (5.79)

J(−2, 0) = 0 . (5.80)

This gives

π

ϵ2
− π log ϵ+O(ϵ2) . (5.81)

The logarithmic divergences arise either from the square of the first order term as discussed
in 2.2, or they arise from the singularity at x → 1 and are therefore cancelled by the
counterterms we introduced in our minimial subtraction scheme.

Surprisingly, we find that in our regularization scheme the constant term vanishes,
meaning that there is no second order correction to the conformal weight. Since the Gepner
model has so many symmetries, this may not be altogether surprising, but it is not clear to
us why exactly this happens. In any case, as we want to demonstrate the interplay between
first and second order terms, we have to turn to moduli of type C.

6 Type C moduli

6.1 First order lifting

Consider now the type C modulus

O = G−1/2Ḡ−1/2
(
N2

2;2 ⊗N1
1;1 ⊗N1

1;1 ⊗ 1
)
. (6.1)

At first order, there is now lifting between the states

φ12 := N1
1;1 ⊗N1

−1;−1 ⊗ 1⊗ 1 φ31 := N1
−1;−1 ⊗ 1⊗N1

1;1 ⊗ 1 . (6.2)

It is straightforward to see that all other matrix elements vanish. The 3-pt function ⟨φ†
31Oφ12⟩

only has the non-trivial factor

⟨N1
1;1N

1
1;1G

−
−1/2Ḡ

−
−1/2N

2
2;2⟩ =

1
2⟨σσψψ̄⟩ =

1
2Fψψ̄(1, 1) =

1
4 , (6.3)
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as all other factors are simply two-point functions. On the other hand, ⟨φ†
31O

†φ12⟩ = 0 by
charge conservation in the individual factors. For the modulus (5.4) we thus have in total

C
φ†

31Φφ12
= 1

4
√
2

(6.4)

and similarly for C
φ†

12Φφ13
. Diagonalizing the matrix gives two eigenstates

φ± = φ12 ± φ31√
2

(6.5)

that get lifted by

h(1) = ∓π 1
4
√
2
. (6.6)

We note in passing that for the alternative linear combination of O and O†, the first and
second order contributions are identical, up to a change of basis of the fields that get lifted.

6.2 Second order lifting

Let us now turn to second order perturbation theory and evaluate the correlator ⟨φ†
±ΦΦφ±⟩.

For off-diagonal entries ⟨φ12ΦΦφ†
31⟩ we see that the third factor has an odd number of N1,

so that by the fusion rules the correlator will vanish. We can thus focus on the diagonal
entries. Next we note that φ†

31 is actually equal to φ12 up to permutation of the second
and third factor. Since Φ† = Φ and Φ is invariant under this permutation, it follows
that ⟨φ12ΦΦφ†

12⟩ = ⟨φ31ΦΦφ†
31⟩. We therefore only need to compute the matrix element

⟨φ12ΦΦφ†
12⟩. Just as before, the hermitian linear combination Φ leads to four different

combinations of O and O†.

6.2.1 O(1)O(x)

From the fusion rules it follows immediately that the third factor vanishes, so the contri-
bution is 0.

6.2.2 O†(1)O†(x)

From the fusion rules it again follows immediately that the third factor vanishes, so the
contribution is also 0.

6.2.3 O(1)†O(x)

Charge conservation forces G− and G+ to be in the same factor, and same for the right-
movers. In total we thus have nine configurations.

1. G−G+ and Ḡ−Ḡ+ in the first factor: the first factor is

⟨N1
1;1(∞)G+

−1/2Ḡ
+
−1/2N

2
−2;−2(1)G−

−1/2Ḡ
−
−1/2N

2
2;2(x)N1

−1;−1(0)⟩ . (6.7)

We get
B−221(x)B−221(x̄) = |x|1/2|1− x|−1 (6.8)
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for the bosonic part, and

1
4Fψψ̄ψψ̄(1, x) =

1
16|1− x|2

(
x1/2 + x−1/2

) (
x̄1/2 + x̄−1/2

)
= |1 + x|2

16|1− x|2|x|
(6.9)

for the Ising part. The second factor is

⟨N1
−1;−1(∞)N1

−1;−1(1)N1
1;1(x)N1

1;1(0)⟩ . (6.10)

We have
B1−1−1(x)B1−1−1(x̄) = |x|1/4|1− x|−1/4 (6.11)

from the bosonic part and for the Ising part

Fσσσσ(x) =
1√

2|x|1/4|1− x|1/4

√
1 + |x|+ |1− x| . (6.12)

