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1 Introduction

Supergravity solutions on AdS spaces often arise as the near-horizon limit of brane intersections.
One such example comes from the NS1-NS5-NS5 brane system, whose geometry near the
horizon is AdS3 × S3 × S3 × S1 [1]. This constitutes a part of a type-II supergravity solution,
which is also supported by a Neveu-Schwarz (NS) three-form with components proportional
to the volume forms of AdS3 and the two S3’s. Such a configuration is half-maximally
supersymmetric [1].

Furthermore, the metric on AdS3×S3×S3, along with the three-form flux, can be viewed
as a WZW model [2] on SL(2,R)× SU(2)× SU(2). Deformations of WZW models on semi-
simple groups that preserve integrability have garnered considerable attention in the literature.
Examples of such deformations include the λ-model [3] and generalisations of it [4–11].

Integrable σ-models can be an important playground for studying new paradigms of the
AdS/CFT correspondence [12]. In this regard, it is useful to promote the σ-model background
fields to a full supergravity solution. That means constructing the appropriate dilaton and
Ramond-Ramond (RR) fields that are necessary for the equations of motion to be satisfied.
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In the context of the λ-model, this was first achieved in [13] for the deformation based on
SL(2,R)× SU(2), as well as deformations based on symmetric spaces. Nevertheless, in the
case of SL(2,R)× SU(2), the outcome was a solution of the type-IIB* supergravity [14], and
as such, it is of no interest for our considerations.1 This problem for the embedding of the
SL(2,R) × SU(2) λ-model has been successfully addressed recently in [15] by an analytic
continuation of the SL(2,R) parameters. As a result, the first 1/4 supersymmetric type-II
solution from a λ-deformed model has been found.

In the present work, we construct the λ-deformation for the near-horizon limit of the
NS1-NS5-NS5 setup, and we show that it is 1/4 supersymmetric. The background presented
in [15] can be obtained by a zoom-in limit that makes one of the deformed three-spheres flat.
We also consider the Penrose limits [16] around two null geodesics of the deformed geometry
and demonstrate the non-existence of supernumerary supercharges for the pp-wave solutions.

The plan of the paper is as follows: in section 2, we construct the 1/4 supersymmetric
type-IIA solution and we lift it to eleven dimensions. We also consider various zoom-in limits
and discuss the relationship with the λ-deformed AdS3 × S3 × T 4 background. Section 3 is
devoted to the supersymmetry analysis of the deformed type-IIA solution. In section 4, we
discuss two Penrose limits and the supersymmetry of the associated plane-wave solutions.
Conclusions and future ideas are contained in section 5. We have also included four appendices.
In appendix A, we collect the background fields for the λ-deformed σ-models on SL(2,R)
and SU(2). Appendix B offers a review of the undeformed pure NS and type-IIA/IIB pure
RR backgrounds on AdS3 × S3 × S3 × S1. Appendix C contains the type-IIB counterpart
of the λ-deformed solution discussed in section 2. Details on the Killing spinor equations
are collected in appendix D.

2 The type-IIA deformed solution

In this section we describe how to embed in type-II supergravity two copies of the λ-deformed
σ-model on SU(2) together with that on SL(2,R). Our approach resembles the idea of [13, 15]
for AdS3 × S3 × T 4. In particular, we want to construct a solution that interpolates between
the pure NS background on AdS3 × S3 × S3 × S1 and the non-Abelian T-dual (NATD) of
its pure RR cousin (type-IIA or type-IIB). The non-Abelian T-duality takes place in both
three-spheres as well as the AdS3. For this reason, if the pure RR background is a type-IIA
solution its NATD will be a type-IIB one and vice versa. The aforementioned backgrounds
and their relations are illustrated in figure 1. Below we give the details of the λ-deformed
embedding while the pure NS and RR solutions are listed in appendix B.

The metric. Staring with the pure RR solution we derive the metric of the deformed
geometry by three simple replacements. More precisely, we substitute the line element on
AdS3 by the one in (A.4) and we do the same for the two three-spheres, where instead we

1More type-II supergravity solutions for λ-deformations based on (super) cosets have been constructed
in [17–21]. In addition, embeddings for the closely related η-deformed models [22–25] have been found
in [26–30].
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NATD

NATD(AdS3 × S3 × S3) × S1

NS ✓, RR(IIB/IIA) ✓

Pure RR

AdS3 × S3 × S3 × S1

NS ✘, RR(IIA/IIB) ✓

Pure NS

AdS3 × S3 × S3 × S1

NS ✓, RR(IIA/IIB) ✘

NATDλ-def.

Figure 1. Relation of the various solutions. Notice that NATD maps a type-IIA theory to a type-IIB
one and vice versa. The pure NS solution corresponds to λ = 0. On the other hand, when λ approaches
the identity one finds the NATD backgrounds.

use two copies of the line element in (A.1). The resulting metric has now the form

ds2 = L2
0 k

(1 + λ

1− λ
dα̃2 + 1− λ2

∆̃(α̃)
cosh2 α̃

(
dβ̃2 − cosh2 β̃ dγ̃2))

+ L2
1 k

(1 + λ

1− λ
dα2

1 +
1− λ2

∆(α1)
sin2 α1

(
dβ2

1 + sin2 β1 dγ
2
1
))

+ L2
2 k

(1 + λ

1− λ
dα2

2 +
1− λ2

∆(α2)
sin2 α2

(
dβ2

2 + sin2 β2 dγ
2
2
))

+ dω2 .

(2.1)

Here the functions ∆ and ∆̃ are defined in (A.2) and (A.5) respectively. Clearly when λ = 0,
the metric (B.1) is recovered, representing the geometry on AdS3×S3×S3×S1. The latter is
recognised as the spacetime that arises from the near-horizon limit of the NS1-NS5-NS5 brane
setup [1]. However, the presence of the deformation breaks the isometry of AdS3 × S3 × S3.
Nonetheless, a subspace with topology AdS2 × S2 × S2 is still present.

For the better presentation of the RR fields later, we also introduce the orthogonal frame

e0 = L0

√
k
1− λ2

∆̃(α̃)
cosh α̃ sinh β̃ dγ̃, e1 = L0

√
k
1− λ2

∆̃(α̃)
cosh α̃ dβ̃, e2 = L0

√
k
1 + λ

1− λ
dα̃,

e3 = L1

√
k
1 + λ

1− λ
dα1, e

4 = L1

√
k
1− λ2

∆(α1)
sinα1 dβ1, e

5 = L1

√
k
1− λ2

∆(α1)
sinα1 sin β1 dγ1,

e6 = L2

√
k
1 + λ

1− λ
dα2, e

7 = L2

√
k
1− λ2

∆(α2)
sinα2 dβ2, e

8 = L2

√
k
1− λ2

∆(α2)
sinα2 sin β2 dγ2,

e9 = dω . (2.2)

The NS form. Unlike the pure RR solution where the NS form vanishes, the deformed
solution has a non-trivial two-form. More specifically, there are three contributions coming
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from the deformations of the AdS3 and the two three-spheres

B2 = L2
0 k

(
α̃+ (1− λ)2

∆̃(α̃)
cosh α̃ sinh α̃

)
cosh β̃ dβ̃ ∧ dγ̃

+ L2
1 k

(
− α1 +

(1− λ)2

∆(α1)
cosα1 sinα1

)
sin β1 dβ1 ∧ dγ1

+ L2
2 k

(
− α2 +

(1− λ)2

∆(α2)
cosα2 sinα2

)
sin β2 dβ2 ∧ dγ2 .

