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1 Introduction

A microscopic explanation of the Bekenstein-Hawking entropy [1, 2] of black holes is an
important and fascinating question that any consistent quantum theory of gravity must
address. A landmark achievement was made by Strominger and Vafa [3] using the degrees
of freedom on the constituent D-branes.1 The precise version of the argument relies highly

1A separate development for understanding the entropy of a ‘small’ black hole made up of fundamental
strings originated in the work of Sen [4]. For further developments on the subject and the current status,
see [5–8].
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on supersymmetry,2 and at the time the only known supersymmetric black solutions to
supergravity were single-centered black holes. The Cardy growth of the supersymmetric
index of the theory on the brane reproduced to leading order (in the large charge limit) the
Bekenstein-Hawking entropy of a five-dimensional single-centered black hole. Soon after,
supersymmetric multi-centered black hole solutions were discovered [18, 19]. A supergravity
analysis shows these multi-centered black holes can sometimes entropically dominate over the
single-centered ones with the same conserved charges [20]. It has been an open question since
then if there is a precise microscopic counting in which we get the dominant contribution
to entropy from both single- and multi-centered black holes with macroscopic horizons in
different ranges of charges.

Consider M theory compactified on a Calabi-Yau threefold (CY3). The microscopic
entropy of the BPS solutions in 5d is captured by the non-perturbative part of the free energy
of topological strings on the Calabi-Yau, following the Gopakumar-Vafa conjecture [21, 22].3
We will investigate the existence of a transition between black holes and black rings in
this context. In fact, under the Gaiotto-Strominger-Yin (GSY) lift [25, 26], this transition
is closely related to the aforementioned transition between 4d single- and multi-centered
macroscopic black holes in IIA superstrings with N = 2 supersymmetry (in compactifications
with higher supersymmetry, say compactification on K3× T2 [27, 28], it is well known that
the only black hole with macroscopic horizon that contributes to the suitable supersymmetric
index is a single-centered one [29, 30]). However, to compare the microscopic and macroscopic
formulae, we need to be careful about the quantum corrections. The advantage of the
GSY lift is the expectation that the BPS entropies of black solutions in 4d and 5d are the
same, including perturbative quantum corrections. This allows us to systematically take into
account corrections to the Bekenstein-Hawking entropy of black solutions in 5d in terms of
the well-developed 4d formalism that we discuss below.

Corrections to the Bekenstein-Hawking entropy of a black hole in four dimensions consist
of various contributions. The first set of corrections come from the Wald entropy [31] of
higher derivative terms in the Wilsonian effective action of massless fields — present due to
integrating out other massive degrees of freedom. In the context of 4d N = 2 compactifications,
such contributions were systematically analyzed by Cardoso, de Wit, and Mohaupt in [32–34].
Among these higher derivative terms, there is the R∧R coupling that comes from the classical
dimensional reduction of the R4 term in the Wilsonian effective action of M theory [35–37].
All other higher derivative terms come from a degenerate limit of the contribution of Euclidean
M2 brane instantons wrapping a two-cycle in the Calabi-Yau and the M theory circle.4 In the
language of topological string theory, these contributions are captured by the perturbative
part of the free energy. According to the Ooguri-Strominger-Vafa conjecture [39],5 apart
from these higher derivative terms there also exist the contributions of non-degenerate M2
brane instantons and the one-loop fluctuations of massless fields in 4d that can be calculated

2This formalism is developed by a great amount over several years, see for instance [9–13] (also [14, 15])
and references therein. For a recent discussion on the microscopic origin of thermal entropy see [16, 17].

3For further details of the conjecture see [23, 24].
4There are also ‘special’ M2 brane instantons that contribute to the correction of the hypermultiplet

metric [38].
5The conjecture has been sharpened over the years; for a more precise formulation see [20].
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systematically in Sen’s formalism [40–42].6 In this work, by carefully analyzing the attractor
equations [46, 47], we will show that for the D6-D2-D0 black hole with one unit of D6
charge, the volume of the Calabi-Yau at the horizon in string units is fixed to a large value
(scales with the D2 charge) when the D0 charge is small. The radius of the horizon is the
same as the M theory circle, and the black hole is prone to all-order corrections from the
degenerate worldsheet instantons. As a result of this phenomenon, the microscopic origin
of this black hole has qualitatively new features compared to its higher-supersymmetric
analogs (for N = 4 black holes these contributions vanish [48, 49]). Since the volume of
the Calabi-Yau is large we can ignore the contribution of nontrivial M2 brane instantons.
As a result, the entropy from the 4d point of view is captured by the perturbative part of
the free energy of the topological strings, in sharp contrast to the microscopic calculation
in 5d that gets contributions from the non-perturbative part only. This gives a nontrivial
consistency check for the topological strings itself.

As a concrete example, we consider the compactification on the quintic threefold. The
calculation of Gopakumar-Vafa (GV) invariants7 on a compact manifold such as the quintic
is a notoriously difficult task (more so because the quintic does not have any elliptic or K3
fibration — at least not before making a nontrivial geometric transition). A systematic
procedure for the calculation of the GV invariants up to all genera is not known currently.
The difficulty is related to the fact that the holomorphic anomaly equation [54, 55] satisfied
by the free energy of topological strings requires suitable boundary conditions to give a
unique solution. A procedure for calculating GV invariants up to genus 51 for quintic was
formulated in [56], taking into account a set of physical boundary conditions at the orbifold
point, the conifold point, and the large volume limit. However, the explicit information
available in [56] for the GV invariants was up to much lower genera. Therefore, we initially
carried out the explicit calculation of GV invariants up to genus 49 (available at [57]) to
investigate the central questions of this work and make the main observations.8 Later, after
the appearance of [58, 59] which contains the state-of-the-art progress on the computation
of GV invariants, we extended our analysis to make full use of the available data, and the
results corroborated our earlier conclusions.

The numerical GV data allowed us to plot in figure 2 the BPS entropy in 5d at a fixed
M2 brane charge d as a function of left-moving angular momentum jL (roughly speaking,
the uplift from 4d to 5d maps the D4, D2, D0 charges to the M5, M2 charges, and the
left-moving angular momentum).9 From figure 2, it is clear that there is a sharp transition at
jL = jL,c(d). For small angular momentum jL < jL,c, we perform numerical extrapolation on
the microscopic data to d → ∞ in figure 3, and notice that the results are well-approximated
by the leading order entropy of the D6-D2-D0 black hole uplifted to 5d [60]. As part of

6An alternative approach to calculating the entropy of an extremal (single-centered) black hole solution
would be to perform the gravitational path integration in Sen’s formalism beyond one-loop. Such a procedure
has been carried out successfully for higher supersymmetric situations in [43–45].

7They determine the microscopic counting. When the Calabi-Yau is elliptic, they are related to F theoretic
string [50–53].

8Section 5 was significantly inspired by [58].
9The precise mapping also involves a shift in the M2 brane charge compared to the D2 brane charge that

depends on the D4 brane charge.
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figure 5, we further justify this claim by showing that the microscopic curve obtained from the
GV invariants (without any extrapolation) is close to the macroscopic entropy calculated in
4d, taking the contribution of the R∧R term into account. This suggests that the re-summed
contribution of the degenerate M2 brane instantons is small. At this stage, we do not have
any deeper understanding of this fact.

The understanding of the curve in figure 2 for larger values of the angular momentum
jL > jL,c is much more involved. The black ring under consideration is a multi-centered
black hole in 4d made of two centers carrying one unit of D6 and D4-D2-D0 charge. In
this work, we determine the range of charges for the existence of the bound state using
the analysis of [20]. Within this domain, the black ring entropy has a local maximum as a
function of the M5 brane parameter. In discussing the transition point above, we used the
black ring whose M5 brane parameter p was extremized to the local maximum at a given
value of d, jL. For the comparison to the microscopic curve, we focus on the black ring that
maximizes the leading order Bekenstein-Hawking entropy at the critical angular momentum
jL,c(d) ∼ d3/2, which determines the M5 brane parameter pc(d) ∼ d1/2. In a similar way as
the black hole, we take into account the corrections to the entropy due to the R ∧ R term
at fixed p = pc(d) as a function of jL, d. The resulting black ring entropy obtained this way
approximates the microscopic curve beyond jL > jL,c reasonably well for a few Calabi-Yau
compactifications. At this point, we note that the extremized value of M5 brane parameter
pc(d) for the range of charges d accessible to us (due to computational limitations) is small
(smaller than one).10 This suggests that the supergravity plot we discussed here is again
an extrapolation at best. Beyond the supergravity approximation, in the fully quantum
string theory, p is supposed to be an integer.

To take into account the quantization of the M5 brane charge p, we turn to the microscopic
description [61] of black rings given by the Maldacena-Strominger-Witten (MSW) CFT [62].
The comparison of the entropy coming from GV invariants with that coming from the MSW
index with p = 1 shows a spectacular agreement. This gives unequivocal evidence that black
ring microstates indeed contribute to the 5d BPS index captured by the GV invariants, and
that p = 1 is a dominant contribution up to the M2 brane charge d for which the GV data is
available. It is unclear whether p = 1 should remain a dominant contribution in the large d

limit, or whether p > 1 black rings even contribute. If all values of p contribute, then for
very large d, a better characterization of the black ring entropy would be an interpolation of
the semi-classical entropy optimized over continuous (positive) values of p for a range of jL,
and the p = 1 MSW entropy for jL beyond the point where the optimal p becomes O(1).

The remainder of this paper is organized as follows. In section 2, we study the black
hole/black ring transition within supergravity, using their Bekenstein-Hawking entropies. In
section 3, we introduce the Gopakumar-Vafa invariants counting 5d BPS states, review how
they are computed, and compare the corresponding microscopic entropy with supergravity.
In section 4, we systematically study the Wald entropy as well as further corrections, first
in the 4d language by way of the Ooguri-Strominger-Vafa conjecture, and then uplifted
to 5d through the Gaiotto-Strominger-Yin correspondence. In section 5, we perform a
microscopic/microscopic comparison between the GV invariants and the microstate counting

10The extremized M5 brane parameter at larger angular momentum is even smaller.
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of black rings with unit M5 brane charge. Finally, section 6 ends with a summary and
discussion of the open problem concerning degenerate instantons.

Note added. After the completion of this work, we became aware that our findings in
section 5.3 had been announced earlier [63] and recently appeared in [64].

2 Black hole/black ring transition in supergravity

In this section, we investigate the phase diagram of 5d minimal supergravity coming from M
theory compactified on a Calabi-Yau (CY3). In the regime of large angular momentum, we
will show that there is a transition (in the sense of entropic dominance) from a single-centered
black hole with a spherical horizon (i.e. S3) to a black ring with a different horizon topology
(more precisely S2 × S1).11 While this is certainly expected when the angular momentum is
above the black hole extremality bound, the transition actually occurs slightly below it.12

2.1 Field content of 5d supergravity

We work in units where the tension of an M2 brane is unity unless otherwise mentioned.
There are eight real supercharges unbroken in this situation. We will describe the bosonic field
content in the language of d = 5 N = 1 supergravity at a generic point on the moduli space
(at special points one might need to add additional matter fields that we will not discuss here).
In eleven dimensions the only degrees of freedom are the metric gµ̂ν̂ and the three form gauge
field Aµ̂ν̂ρ̂ (µ̂ = 0, 1, . . . , 10). We decompose the coordinates into the 5d part µ = 0, 1, . . . , 4
and the internal CY3 part i, ī = 1, 2, 3. Under the reduction to 5d, we obtain the 5d metric
gµν , h2,1 complex scalars gij , h1,1 real scalars gij̄ , a real scalar Φ related by Hodge star to
Aµνρ, one complex scalar Aijk = ϵijkc, h2,1 complex scalars Aijk̄, and h1,1 real vectors Aµjk̄.