The third factor is simply
|1− x|−1/2 . (6.13)

Putting everything together, we get

1
16
√
2

|1 + x|2

|x|1/2|1− x|4
√
1 + |x|+ |1− x| . (6.14)

2. G−G+ and Ḡ−Ḡ+ in the second factor: the first factor is

⟨N1
1;1(∞)N2

−2;−2(1)N2
2;2(x)N1

−1;−1(0)⟩ , (6.15)

giving only a contribution from bosons,

B2−21(x)B2−21(x̄) = |x|−1/2|1− x|−1 . (6.16)

The second factor is

⟨N1
−1;−1(∞)G+

−1/2Ḡ
+
−1/2N

1
−1;−1(1)G−

−1/2Ḡ
−
−1/2N

1
1;1(x)N1

1;1(0)⟩ . (6.17)

The bosonic part is
B−33−1(x)B−33−1(x̄) (6.18)

and the Ising part is
1
16Fσσσσ(x, x̄) , (6.19)

giving together
1

16
√
2|x||1− x|5/2

√
1 + |x|+ |1− x| . (6.20)

The third factor is simply
|1− x|−1/2 . (6.21)

Putting everything together, we get

1
16
√
2|x|3/2|1− x|4

√
1 + |x|+ |1− x| . (6.22)
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3. G−G+ and Ḡ−Ḡ+ in the third factor: the first factor is

⟨N1
1;1(∞)N2

−2;−2(1)N2
2;2(x)N1

−1;−1(0)⟩ , (6.23)

giving
B2−21(x)B2−21(x̄) = |x|−1/2|1− x|−1 . (6.24)

The second factor is

⟨N1
−1;−1(∞)N1

−1;−1(1)N1
1;1(x)N1

1;1(0)⟩ , (6.25)

giving a bosonic part
B1−1−1(x)B1−1−1(x̄) (6.26)

and from the spin fields
Fσσσσ(x, x̄) . (6.27)

The third factor is simply
1
16 |1− x|−5/2 . (6.28)

Putting everything together, we get
1

16
√
2|x|1/2|1− x|4

√
1 + |x|+ |1− x| . (6.29)

4. G−G+ in the first and Ḡ−Ḡ+ in the second factor: the first factor is

⟨N1
1;1(∞)G+

−1/2N
2
−2;−2(1)G−

−1/2N
2
2;2(x)N1

−1;−1(0)⟩ , (6.30)

giving
B−221(x)B2−21(x̄) = x1/4x̄−1/4|1− x|−1 (6.31)

for the bosonic part and for the Ising part
1
2Fψψ(1, x) =

1
4

1
1− x

(x1/2 + x−1/2) . (6.32)

The second factor is

⟨N1
−1;−1(∞)Ḡ+

−1/2N
1
−1;−1(1)Ḡ−

−1/2N
1
1;1(x)N1

1;1(0)⟩ (6.33)

giving a bosonic part

B1−1−1(x)B−33−1(x̄) = x1/8(1− x)−1/8x̄−3/8(1− x̄)−9/8 , (6.34)

and from the spin fields
1
4Fσµµσ(x, x̄) . (6.35)

The third factor is simply
|1− x|−1/2 . (6.36)

Putting everything together, we get

(x1/2 + x3/2)
32|x|3/2|1− x|4

(
(1−

√
1− x)1/2(1 +

√
1− x̄)1/2 + (1 +

√
1− x)1/2(1−

√
1− x̄)1/2 .

)
(6.37)
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5. G−G+ in the second and Ḡ−Ḡ+ gives the complex conjugate of the correlator above.

6. G−G+ in the first and Ḡ−Ḡ+ in the third factor: the first factor is again

⟨N1
1;1(∞)G+

−1/2N
2
−2;−2(1)G−

−1/2N
2
2;2(x)N1

−1;−1(0)⟩ , (6.38)

giving
B−221(x)B2−21(x̄) = x1/4x̄−1/4|1− x|−1 (6.39)

for the bosonic part and for the Ising part

1
2Fψψ(1, x) =

1
4

1
1− x

(x1/2 + x−1/2) . (6.40)