(2.3)

As it is expected, when λ = 0 the field strength of B2 reduces to (B.3).

The dilaton. The deformed solution also supports a non-trivial dilaton

Φ = −1
2 ln

(
∆̃(α̃)∆(α1)∆(α2)

)
. (2.4)

Obviously this vanishes if we set λ = 0.

The RR forms. A naive approach to obtain the RR fluxes is to write down an ansatz
inspired from the NATD version of the pure RR solution and then solve the supergravity
equations of motion. However, here we will follow a more systematic procedure proposed
in [13]. According to this, one can build the RR poly-form of the deformed solution, F̂, from
the poly-form of the pure RR background, F, through the following relation

eΦ /̂F = µ(λ) /FΩ−1 . (2.5)

The slash in the above expression denotes contraction with the Γ-matrices. Moreover, Ω is
a matrix that can be written in terms of the Γ’s and µ is a constant that depends on the
deformation parameter. In our case, the matrix Ω (expressed in the basis (2.2)) reads

Ω = 1√
∆̃(α̃)∆(α1)∆(α2)

(
(1− λ) sinh α̃Γ012 + (1 + λ) cosh α̃Γ2

)
×
(
(1− λ) cosα1Γ345 − (1 + λ) sinα1Γ3

)
×
(
(1− λ) cosα2Γ678 − (1 + λ) sinα2Γ6

)
.

(2.6)

Also, the constant µ has the form

µ = 2λ√
k(1− λ2)(1 + λ)

. (2.7)

Notice that for λ = 0 the constant µ vanishes and therefore one finds the pure NS solution as
it is anticipated. On the other hand, when λ ̸= 0 the deformation generates RR fluxes. The
form of the matrix Ω implies that if we start with a type-IIA solution then the deformed
fluxes are in type-IIB and vice versa. With this in mind, we construct fluxes both in type-IIA
and in type-IIB for the deformed theory. It turns out that the two theories are related via
T-duality in the ω direction. For this reason, we provide the RR content of the type-IIA
solution below, whereas we quote the details of the type-IIB one in appendix C.
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For the type-IIA RR fields we find that the zero-form (Romans mass) vanishes while
the rest are

F2 = 2µ(1− λ)(1 + λ)2
( 1
L0

sinh α̃ sinα1 sinα2e
36 − 1

L1
cosh α̃ cosα1 sinα2e

26

+ 1
L2

cosh α̃ sinα1 cosα2e
23
)
− 2µ(1 + λ)(1− λ)2

( 1
L0

cosh α̃ cosα1 cosα2e
29

− 1
L1

sinh α̃ sinα1 cosα2e
39 − 1

L2
sinh α̃ cosα1 sinα2e

69
) (2.8)

and

F4 =− 2µ(1 + λ)3 cosh α̃ sinα1 sinα2

(
e0136

L0
− e2456

L1
+ e2378

L2

)
+ 2µ(1− λ)3 sinh α̃ cosα1 cosα2

(
e0129

L0
+ e3459

L1
+ e6789

L2

)
+ 2µ(1− λ)(1 + λ)2

(
cosh α̃ sinα1 cosα2

(
e2459

L0
− e0139

L1

)
(2.9)

+cosh α̃ cosα1 sinα2

(
e2789

L0
− e0169

L2

)
− sinh α̃ sinα1 sinα2

(
e3789

L1
+ e4569

L2

))

+ 2µ(1 + λ)(1− λ)2
(
sinh α̃ cosα1 sinα2

(
e3456

L0
+ e0126

L1

)

+sinh α̃ sinα1 cosα2

(
e3678

L0
− e0123

L2

)
− cosh α̃ cosα1 cosα2

(
e2678

L1
− e2345

L2

))
.

For the sake of economy we adopt the notation ea1...ap = ea1 ∧ . . . ∧ eap . Notice that the
above field content solves the equations of motion for the type-IIA supergravity under the
condition (B.6). Also, since the Romans mass vanishes this background can be lifted to
eleven dimensions. Later we will give explicit formulas for the uplift.

2.1 The T 4 limit

A λ-deformed AdS3×S3×T 4 type-IIB solution that preserves 8 supercharges was constructed
recently in [15]. Here we derive its type-IIA cousin by applying the limit (B.7) in the
supergravity background of the previous section. The two solutions on the λ-deformed
AdS3 × S3 × T 4 geometry are related2 via a T-duality in one of the torus directions. Below
we present this background in more detail.

The metric. Taking the limit (B.7) in (2.1) gives

ds2 = L2
0 k

(1 + λ

1− λ
dα̃2 + 1− λ2

∆̃(α̃)
cosh2 α̃

(
dβ̃2 − cosh2 β̃ dγ̃2))

+ L2
1 k

(1 + λ

1− λ
dα2

1 +
1− λ2

∆(α1)
sin2 α1

(
dβ2

1 + sin2 β1 dγ
2
1
))

+ k
1 + λ

1− λ

(
dρ2 + ρ2 (dβ2

2 + sin2 β2 dγ
2
2
))

+ dω2 .

(2.10)

2Up to a shift in the dilaton followed by an appropriate rescaling of the RR fields.
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The first three terms in the third line above parametrise a Euclidean three-dimensional
space, R3, and can be replaced by a three-torus, T 3. Subsequently, the last can be combined
with dω2 to give a T 4.

Notice that the frame components e6, e7 and e8 in (2.2) are mapped as follows

e6 7→

√
k
1 + λ

1− λ
dρ, e7 7→

√
k
1 + λ

1− λ
ρ dβ2, e8 7→

√
k
1 + λ

1− λ
ρ sin β2 dγ2 . (2.11)

Meanwhile, the rest of the components are not affected by the limit.

The dilaton. In the limit (B.7) the function ∆(α2) becomes a λ-dependent constant. As
a result the dilaton now is

Φ = −1
2 ln

(
∆̃(α̃)∆(α1)(1− λ)2

)
. (2.12)

The NS form. After applying (B.7), the third line in (2.3) vanishes. Therefore we are
left with

B2 = L2
0 k

(
α̃+ (1− λ)2

∆̃(α̃)
cosh α̃ sinh α̃

)
cosh β̃ dβ̃ ∧ dγ̃

+ L2
1 k

(
− α1 +

(1− λ)2

∆(α1)
cosα1 sinα1

)
sin β1 dβ1 ∧ dγ1 .