Before discussing the multiplet structure of these fields it is convenient to introduce
an integer basis αA, A = 1, 2, . . . , h1,1 for H1,1(CY3, Z). The Kähler class is harmonic and
can be expanded as

J + iB = vAαA, (2.1)

where vA are real scalar fields in 5d. The scalar field associated with the volume of the CY3 is

V = CABC

3! vAvBvC , (2.2)

where the intersection numbers are defined by

CABC =
∫

CY3
αA ∧ αB ∧ αC . (2.3)

In total we get nH = h2,1 + 1 hypermultiplets whose scalars are related to gij , Aijk̄, c, Φ, V .
11See [65–67] for similar discussions involving other horizon topologies. We thank Jorge E. Santos for

pointing this out to us.
12It is not completely unreasonable to wonder if there is a manifestation of this phenomena at low

temperatures as a dynamical instability of the black hole. For a recent account of instability in the background
of fast-rotating black holes (at high enough temperature) in AdS see [68] and references therein.
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The remaining nV = h1,1 − 1 scalars φa related to the gij̄ above are in the vector
multiplet. Those can be parameterized as

hA(φ) = vA

v
,

CABC

3! hA(φ)hB(φ)hC(φ) = 1, v = (V)1/3. (2.4)

The abelian real vector fields in 5d coming from Aµjk̄ can be also discussed by expanding
the three form field strength as

dA = dV A ∧ αA. (2.5)

One of the field strengths is in the graviton multiplet along with gµν (enters in the SUSY
variation of the gravitino) and given by

T = hAdV A, hA = CABC

3! hBhC , (2.6)

and is called the graviphoton field strength (in general it is not gauge invariant), and the
remaining nV = h1,1−1 of them are in the vector multiplet mentioned above along with the φas.

All the fields in the vector and hypermultiplets are uncharged under the h1,1 vector fields
mentioned here, and as a result, we get ungauged d = 5 N = 1 supergravity.

2.2 Entropy of the half-BPS black hole

The Breckenridge-Myers-Peet-Vafa (BMPV) black hole [60] is a solution to 5d N = 1
supergravity that preserves half the supersymmetries. In this solution, only the fields in the
graviton and vector multiplets are turned on [69]. The entropy of the black hole is given by

SBH
0 = 2π

√
Q3 − j2

L, (2.7)

where
Q3/2 = CABC

3! yAyByC ,
CABC

2! yAyB = dC . (2.8)

Here yA are related to the horizon values of the scalars in the vector multiplet φa, and fixed by
the attractor mechanism [46, 47]. The black hole solution preserves half of the supersymmetries.
Here dA is the charge with respect to V A, normalized such that at the quantum level, it is
integer-valued. The flat 5d has a spatial rotation isometry of SU(2)L × SU(2)R that is broken
down to U(1)L × SU(2)R by the black hole solution. And jL is the half-integer quantized
(in the full quantum theory) angular momentum for U(1)L.

2.3 Entropy of the half-BPS black ring

Another half-BPS solution to 5d N = 1 supergravity is the Elvang-Emparan-Mateos-
Reall/Bena-Warner/Gauntlett-Gutowski (EEMR/BW/GG) black ring [70–73], which has
Bekenstein-Hawking entropy given by [61]

SBR
0 = 2π

√
cL
6 q̂0, (2.9)

where
cL = CABCpApBpC ,

q̂0 = −q0 +
1
2!C

ABqAqB + cL
24 , CAB = CABCpC , CABCBC = δA

C .
(2.10)

– 6 –



J
H
E
P
0
1
(
2
0
2
4
)
1
9
3

CY3 χ k c2 gavail davail

X5(15) −200 5 50 64 22
X6(14, 2) −204 3 42 49 15
X8(14, 4) −296 2 44 60 14

X10(13, 2, 5) −288 1 34 56 10
X4,3(15, 2) −156 6 48 26 14

X6,4(13, 22, 3) −156 2 32 17 7
X3,3(16) −144 9 54 34 20

X4,4(14, 22) −144 4 40 34 14
X6,6(12, 22, 32) −120 1 22 21 5

X6,2(15, 3) −256 4 52 49 17
X4,2(16) −176 8 56 50 24

X3,2,2(17) −144 12 60 14 13
X2,2,2,2(18) −128 16 64 32 24

Table 1. One-parameter Calabi-Yau threefolds studied in [74]. The first column gives their definitions
as complete intersections in weighted projective space; we refer to them by X• without the weights.
The next three columns provide their basic topological data, including the Euler characteristic χ,
the self-intersection number k, and the second Chern class c2. The last two columns specify the
maximal genus gavail at which the topological string data is currently available from [58, 59], and the
corresponding maximal M2 brane charge davail.

Here pA are the charges associated with M5 brane, and q0, qA are related to charges mentioned
above as follows

q0 = 2jL, dA = qA + CABC

2 pBpC . (2.11)

2.4 Black hole/black ring transition on CY3 with h1,1 = 1

Consider M theory compactified on a one-parameter CY3 with h1,1 = 1. Since the A index
only takes value 1, we define the shorthand

p := p1, d := d1, k := C111. (2.12)

Although not needed in the supergravity analysis of this section, we list in table 1 the 13
one-parameter CY3 studied in e.g. [56, 58, 74] and their relevant topological data, including
the Euler character χ and second Chern class c2.

For such CY3, the entropy of the black hole in (2.7) simplifies to

SBH
0 = 2π

( 2
9k

) 1
2

d
3
2

(
1− 9

32y2
) 1

2
, y := 4k

1
2

d
3
2

jL, (2.13)

and the entropy of the black ring in (2.9) simplifies to

SBR
0 = 2π

( 2
9k

) 1
2

d
3
2

(
x2 (x4 − 3x2 − 3xy + 3

)
8

) 1
2
, x := k

1
2

d
1
2

p. (2.14)
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Figure 1. Entropy S of the black hole (blue) and black ring (black) solutions in supergravity as a
function of the SU(2)L angular momentum jL. The black ring entropy is maximized over the M5
brane parameter p > 0 at every value of jL and does not vanish for arbitrary large jL.

From (2.13), (2.14), it is clear that the rescaled entropy

s0 := S0

Q(d) 3
2

, Q(d) :=
( 2
9k

) 1
3

d (2.15)

is independent of the geometric data (k) of the Calabi-Yau for both the black hole and black
ring solutions. For the black hole, s0 depends only on y, whereas for the black ring, s0
depends on both x, y. For a given value of y > 0, the scaled entropy of the black ring s0(x, y)
has a local maximum as x > 0 is varied, by which we get a function of y alone. The resulting
curves are plotted in figure 1. From the plot, one can see that for angular momentum

jL > jL,c(d) ≈ 0.99 Q(d)3/2, (2.16)

the black ring is entropically dominant over the black hole. We emphasize that the critical
value of the angular momentum above is universal among one parameter CY3. We refer to
this phenomenon as the black hole/black ring transition. In the rest of the paper, we will
study this from the point of view of M theory.

3 5d BPS indices from topological string theory

Having established the existence of a black hole/black ring transition in supergravity, we can
ask if this transition manifests in a quantum setting. Had the entropic transition been for
supergravity solutions in anti-de-Sitter space, the transition would have had ramifications in
the dual conformal field theory. In flat space, while the microstates describing a single black
object admit a quantum description in terms of the worldvolume theory of the underlying
brane, it is less clear whether the microstates of all objects (with the appropriate boundary
conditions) can be captured by a coherent quantum theory.

– 8 –
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Fortunately, a well-defined counting of microstates in flat space can be done by studying
supersymmetric indices, where supersymmetry reduces the problem to geometric questions
about the internal Calabi-Yau. However, not all supersymmetric objects contribute to
indices,13 and thus it is unclear whether the black hole/black ring transition should manifest
in the index, which is a central question we investigate.

The first two subsections are reviews, where we introduce 5d indices known as Gopakumar-
Vafa (GV) invariants, and explain how they are computed using the machinery of topological
string theory. We then numerically compare the microscopic index with the macroscopic
entropy, the results of which will motivate us to study in later sections the corrections to
the semiclassical entropy from a macroscopic point of view, as well as the comparison of
GV invariants with black ring indices for small charges.

3.1 Gopakumar-Vafa conjecture

Consider the worldvolume theory of an M2 brane wrapping two-cycle of class [d] (see section 2.2
for the appropriate definition). One obtains an effective supersymmetric quantum mechanics
of a BPS particle of charge d propagating in 5d (see [24] for a careful discussion). These
states can be further labeled by the representation [(jL, jR)] under the spatial rotation group
SU(2)L × SU(2)R. Here both jL,R are taken to be half-integers. Abstractly, one can write
the representation content as

njL,jR
d [(jL, jR)] . (3.1)

Following [21, 22], we can define a supersymmetric index by tracing over SU(2)R with signs,
and further organize the results into SU(2)L representations to define the Gopakumar-Vafa
(GV) invariants ng

d, i.e.,

∑
jL,jR

(−1)2jR(2jR + 1)njL,jR
d [(jL)] =

∞∑
g=0

ng
d

[((1
2

)
+ 2(0)

)⊗(g+1)
]

=
∑
jL

∞∑
g=0

ng
d

(
2(g + 1)

g + 1 + 2jL

)
[(jL)] .

(3.2)

The 5d supersymmetric index — a proxy for the BPS degeneracy at fixed d, jL — can
be obtained from

Ω(jL, d) =
∞∑

g=0
ng

d

(
2(g + 1)

g + 1 + 2jL

)
. (3.3)

Gopakumar and Vafa argued that the GV invariants ng
d can be computed by studying

topological strings on the CY3 (see [23] for more details and [24, 75] for the subtleties
involved).

13This phenomenon is well studied in 4d N = 4 string theory (II on K3 × T2), where none of the multi-
centered black hole solutions (with at least one macroscopic horizon) contributes to the index (inverse Igusa
cusp form) [29, 30].
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For concreteness of discussion, let us focus on the quintic X5 with χ = −200, k = 5, and
c2 = 50. The GV conjecture can be expressed more explicitly as14

∞∑
g=0

F (g)(t, t̄ = −i∞) λ2g−2

= C3(t)λ−2 + C1(t) +
∞∑

g=0

∞∑
k=1,d=0

ng
d

1
k

(
2 sin kλ

2

)2g−2(
e2πit

)kd

.

(3.4)

Here F (g) is the free energy of topological strings at genus g > 0 and F (0) is the prepotential
(in a specific physical holomorphic gauge that we will discuss in detail later), (t, t̄) keeps track
of the Kähler moduli of the CY3. Each Cn is an nth order polynomial with the constant
term set to Cn(0) = 0 by absorbing it into ng

0. All the terms with d > 0 are coming from
worldsheet instantons and would be referred to as the non-perturbative part and the rest
of it would be called the perturbative part.

In IIA, F (g) for g > 1 is expected to capture the coefficient in quantum effective action
involving two anti-self dual gravitons and 2g − 2 anti-self dual graviphotons [76, 77], so the
right side of (3.4) can be thought of as encoding the coefficients of the F terms [54] in the
Wilsonian effective action coming from integrating out a Euclidean M2 brane wrapping a
holomorphic two-cycle in the CY3 and the M theory circle. However, the conjecture relates
them at the large volume limit.

Physically, we expect the number of states to go to zero as we increase the angular
momentum jL for fixed mass d, and this expectation is met by the following bound on the
GV invariants known as the Castelnuovo bound [74]15

ng
d = 0, g >

10 + 5d + d2

10 . (3.5)

3.2 Computation of topological string free energy

In this section, we review the method in [56] for computing the topological string free
energy, which is based on the Bershadsky-Cecotti-Ooguri-Vafa (BCOV) holomorphic anomaly
equation [54, 55] as well as [79, 80], and focus on the quintic for concreteness. The reader who
is familiar with the methodology, or is content with knowing the existence of an algorithm,
can safely skip to the next subsection.

At genus zero, F (0) is determined in terms of the geometry of the moduli space. However,
the Kähler moduli space parameterized by t that we are after gets nontrivial α′ corrections.
On the other hand Mirror symmetry maps the Kähler structure moduli space to the complex
structure moduli space parameterized by z which is α′ exact. Therefore we will study the
topological strings on the mirror quintic and then we will use mirror map t = t(z) to get
the answer for the quintic. The coordinate z is chosen such that at z = 0 we have the
Landau-Ginzburg orbifold description of the worldsheet CFT, at z = 1 we encounter the
conifold transition, and z → ∞ is the large volume limit.