The second factor is

⟨N1
−1;−1(∞)N1

−1;−1(1)N1
1;1(x)N1

1;1(0)⟩ , (6.41)

giving a bosonic part
B1−1−1(x)B1−1−1(x̄) (6.42)

and from the spin fields
Fσσσσ(x, x̄) . (6.43)

The third factor is simply

1
4(1− x)−1/4(1− x̄)−5/4 . (6.44)

Putting everything together, we get

(1 + x)
16
√
2|x|1/2|1− x|4

√
1 + |x|+ |1− x| . (6.45)

7. G−G+ in the third and Ḡ−Ḡ+ in the first factor gives the same as above but with
x↔ x̄.

8. G−G+ in the third and Ḡ−Ḡ+ in the second factor: the first factor is

⟨N1
1;1(∞)N2

−2;−2(1)N2
2;2(x)N1

−1;−1(0)⟩ , (6.46)

giving
B2−21(x)B2−21(x̄) = |x|−1/2|1− x|−1 . (6.47)

The second factor is

⟨N1
−1;−1(∞)Ḡ+

−1/2N
1
−1;−1(1)Ḡ−

−1/2N
1
1;1(x)N1

1;1(0)⟩ , (6.48)

giving a bosonic part
B1−1−1(x)B−33−1(x̄) (6.49)

and an Ising part
Fσµµσ(x, x̄)/4 . (6.50)

– 28 –



J
H
E
P
0
1
(
2
0
2
4
)
1
9
7

The third factor is simply

(1− x)−5/4(1− x̄)−1/4/4 . (6.51)

Putting everything together, we get

x1/2

32|x|3/2|1− x|4
(
(1−

√
1− x)1/2(1 +

√
1− x̄)1/2 + (1 +

√
1− x)1/2(1−

√
1− x̄)1/2

)
.

(6.52)

9. G−G+ in the second and Ḡ−Ḡ+ in the third factor gives the complex conjugate of the
above.

6.2.4 O(1)O†(x)

From how hermitian conjugation works, we get the same correlation function as in the case
O†(1)O(x), except that the bosonic momenta of O and O† pick up a minus sign. That is,
we can replace Bk2k3k4 by B−k2−k3k4 in the above expressions.

6.3 Integrating the overall contribution

Let us now discuss how to integrate the overall result for the correlator

G(x) = ⟨φ12(∞)Φ(1)Φ(x)φ†
12(0)⟩ , (6.53)

which is given by summing up all contributions above and then dividing by 2 due to the
factor of

√
2 in the definition of Φ. We note that for x → ∞ we have

G(x) = 1
32 |x|

−2 + . . . =
C2
φ†

31Φφ12

|x|2
+ . . . , (6.54)

where the leading term comes from term 1 in 6.2.3. This gives the expected logarithmic
divergence discussed at the end of section 2.2.

We did not attempt to evaluate the resulting integral analytically, but instead used
Mathematica to approximate it. For this, we first use the transformation x 7→ 1− x to move
the non-integrable singularities to x = 0. (In the one case where that leads to a singularity at
x = 1, we manually subtract a correction term 1

32 |x|
−2 to remove the singularity, and then

add the integral of the correction term back in.) We then introduce polar coordinates and
split the integral into two integrals, one from r = ε to 1, the other from r = 1 to ε−1. In each
integral we expand the correlator in a power series in r and r−1 respectively, and integrate
term by term. For our results we kept terms up to the 15th power. Experimentally we found
that the value of the integral has converged pretty well by that point, so we are fairly confident
that including higher power terms will not change the answer significantly. A Mathematica
notebook of this computation can be found in the supplementary material to this article.

This procedure leads to the result∫
G(x)d2x = π

ε2 + π

8ε − π

8 log(ε) +M + . . . , (6.55)

where
M = −0.56 . . . . (6.56)
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As explained in section 2.2, M then gives the second order lifting matrix for both φ+ and
φ−. Their weights h̄±(λ) are thus approximated at second order by

h±(λ) =
1
4 ∓ π

4
√
2
λ+ π

2 0.56λ
2 +O(λ3) . (6.57)

Taking this second order approximation at face value, the fields φ± have a minimal weight
h̄ = 0.16 at λ = ±0.32. Comparing the contribution of the three terms in this quadratic
approximation, each power suppresses the contribution by about 1/2, so our quadratic
approximation may not be too far off from the full result.
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A Evaluating integrals

In this appendix we collect some methods for evaluating integrals of the form (5.72) and (5.73).
Even though it turns out that for our values of a and b we can evaluate the integrals using
elementary methods, the methods discussed here may be of future use.