(2.13)

The RR forms. It is easy to see that when taking (B.7), the terms in (2.8) and (2.9) that
contain the radius L2 or the function sinα2 vanish. Then for the RR two-form we obtain

F2 = −2µ(1 + λ)(1− λ)2
( 1
L0

cosh α̃ cosα1e
29 − 1

L1
sinh α̃ sinα1e

39
)
. (2.14)

Similarly, for the four-form we find

F4 = 2µ(1− λ)3 sinh α̃ cosα1

(
e0129

L0
+ e3459

L1

)
+ 2µ(1− λ)(1 + λ)2 cosh α̃ sinα1

(
e2459

L0
− e0139

L1

)
+ 2µ(1 + λ)(1− λ)2

( 1
L0

sinh α̃ sinα1 e
3678 − 1

L1
cosh α̃ cosα1 e

2678
)
,

(2.15)

where for e6, e7 and e8 we consider (2.11).
Notice that the background described above solves the type-IIA equations of motion,

provided that L0 = L1, as can be inferred from (B.6) for large L2.

2.2 Solutions from other zoom-in limits

It was shown in [3] that when λ approaches the identity, the λ-deformed model on a group
reduces to the non-Abelian T-dual of the corresponding Principal Chiral Model (PCM). To
ensure the consistency of the λ→ 1 limit one has to relate λ to the WZW level k in such a
way that λ→ 1 as k → ∞. At the same time, it is necessary to expand the group element
near the identity by rescaling the group parameters appropriately with inverse powers of k.
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At the level of the supergravity solution described in section 2, the NATD limit is
taken by setting

α̃ = i
π

2 + r0
2k , α1 = r1

2k , α2 = r2
2k , λ = 1− 1

k
(2.16)

and then sending k to infinity. Notice that due to (A.3), the SL(2,R) group element is not
connected to the identity. Therefore, in order to define the NATD limit, one has to consider
an expansion around a complex value of the SL(2,R) group parameters. As it has been
observed in [15], this results in a background with real RR fluxes.

However, this is not the only consistent option one has as λ approaches the identity.
Alternatively, one can expand α̃ near zero and the angles α1 and α2 near π/2. This opens
up seven additional possibilities for consideration. Nevertheless, we will not delve into all
of these options and will instead concentrate solely on the non-Abelian T-dual limit. The
corresponding field content is given below.

The metric. The line element of the NATD geometry reads

s2 = L2
0
2

(
dr2

0 + r2
0

r2
0 − 1

(
dβ̃2 − cosh2 β̃ dγ̃2))

+ L2
1
2

(
dr2

1 + r2
1

r2
1 + 1

(
dβ2

1 + sin2 β1 dγ
2
1
))

+ L2
2
2

(
dr2

2 + r2
2

r2
2 + 1

(
dβ2

2 + sin2 β2 dγ
2
2
))

+ dω2 .

(2.17)

Notice that in order to maintain the signature, r0 is restricted as |r0| > 1. Moreover, applying
the limit (2.16) in the frame (2.2) we find

ê0 = L0√
2

r0√
r2

0 − 1
cosh β̃ dγ̃ , ê1 = L0√

2
r0√
r2

0 − 1
dβ̃ , ê2 = L0√

2
dr0 ,

ê3 = L1√
2
dr1 , ê4 = L1√

2
r1√
r2

1 + 1
dβ1 , ê5 = L1√

2
r1√
r2

1 + 1
sin β1 dγ1 ,

ê6 = L2√
2
dr2 , ê7 = L2√

2
r2√
r2

2 + 1
dβ2 , ê8 = L2√

2
r2√
r2

2 + 1
sin β2 dγ2 ,

ê9 = dω .

(2.18)

The dilaton. In the NATD limit (2.16) the dilaton diverges. Nevertheless, the divergence
can be absorbed shifting the dilaton by a constant that depends on k. As we will explain
later, this shift will be taken into account when we consider the NATD limit in the RR
forms. Coming back to the dilaton, this reduces to

Φ = −1
2 ln

((
r2

0 − 1
)(
r2

1 + 1
)(
r2

2 + 1
))
. (2.19)
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The NS form. The two-form (2.3) has a good behaviour under the limit (2.16) where
one finds

B2 = L2
0
2

r3
0

r2
0 − 1

cosh β̃ dβ̃ ∧ dγ̃ − L2
1
2

r3
1

r2
1 + 1

sin β1 dβ1 ∧ dγ1

− L2
2
2

r3
2

r2
2 + 1

sin β2 dβ2 ∧ dγ2 .

(2.20)

The RR forms. The shift in the dilaton that we mentioned earlier is not innocent when
considering the NATD limit in the RR forms. Due to this, we need to rescale the RR fields
by an appropriate k-dependent constant. This ensures that the supergravity equations of
motion are satisfied after the limit (2.16). The resulting RR sector contains a two- and
a four-form. The first is

F2 =
√
2
(
r1r2
L0

ê36 − r0r2
L1

ê26 + r0r1
L2

ê23 − r0
L0
ê29 + r1

L1
ê39 + r2

L2
ê69
)
. (2.21)

For the four-form we find

F4 =−
√
2 r0r1r2

(
ê0136

L0
− ê2456

L1
+ ê2378

L2

)
+
√
2r0r1

(
ê2459

L0
− ê0139

L1

)
+

√
2r0r2

(
ê2789

L0
− ê0169

L2

)
−
√
2r1r2

(
ê3789

L1
+ ê4569

L2

)
−

√
2r0

(
ê2678

L1
− ê2345

L2

)
+
√
2r1

(
ê3678

L0
− ê0123

L2

)
+
√
2r2

(
ê3456

L0
+ ê0126

L1

)
+

√
2
(
ê0129

L0
+ ê3459

L1
+ ê6789

L2

)
.

(2.22)

Again, in order to guarantee that the supergravity equations of motion are satisfied we
need to make use of (B.6).

2.3 Uplift to eleven dimensions

We know that any type-IIA solution with zero Romans mass can be lifted to eleven dimensions.
Supergravity in eleven dimensions contains only the metric, ds2

11, and a four-form, G4. The
type-IIA fields are encoded in the eleven-dimensional ones in the following way

ds2
11 = e−

2
3 Φds2

IIA + e
4
3 Φ(dx11 + C1

)2
,

G4 = F4 +H ∧
(
dx11 + C1

)
.

(2.23)

In our case, ds2
IIA is the line element (2.1), Φ is the dilaton (2.4), H is the field strength of (2.3),

F4 is given in (2.9) and C1 is the RR potential of (2.8) such that F2 = dC1. For C1 we find

C1 = 2µk (1 + λ)3L0 sinh α̃
(
L1
L2

sinα1 cosα2 dα1 −
L2
L1

cosα1 sinα2 dα2

)
− 2µ

√
k(1− λ2)3 sinh α̃ cosα1 cosα2 dω .