14This expression is a formal expansion in λ and does not have to be convergent.
15The connection of GV invariants to Castelnuovo theory is discussed in [23]. It is proven recently in [78]

for the quintic and for all one parameter CY3 (assuming the BMT inequality) in [58].
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We rewrite the topological string free energy as

F (g)(z, z̄) =
(1− z

5z
ω2

0(z)
)g−1

P̃ (g)(z, z̄), t(z) = 1
2πi

ω1(z)
ω0(z)

. (3.6)

Here ω0 reflects the choice of the very specific holomorphic Kähler gauge (from the point of
view of the worldsheet CFT of topological strings, there are nontrivial contact terms in the
OPE at a generic point on the moduli space. Because of these contact terms, topological
string free energy depends sensitively on the choice of the U(1) line bundle gauge field A and
the Zamolodchikov metric G on the moduli space. Once a holomorphic gauge is chosen for
A, the answer still depends on the choice of the holomorphic gauge which can be further
fixed at a given value of t̄ = t̄0 by demanding that the covariant derivative with respect to A

simplifies. It has been argued that this special choice is what is necessary to compare the
results with the algebraic results on holomorphic curves). The mirror map can be calculated
from the Picard-Fuchs equations at a point on the moduli space [81]

(∂4
u − e−uL1L2L3L4)ωn(z = eu) = 0, Li = ∂u − i

5 . (3.7)

The boundary condition on ω is subtle and contains the choice of gauge. We will specify
it at specific points below.

Near the large volume point t = i∞, we have the following solutions

ω(z, ρ) =
∞∑

n=0

Γ(5(n + ρ) + 1)
Γ(n + ρ + 1)5(55z)n+ρ

, ω0(z) = ω(z, 0), ω1(z) = ω(0,1)(z, 0). (3.8)

The geometry of the moduli space in this holomorphic limit is determined by (the constant
of proportionality would be unimportant for the calculation and we will not bother to fix it)

e−K ∝ ω0(z) Gzz̄ ∝ ∂zt(z). (3.9)

Near the orbifold point t = 0, we have the following solutions (these are related to
the solutions in the large volume limit but not exactly the same — in fact, their analytic
continuations are related by a linear transformation)

ωk(z) = 25z
k+1

5

∞∑
n=0

(
55z
)n ((k+1

5

)
n

)
5

(k + 1)5n
, (3.10)

where (k)n is the Pochhammer symbol. Again the geometry of the moduli space is given
by (3.9) with ω0, ω1 defined as in (3.10).

A closed-form expression is not available near the conifold point t = 1. We fix it by the
following conditions (these are related to the solutions in the large volume limit and at the
orbifold point presented earlier but not exactly the same)

ωk(z) = 51/2
∞∑

n=0
dk,n(z − 1)n,

d0,0 = 1, d0,1 = 0, d0,2 = 0, d0,3 = 2
625 ,

d1,0 = 0, d1,1 = 1, d1,2 = − 3
10 , d1,3 = 11

75 .

(3.11)

Here (3.9) remains valid.
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Now we turn to state the results for the GV invariants. It will be convenient to define
the following decomposition (at a generic point on the moduli space)

P̃ (0)(z, z̄) = P (0)(z, z̄), X(z) = 1
1− z

,

P̃ (g)(z, z̄) = P (g)(z, z̄) +
3(g−1)∑

i=0
ag,iX(z)i for g ≥ 1.

(3.12)

The coefficients ag,i will be called the holomorphic ambiguity, the reason for which will be
clear in a moment. The upper and lower limit on the sum has to do with the boundary
conditions on the moduli space that we will discuss later. We define a covariant derivative
by the following formula [79]

P
(g)
n+1 = z∂zP (g)

n −
(

n(A1 + 1) + (2− 2g)
(

B1 −
X

2

))
P (g)

n , P
(g)
0 = P (g),

Ap = (z∂z)pGzz̄

Gzz̄
, Bp = (z∂z)pe−K

e−K
.

(3.13)

At genus zero the data of GV invariants can be conveniently encoded into [79]

P
(0)
3 = 1. (3.14)

For higher genus non-holomorphic dependence of the topological string free energy is
completely fixed by the holomorphic “anomaly” equations [55]. Conceptually this can be
understood as follows. F (g)(t, t̄) for the topological string B model can be written as an
integration over the moduli space of genus h Riemann surface just like the usual IIB string
theory. An anti-holomorphic derivative (∂t̄) of F (g)(t, t̄) inserts an operator in the path
integral representation that is BRST exact and therefore gets non-zero contribution only from
the boundary of the moduli space where one can factorize the answer through lower genus
data. The equation is most conveniently expressed through Yamaguchi-Yau variables [79]

A1 = v1 − 2u − 1, B1 = u, B2 = v2 + uv1, B3 = v3 + u

(
−v2 +

(
v1 −

2
5

)
X

)
. (3.15)

All other An, Bn can be expressed as a polynomial of A1, B1,2,3, X. For example

A2 = −4B2 − 2A1B1 − 2B1 + 2B2
1 − 2A1 + 2XB1 + XA1 +

3
5X − 1,

B4 = 2XB3 −
7
5XB2 +

2
5XB1 −

24
625X.

(3.16)

Also, note that

z∂zAp = Ap+1 − A1Ap, z∂zBp = Bp+1 − B1Bp, z∂zX = X(X − 1). (3.17)

Genus one GV invariants can be obtained from

P
(1)
1 = −1

2A1 −
31
3 B1 +

1
12(X − 1) + 5

3 . (3.18)
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The holomorphic anomaly equations for g > 1 are given by

P
(g−1)
2 +∑g−1

r=1 P
(r)
1 P

(g−r)
1

2 = Q0 + uQ1 + u2Q2,

∂P
(g)
0

∂u
= 0,

∂P
(g)
0

∂v1
= −Q0,

∂P
(g)
0

∂v2
= Q1 − XQ2,

∂P
(g)
0

∂v3
= Q2.

(3.19)

To use these equations one has to treat u, v1,2,3, X as independent variables and
P

(g)
n (u,v1,v2,v3,X) as a function of these variables. Now start from eq. (3.14) and eq. (3.18)

and use (3.19) recursively. It is clear from this structure that the holomorphic anomaly terms
parameterized by ag,i are not fixed in this procedure.

There is no systematic procedure to fix the holomorphic ambiguity for all genera. However,
from the additional input of boundary conditions at the orbifold point, the conifold point,
and the large volume limit, we can fix them up to genus g = 51 as follows. The lower limit in
holomorphic ambiguity sum (3.12) is constrained by the contribution of degenerate worldsheet
instantons (these instantons are constant maps in the target space. These contributions can
be calculated on the worldsheet for their relative simplicity) in the large volume limit [82]

lim
z→∞

F (g) = (−1)g−1B2gB2g−2
2g(2g − 2)(2g − 2)!

χ

2 . (3.20)

The upper limit is constrained by the knowledge of the gapless modes at the conifold
point [83, 84] In the IIA language, they come from a D2 brane’s wrapping the S2 that shrinks
as we approach the conifold point. At this point and until the new massless degrees of
freedom are taken into account, the string background is expected to be singular. When
the new massless degrees of freedom are taken into account, we go through a geometric
transition to a different Calabi-Yau.

lim
z→1

F (g) = (−1)g−1B2g

2g(2g − 2)t2g−2 +O(1). (3.21)

This gives 2h − 2 conditions on ag,i. More specifically this formula can be obtained by using
the information of massless modes in the r.h.s. of (3.4). On the other hand, we do not expect
anything singular at the Gepner point

lim
z→0

F (g) = O(1). (3.22)

This gives ⌈3
5(g − 1)⌉ conditions on ag,i. The number of unknown ag,i reduces to

(g − 1)− ⌈35(g − 1)⌉ =
⌊2
5(g − 1)

⌋
(3.23)

The boundary conditions (3.20), (3.21), (3.22) together with the knowledge of Castelnuovo
bound (3.5) and explicit knowledge of n51

20 = 165,16 in principle determines the GV invariants
up to genus g = 51.17 However, in practice, the evaluation is rather complex.

16Near the Castelnuovo bound some GV invariants are determined in the mathematics literature.
17Note that the maximal genus for a non-zero GV invariant at d = 20 is gmax(20) = 51.
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Figure 2. Left: entropy of BPS index (S = log |Ω|) obtained from the Gopakumar-Vafa invariants at
d = 22 (red), and compared with the entropy of the black hole (blue) and black ring (black) solutions
in supergravity, plotted over the SU(2)L angular momentum jL. Right: entropy of BPS index as d is
increased from 13 to 22 (green to red).

Note. As we computed the GV invariants for the quintic up to g = 49, we came to learn of
the beautiful recent work [58] that established new constraints on the GV invariants of various
one-parameter CY3, and pushed the determinable GV invariants beyond past limitations
(in principle up to g = 68 for quintic). Our results for quintic are in complete agreement
with [58]. The details of our calculation can be found in appendix B and on the website [57].
For the subsequent numerical analysis, we use the data publicly available at [59].

3.3 Microscopic/macroscopic comparison

We now perform a numerical study of the 5d BPS degeneracies (3.3) for M theory on quintic,
using the GV invariants calculated in the previous section. For fixed M2 brane charge d,
the entropy defined as

S(jL, d) := log |Ω(jL, d)| (3.24)

is plotted against the angular momentum jL in figure 2. We pause for a moment to notice a
few basic features of the graph. For a given value of d, there is a kink at a critical angular
momentum jL,c(d), which can be defined by maximizing over jL the discrete second derivative

S′′(jL, d) :=
S
(
jL + 1

2

)
+ S

(
jL − 1

2

)
− 2S(jL)

2 . (3.25)

Thus we expect that the contribution to the entropy for angular momenta jL < jL,c and
jL > jL,c are coming from different black objects from the macroscopic point of view. Is
this the black hole/black ring transition?
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Figure 3. Entropy of BPS index (S = log |Ω|) for the quintic with M2 brane charge in the range
13 ≤ d ≤ 22 (black), linearly extrapolated (in 1/d) to d → ∞ (red) whenever reasonable (2jL ≲ 1.5Q

3
2 ),

and compared with the black hole (blue) and black ring (black) entropies of supergravity.
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A direct comparison of the BPS index entropy at d = 22 with supergravity exhibits
apparent discrepancy. However, as we see on the right of figure 2, the BPS index entropy
continues to decrease as d is increased and is far from stabilizing at d = 22.

Black hole. For angular momenta below the transition point, an agreement in the d → ∞
limit seems plausible. In fact, near jL = 0, this agreement has already been established by
careful numerical extrapolation using the Richardson transform [74]. In figure 3, we perform
linear extrapolations in 1/d to d → ∞ for a range of jL/Q

3
2 below the transition point, and

find good agreement with supergravity. To be precise, since the GV invariants define Ω(jL, d)
for half-integral jL, in order to fix jL/Q

3
2 , we perform linear interpolations on S = log |Ω|

to define the entropy at non-half-integral values of jL.18

The strength of the linear relationship between S(d) and 1/d as shown in figure 3 suggests
that the leading order correction to supergravity takes the form

SBH = SBH
0

(
1 + c

d

)
, c > 0. (3.26)

This is the kind of correction that would arise from the dimensional reduction of the higher
derivative terms (TrR2)2 and TrR4 in M theory. Although such corrections have been studied
in the past [32–34], the structure of these corrections has not been carefully analyzed to
the full extent possible. We devote the entirety of section 4 to expounding the details of
these corrections.

Black ring. Now we focus our attention on the transition point. The critical angular
momentum is plotted in figure 4 as a function of 1/d. Again we use a linear fit to give
the extrapolated value for19

jc(d → ∞) = 0.9Q(d)3/2.

By comparing this value with the discussion of black hole/black ring transition in section 2.4
(see (2.16)), we conclude that it is possible that the black object dominating the entropy
in the microscopic plot for angular momentum larger than the transition point is a black
ring. However, there is no direct evidence for the index entropy to agree with the black ring
entropy in the d → ∞ limit. We work under the hypothesis that it counts black rings. In the
next few sections, we will analyze in detail the following two viable scenarios:

1. The leading contribution to entropy is coming from a black ring whose M5 brane
parameter p is macroscopic (scales as d

1
2 ). In this situation, we will carefully discuss

the corrections to Bekenstein-Hawking entropy similar to the black hole above.