As long as we are only interested in the constant part of the integral, equation (3.63)
in [42] gives the value∫

d2x|x|2a|1− x|2b = − sin(πb)Γ(1 + a)Γ(1 + b)2Γ(−1− a− b)
Γ(2 + a+ b)Γ(−a) , (A.1)

This answer is obtained by a clever complex deformation of the integration contours. Poles
are effectively regularized by closing contours with segments at infinity and discarding
the (divergent) contributions of these segments. Effectively this allows to deal with power
divergences. However, for our values of a, b the resulting Γ functions are evaluated at poles
and are therefore undefined. This is due to the appearance of logarithmic divergences in
our integral.

Another approach is to transform these integrals to polar coordinates and then first
evaluate the angular integral. This leads to hypergeometric functions, which then in turn
can be integrated over r [43].

The central formula here is that for Re(c) > Re(b) > 0
∫ π/2

0

sin(t)2b−1 cos(t)2c−2b−1

(1− z sin(t)2)a dt = Γ(b)Γ(c− b)
2Γ(c) 2F1(a, b, c; z) . (A.2)

To evaluate ∫
d2x|x|2a|1− x|2b , (A.3)
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we assume that b < −1, so that any divergence at x = 1 is integrable and therefore does
not need to be regularized. Switching to polar coordinates then gives∫ 2π

0
dθr2a+1|1 + 2r cos θ + r2|b = r2a+1

∫ 2π

0
dθ|1 + 2r + r2 − 4r sin2 θ

2 |
b

= r2a+b+1(α+ 2)b
∫ 2π

0
dθ|1− z sin2 θ

2 |
b = r2a+b+1(α+ 2)b4

∫ π/2

0
dt|1− z sin2 t|b ,

(A.4)

where α = r + 1/r and z = 4/(α + 2). Using (A.2) we get

r2a+b+1(α+ 2)b2Γ(1/2)
2

Γ(1) 2F1(−b, 1/2, 1; z) = 2πr2a+b+1(α+ 2)b2F1

(
−b, 1/2, 1; 4

α+ 2

)
.

(A.5)
Next we rewrite the integrand by using the fact that it is symmetric under r → 1/r:∫ 1

ε
dr2π

(
r2a+b+1 + r−2a−b−3

)
(α+ 2)b2F1

(
−b, 1/2, 1; 4

α+ 2

)
(A.6)

To simplify the argument of the hypergeometric function, we then use Kummer’s quadratic
transformation (since r < 1):

2F1

(
−b, 1/2, 1; 4r

(1 + r)2

)
= (1 + r)−2b

2F1(−b,−b, 1; r2) . (A.7)

The r-integral is thus∫ 1

ε
dr2πr2a+1(1 + r−4a−2b−4)2F1(−b,−b, 1; r2) . (A.8)

This integral can then be evaluated either in closed form or term by term in r.
We can similarly evaluate the integral

−
∫
d2x|x|2a|1− x|2b(x+ x̄) . (A.9)

In polar coordinates we have∫ 2π

0
dθ2r2a+2|1 + 2r cos θ + r2|b cos θ = 2r2a+b+2(α+ 2)b

∫ 2π

0
dθ|1− z sin2 θ

2 |
b
(
1− 2 sin2 θ

2

)
= r2a+b+2(α+ 2)b4

(
Γ(1/2)2

Γ(1) 2F1(−b, 1/2, 1; z)− 2Γ(3/2)Γ(1/2)Γ(1) 2F1(−b, 3/2, 2; z)
)

= 4πr2a+b+2(α+ 2)b (2F1(−b, 1/2, 1; z)− 2F1(−b, 3/2, 2; z)) .
(A.10)

This can then be integrated over r, if necessary term by term.
However, as mentioned above, the specific types of integrals that we are interested in

actually have a far simpler form. We have

I(−2, 0) =
∫
d2x|x|−4 =

∫
dr2πr−3 = π(ϵ−2 − ϵ2) , (A.11)

I(−2, 1) =
∫
d2x|x|−4|1− x|2 =

∫
dr2π(r−3 + r−1) = π(ϵ−2 − ϵ2 − 4 log ϵ) . (A.12)

Finally the integrand of J(−2, 0) is simply 2r−3 cos θ, so that after the θ integration we
immediately have J(−2, 0) = 0.
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