(2.24)

To make sure that the eleven-dimensional equations of motion are satisfied it is necessary
to take into account (B.6).
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3 Supersymmetry analysis

We will now provide a summary of the supersymmetry analysis for the type-IIA background
described in equations (2.1), (2.3), (2.4) (2.8) and (2.9). Further details can be found in
appendix D.2. Due to the fact that the undeformed background exhibits more symmetry
than the deformed one, it is instructive to differentiate between the two cases.

The λ = 0 case. As it is explained in appendix D.2 the dilatino equation is solved by
imposing a single projection, namely the one outlined in (D.4). On the other hand, the
gravitini variations are solved by the Killing spinor

ϵ =exp
(
− α̃

2 Γ
01σ3

)
exp

(
β̃

2 Γ
02σ3

)(
− γ̃

2Γ
12σ3

)
× exp

(
− α1

2 Γ45σ3

)
exp

(
β1
2 Γ34

)(
γ1
2 Γ45

)
× exp

(
− α2

2 Γ78σ3

)
exp

(
β2
2 Γ67

)(
γ2
2 Γ78

)
η ,

(3.1)

where η is a constant spinor subject to the projection(
L0
L1

Γ012345 + L0
L2

Γ012678
)
η = −η . (3.2)

Notice that (B.6) ensures that the operator inside the parenthesis squares to the identity. The
condition (3.2) implies that the undeformed solution preserves 16 supercharges, in agreement
with the previously known result [1].

The λ ̸= 0 case. Allowing for non-trivial values of the deformation parameter generates
RR fluxes. The presence of the RR fields results in extra terms in the dilatino equation,
which vanish by imposing an additional projection. On top of (D.4), eq. (D.7) needs to be
considered. The gravitinii can be integrated by applying the type-IIA chirality condition in
conjunction with the aforementioned projections. This yields an expression for the Killing
spinor which now depends on λ

ϵ =exp
(
−1
2 tanh−1

(1− λ

1 + λ
tanh α̃

)
Γ01σ3

)
exp

(
β̃

2 Γ
02σ3

)(
− γ̃

2Γ
12σ3

)
× exp

(
−1
2 tan−1

(1 + λ

1− λ
tanα1

)
Γ45σ3

)
exp

(
β1
2 Γ34

)(
γ1
2 Γ45

)
× exp

(
−1
2 tan−1

(1 + λ

1− λ
tanα2

)
Γ78σ3

)
exp

(
β2
2 Γ67

)(
γ2
2 Γ78

)
η .

(3.3)

Again, η is a constant spinor which now satisfies

Γ019σ1η = −η (3.4)

together with the independent projection (3.2). The necessity to impose the second projec-
tion (3.4) when λ ̸= 0 implies that the deformed solution preserves 8 supercharges. In other
words, the deformation breaks supersymmetry by half.
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In the case of the NATD solution given in (2.17), (2.19), (2.20), (2.21) and (2.22), one
can proceed by analysing the dilatino and gravitino variations directly or to simply take the
limit (2.16) in (3.3) and (D.7). Either approach results in the Killing spinor

ϵ =exp
(
− 1

2 coth−1 r0 Γ01σ3

)
exp

(
β̃

2Γ
02σ3

)(
− γ̃

2Γ
12σ3

)
× exp

(
− 1

2 tan−1 r1 Γ45σ3

)
exp

(
β1
2 Γ34

)(
γ1
2 Γ45

)
× exp

(
− 1

2 tan−1 r2 Γ78σ3

)
exp

(
β2
2 Γ67

)(
γ2
2 Γ78

)
η ,

(3.5)

with η being a constant spinor satisfying (3.2) and (3.4). Therefore, the NATD solution
also preserves 8 supercharges.

4 Penrose limits

In this section, we explore an alternative zoom-in limit known as the Penrose limit [16]. This
indicates that in the neighbourhood of a null geodesic the spacetime geometry resembles that
of a plane-wave. Applying this to the λ-deformed background of eq. (2.1), (2.3), (2.4) (2.8)
and (2.9) results in another solution of the type-IIA supergravity. In the rest we derive the
type-IIA solutions on the plane-wave geometries associated to the following two null geodesics

α̃ = β̃ = α2 = 0 , α1 = β1 = π

2 , (4.1a)

α̃ = β̃ = α1 = α2 = 0 . (4.1b)

The first is related to the motion of a particle along the U(1) directions (γ̃, γ1) and the
second along (γ̃, ω).

4.1 The pp-wave around (4.1a)

Let us start with the Penrose limit that corresponds to the null geodesic (4.1a). This is
obtained by setting

γ̃ = u

L0
, γ1 = u

L1
+1+λ
1−λ

v

L1 k
, α̃ =

√
1−λ
1+λ

z1

L0
√
k
, α1 = π

2 +

√
1−λ
1+λ

z2

L1
√
k
,

α2 =

√
1−λ
1+λ

ρ

L2
√
k
, β̃ =

√
1+λ
1−λ

z3

L0
√
k
, β1 = π

2 +

√
1+λ
1−λ

z4

L1
√
k

(4.2)

and then taking k to infinity. As a result we find the type-IIA solution with the follow-
ing content

ds2 = 2 dudv + dz⃗2
4 + dx⃗2

4 +H du2 , H =
[(1− λ

1 + λ

)4( z2
1
L2

0
+ z2

2
L2

1

)
+ z2

3
L2

0
+ z2

4
L2

1

]
,

H3 = 2 1 + λ2(
1 + λ

)2du ∧
( 1
L0
dz1 ∧ dz3 −

1
L1
dz2 ∧ dz4

)
, Φ = 0 ,

F4 = 4λ(
1 + λ

)2 du ∧ dω ∧
( 1
L0
dz1 ∧ dz4 +

1
L1
dz2 ∧ dz3

)
,

(4.3)
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where we represent the four-dimensional flat space transverse to the u, v and z directions
as dx⃗2

4 = dρ2 + ρ2(dβ2
2 + sin2 β2 dγ

2
2
)
+ dω2. Therefore, the line element above is manifestly

in the Brinkmann form. Notice that we have set the dilaton to zero after a shift by a
suitable constant. This shift must be accompanied by an appropriate rescaling of the RR
four-form in order to guarantee that the type-IIA equations of motion are still satisfied.
Taking L0 = L1 = 1 in (4.3), it becomes evident that the plane-wave solution is T-dual
to the one found in section 3.2 of [15].

Uplift to eleven dimensions. The plane-wave solution (4.3) can be lifted to eleven
dimensions using (2.23) where we find

ds2 = 2 dudv + dz⃗2
4 + dx⃗2

4 + dx2
11 +H du2

G4 = 4λ(
1 + λ

)2 du ∧ dω ∧
( 1
L0
dz1 ∧ dz4 +

1
L1
dz2 ∧ dz3

)

+ 2 1 + λ2(
1 + λ

)2du ∧ dx11 ∧
( 1
L0
dz1 ∧ dz3 −

1
L1
dz2 ∧ dz4

)
.