2. The leading contribution to entropy is coming from a black ring whose p is microscopic,
invalidating the large d analysis. In section 5.2, we will compare the tail with the exact
black ring microstate counting for p = 1, and find surprisingly good agreement for small
values of d.

18By contrast, in [74] the extrapolation to d → ∞ was performed for fixed jL = 0. By experimentation, we
find that in the present limit of fixing jL/Q

3
2 , the Richardson transform or other sophisticated methods do

not outperform a simple linear extrapolation.
19We expect this extrapolated critical value of jc(d) to be universal among one parameter CY3.
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Figure 4. Linear extrapolation of the critical angular momentum to M2 brane charge d → ∞ (red)
using quintic data ranging from d = 13 to 22 (black).

4 Wald entropy and quantum corrections in 4d

In 5d supergravity there is no systematic understanding of the superspace formulation for
the higher derivative terms that are relevant for the corrections to the Bekenstein-Hawking
entropy. However, the BPS black solutions in 5d can be considered as the Gaiotto-Strominger-
Yin uplift [25, 26] of the solutions in 4d where we have a much better understanding of
the superspace formulation.

We turn to describe the uplift very briefly. Consider a configuration in IIA with p0 D6
branes wrapping the Calabi-Yau. This configuration in M theory language corresponds to
a factorized geometry involving the Calabi-Yau and a Taub-NUT space. The Taub-NUT
radius RTN in this example is determined by the 10d IIA string coupling. At strong coupling,
RTN becomes large in string units, and then for radial distance in Taub-NUT much smaller
compared to RTN we have an effective flat Minkowski space for p0 = 1. On the other hand,
for weak string coupling in the region of Taub-NUT at distances much larger compared to
RTN, we have an effective 4d IIA description. The radius of the Taub-NUT is related to an
asymptotic value of the moduli in the IIA language, and due to the attractor mechanism,
the leading order entropy of the BPS black hole is independent of the asymptotic moduli.
It is expected that this fact survives beyond leading order. This allows us to calculate the
quantum corrected entropy of the black holes in 5d in terms of that in 4d. Keeping this in
mind, we first discuss the quantum correction in 4d following the Ooguri-Strominger-Vafa
conjecture [39] and delay the detailed mapping of solutions to section 4.4.

4.1 Ooguri-Strominger-Vafa conjecture

In this section, we consider extremal black holes in 4d N = 2 supergravity obtained by
compactifying M theory on S1×CY3. This can be thought of as a compactification of the
5d N = 1 supergravity we discussed in the previous section. The compactification gives
rise to an additional Kaluza-Klein gauge field a. The gauge fields in 4d can be related to
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the 5d ones as follows

AC = V C − αCa, A0 = −a, (4.1)

where αI = V I
S1 is the component of 5d gauge fields in the M theory circle direction. Among

h1,1 + 1 gauge fields AΛ, one combination becomes the 4d graviphoton field (we will describe
it in detail in the later part of this section) and each of the remaining h1,1 is in a vector
multiplet. Along with the gauge fields, a scalar field is generated eσ = eγv where eγ keeps
track of the radius of the S1 circle in M theory units.20 The complex scalar fields in the
h1,1 vector multiplets can be parameterized as follows

tC = αC + ieσhC = XC

X0 . (4.2)

Now we consider extremal black holes carrying magnetic and electric charges given by
(pΛ, qΛ). We associate the magnetic charges p0, pA with the D6 and D4 branes, respectively,
and the electric charges q0, qA with the D0 and D2 branes. In our convention, all charges
are integer quantized. The leading order Bekenstein-Hawking entropy of the black hole
may be written as [46, 47]

SBH
0 = π

4CC̄e−K(X,X̄), (4.3)

where the Kähler potential is determined from the holomorphic prepotential F0 by21

e−K(X,X̄) = i(X̄ΛF0,Λ(X)− XΛF̄0,Λ(X̄)),

F0,Λ(X) = ∂F0(X)
∂XΛ , F̄0,Λ(X̄) = ∂F̄0(X̄)

∂X̄Λ .
(4.4)

The moduli fields in the vector multiplet at the horizon are determined entirely in terms
of the charges by the attractor mechanism (the BPS entropy does not depend on the fields
in the hypermultiplet)

pΛ = ℜ(CXΛ), qΛ = ℜ(F0,Λ(CX)). (4.5)

Clearly, this determines XΛ, C only up to Kähler gauge transformations22

XΛ → ef(X)XΛ, C → e−f(X)C. (4.6)

The entropy can be written in a very suggestive thermodynamic form following Ooguri-
Strominger-Vafa (OSV) [39]

SBH
0 (ϕ, p) = F0(ϕ, p)− ϕΛ ∂

∂ϕΛF0(ϕ, p), (4.7)

where we used the following definition for the electric potential ϕΛ

CXΛ = pΛ + i

π
ϕΛ, F0(ϕ, p) = −πℑ(F0(CX)). (4.8)

20Note that the 4d string coupling is given by gs,4 = v− 3
2 and it is in the hypermultiplet in 4d. Just as in

5d, in 4d we still have h2,1 + 1 hypermultiplets.
21Here sum is over {Λ} = 0, {A}. We are using the notation f̄(X̄) = (f(X))∗.
22The Kähler potential transforms as K → K − f(X) − f̄(X̄).
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Note that here ϕΛ is a real number and we can determine the electric charge in terms of
it as follows,23

qΛ = − ∂

∂ϕΛF0(ϕ, p).

This thermodynamic form suggests that we consider the partition function given by

ZBH
0 (ϕ, p) =

∑
q

Ω0(q, p)e−ϕΛqΛ = eF0(ϕ,p),

SBH
0 (ϕ, p) = logZBH

0 (ϕ, p)− ∂

∂β
logZBH

0 (βϕ, p)|β=1.

(4.9)

The prepotential can be calculated from the topological string amplitude in holomorphic gauge

F0(CX) = −2i

π
Ftop,0(gtop, t), tA =

pA + iϕA

π

p0 ++iϕ0

π

, gtop = − 4πi

p0 ++iϕ0

π

, (4.10)

with
Ftop,0(gtop, t) = 1

g2
top

(
−(2πi)3 CABC

3! tAtBtC
)

. (4.11)

The OSV conjecture [39] (here we present a refined formulation following Denef-Moore [20])
is the statement that the exact degeneracy of the black hole can be calculated from a formula
analogous to (4.9), (4.10) (near large volume limit of the Calabi-Yau threefold)

Ω(q, p) =
∫

dϕ

2π
eϕΛqΛµ(ϕ, p)|Ztop(gtop, t)|2, (4.12)

with

tA =
pA + iϕA

π

p0 ++iϕ0

π

, gtop = − 4πi

p0 ++iϕ0

π

. (4.13)

Here the partition function of the topological strings is given by

Ztop(gtop, t) = eFtop(gtop,t) = Zlocal(gtop, t)Z0(gtop)Z ′(gtop, e2πit),
Flocal(gtop, t) = logZlocal(gtop, t)

= 1
g2

top

(
−(2πi)3 CABC

3! tAtBtC
)
− (2πi)

24 c2AtA.

(4.14)

The perturbative contribution Flocal(gtop, t) is the same as C3,1 in (3.4). These contributions
can be understood from the M theory point of view as follows: in 11d, lowest derivative order
supergravity action [85] gives the cubic term in Flocal as expected. Apart from that, there is
a specific R4 term [35–37] that is required by the consistency of supersymmetry and anomaly
cancellation [86, 87]. Upon dimensional reduction of M theory to 4d IIA, this contains the
R ∧ R coupling (the two other factors of R are in the Calabi-Yau directions and captured
by c2 above) that contributes to the linear term in Flocal [32].

23Compared with [20], the parameter ϕ(here) = −2πϕ(there).
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Other contributions from degenerate worldsheet instantons are given by (see [49] for
more details)24

Z0(gtop) = e

χ
2

(
ζ(3)
g2

top
+
∑∞

g=2 Kg(−g2
top)g−1

)
, Kg = (−1)g−1B2gB2g−2

2g(2g − 2)Γ(2g − 1) . (4.15)

On the other hand, Z ′(gtop, e2πit) comes from nontrivial worldsheet instanton contributions
in topological strings. For this paper, we will always stay in the domain where the nontrivial
worldsheet instanton corrections are negligible. The precise form of the measure is not known,
but the following form was suggested in [20] and found to be consistent with the analysis of [41]:

µ(ϕ, p) = constant ×
∣∣∣∣(gtop

2π

) χ
24−1∣∣∣∣2e−Ktop ,

e−Ktop = 2
π
(X̄ΛFtop,Λ((gtop, t)) + XΛF̄top,Λ((ḡtop, t̄))).

(4.16)

The simplest way of calculating the degeneracy as in (4.12) would be to perform a saddle
point approximation taking the contribution only from the Flocal(gtop, t) term (we will come
to the validity of such an approximation in details later in this section). The saddle point
value of the charges of the black hole is given by

qΛ = − ∂

∂ϕΛ logZBH(ϕ, p). (4.17)

The entropy is given by a thermodynamic formula

S = logZBH(ϕ, p)− ∂

∂β
logZBH(βϕ, p)|β=1, (4.18)

with
ZBH(ϕ, p) = |Zlocal(gtop, t)|2. (4.19)

4.2 Local contributions

4.2.1 D6-D2-D0 single-centered black hole

In this subsection, we focus on the discussion of the entropy of a single-centered large black
hole carrying one unit of D6 charge (p0 = 1) and D2-D0 charges, but no D4 charge (pA = 0).
For notational convenience that will be closer to the 5d setting which we aim to discuss
later, we introduce

ϕ0 = ω

2 , q0 = 2jL. (4.20)

This is motivated by the fact under the 4d/5d uplift the Taub-NUT circle plays the role of
the M theory circle and the momentum on the circle naturally keeps track of the D0 brane
charge in the IIA description. In terms of these parameters, we have

tA = 2ϕA

ω − 2πi
, gtop = − 8π2

ω − 2πi
. (4.21)

24These are the same as the ones in (3.20) with the identification λ = −igtop.
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As mentioned earlier, for the saddle point evaluation of the entropy, we approximate the
topological string free energy by

Ftop(tA, gtop) =
1

g2
top

(
−(2πi)3 CABC

3! tAtBtC
)
− (2πi)

24 c2AtA

= 1
πµ

(
i
CABC

3! ϕAϕBϕC
)
− iπ

6µ
c2AϕA,

ℜ(Ftop(tA, gtop)) =
1((

ω
2π

)2 + 1
) (− 1

2π2
CABC

3! ϕAϕBϕC + 1
12c2AϕA

)
.

(4.22)

Here we have treated ω, ϕ as real numbers while taking complex conjugate. Since we will be
dealing with only Calabi-Yau compactification with one Kähler parameter in this paper, for
simplicity we will denote ϕ := ϕ1, q := q1. The black hole partition function is given by

logZBH(ϕ, ω) = 1((
ω
2π

)2 + 1
) (− 1

π2
k

6ϕ3 + 1
6c2ϕ

)
, (4.23)

and the charges evaluate to have the following simple expressions

q = − 1((
ω
2π

)2 + 1
) (− 1

π2
k

2ϕ2 + 1
6c2

)
,

jL =
ω
2π

π
((

ω
2π

)2 + 1
)2

(
− 1

π2
k

6ϕ3 + 1
6c2ϕ

)
.

(4.24)

We pause for a moment to note that when both the charges q, jL are large, |ϕ/ω| is a large
number. This justifies the assumption that we can ignore nontrivial worldsheet instanton
effects in this domain. In addition, in this limit, gtop is a small number and therefore we can
ignore most of the degenerate worldsheet instantons from higher genera.25 These discussions
are much more subtle when we are looking at the limit of small angular momenta. This issue
will be discussed in detail later in this section. By inverting the expression of the charges,
we can write down the entropy as a series expansion in

Q :=
(

2
9k

)1/3
q

as follows26

S = 2πQ
3
2

(
1− j2

L
Q3

) 1
2
(
1 +

∞∑
m=1

d
(0)
m

Qm

(
1 +

∑
n

d(1)
m,n

j2
L

Q3

(
1− j2

L
Q3

)n))
. (4.25)

where the first few coefficients are explicitly computed (by expanding around extremality,
i.e., j2

L ∼ Q3) to be

d
(0)
1 =

( 2
9k

)1/3 c2
4 , d

(0)
2 = −1

2

(( 2
9k

)1/3 c2
4

)2

. (4.26)

25Strictly speaking, we cannot ignore the effect of the genus-zero degenerate instantons, or the effect of
the measure factor in the OSV formula. The first effect is important only when we are too close to the
extremality. Both these effects will be numerically sub-dominant in the parameter range where we will use the
formula below.