(4.4)

Alternatively, this can be obtained by applying the Penrose limit for the null geodesic (4.1a)
directly in the eleven-dimensional solution described in section 2.3.

Remarks on supersymmetry. As previously mentioned, when L0 = L1 = 1 the plane-
wave solution (4.3) is T-dual to the plane-wave solution found in [15]. The latter has
been shown to preserve 16 supercharges when λ ̸= 0, while for λ = 0, the existence of 8
supernumerary supercharges (24 in total) has been observed. However, (4.3) results from
a geometry with L0 ̸= L1. This implies that even when λ = 0 [31] the background (4.3)
still preserves 16 supercharges. This statement can be confirmed simply by looking at the
dilatino equation, which reads3

δλ = − 1
2L0

1 + λ2

(1 + λ)2Γ
−Γ13σ3

(
⊮+ λ

1 + λ2Γ
138(iσ2)

)(
⊮− L0

L1
Γ1234

)
ϵ . (4.6)

Clearly, when L0 ̸= L1, the vanishing of the dilatino variation implies that the spinor ϵ is
annihilated only by Γ−, and therefore, the pp-wave solution preserves 16 supercharges.

For completeness, below we present the spinor ϵ that solves the gravitino variations

ϵ = exp
(
u

2
1 + λ2

(1 + λ)2

( 1
L0

Γ13 − 1
L1

Γ24
)
σ3

)

× exp
(
u

2
λ

(1 + λ)2Γ
−Γ+Γ8

( 1
L0

Γ14 + 1
L1

Γ23
)
σ1

)
η ,

(4.7)

where η is a constant spinor satisfying Γ−η = 0.
3The Γ-matrices here are associated to the frame

e+ = dv + 1
2H du , e− = du , e0 = 1√

2
(
e+ − e−) , e9 = 1√

2
(
e+ + e−) ,

e1 = dz1 , e2 = dz2 , e3 = dz3 , e4 = dz4 , e5 = dx1 , e6 = dx2 , e7 = dx3 , e8 = dx4 .

(4.5)
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4.2 The pp-wave around (4.1b)

For the Penrose limit related to the null geodesic (4.1b) we set

γ̃ = u

L0
, ω =

√
k
1− λ

1 + λ
u+

√
1 + λ

1− λ

v√
k
, α̃ =

√
1− λ

1 + λ

z1

L0
√
k
,

β̃ =

√
1 + λ

1− λ

z2

L0
√
k
, α1 =

√
1− λ

1 + λ

ρ1

L1
√
k
, α2 =

√
1− λ

1 + λ

ρ2

L2
√
k
. (4.8)

Sending k to infinity we obtain the plane-wave solution with content

ds2 = 2 dudv + dz2
1 + dz2

2 + dy⃗2
3 + dw⃗2

3 + H̃ du2 , H̃ = −
[(1− λ

1 + λ

)4 z2
1
L2

0
+ z2

2
L2

0

]
,

Φ = 0 , H3 = 2
L0

1 + λ2(
1 + λ

)2 du ∧ dz1 ∧ dz2 , F2 = 4λ
L0
(
1 + λ

)2 du ∧ dz1 .

(4.9)

Here, dy⃗2
3 and dw⃗2

3 stand for the line elements of two three-dimensional flat spaces. In
particular, dy⃗2

3 = dρ2
1 + ρ2

1
(
dβ2

1 +sin2 β1 dγ
2
1
)

and dw⃗2
3 = dρ2

2 + ρ2
2
(
dβ2

2 +sin2 β2 dγ
2
2
)
. Clearly,

the line element in (4.9) is in Brinkmann form. Notice that again we have set the dilaton to
zero by a suitable shift and rescaled the RR two-form accordingly, as we did for (4.3).

Uplift to eleven dimensions. Unlike (4.3), in (4.9) the RR two-form survived the Penrose
limit. Its potential signals a fibration term along the extra coordinate after lifting the metric
in (4.9) to eleven dimensions. In particular, for the eleven-dimensional solution we find

ds2 = 2 dudv + dz2
1 + dz2

2 + dy⃗2
3 + dw⃗2

3 +
(
dx11 + C̃1du

)2
+ H̃ du2 ,

C̃1 = − 4λ z1

L0
(
1 + λ

)2 du , G4 = 2
L0

1 + λ2(
1 + λ

)2 du ∧ dx11 ∧ dz1 ∧ dz2 .
(4.10)

The above content can also be found by applying the Penrose limit around the null
geodesic (4.1b) directly in the eleven-dimensional background of section 2.3.

Notice that due to the fibration term along x11, the line element in (4.10) is not in
Brinkmann form. In order to bring it to the Brinkmann form we apply the following
coordinate transformations

v 7→ v + 2λ z1 x11

L0
(
1 + λ

)2 , x11 + i z1 7→ e−iũ(x11 + i z1
)
, ũ = 2λu

L0
(
1 + λ

)2 . (4.11)

As a result, the fibration disappears but the mass term (coefficient of du2) acquires dependence
on u, namely

ds2 = 2 dudv + dz2
1 + dz2

2 + dy⃗2
3 + dw⃗2

3 −
(

4λ2

L2
0
(
1 + λ

)4 (x2
11 + z2

1
)
+ z2

2
L2

0

+ 1− 6λ+ λ2

L2
0
(
1 + λ

)2 (x11 sin ũ− z1 cos ũ
)2)

du2 .

(4.12)

The four-form G4 remains invariant under the transformation (4.11).
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Remarks on supersymmetry. Looking at the dilatino variation for the plane-wave
background (4.9), one might anticipate that there is room for supernumerary supercharges.
Indeed, the dilatino variation in this case takes the form4

δλ = − 1
2L0

1 + λ2

(1 + λ)2Γ
−Γ12σ3

(
⊮− 3λ

1 + λ2Γ
2σ1

)
ϵ . (4.14)

It is now clear that the term in the parenthesis defines a projector when λ = (3−
√

5)/2. In other
words, for this value of λ, one should expect the existence of 8 supernumerary supercharges.
Nevertheless, this turns out not to be true after elaborating on the gravitino variations. In
fact, the gravitini imply that the spinor ϵ is subject to the conditions

λΓ−Γ1
(
4− 3λ+ 4λ2 + 2

(
1 + λ2)Γ2σ1

)
ϵ = 0 ,

λΓ−Γ2
(
4 + 3λ+ 4λ2 + 2

(
1 + λ2)Γ2σ1

)
ϵ = 0 ,

λ2 Γ−Γiϵ = 0 , i = 3, . . . , 8 .

(4.15)

The above relations are simultaneously satisfied only when Γ−ϵ = 0. This means that the
plane-wave solution (4.9) preserves the minimum amount of supersymmetry.

Let us mention that after integrating the gravitino equations we find that the spinor
ϵ takes the form

ϵ = exp
(

u

2L0

1 + λ2

(1 + λ)2Γ
12σ3 +

u

2L0

λ

(1 + λ)2Γ
−Γ+Γ1(iσ2)

)
η , (4.16)

where η is a constant spinor annihilated by Γ−.

5 Conclusions

We promoted the integrable λ-model on SL(2,R)× SU(2)× SU(2) to a solution of type-IIA
supergravity by constructing the appropriate RR fluxes. In the undeformed limit, we recover
the geometry of AdS3 × S3 × S3 × S1 supported only by a NS three-form. This background
originates from the near-horizon limit of the NS1-NS5-NS5 brane intersection and is 1/2
supersymmetric. In the presence of the deformation, the group of isometries of AdS3×S3×S3

reduces to that of AdS2×S2×S2. As a matter of fact, the deformation breaks supersymmetry
by half. As the deformation parameter approaches the identity, one is forced to employ a
zoom-in limit, which involves rescaling the coordinates by factors of k and sending k to infinity.
We demonstrated that there exist several such zoom-in limits and presented the one associated
with the NATD of the type-IIB pure RR background on AdS3 × S3 × S3 × S1. Finally, we
considered Penrose limits along two null geodesics in the deformed spacetime. The resulting

4The Γ-matrices here are associated to the frame

e+ = dv + 1
2 H̃ du , e− = du , e0 = 1√

2
(
e+ − e−) , e9 = 1√

2
(
e+ + e−) , (4.13)

e1 = dz1 , e2 = dz2 , e3 = dy1 , e4 = dy2 , e5 = dy3 , e6 = dw1 , e7 = dw2 , e8 = dw3 .
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type-IIA plane-wave backgrounds capture a dependence on the deformation parameter. By
analysing the supersymmetry variations for the dilatino and gravitino, we concluded that no
supernumerary supercharges exist for arbitrary values of the deformation parameter.

Having a supergravity background with the aforementioned properties at hand opens the
door for further investigations. Some of the questions that we would like to address in the near
future are the following. As a first thought, it would be interesting to explore the existence
of supersymmetric probe brane embeddings [32–34] by analysing the κ-symmetry condition.
Furthermore, the appearance of an AdS2 subspace in the deformed geometry suggests the
study of the holographic dual to our solution as a natural extension. To this, one can also
include the study of thermal effects. This requires to construct the corresponding black hole
solution, which is equivalent to turning on temperature in the dual holographic system.
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A The λ-deformed background fields

In this appendix we summarise the background fields for the λ-deformed σ-models on SL(2,R)
and SU(2). These consist of a three-dimensional metric, a two-form and a scalar.

The SU(2) fields. Starting with the compact case, the σ-model background fields are

ds2 = k

(1 + λ

1− λ
dα2 + 1− λ2

∆(α) sin2 α
(
dβ2 + sin2 β dγ2)) ,

B2 = k

(
− α+ (1− λ)2

∆(α) cosα sinα
)
sin β dβ ∧ dγ ,

Φ = −1
2 ln∆(α) ,

(A.1)

where the function ∆ is defined as

∆(x) := (1− λ)2 cos2 x+ (1 + λ)2 sin2 x . (A.2)

Notice that in the neighbourhood of the points α = 0, π and α = π/2 the topology looks
different. Specifically, near α = 0, π it looks like R3 while near α = π/2 it behaves like R× S2.
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The SL(2,R) fields. The corresponding fields for the non-compact case can be obtained
from the above via the analytic continuation

α 7→ π

2 + iα̃ , β 7→ iβ̃ − π

2 , γ 7→ γ̃ , k 7→ −k . (A.3)

Doing so, one finds

ds2 = k

(1 + λ

1− λ
dα̃2 + 1− λ2

∆̃(α̃)
cosh2 α̃

(
dβ̃2 − cosh2 β̃ dγ̃2)) ,

B2 = k

(
α̃+ (1− λ)2

∆̃(α̃)
cosh α̃ sinh α̃

)
cosh β̃ dβ̃ ∧ dγ̃ ,

Φ = −1
2 ln ∆̃(α̃) ,

(A.4)

where the function ∆̃ is given by

∆̃(x) := (1 + λ)2 cosh2 x− (1− λ)2 sinh2 x . (A.5)

Notice that we have neglected an imaginary term in the two-form (A.4) that comes from the
shift of α by π/2. This term is a closed two-form and thus it is irrelevant for a supergravity
solution. The line element (A.4) has mostly plus signature and the time-like direction is γ̃.
Moreover, when α̃ approaches ±∞ the space looks like R × AdS2.

B Type-II solutions on AdS3 × S3 × S3 × S1

Here we summarise the pure NS and RR (type-IIA/IIB) supergravity solutions with AdS3 ×
S3 × S3 × S1 geometry. All of them have a trivial dilaton and a metric given in terms
of the line element

ds2 = L2
0

(
dα̃2 + cosh2 α̃

(
dβ̃2 − cosh2 β̃dγ̃2))+ L2

1

(
dα2

1 + sin2 α1
(
dβ2

1 + sin2 β1dγ
2
1
))

+ L2
2

(
dα2

2 + sin2 α2
(
dβ2

2 + sin2 β1dγ
2
2
))

+ dω2 . (B.1)

The AdS3 space with radius L0 is parametrised by (α̃, β̃, γ̃), while the two round three-spheres
with radii L1 and L2 are parametrised by (α1, β1, γ1) and (α2, β2, γ2) respectively. The U(1)
isometry that corresponds to shifts in the ω direction represents the circle S1. In order to
present the various form fields we introduce the frame

e0 = L0 cosh α̃ cosh β̃ dγ̃ , e1 = L0 cosh α̃ dβ̃ , e2 = L0 dα̃ ,

e3 = L1 dα1 , e4 = L1 sinα1 dβ1 , e5 = L1 sinα1 sin β1 dγ1 ,

e6 = L2 dα2 , e7 = L2 sinα2 dβ2 , e8 = L2 sinα2 sin β2 dγ2 , e9 = dω .

(B.2)

The non-trivial form fields for each type of solutions are given below.