26At this stage, we do not have a clear logic for this particular choice of the expansion parameters. The
explicit comparison of BPS entropy with the GV data will serve as an indirect justification. We thank Cumrun
Vafa for an insightful discussion on this topic. Further details of the formula will appear in [88].
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The corrections associated with d
(0)
m do not vanish at zero angular momentum. Whereas

the individual corrections associated with d
(1)
m,n remain small for slowly rotating black holes

and in the extremal limit. The value of d
(0)
1 in the formula above is the same as in [89].

Other corrections have their origin in the fact that the topological string Kähler parameter
gets various Q−1 corrections.

4.2.2 D6, D4-D2-D0 multi-centered black hole

First, we consider a single-centered black hole carrying D4-D2-D0 charge, but no D6 charge
(p0 = 0). We will again use (4.20) and work with one parameter CY3, but now we have
(as before p := p1)

t =
p + iϕ

π

i ω
2π

, gtop = −4π
ω
2π

, (4.27)

which gives

ℜ(Ftop(t, gtop)) =
kp

ω
ϕ2 − π2

3ω
(kp3 + c2p). (4.28)

It immediately follows that the entropy is given by [49]

S = 2π

(
(kp3 + c2p)

6

(
−q0 +

1
2kp

q2
)) 1

2

. (4.29)

This formula coincides with the Cardy-type argument in MSW CFT [62]. In the large p limit,
the expression for the entropy above reduces to the more general formula in [26] when p0 is
set to zero. The whole effect of the Wald entropy correction was to shift kp3 → kp3 + c2p.
This is very different from the case considered previously with p0 ̸= 0.

In this paper, we will be interested in the D6, D4-D2-D0 multi-centered black hole with
one unit of D6 charge. Now we turn to the discussion of the wall of marginal stability
for this bound state following [20, 90]. We demand the distance between the centers to
be positive and finite

|x1,2| =
⟨Γ1,Γ2⟩
2ℑ(Z1Z̄2)

|Z1 + Z2|, ⟨Γ,Γ′⟩ = −Γ0Γ′
0 + ΓAΓ′

A + Γ0Γ
′0 − ΓAΓ

′A. (4.30)

Here Γ = (pΛ, qΛ) is the charge vector and the central charge of single-center is given by
(in large volume limit, we set the B field to zero)

Z = 1
6k(B + iJ)3p0 − 1

2k(B + iJ)2p1 + q1(B + iJ)− q0

= ZD6 + ZD4−D2−D0,

ZD6 = −i
k

6J3, ZD4−D2−D0 = 1
2kJ2p1 + q1iJ − q0.

(4.31)

This suggests that the bound state exists for the following choice of signs

p0 = 1, p1 > 0, q1 > 0, q0 > 0. (4.32)
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In this work, we will talk about the bound state only in this domain. For the charges in
this domain, the 4d solution when uplifted to 5d is certainly healthy. We propose this is
the physical domain of the uplifted black ring solution (as far as its contribution to the GV
formula is concerned). Keeping in mind the identification q0 = 2jL, based on the Cardy
type argument, in [61] it is advocated that in addition, one should take into account the
zero point shift producing

S = 2π

(
(kp3 + c2p)

6

(
−q0 +

1
2kp

q2 + (kp3 + c2p)
24

)) 1
2

. (4.33)

4.3 Loop corrections

We pause for a moment to specialize to the background that is suitable for the 4d/5d lift
of the BMPV black hole

pA = 0, p0 = 1, ϕ0 = ω

2 , q0 = 2jL. (4.34)

This gives the following mapping of parameters

tA = 2ϕA

ω − 2πi
, gtop = − 8π2

ω − 2πi
. (4.35)

The chemical potential ω is conjugate to jL (and ϕA is conjugate to qA). Note that the
topological string coupling is not small in this setting for small ω

gtop(ω = 0) = −4πi, =⇒ |gtop(ω = 0)| > 1. (4.36)

Therefore to discuss slowly rotating BMPV black holes we need to sum over all order
contributions of the topological strings amplitudes. In particular, we need to resum (4.15).

Now we explain this from a more physical point of view as follows. We focus on the case
ω = 0 and make some order of magnitude estimate using the attractor equations (4.24), (4.2).
Before we do that we want to restore the units for this section from M theory units to
string units (see appendix A for more details). Note that so far we have been working in
M theory units in which we have set

l11 = g
1
3
s ls = 1. (4.37)

Say L is the typical length scale of the Calabi-Yau, i.e. VIIA = L6. Therefore after putting
back the units, we get

eσ = veγ = L2

l2s
. (4.38)

Near the horizon to the leading order in large D2 brane charge (from the solution of saddle
point equations) we get

L2

l2s
≈ ℑ(t) ≈ ϕ ≈ q

1
2 . (4.39)

In 4d, the radius of the horizon rH of the black hole when ω = 0 is determined by27

1
l24

≈ 1
g2

s l8s
L(∞)6 ≈ 1

g2
s l8s

(
Le−

ϕd
3

)6
,

r2
BH
l24

≈ q
3
2 =⇒ rBH ≈ ls gseϕd = RM . (4.40)

27We thank Xi Yin for pointing this out, and Andrew Strominger for an insightful discussion.
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The black hole has a very tiny horizon — it is of the same order as the M theory circle! We can
summarize this as follows. The black hole has a large horizon in 4d Planck units but since the
volume of the Calabi-Yau in string units is fixed by the attractor mechanism to scale with the
entropy, from 10d units the radius of the horizon is too small. Therefore it is highly quantum.

The contributions in (4.15) are precisely the Wald entropy coming from higher derivative
F-terms in the 4d Wilsonian effective action whose bosonic part contains

R2
−W 2g−2

− .

Here R− is the anti-self dual curvature, and W− is the anti-self dual gravi-photon field
strength. Now we want to estimate the order of magnitude of this term entirely from the
10d IIA perspective when ω = 0, i.e. for the D6-D2 system. The attractor value of the
gravi-photon field strength is given by [33]28

W 2
− = 64

l24Q2 ≈ 1
r2

BH
≈ 1

l2s(gseϕd)2 , SBH = π|Q|2 ≈ q
3
2 . (4.41)

Here we used the result in (4.40). Since from 10d IIA perspective, the term

R2
−W 2g−2

−

originates exactly in genus g, as a result, we note that the effective dilaton dependence of
the term is independent of the genus g.

We conclude that it is necessary to resum Z0
GW and re-expand around (4.36). A resum-

mation is proposed in appendix A of [49], assuming a certain choice of the contour (at this
point without further physical inputs we do not have any justification for any particular
choice) in terms of the MacMahon function:

f(λ) =
∞∑

n=1
n log(1− einλ), λ = −igtop. (4.42)

Note that the value (4.36) is on the boundary of the domain of convergence and therefore
there might be new non-analytic terms in gtop in this limit. We will leave a careful analysis
of such questions to future work.

Similar conclusions apply to the slowly rotating EEMR/BW/GG black ring.

4.4 Gaiotto-Strominger-Yin uplift to 5d

In this subsection, we will compare the result for the entropy obtained on the macroscopic
side around the large d limit with c2 corrections, and then compare it to the microscopic
answer obtained through the GV invariants. This process has two limitations. The first is
that it is valid for large d, but here we are in a range of d that is comparable to geometric
data of the Calabi-Yau. Secondly, as we have discussed extensively before, at subleading

28We used the following mapping of fields:

C(here) = −2iZ̄e
K
2 (there), W 2

−(here) = Â(there).
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orders in 1/d, there are an infinite number of quantum corrections that are naively large
term by term (we do not know their resummed contribution at this stage). Despite these
issues, we will show that in four different Calabi-Yau compactifications, our large d results
are very close to the microscopic index.

The D6-D2-D0 black hole in 4d uplifts to BMPV black hole [60] solution in 5d — the
D0 brane charge becomes the angular momentum and D2 brane charge becomes the M2
brane charge in 5d.

q0 = 2jL, dA = qA. (4.43)

With c2 corrections the entropy of BMPV black hole for one parameter Calabi-Yau takes
the form given in (4.25)29

SBH
OSV = 2π

( 2
9k

) 1
2

d
3
2

(
1− 9

32y2
) 1

2
(
1 + c2

4d
− 1

2

(
c2
4d

)2 )
, y := 4k

1
2

d
3
2

jL. (4.44)

The expression above comes from 4d OSV type formalism discussed previously. On the
other hand, in 5d supergravity superspace formalism is not well understood and a clear
understanding of supersymmetry-protected terms in supergravity is not known presently.
However, one can still consider certain R2 corrections in five dimensions producing a different
formula for the correction to the black hole entropy [61, 91]

SBH
SUGRA = 2π

( 2
9k

) 1
2

d
3
2

(
1− 9

32y2
) 1

2
(
1 + 3c2

16d
+ 9c2y2

512d

)
(4.45)

In our plots we will compare both these formulas with the microscopic calculation.
The multi-centered bound state of D6 and D4-D2-D0 black hole in 4d uplifts to the

EEMR/BW/GG black ring in 5d for which the mapping of the charges is a little different

q0 = 2jL, dA = qA + CABC

2 pBpC . (4.46)

The entropy of the EEMR/BW/GG black ring solution [70–73] for one parameter Calabi-Yau
in terms of 5d parameters (4.33) takes the following form

SBR
OSV = 2π

( 2
9k

) 1
2

d
3
2

[(
x2 + c2

d

) (
x4 − 3x2 − 3xy + 3 + c2

4dx2)
8

] 1
2
, x := k

1
2

d
1
2

p. (4.47)

Similar to the discussion of the black hole, from 5d supergravity one gets a different formula
for the correction to the black ring entropy [91, 92] — essentially equivalent to dropping
the zero point shift in (4.33)

SBR
SUGRA = 2π

( 2
9k

) 1
2

d
3
2

[(x2 + c2
d

) (3
4x4 − 3x2 − 3xy + 3

)
8

] 1
2
, x := k

1
2

d
1
2

p. (4.48)

29At this point, it is natural to question how reasonable it is to keep the 1
d2 correction while ignoring other

corrections of the form (at jL = 0)

− log
( 2

9k

) 1
3

d

as expected from the 5d analysis of [42]. One way to justify this for the quintic is to note that we are interested
in the range where d ≈ 20, c2 = 50, k = 5, and the numerical value of the log term is smaller. As we mentioned
previously, other O(d0) contributions from degenerate instantons are also not understood for the BMPV
black hole.
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Our microscopic calculation does not keep track of the M5 brane parameter p. For d

as large as the currently available GV data, extremizing the black ring entropy (4.47) over
(positive and continuous) p for individual values of jL results in small values of p especially
when jL is large. Therefore, this procedure, while reasonable for much larger d, does not
provide a meaningful comparison to the available GV data. We need some additional rules
for fixing this parameter.

A natural proposal might be the following: for a given d from the plot of the Gopakumar-
Vafa curve one can see that there is a critical angular momentum jL,c(d) at which there is
a sharp transition (studied in detail for quintic in the previous section). We will maximize
the leading order (in large d, i.e. c2 → 0) entropy of the black ring at jL = jL,c(d) subjected
to (4.32) to obtain p = pc(d). While comparing to the microscopic calculation, we will add c2
corrections using (4.47) with p = pc(d) fixed. For X5, X4,2, X4,4, X6,2 we compare resulting
plots in figure 5 below for the maximal available value of d, and find that the numerical curves
are close to each other. However, for the small range of d that we can discuss, the extremized
value of p is pretty small — near or smaller than one. This suggests that the discussion here
in terms of supergravity is at best an extrapolation. To take this fact into account, in the
next section, we discuss the comparison of the GV calculation with the MSW index which
captures the microstates of the black ring, and discuss why the contribution to the tail of the
GV curve might arise solely from bound states based on a mathematical conjecture.