The pure NS case. This solution has only a NS three-form which is written in terms of
the volume forms on AdS3 and the two three-spheres as

H3 = −2
( 1
L0

e0 ∧ e1 ∧ e2 + 1
L1

e3 ∧ e4 ∧ e5 + 1
L2

e6 ∧ e7 ∧ e8
)
. (B.3)
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The pure RR type-IIB case. The only non-trivial RR field in this background is the
three-form which can also be written in terms of the volume forms on the two three-spheres as

F3 = 2
( 1
L0

e0 ∧ e1 ∧ e2 + 1
L1

e3 ∧ e4 ∧ e5 + 1
L2

e6 ∧ e7 ∧ e8
)
. (B.4)

The pure RR type-IIA case. This is related to the previous type-IIB solution via
T-duality in the ω direction. The T-duality leaves the metric invariant and generates the
four-form

F4 = 2
( 1
L0

e0 ∧ e1 ∧ e2 + 1
L1

e3 ∧ e4 ∧ e5 + 1
L2

e6 ∧ e7 ∧ e8
)
∧ e9 . (B.5)

Notice that the above fields solve the equations of motion for type-II supergravity theories
provided that the radii satisfy the following relation:

1
L2

0
= 1
L2

1
+ 1
L2

2
. (B.6)

It is worth it to point out that one can recover the pure NS and RR (type-IIA/IIB)
solutions on AdS3 × S3 × T 4 by employing the limit

α2 = ρ

L2
, L2 → ∞ (B.7)

in the supergravity fields above. In that case, eq. (B.6) implies that L0 = L1 = L. In the
same way, one could set α1 = ρ/L1 and take L1 → ∞. The two limits are equivalent due
to the symmetry of the supergravity solution on AdS3 × S3 × S3 × S1, which allows for
the exchange of the two three-spheres.

C The type-IIB deformed solution

Starting with the type-IIA pure RR background on AdS3 × S3 × S3 × S1 one can construct
a λ-deformed type-IIB solution following the procedure described in section 2. The NS sector
of this theory is given by (2.1), (2.3) and (2.4).

Moving to the type-IIB RR forms we find that the deformation switches on all of them.
More explicitly, the F1 reads

F1 = 2µ(1 + λ)(1− λ)2
( 1
L0

cosh α̃ cosα1 cosα2 e
2 − 1

L1
sinh α̃ sinα1 cosα2 e

3

− 1
L2

sinh α̃ cosα1 sinα2 e
6
)
.

(C.1)

For the F3 we find

F3 =− 2µ(1− λ)(1 + λ)2
(
cosh α̃ sinα1 cosα2

(
e245

L0
− e013

L1
+ e239

L2

)

+ cosh α̃ cosα1 sinα2

(
e278

L0
− e269

L1
− e016

L2

)
+sinh α̃ sinα1 sinα2

(
e369

L0
− e378

L1
− e456

L2

))

− 2µ(1− λ)3 sinh α̃ cosα1 cosα2

(
e012

L0
+ e345

L1
+ e678

L2

)
.

(C.2)
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The self-dual form is F5 = (1 + ⋆)f5 where

f5 = 2µ(1 + λ)3 cosh α̃ sinα1 sinα2

(
e01369

L0
− e01378

L1
− e01456

L2

)
+ 2µ(1 + λ)(1− λ)2

(
sinh α̃ sinα1 cosα2

(
e01245

L0
+ e01239

L2

)
(C.3)

+ sinh α̃ cosα1 sinα2

(
e01278

L0
− e01269

L1

)
+cosh α̃ cosα1 cosα2

(
e01345

L1
+ e01678

L2

))
.

Again, in order to guarantee that the above content solves the type-IIB equations of
motion one needs to impose the condition (B.6).

The T 4 limit. In the limit (B.7), the background described above reduces to a solution of
the type-IIB supergravity on the λ-deformed AdS3 ×S3 × T 4 geometry. This has a NS sector
which is summarised in (2.10), (2.12) and (2.13). The RR sector is obtained by applying (B.7)
in (C.1), (C.2) and (C.3). It is easy to confirm that

F1 = 2µ(1 + λ)(1− λ)2
( 1
L0

cosh α̃ cosα1 e
2 − 1

L1
sinh α̃ sinα1 e

3
)
,

F3 =− 2µ(1− λ)(1 + λ)2 cosh α̃ sinα1

(
e245

L0
− e013

L1

)
− 2µ(1− λ)3 sinh α̃ cosα1

(
e012

L0
+ e345

L1

)
, (C.4)

F5 = 2µ(1 + λ)(1− λ)2(1 + ⋆)
( 1
L0

sinh α̃ sinα1e
01245 + 1

L1
cosh α̃ cosα1e

01345
)
.

The above content solves the type-IIB equations of motion, provided that L0 = L1, as
understood from (B.6) for large L2.

Notice that the above solution is the same as the one found in [15] up to a shift in the
dilaton and an appropriate rescaling of the RR forms. Moreover, it can be obtained from the
background presented in section 2.1 by T-duality in the e9 direction.

D Details on supersymmetry

In this appendix, we elaborate on the supersymmetry analysis for the type-IIA λ-deformed
solution constructed in section 2. We start by outlining the conventions for supersymmetry
in type-IIA supergravity.

D.1 Conventions

For the variations under supersymmetry transformations of the dilatino and gravitino, we
adopt the conventions from [35]. In particular

δλ = 1
2
/∂Φϵ− 1

24
/Hσ3ϵ+

eΦ

8

(
5F0σ1 +

3
2
/F 2
(
iσ2
)
+ 1

24
/F 4σ1

)
ϵ ,

δψµ = Dµϵ−
1
8HµνρΓνρσ3ϵ+

eΦ

8

(
F0σ1 +

1
2
/F2
(
iσ2
)
+ 1

24
/F 4σ1

)
Γµϵ ,

(D.1)
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where for completeness we also included the Romans mass F0. The slash notation stands
for contraction of the spacetime indices with antisymmetric products of Γ-matrices. More
precisely, we take /∂ = Γµ∂µ and /Ap = Aµ1...µpΓµ1...µp . Moreover, σi (i = 1, 2, 3) are the
Pauli matrices and ϵ represents a doublet

ϵ =
(
ϵ+
ϵ−

)
(D.2)

of two Majorana-Weyl spinors. In type-IIA supergravity, ϵ satisfies the chirality condition
Γ0...9ϵ = −σ3ϵ, where the indices of the Γ-matrices are associated with the Lorentzian tangent
frame. It is understood that the Pauli matrices have a GL(2) action on the doublet and for
convenience we suppress the GL(2) indices. Finally, Dµ is the covariant derivative operator

Dµ = ∂µ + 1
4ωµabΓab , ωµab = −ωµba , (D.3)

with ωµab being the spin-connection and we used Latin letters for the tangent frame indices.

D.2 Killing spinor equations

We proceed with examining the supersymmetry of the background given in (2.1), (2.3), (2.4),
(2.8) and (2.9). We begin with the dilatino variation which becomes notably simpler when
we apply the projection

P1ϵ = −ϵ , P1 = L0
L1

Γ012345 + L0
L2

Γ012678 . (D.4)

Indeed, P1 squares to the identity in view of the restriction (B.6). Moreover, it can be easily
verified that the above projection solves the dilatino equation for λ = 0. However, when
λ ̸= 0, a lengthy calculation results in the following expression

δλ =− µ(1− λ)
(

sinh α̃

L0

√
∆̃(α̃)

(
σ1Pα̃ + Pα1(iσ2)Pα2

)
+ cosα1

L1
√
∆(α1)

(
σ1Pα1 − Pα̃(iσ2)Pα2

)

+ cosα2

L2
√
∆(α2)

(
σ1Pα2 + Pα̃(iσ2)Pα1

))
ϵ . (D.5)

In order to derive the above we made use of the projection condition (D.4) and we defined
the matrices

Pα̃ = (1 + λ) cosh α̃Γ2σ1 − (1− λ) sinh α̃Γ012(iσ2)√
∆̃(α̃)

,

Pα1 = (1 + λ) sinα1 Γ3σ1 + (1− λ) cosα1 Γ345(iσ2)√
∆(α1)

,

Pα2 = (1 + λ) sinα2 Γ6σ1 + (1− λ) cosα2 Γ678(iσ2)√
∆(α2)

.