5 Microscopic observations and a quantum transition

Whereas 5d BPS states in Calabi-Yau compactification of M theory are counted by the
Gopakumar-Vafa invariants, 4d BPS states in that of IIA (in the large B field chamber) are
counted by the rank-one Donaldson-Thomas (DT) invariants [93, 94]. The latter in the case
of unit D6 charge is related to the former by a mathematical conjecture [95, 96] that was
motivated by [97] and physically justified by [98] using the GSY 4d/5d lift [25], as will be
reviewed in section 5.1. It was argued in [61] that a microscopic description of 5d black ring
microstates is provided by the Maldacena-Strominger-Witten (MSW) CFT [62], which arises
in the infrared limit of the worldvolume theory of M5 branes wrapping a 4-cycle (ample
divisor) of the Calabi-Yau. Therefore, the comparison of the tail in the 5d entropy with the
black ring entropy becomes, at the microscopic level, the comparison of the GV invariants with
the MSW indices. In section 5.2, by invoking the 4d/5d lift and wall-crossing, we propose an
approximate relation (5.15) between the two with the latter having unit D4 charge, and find
strong numerical evidence for the proposal. In section 5.3, we observe that the mathematical
Bayer-Macrì-Toda (BMT) inequality [99, 100], a necessary condition for the stability (with
respect to a reduced central charge function) of 4d BPS states everywhere in the Kähler moduli
space, coincides under the 4d/5d lift with the extremality bound of 5d BMPV black holes.30

As before, we consider one-parameter (h1,1 = 1) Calabi-Yau threefolds X whose divisor
has self-intersection number k ∈ Z and second Chern class c2.

30Given the GSY correspondence [26] between 5d and 4d solutions [101], the 5d black hole extremality
bound is equivalent to a 4d bound on the D2 and D0 charges for the existence of single-centered macroscopic
black hole solutions (with unit D6 charge) to the attractor equations [46, 47].
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Figure 5. Entropy over SU(2)L angular momentum jL for several one-parameter CY3. Red: log |Ω|
where Ω is the BPS index computed from the Gopakumar-Vafa invariants with the specified M2 brane
charge d Blue: black hole entropy obtained from 4d OSV given by (4.44) Cyan: black hole entropy
obtained from 5d supergravity given by (4.45) Black: black ring entropy obtained from 4d OSV (4.47)
for a fixed M5 brane parameter (extremized at the critical angular momentum) Grey: black ring
entropy obtained from 5d supergravity (4.48) for a fixed M5 brane parameter (extremized at the
critical angular momentum) Faded: Bekenstein-Hawking entropy plotted before in figure 2.
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5.1 Free gas of M2 branes and the DT/GV relation

We first review an exact relation between the 4d and 5d BPS counting as well as the physical
interpretation, setting the stage for later subsections.

DT/GV relation. Given the GSY 4d/5d lift [25], one may expect that the 4d counting
of DT invariants is related to the 5d counting of GV invariants in a deterministic fashion.
Indeed, such a relation was conjectured [95, 96] even before the GSY discovery, and can be
stated as follows.31 The generating function of DT invariants

ZDT(y, q) :=
∑
Q,m

DT(Q, m)yQqm
(5.1)

admits an expression in terms of the GV invariants ng
d as

ZDT(y, q) = M(−q)χ
∏
d>0

∏
k>0

(1− (−q)kyd)kn0
d

×
∏
d>0

∏
g>0

2g−2∏
ℓ=0

(1− (−q)g−ℓ−1yd)(−1)g+ℓ(2g−2
ℓ )ng

d ,

(5.2)

where M(q) := ∏
n>0(1− qn)−n is the MacMahon function, and χ is the Euler characteristic

of X. The formula (5.2) admits a rewriting as32

ZDT(y, q) = M(−q)χ
∏
d>0

∏
m

∏
n>0

(1− (−q)m+nyd)nNm
d (5.3)

with

Nm
d := (−1)m

∑
g≥0

(
2g

g − m

)
ng

d, (5.4)

which has the symmetry Nm
d = N−m

d . The MacMahon factor can also be absorbed into
the triple-product formula

ZDT(y, q) =
∏
d≥0

∏
m

∏
n>0

(1− (−q)m+nyd)nNm
d (5.5)

with ng
0 = −χδg

0 (and hence Nm
0 = −χδm

0 ).

31Mathematicians formulated a conjectural relation between Donaldson-Thomas and Gromov-Witten
invariants, the latter of which can be transformed into the Gopakumar-Vafa invariants.

32The second line of (5.2) can be rewritten through combinatoric identities as∏
d>0

∏
ℓ

(1 − (−q)ℓyd)cℓ
d =

∏
d>0

∏
m

∏
n>0

(1 − (−q)m+nyd)nÑm
d ,

where

cℓ
d := −(−1)ℓ

∑
g>|ℓ|

(
2g − 2

g − ℓ − 1

)
ng

d =
∞∑

n=1

nÑ
|ℓ|−n
d , Ñm

d := (−1)m
∑
g>0

(
2g

g − m

)
ng

d,

with symmetries cℓ
d = c−ℓ

d and Ñm
d = Ñ−m

d .

– 28 –



J
H
E
P
0
1
(
2
0
2
4
)
1
9
3

Free M2 gas. It was suggested in [98] that the DT/GV relation (5.2) or (5.5) can be
physically justified by a free M2 gas picture, the basic idea of which is the following. Suppose
one already knows the full collection C of 5d single-particle M2-brane bound states on flat
spatial R4, where ‘single-particle’ (‘irreducible’ in the words of [98]) means a state with a
normalizable wave function as opposed to a multi-particle scattering state which is δ-function
normalizable. Now, instead of R4 let us consider spatial Taub-NUT, which is a circle fibration
over R3 such that the circle shrinks at the origin and asymptotes to a fixed radius RTN at
infinity. Near the origin, the spatial section of Taub-NUT looks like R4, so we can imagine
putting inside it particles belonging to C. Since Taub-NUT with large flux acts like a box
preventing the particles from forming scattering states (the importance of large flux was
later pointed out in [20, 102]), if we put multiple particles inside, we expect them to form
normalizable ‘multi-particle’ bound states which become scattering states in the RTN → ∞
limit as the Taub-NUT circle opens up.

While the actual (unsigned) degeneracies have a complicated dependence on the Taub-
NUT circle size RTN, supersymmetric indices are protected and have no RTN dependence. In
the small RTN limit, we get the index of 4d D6-D2-D0 bound states with unit D6 charge,
whereas in the large RTN limit, we get the index of a free gas of M2-branes, counting all subsets
of C. Since the indices of 4d BPS states in the chamber of large B field give the DT invariants,
and the indices of C give the GV invariants, it is intuitively clear that DT is a plethystic
exponential of GV. The precise relation is (5.5), where m + 1 and n − 1 are interpreted as
the intrinsic and orbital angular momenta, respectively, of each 5d BPS particle [98].

Quantum GSY lift. According to the free gas picture [98], when series expanding the
DT/GV relation (5.5), the terms with coefficients linear in Nm

d give the indices of single-
particle states, i.e.

ZDT(y, q) = −
∑
d>0

∑
m

∑
n>0

nNm
d (−q)m+nyd + (multi-particles). (5.6)

Moreover, the terms with n = 1 count the states with no orbital angular momenta,

ZDT(y, q) = −
∑
d>0

∑
m

Nm
d (−q)m+1yd + (multi-particles) + (orbital). (5.7)

For negative values of m, this reads

DT(Q, m) = (−1)m−1Nm−1
Q + (multi-particles) + (orbital)

= n1−m
Q + (multi-particles) + (orbital) + (intrinsic).

(5.8)

We will also be interested in the 5d index defined in (3.3), which can be related to the above by

Ω(jL, d) = (−1)2jL−1N2jL−1
d + (5d supersymmetry descendants). (5.9)

5d black hole extremality bound. A key role in the following subsections is played
by the extremality bound of a 5d BMPV black hole [60]. Let us recall this bound, and
translate it to 4d single-particle language. The extremality bound on Ω(jL, d) can be read
off from (2.7), giving

(2jL)2 ≤ 8d3

9k
. (5.10)

– 29 –



J
H
E
P
0
1
(
2
0
2
4
)
1
9
3

In terms of the counting of 5d supersymmetry multiplets by Nm
d , this translates via (5.9) to

(m + 1)2 ≤ 8d3

9k
. (5.11)

And in terms of the 4d counting by DT(Q, m), this translates via (5.8) to

(−m + 2)2 ≤ 8Q3

9k
. (5.12)

5.2 Black ring microstates with unit M5 charge

Black rings enter the story as their microscopic index is related to DT via wall-crossing, which
can then be lifted to a relation with GV. Of course, underlying this somewhat roundabout
argument is the physical expectation that the GV tail counts black ring microstates.

Black ring microstates and the MSW CFT. In [61], the authors constructed 5d BPS
rotating cosmic closed strings by wrapping M5 branes on four-cycles (ample divisor) of
Calabi-Yau threefolds. On the one hand, the macroscopic limit of this cosmic string becomes
the EEMR/BW/GG black ring [70–73]; on the other hand, the low energy limit of the M5
brane worldvolume theory is the Maldacena-Strominger-Witten (MSW) CFT [62]. Hence,
the MSW CFT describes the microscopic constituents of a black ring.

Originally, the MSW CFT was formulated to describe D4-D2-D0 bound states in Calabi-
Yau compactifications of IIA string theory. In particular, the generating function of indices
is (encoded in) the modified index of the MSW CFT. The relation between the D4-D2-D0
context and the black ring context was later elucidated by the GSY 4d/5d lift [25, 26]: by
adding a single D6 brane and considering two-centered bound states, with the D6 at one
center and the D4-D2-D0 at the other, the resulting 4d configuration lifts to a 5d black ring.

Wall-crossing and a GV/MSW proposal. Suppose there is a wall of marginal stability
for a D6-D2-D0 bound state (counted by a rank-one DT invariant) to decay into a single
D6 brane and a D4-D2-D0 bound state, where the extra D4 dissolves into background
flux that shifts the asymptotic D2 and D0 charges. Let MSWp,Q(q0) denote the MSW
index with charge vector γ = (0, p, Q, q0). For unit D4 charge p = 1, the wall-crossing
formula [103, 104] gives [58]33

DT(Q, m) = (−1)χ(Q,m)χ(Q, m)MSW1,Q(q̂0(Q, m)) + · · · ,

χ(Q, m) := m + Q −
(

k

6 + c2
12

)
,

q̂0(Q, m) := −m − Q2

2k
− Q

2 + k + c2
24 .

(5.13)

According to [58], when k | d and at the maximal value of jL (saturating the Castelnuovo
bound), the above equation is exact with no additional · · · corrections. For notational

33Instead of DT, the wall-crossing analysis of [58] considers stable-pair invariants [105], also known as
Pandharipande-Thomas (PT) invariants, whose generating function is related to that of DT by stripping
of a MacMahon factor M(−q)χ. As explained in [20], the PT invariants count 4d BPS bound states in the
chamber of large B + iJ with arctan(J/B) = (2π/3)+, such that the D0-halos become unbound. One could
thus regard (5.13) as first crossing the wall at arctan(J/B) = 2π/3 and then proceeding as in [58].
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convenience let us define

MSW′(Q, m) := (−1)χ(Q,m)χ(Q, m)MSW1,Q(q̂0(Q, m)). (5.14)

We now make two assumptions, whose regime of validity will be empirically justified:

1. The contributions from multi-particle states, SU(2)L descendants, and 5d supersymmetry
descendants are subleading in (5.8) and (5.9).

2. The wall-crossing contribution of a single D6 and D4-D2-D0 with unit D4 charge exists
and dominates DT(Q, m) in (5.13).