(D.6)

It is now obvious that the dilatino equation is solved by imposing a second projection
condition, namely

P2ϵ = −ϵ , P2 = Pα̃σ1Pα1(iσ2)Pα2 . (D.7)
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Indeed, using the fact that P 2
α̃ = P 2

α1 = P 2
α2 = ⊮ and the commutation relations of

(Pα̃, Pα1 , Pα2) with the Pauli matrices, one can show that P2 also squares to the iden-
tity and (D.7) implies

(
σ1Pα̃ + Pα1(iσ2)Pα2

)
ϵ =

(
σ1Pα1 − Pα̃(iσ2)Pα2

)
ϵ =

(
σ1Pα2 + Pα̃(iσ2)Pα1

)
ϵ = 0 . (D.8)

Turning to the gravitino variation, we provide simplified expressions for its components
upon imposing the type-IIA chirality condition and the projections (D.4) and (D.7). In
particular, the non-trivial ones read

The α̃ component.

0 = ∂α̃ϵ+
1− λ2

2 ∆̃(α̃)
Γ01σ3ϵ . (D.9)

The β̃ component.

0 = ∂β̃ϵ−
1
2Γ

0(iσ2)Pα̃ϵ . (D.10)

The γ̃ component.

0 = ∂γ̃ϵ−
1
2 sinh β̃ Γ01ϵ+ 1

2 cosh β̃ Γ1(iσ2)Pα̃ϵ . (D.11)

The α1 component.

0 = ∂α1ϵ+
1− λ2

2∆(α1)
Γ45σ3ϵ . (D.12)

The β1 component.

0 = ∂β1ϵ−
1
2Pα1Γ5(iσ2)ϵ . (D.13)

The γ1 component.

0 = ∂γ1ϵ−
1
2 cosβ1 Γ45ϵ− 1

2 sin β1 Γ4(iσ2)Pα1ϵ . (D.14)

The α2 component.

0 = ∂α2ϵ+
1− λ2

2∆(α2)
Γ78σ3ϵ . (D.15)

The β2 component.

0 = ∂β2ϵ−
1
2Pα2Γ8(iσ2)ϵ . (D.16)
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The γ2 component.

0 = ∂γ2ϵ−
1
2 cosβ2 Γ78ϵ− 1

2 sin β2 Γ7(iσ2)Pα2ϵ . (D.17)

It is evident that the subsets of equations for (α̃, β̃, γ̃), (α1, β1, γ1) and (α2, β2, γ2)
can be solved independently as they do not mix. Starting with the α̃ component (D.9), a
straightforward integration gives

ϵ = Ωα̃ϵ1 , Ωα̃ = exp
(
−1
2 tanh−1

(1− λ

1 + λ
tanh α̃

)
Γ01σ3

)
. (D.18)

Here ϵ1 is a spinor that depends on (β̃, γ̃, α1, β1, γ1, α2, β2, γ2). Moving to the β̃ compo-
nent (D.10), the α̃ dependence drops out if we make use of (D.18) where we find

0 = ∂β̃ϵ1 −
1
2Γ

02σ3 ϵ1 . (D.19)

Again, a simple integration gives

ϵ1 = Ωβ̃ϵ2 , Ωβ̃ = exp
(
β̃

2 Γ
02σ3

)
, (D.20)

where now ϵ2 is a spinor that depends on (γ̃, α1, β1, γ1, α2, β2, γ2). Similarly, if we com-
bine (D.18) and (D.20), the γ̃ component (D.11) becomes independent of α̃ and β̃

0 = ∂γ̃ϵ2 +
1
2Γ

12σ3 ϵ2 . (D.21)

Once more, this can also be easily integrated to

ϵ2 = Ωγ̃ϵ3 , Ωγ̃ = exp
(
− γ̃

2Γ
12σ3

)
, (D.22)

with ϵ3 being a spinor that depends on (α1, β1, γ1, α2, β2, γ2).
The next three components (D.12), (D.13) and (D.14) can be solved along the same

lines. This process restricts the spinor ϵ3 to the form

ϵ3 = Ωα1Ωβ1Ωγ1ϵ4 , (D.23)

where ϵ4 is a spinor that depends on (α2, β2, γ2) and

Ωα1 = exp
(
−1
2 tan−1

(1 + λ

1− λ
tanα1

)
Γ45σ3

)
,

Ωβ1 = exp
(
β1
2 Γ34

)
, Ωγ1 = exp

(
γ1
2 Γ45

)
.

(D.24)

Finally, turning to the last three gravitino components, we observe that they can be
obtained from those along (α1, β1, γ1) by mapping

(α1, b1, γ1) 7→ (α2, β2, γ2) , (Γ3, Γ4, Γ5) 7→ (Γ6, Γ7, Γ8) . (D.25)
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This suggests that the spinor ϵ4 takes the form

ϵ4 = Ωα2Ωβ2Ωγ2η , (D.26)

where η is a constant spinor and

Ωα2 = exp
(
−1
2 tan−1

(1 + λ

1− λ
tanα2

)
Γ78σ3

)
,

Ωβ2 = exp
(
β2
2 Γ67

)
, Ωγ2 = exp

(
γ2
2 Γ78

)
.

(D.27)

In summary, if we combine (D.18), (D.20), (D.22), (D.23) and (D.26) we find that the
Killing spinor ϵ is

ϵ = Ωα̃Ωβ̃Ωγ̃Ωα1Ωβ1Ωγ1Ωα2Ωβ2Ωγ2η . (D.28)

Before we conclude, we would like to restate the projection conditions (D.4) and (D.7)
from the point of view of the constant spinor η. As a consistency check, one expects to retrieve
two algebraic conditions with no dependence on the coordinates. Starting with (D.4), we
notice that both Γ012345 and Γ012678 pass freely through the Ω matrices in (D.28). Therefore,
equation (D.4) simply reduces to (3.2). The case (D.7) is more delicate. For convenience
we write the projector P2 as

P2 = −Ω2
α̃Γ2Ω2

α1Γ
345Ω2

α2Γ
678(iσ2) . (D.29)

Using the commutation properties for the Ω matrices it is easy to verify that the projection
condition (D.7) implies

Γ2345678(iσ2)η = η . (D.30)

If we combine the above with the chirality condition for the type-IIA supergravity, we
recover (3.4).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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