Then combined with (5.8) and (5.9), we would have an approximate relation in the context
of 5d counting34

Ω(jL, d) ∼ (−1)2jL−1N2jL−1
d ∼ MSW′(d, 2jL − 2). (5.15)

Numerical evidence. In figure 6, we compare the 5d index entropy log |Ω(jL, d)|, which
is related to the GV invariants by (3.3), with the Maldacena-Strominger-Witten entropy
log |MSW′(d, 2jL − 2)| for several one-parameter Calabi-Yau threefolds, using the data and
expressions of [58, 59, 106]. We find surprisingly good agreement for large enough angular
momentum jL even for small d.35 Notice that for X42, even the kink at the far right matches.36

It would be interesting to understand how to account for the difference between Ω(jL, d)
and MSW′(d, 2jL − 2) in the tail region. The 4d interpretation of this difference comes from
crossing other walls [58], the analysis of which is notoriously complicated, hence we hope
that 5d microstate counting might offer a useful complementary perspective. For instance,
there can be contributions from black rings with non-unit D4 charges, but the MSW index
in this case is not known (see [58, 106] for the current status).

5.3 4d instability of 5d superextremal states

In this subsection, we make the observation that the GV invariants counting 5d BPS states
with angular momenta beyond the 5d black hole extremality bound give rise to 4d BPS
states that are stable in the large B + iJ limit but become unbound in a chamber of the
Kähler moduli space with respect to a ‘reduced’ central charge function corresponding to
what is known as a (very) weak stability condition. Although this stability condition is not
the physical one away from large J , we argue in the end the conclusion should be valid
in the large charge limit.

In the context of the black hole/black ring transition, we view this observation as a
consistency check for the proposal that superextremal GV invariants count 5d black ring
microstates. Under the GSY 4d/5d correspondence [25, 26], black rings descend to 4d
two-centered bound states that can disassociate in certain chambers, whereas 5d black holes
descend to 4d single-centered objects that should be stable everywhere.

34Here, A ∼ B means that A/B → 1 in the d → ∞ limit with jL/d3/2 held fixed.
35The ‘missing’ black dot in each plot is due to the vanishing of χ(Q, m).
36The comparison of log |Nm

d | with log |MSW′(d, m − 1)| yields a similar degree of agreement, while the
comparison of log |PT(Q, m)| with log |MSW′(Q,−m)| seems to be even better.
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Figure 6. Juxtaposition of the 5d index entropy S = log |Ω(jL, d)| in red with the Maldacena-
Strominger-Witten entropy S = log |MSW′(d, 2jL − 2)| in black.
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Stability and wall-crossing. The index counting of stable BPS states in Calabi-Yau
compactifications of IIA string theory is a rich and intricate subject. Inside the Kähler moduli
space, the index remains constant in domains (chambers) but jumps across walls of marginal
stability [103, 104, 107, 108]. For unit D6 charge p0 = 1, an important chamber is that of
large J and B with B ≫ J , where BPS states are counted by the rank-one Donaldson-Thomas
(DT) invariants [93, 94]. Given knowledge of the DT invariants, one can apply the celebrated
wall-crossing formulae [103, 104] to compute the indices in various other chambers. Conversely,
starting from an empty chamber, one can cross walls to compute the DT invariants.

The stability of a BPS state is defined by a central charge function that maps charge
vectors to complex numbers. The central charge function of IIA on Calabi-Yau is extremely
complicated at a generic point on the Kähler moduli space (as it depends on the exact prepo-
tential), albeit simplifying in the large J regime. To circumvent this difficulty, mathematicians
study not the physical central charge, but a space of central charge functions whose correspond-
ing stability conditions satisfy a set of axioms formulated by Bridgeland [109]. The physical
stability condition, known as Π-stability, is a particular map (sometimes an embedding) from
the Kähler moduli space to the space of Bridgeland stability conditions. Here is a key point:
given a simpler ‘unphysical’ map/embedding, and as long as it agrees with the physical one
in the large J limit, we can still use wall-crossing to compute the DT invariants starting from
an empty chamber, as was done in [58] to formulate new constraints on GV invariants.

In the following, we closely follow the discussions and conventions of [58].

Central charge function. For convenience, we first translate the charge (Mukai) vector
γ := (p0, p1, q1, q0) into the Chern characters (of line bundles describing D-brane bound
states in the large J limit) as follows:

C0 = kp0, C1 = kp1, C2 = −q1 −
c2
24p0, C3 = q0 −

c2
24p1, (5.16)

and
chb

0 = C0, chb
1 = C1 − bC0, chb

2 = C2 − bC1 +
1
2b2C0,

chb
3 = C3 − bC2 +

1
2b2C1 −

1
6b3C0.

(5.17)

The Bridgeland stability conditions are defined by a 4-parameter family of central charge
functions

Za,b,α,β := (−chb
3 + βchb

2 + αchb
1) + i

(
achb

2 −
1
2a3chb

0

)
, (5.18)

with the following important special cases:

• The large J limit of the physical central charge is given by (with J0 and e−J corrections)

a =

√
J2

3 − c2
12k

, b = B, α = J2

2 − c2
24k

, β = 0. (5.19)

• A weak stability condition (which is located at the boundary of the space Bridgeland
stability conditions) is defined with respect to a reduced central charge function

Za,b := iZa,b=0,α=a2,β=0 = −achb
2 +

1
2a3chb

0 + ia2chb
1, (5.20)
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independent of the D0 charge q0. A crucial point is the following: with the identification
a = J/

√
3 and b = B, the weak stability condition agrees with the physical one in the

large J limit. In the following it is convenient to define w := 1
2(a2 + b2); the meaningful

region is w ≥ 1
2b2.

Bayer-Macrì-Toda conjecture. The Bayer-Macrì-Toda (BMT) conjecture [99, 100],
which has been proven by [110] for the quintic threefold, states that

Lb,w := (C2
1 − 2C0C2)w + (3C0C3 − C1C2)b + (2C2

2 − 3C1C3) ≥ 0 (5.21)

is a necessary condition for there to exist a weakly-semistable object of class γ. In other words,
for a fixed charge vector γ, the region on the side of the line Lb,w that violates (5.21) is in an
empty chamber. It turns out that C2

1 − 2C0C2 > 0, and hence the BMT inequality (5.21) is
always satisfied for large enough Kähler modulus. If Lb,w intersects w = 1

2b2 at two points,
which happens for a positive discriminant

∆ = (3C0C3 − C1C2)2 − 2(C2
1 − 2C0C2)(2C2

2 − 3C1C3) > 0, (5.22)

then an empty chamber exists. We now investigate the existence of empty chambers for
BPS states counted by the DT invariants.

Donaldson-Thomas. The rank-one DT invariants DT(Q, m) are defined with the charge
assignments

p0 = 1, p1 = 0, Q := q1 +
c2
24 , m := −q0. (5.23)

The BMT line (5.21) and discriminant (5.22) read

L = −3bkm + 2Q2 + 2kQw, ∆ = 9k2m2 − 8kQ3, (5.24)

and the BMT conjecture states that an empty chamber

1
2b2 ≤ w <

3bkm − 2Q2

2kQ
(5.25)

exists when

m2 >
8Q3

9k
> 0. (5.26)

The largest value of a = J/
√
3 in the empty chamber is

amax = 1
2

√
9m2

Q2 − 8Q

k
. (5.27)

In the large Q limit with m/Q
3
2 fixed and (5.26) satisfied, the empty chamber contains

a subregion with large J ∼ Q
1
2 , such that the weak stability condition becomes a good

approximation of the physical stability condition. It is therefore reasonable to expect that
at least for large charges, the existence of an empty chamber under weak stability implies
the existence of an empty chamber under physical stability.
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We now observe that the condition (5.26) for the existence of an empty chamber is, up to
a constant shift, the complement of the 5d black hole extremality bound (5.12). Hence, the
BMT conjecture can be regarded as a microscopic version of the 5d black hole extremality
bound, which lends credence to the conjecture’s validity. Conversely, the BMT conjecture
provides a consistency check of our proposal that superextremal GV invariants count black
ring microstates.

6 On the contributions of degenerate instantons

In this work, we noticed that the one-loop corrected Wald entropy for the black hole
approximated the microscopic entropy coming from the topological strings well for smaller
values of the angular momentum, whereas the individual contributions from higher-genus
degenerate instantons were all of the same order, demanding a summation to all orders (see
section 4.3 for more details). In this section, we look into this puzzle from the viewpoint
of a gravitational path integration of supergravity.

For supersymmetric extremal black holes with a near horizon AdS2 factor, the entropy
can be calculated by performing path integration over the fields localized in the near horizon
region using Sen’s formalism [40].37 In this process, Zlocal comes from the Wald entropy
associated with the classical reduction of the 5d (M theory on CY3) Wilsonian effective action
to 4d. The sub-leading contributions come from quantum fluctuations. It is tempting to
identify the measure factor µ in the OSV formula as coming from the one-loop fluctuations
of the massless fields in 4d [41]. This fact has been established by the explicit one-loop
localization of supergravity in [113, 114] following the developments of [43]. The origin
of Z0(gtop) is much more subtle; note that for higher supersymmetric compactifications
(N = 4, 8 in the 4d language), these contributions are not present [48, 49]. It has been
observed in [24] that one-loop contribution from the Kaluza-Klein (KK) modes of a massless
charged hypermultiplet in 5d reproduces part of the structure in Z0(gtop). It is natural to
wonder if in Taub-NUT space with one unit of D6 charge, a one-loop calculation of massless
fields around BMPV black hole in 5d (similar to the ones done for the flat space in [42])38 can
be recast as a calculation of massless 4d modes along with the contribution of the KK modes
on the Taub-NUT circle, effectively capturing the contribution of degenerate instantons.39 In
the context of the 4d/5d lift considered here, the KK modes on the Taub-NUT circle would
be the KK modes on the M theory circle (for toroidal compactifications, such one-loop effects
in M theory have been analyzed in [115, 116]). It would be very interesting to understand
why these KK modes are not under control from the 4d point of view.
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A Length scales and units

In this appendix we will explicitly write down all the relevant length scales under compact-
ification (we will not set any length scale to one) without being careful about order one
factors. The length of the M theory in asymptotic infinity is

R = gsls (A.1)

Here gs is the 10d IIA string coupling (defined to be constant). 10d dilaton ϕd is defined
with the convention that in asymptotic infinity ϕd(∞) = 0. The length of the M theory
circle at a generic point would be given by

RM = gsls e
2
3 ϕd ≡ l11eγ , (A.2)

where l11 is the Planck scale in 11d. The M2 brane tension will be given by

TM2 = 1
l311

= 1
gsl3s

=⇒ l11 = lsg
1
3
s (A.3)

v3 = VM

l611
(A.4)

On the other hand the IIA volume of the Calabi-Yau VIIA varies over the radial direction as

VIIA = VM e2ϕd (A.5)

4d and 5d Planck scales are given by

1
l35

= 1
l911

VM ,
1
l24

= 1
l911

RVM ≡ 1
g2

s,4l2s
(A.6)

This determines the 4d string coupling to be the given just by the volume of X in M
theory units.

gs,4 = 1
v

3
2

(A.7)

B GV invariants for quintic up to genus 4

In this appendix, we will present some details (up to genus 4 — we necessarily need to rely
on Castelnuovo bound to determine the holomorphic ambiguity for g > 3) of the calculation
of GV invariants for the quintic. For higher genera, the details are extremely complicated
and we won’t mention that here. The Mathematica file used for calculation up to genus
49 can be found at [57].
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We will present results only in holomorphic limit at respective points on the moduli space.
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1v2X+ 757v5
1v2X

4320

+ 188159v4
1v2X

5760 + 130313v2X

90720 + 745
48 v5

1v3X+ 1286587v3
1v3X

25920 − 680371
324 v1v2

2v3X

+ 33107443v2
2v3X

3240 + 4967551v1v3X

86400 + 35
54v3

1v2v3X+ 1553609v1v2v3X

1350 + 1333633v2v3X

4050

− 1365983v2
1v2v3X

3240 − 192719v4
1v3X

4320 − 51601v7
1X

5760 − 438709v1v2
3X

6480 − 9475661v1v3
2X

19440

− 15128893v2
3X

32400 − 6822121v2
1v2

2X

51840 − 397608839v3
2X

194400 − 105655439v1v2
2X

259200 − 10744159v2
1v3X

259200

− 3289267v2
1v2X

345600 − 27925537v2
2X

518400 − 20620903v1v2X

1209600 − 3285931v3
1X

1555200 − 17482339v5
1X

1728000

− 52419967v3
1v2X

1944000 − 810119v2
1X

2419200 − 12103499v3X

2721600 + 125v8
1

32 + 15625v6
1

2592 + 7315
162 v1v4

2

+ 20755
648 v3

1v3
2+

147875
648 v2

1v3
2+

919450v3
3

243 − 7105
288 v5

1v2
2+

625
48 v4

1v2
2+

68125
576 v3

1v2
2

+ 78125v2
2

20736 − 13135
216 v3

1v2
3+

65675
216 v2

1v2
3−

1641875
324 v2v2

3+
65675

54 v1v2v2
3+

65675v2
3

1296 (B.4)

=+ 695
96 v7

1v2−
125
6 v6

1v2+
3125
216 v5

1v2+
39625v4

1v2

2592 + 15625v2
1v2

20736

+ 3125v2

108864−
2435
288 v6

1v3+
625
18 v5

1v3−
10625
192 v4

1v3+
248875v3

1v3

7776 + 428450
243 v3

2v3

+ 420625v2
1v3

41472 − 56315
108 v2

1v2
2v3+

122525
324 v1v2

2v3+
2549375v2

2v3

1296 + 3565
36 v4

1v2v3

− 29875
108 v3

1v2v3+
115625v2

1v2v3

1296 − 6875
216 v2v3+

175175
432 v1v2v3−

726275v4
2

972 − 1105v9
1

1152

− 15625v7
1

2304 − 1178125v1v3
2

2592 − 371875v2
1v2

2
2592 − 1641875v1v2

3
2592 − 1617725v3

2
7776 − 15625v1v3

10368

− 125v1v2

18144 − 1853125v1v2
2

41472 − 2824375v3
1v2

124416 − 390625v5
1

165888 − 7375v3

217728+
125

435456 (B.5)

These expressions are obtained using the following expression of holomorphic ambiguity
(upto genus 4)

a2,0 =
25
144 , a2,3 =

1
240 , a2,2 =

41
3600 , a2,1 =−5759

3600 ,

a3,0 =
125
36288 , a3,6 =

1
1008 , a3,5 =

53
25200 , a3,4 =

377
50400 ,

a3,3 =
52187
3543750 , a3,2 =− 56414003

113400000 , a3,1 =
27683
226800 ,

a4,0 =
125

435456 , a4,9 =
1

1440 , a4,8 =
1181

1512000 , a4,7 =
42311

15120000 ,

a4,6 =
32341651
6804000000 , a4,5 =

13084603
1215000000 , a4,4 =

2975053771
170100000000 ,

a4,3 =−20302003513
85050000000 , a4,2 =

223340899
2268000000 (B.6)
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Near the orbifold point, we have (up to higher order in z corrections)

Gzz̄ =− 110069iz6/5

9072000π
− 52200923iz11/5

6191640000π
− 1181622906671iz16/5

182847974400000π
− 971860467770484913iz21/5

185462700433920000000π

− 517712195376322778317819iz26/5

117464655946827571200000000π
− i

10πz4/5 −
13i 5

√
z

600π
(B.7a)

A1(z)=
220354390465111604731z6

1323775600931204628480 +9128302521513673z5

53413257724968960

+488137713751z4

2764661372928 +2433517z3

13208832 +3551z2

18144 +13z

60 − 4
5 (B.7b)

A2(z)=
455465431612371468283z6

500770375352264908800 +64957905930744067z5

89022096208281600

+3745355101183z4

6911653432320 +1385861z3

4043520 +14201z2

113400 − 13z

100+
16
25 (B.7c)

A3(z)=
1965068367346519805362051z6

380585485267721330688000 +236047909509127831z5

70280602269696000

+1277237750879z4

664582060800 +1442437583z3

1651104000 +40073z2

162000 +169z

1500−
64
125 (B.7d)

B1(z) =
118181324517177899z6

83530422006632939520 + 2237487657991z5

1318845869752320

+ 144615385z4

68263243776 + 24833z3

8805888 + 17z2

4032 + z

120 + 1
5 (B.8a)

B2(z) =
3804394348955513741z6

417652110033164697600 + 60801809239057z5

6594229348761600

+ 3203648143z4

341316218880 + 85051z3

8805888 + 1027z2

100800 + 7z

600 + 1
25 (B.8b)

B3(z) =
1301547134020985771z6

22947918133690368000 + 226966909677019z5

4710163820544000

+ 67688041507z4

1706581094400 + 376837z3

12096000 + 1633z2

72000 + 43z

3000 + 1
125 (B.8c)

The mirror map s0 = 2πit(z) near the orbifold is given by (up to higher order in s0 corrections)

z = s5
0

(
− 4685818879361815620241s30

0
20937783610175266434023424 − 15426361501608623s25

0
33607621760550469632

− 341636050705s20
0

334524026124288 − 6942139s15
0

2615348736 − 1193s10
0

399168 − 13s5
0

72 + 1
)

(B.9)

Near the large volume limit, we have (up to higher order in 1/z corrections)

Gzz̄ = 325267989289300474494993i

14551915228366851806640625πz9 + 587545043347548828192i

23283064365386962890625πz8

+ 1079824013793424848i

37252902984619140625πz7 + 2031077058780702i

59604644775390625πz6

+ 6315703313i

152587890625πz5 + 12901232i

244140625πz4 + 28713i

390625πz3 + 77i

625πz2 + i

2πz
(B.10)
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A1(z) = − 91136
390625z2 − 54528844

244140625z3 − 32921029136
152587890625z4 − 2499906384811904

11920928955078125z5

− 1525393024559459176
7450580596923828125z6 − 933819657938692482104

4656612873077392578125z7

− 573110486047238165452576
2910383045673370361328125z8 − 154

625z
− 1 (B.11a)

A2(z) =
77652
78125z2 + 300714108

244140625z3 + 222626829264
152587890625z4 + 20009189497115328

11920928955078125z5

+ 2818972488865881168
1490116119384765625z6 + 9778647325104080827032

4656612873077392578125z7

+ 6704866032955695360371616
2910383045673370361328125z8 + 462

625z
+ 1 (B.11b)

A3(z) = − 1327064
390625z2 − 1359282148

244140625z3 − 1252941937376
152587890625z4

− 134813955503205872
11920928955078125z5 − 110609405838188962216

7450580596923828125z6

− 17517486998759780560936
931322574615478515625z7 − 13498002552990569588470112

582076609134674072265625z8 − 1078
625z

− 1
(B.11c)

B1(z) = − 8496
390625z2 − 3723264

244140625z3 − 1795273056
152587890625z4

− 114279890313024
11920928955078125z5 − 60297588712958976

7450580596923828125z6

− 32617546341983714304
4656612873077392578125z7 − 17973379161831778554816

2910383045673370361328125z8 − 24
625z

(B.12a)

B2(z) =
17568

390625z2 + 463104
9765625z3 + 7431990912

152587890625z4 + 118015860527424
2384185791015625z5

+ 372816963835435008
7450580596923828125z6 + 234830021433200630784

4656612873077392578125z7

+ 147631116217732855017984
2910383045673370361328125z8 + 24

625z
(B.12b)

B3(z) = − 35712
390625z2 − 35358336

244140625z3 − 30244442112
152587890625z4

− 119942000161344
476837158203125z5 − 2271029905283733504

7450580596923828125z6

− 1667282909354805344256
4656612873077392578125z7 − 47875293873762326102016

116415321826934814453125z8 − 24
625z

(B.12c)

The mirror map q = e2πit(z) near the large volume limit is given by (up to higher order
in q corrections)

z = 3211453397717989716q6

25 + 487153794602541q5

5 + 251719793608904q4

3125

+ 75834339q3 + 438412q2

5 + 3371q

25 + 1
3125q

+ 154
625 (B.13)

– 40 –



J
H
E
P
0
1
(
2
0
2
4
)
1
9
3

Near the conifold point (up to higher order in z − 1 corrections)

Gzz̄ = 764048190197iz9

7382812500000π
− 213525194443iz8

205078125000π
+ 968228100047iz7

205078125000π
− 558790404511iz6

43945312500π

+ 1321459994197iz5

58593750000π
− 67351692503iz4

2441406250π
+ 2081315276147iz3

87890625000π

− 1461487713461iz2

102539062500π
+ 4914441099397iz

820312500000π
− 3603437486393i

1845703125000π
(B.14)

A1(z) = − 1384560214737911(z − 1)10

1153564453125000 − 862803763771(z − 1)9

439453125000 − 69901289(z − 1)8

307617187500

+ 786241(z − 1)7

30761718750 + 48046(z − 1)6

146484375 − 9614(z − 1)5

9765625

+ 109(z − 1)4

46875 − 52(z − 1)3

9375 + 2
125(z − 1)2 − 2(z − 1)

25 − 3
5 (B.15a)

A2(z) = − 27584282576503483(z − 1)10

3204345703125000 − 6302295161034667(z − 1)9

230712890625000

− 90602200782679(z − 1)8

5126953125000 − 273688951(z − 1)7

153808593750 + 2953091(z − 1)6

1464843750

− 340222(z − 1)5

146484375 + 5336(z − 1)4

1953125 − 152(z − 1)3

46875 + 8(z − 1)2

3125 + 6(z − 1)
125 + 7

25
(B.15b)

A3(z) = − 3556357603096849823(z − 1)10

48065185546875000 − 3025026699994756781(z − 1)9

9613037109375000

− 517209274128583(z − 1)8

1373291015625 − 543657766868221(z − 1)7

3845214843750 − 1552212(z − 1)6

1220703125

+ 209153(z − 1)5

146484375 − 48011(z − 1)4

29296875 + 12632(z − 1)3

5859375 − 86(z − 1)2

15625 + 6(z − 1)
3125 − 3

25
(B.15c)

B1(z) = − 50316142216889(z − 1)10

1153564453125000 − 34402381991(z − 1)9

11535644531250

+ 2073387011(z − 1)8

615234375000 − 59382199(z − 1)7

15380859375 + 219619(z − 1)6

48828125

− 156709(z − 1)5

29296875 + 611(z − 1)4

93750 − 76(z − 1)3

9375 + 6
625(z − 1)2

(B.16a)

B2(z) = − 526374297156437(z − 1)10

1201629638671875 − 53437362851627(z − 1)9

115356445312500

+ 860715463(z − 1)8

2563476562500 − 105071938(z − 1)7

384521484375 + 111427(z − 1)6

732421875

+ 12617(z − 1)5

146484375 − 3419(z − 1)4

5859375 + 82(z − 1)3

46875 − 16(z − 1)2

3125 + 12(z − 1)
625

(B.16b)
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B3(z) = − 631476601118473739(z − 1)10

144195556640625000 − 41093539953993277(z − 1)9

4806518554687500

− 160213015272943(z − 1)8

38452148437500 + 1738065043(z − 1)7

1922607421875

− 7054558(z − 1)6

6103515625 + 372779(z − 1)5

244140625 − 61763(z − 1)4

29296875

+ 18154(z − 1)3

5859375 − 78(z − 1)2

15625 + 28(z − 1)
3125 + 12

625 (B.16c)

The mirror map s1(z) = 2πit near the conifold point is given by (up to higher order in
s1 corrections)

z = 1 +
( 720943s9

1
10937500000000 − 99151s8

1
708750000000 + 90291s7

1
43750000000 + 10187s6

1
3281250000

+ 13s5
1

150000 + 169s4
1

375000 + s3
1

200 + s2
1

30 + 3s1
10 + 1

)
s1 (B.17)

The GV invariants ng
d are given by

n0
1 = 2875, n0

2 = 609250, n0
3 = 317206375, n0

4 = 242467530000,

n1
1 = 0, n1

2 = 0, n1
3 = 609250, n1

4 = 3721431625,

n2
1 = 0, n2

2 = 0, n2
3 = 0, n2

4 = 534750,

n3
1 = 0, n3

2 = 0, n3
3 = 0, n3

4 = 8625,

n4
1 = 0, n4

2 = 0, n4
3 = 0, n4

4 = 0

(B.18)
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